mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
Tmp.
This commit is contained in:
144
candle-core/examples/llama/weights.rs
Normal file
144
candle-core/examples/llama/weights.rs
Normal file
@ -0,0 +1,144 @@
|
||||
use memmap2::MmapOptions;
|
||||
use candle::{Device, Result, Shape, Tensor, WithDType};
|
||||
use std::fs::File;
|
||||
use std::path::PathBuf;
|
||||
use super::*;
|
||||
use safetensors::{SafeTensors, tensor::{Dtype, TensorView}};
|
||||
use half::f16;
|
||||
|
||||
fn convert<'a>(view: TensorView<'a>, device: &Device) -> Result<Tensor>{
|
||||
match view.dtype(){
|
||||
Dtype::F16 => {
|
||||
let v = view.data();
|
||||
if (v.as_ptr() as usize) % 2 == 0 {
|
||||
// SAFETY This is safe because we just checked that this
|
||||
// was correctly aligned.
|
||||
let data: &[f16] =
|
||||
unsafe { std::slice::from_raw_parts(v.as_ptr() as *const f16, v.len() / 2) };
|
||||
Tensor::from_slice(data, view.shape(), device)
|
||||
} else {
|
||||
let mut c = Vec::with_capacity(v.len() / 2);
|
||||
let mut i = 0;
|
||||
while i < v.len() {
|
||||
c.push(f16::from_le_bytes([v[i], v[i + 1]]));
|
||||
i += 2;
|
||||
}
|
||||
Tensor::from_slice(&c, view.shape(), device)
|
||||
}
|
||||
|
||||
}
|
||||
dt => todo!("Unhandled dtype {dt:?}")
|
||||
}
|
||||
}
|
||||
|
||||
pub struct VarBuilder<'a>{
|
||||
routing: HashMap<String, usize>,
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
|
||||
impl<'a> VarBuilder<'a>{
|
||||
pub fn new(safetensors: Vec<SafeTensors<'a>>, device: Device) -> Self{
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate(){
|
||||
for k in sf.names(){
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
|
||||
Self{
|
||||
safetensors,
|
||||
device,
|
||||
routing
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get(&self, tensor_name: &str) -> Result<Tensor>{
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = self.routing.get(tensor_name).unwrap_or(&0);
|
||||
let view = self.safetensors[*index].tensor(tensor_name).unwrap();
|
||||
let tensor = convert(view, &self.device)?;
|
||||
Ok(tensor)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
impl Linear{
|
||||
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self>{
|
||||
let weight = vb.get(&format!("{prefix}.weight"))?;
|
||||
Ok(Self::new(weight))
|
||||
}
|
||||
|
||||
fn load_multi(prefixes: &[&str], vb: &VarBuilder) -> Result<Self>{
|
||||
let weights: Vec<_> = prefixes.iter().map(|p| vb.get(&format!("{p}.weight")).unwrap()).collect();
|
||||
println!("shapes {:?}", weights.iter().map(|w| w.shape()).collect::<Vec<_>>());
|
||||
let weight = Tensor::cat(&weights, 0)?;
|
||||
Ok(Self::new(weight))
|
||||
}
|
||||
}
|
||||
|
||||
impl RmsNorm{
|
||||
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self>{
|
||||
let scale = vb.get(&format!("{prefix}.weight"))?;
|
||||
Ok(Self::new(scale))
|
||||
}
|
||||
}
|
||||
|
||||
impl CausalSelfAttention{
|
||||
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self>{
|
||||
let c_attn = Linear::load_multi(&[&format!("{prefix}.q_proj"), &format!("{prefix}.k_proj"), &format!("{prefix}.v_proj")], vb)?;
|
||||
let o_proj = Linear::load(&format!("{prefix}.o_proj"), vb)?;
|
||||
Ok(Self::new(c_attn,o_proj, config.n_head, cache))
|
||||
}
|
||||
}
|
||||
|
||||
impl Mlp{
|
||||
fn load(prefix: &str, vb: &VarBuilder, config: &Config) -> Result<Self>{
|
||||
let c_fc1 = Linear::load(&format!("{prefix}.gate_proj"), vb)?;
|
||||
let c_fc2 = Linear::load(&format!("{prefix}.up_proj"), vb)?;
|
||||
let c_proj = Linear::load(&format!("{prefix}.down_proj"), vb)?;
|
||||
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
||||
}
|
||||
}
|
||||
|
||||
impl Block{
|
||||
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self>{
|
||||
let attn = CausalSelfAttention::load(&format!("{prefix}.self_attn"), vb, cache, config)?;
|
||||
let mlp = Mlp::load(&format!("{prefix}.mlp"), vb, config)?;
|
||||
let input_layernorm = RmsNorm::load(&format!("{prefix}.input_layernorm"), vb)?;
|
||||
let post_attention_layernorm = RmsNorm::load(&format!("{prefix}.post_attention_layernorm"), vb)?;
|
||||
Ok(Self::new(input_layernorm, attn, post_attention_layernorm, mlp))
|
||||
}
|
||||
}
|
||||
|
||||
impl Llama{
|
||||
pub fn load(device: &Device, filenames: &[PathBuf], cache: &Cache, config: &Config) -> Result<Self>{
|
||||
let handles: Vec<_> = filenames.iter().map(|f| {
|
||||
let file = File::open(f).unwrap();
|
||||
let buffer = unsafe { MmapOptions::new().map(&file).unwrap() };
|
||||
buffer
|
||||
}).collect();
|
||||
let tensors: Vec<_> = handles.iter().map(|h| {
|
||||
let tensors = SafeTensors::deserialize(h).unwrap();
|
||||
tensors
|
||||
}).collect();
|
||||
|
||||
let vb = VarBuilder::new(tensors, device.clone());
|
||||
|
||||
let embedding = vb.get("model.embed_tokens.weight")?;
|
||||
let wte = Embedding::new(embedding);
|
||||
let lm_head = Linear::load("lm_head", &vb)?;
|
||||
let norm = RmsNorm::load("model.norm", &vb)?;
|
||||
let blocks: Vec<_> = (0..config.n_layer).map(|i| Block::load(&format!("model.layers.{i}"), &vb, cache, config).unwrap()).collect();
|
||||
|
||||
Ok(Self::new(
|
||||
wte,
|
||||
blocks,
|
||||
norm,
|
||||
lm_head
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user