mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Typos and format and CD only when PR lands.
This commit is contained in:
2
.github/workflows/book-cd.yml
vendored
2
.github/workflows/book-cd.yml
vendored
@ -1,7 +1,5 @@
|
||||
name: Deploy Rust book
|
||||
on:
|
||||
# TODO put this back only when merging after this PR lands.
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
@ -67,8 +67,8 @@ let bias = weights.get("bert.encoder.layer.0.attention.self.query.bias").unwrap(
|
||||
|
||||
let linear = Linear::new(weight.clone(), Some(bias.clone()));
|
||||
|
||||
let input_ids = Tensor::zeros((3, 7680), DType::F32, &Device::Cpu).unwrap();
|
||||
let output = linear.forward(&input_ids);
|
||||
let input_ids = Tensor::zeros((3, 768), DType::F32, &Device::Cpu).unwrap();
|
||||
let output = linear.forward(&input_ids).unwrap();
|
||||
```
|
||||
|
||||
For a full reference, you can check out the full [bert](https://github.com/LaurentMazare/candle/tree/main/candle-examples/examples/bert) example.
|
||||
|
@ -73,8 +73,8 @@ let mmap = unsafe { Mmap::map(&file).unwrap() };
|
||||
// Use safetensors directly
|
||||
let tensors = SafeTensors::deserialize(&mmap[..]).unwrap();
|
||||
let view = tensors
|
||||
.tensor("bert.encoder.layer.0.attention.self.query.weight")
|
||||
.unwrap();
|
||||
.tensor("bert.encoder.layer.0.attention.self.query.weight")
|
||||
.unwrap();
|
||||
|
||||
// We're going to load shard with rank 1, within a world_size of 4
|
||||
// We're going to split along dimension 0 doing VIEW[start..stop, :]
|
||||
@ -86,7 +86,7 @@ let mut tp_shape = view.shape().to_vec();
|
||||
let size = tp_shape[0];
|
||||
|
||||
if size % world_size != 0 {
|
||||
panic!("The dimension is not divisble by `world_size`");
|
||||
panic!("The dimension is not divisble by `world_size`");
|
||||
}
|
||||
let block_size = size / world_size;
|
||||
let start = rank * block_size;
|
||||
@ -102,7 +102,7 @@ tp_shape[dim] = block_size;
|
||||
// Convert safetensors Dtype to candle DType
|
||||
let dtype: DType = dtype.try_into().unwrap();
|
||||
|
||||
// TODO: Implement from_buffer_iterator to we can skip the extra CPU alloc.
|
||||
// TODO: Implement from_buffer_iterator so we can skip the extra CPU alloc.
|
||||
let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
|
||||
let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).unwrap();
|
||||
// ANCHOR_END: book_hub_3
|
||||
|
Reference in New Issue
Block a user