Files
candle/candle-core/examples/llama/weights.rs
Ubuntu e29dae044d Tmp.
2023-06-28 14:56:38 +00:00

145 lines
4.9 KiB
Rust

use memmap2::MmapOptions;
use candle::{Device, Result, Shape, Tensor, WithDType};
use std::fs::File;
use std::path::PathBuf;
use super::*;
use safetensors::{SafeTensors, tensor::{Dtype, TensorView}};
use half::f16;
fn convert<'a>(view: TensorView<'a>, device: &Device) -> Result<Tensor>{
match view.dtype(){
Dtype::F16 => {
let v = view.data();
if (v.as_ptr() as usize) % 2 == 0 {
// SAFETY This is safe because we just checked that this
// was correctly aligned.
let data: &[f16] =
unsafe { std::slice::from_raw_parts(v.as_ptr() as *const f16, v.len() / 2) };
Tensor::from_slice(data, view.shape(), device)
} else {
let mut c = Vec::with_capacity(v.len() / 2);
let mut i = 0;
while i < v.len() {
c.push(f16::from_le_bytes([v[i], v[i + 1]]));
i += 2;
}
Tensor::from_slice(&c, view.shape(), device)
}
}
dt => todo!("Unhandled dtype {dt:?}")
}
}
pub struct VarBuilder<'a>{
routing: HashMap<String, usize>,
safetensors: Vec<SafeTensors<'a>>,
device: Device,
}
impl<'a> VarBuilder<'a>{
pub fn new(safetensors: Vec<SafeTensors<'a>>, device: Device) -> Self{
let mut routing = HashMap::new();
for (index, sf) in safetensors.iter().enumerate(){
for k in sf.names(){
routing.insert(k.to_string(), index);
}
}
Self{
safetensors,
device,
routing
}
}
pub fn get(&self, tensor_name: &str) -> Result<Tensor>{
// Unwrap or 0 just to let the proper error flow.
let index = self.routing.get(tensor_name).unwrap_or(&0);
let view = self.safetensors[*index].tensor(tensor_name).unwrap();
let tensor = convert(view, &self.device)?;
Ok(tensor)
}
}
impl Linear{
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self>{
let weight = vb.get(&format!("{prefix}.weight"))?;
Ok(Self::new(weight))
}
fn load_multi(prefixes: &[&str], vb: &VarBuilder) -> Result<Self>{
let weights: Vec<_> = prefixes.iter().map(|p| vb.get(&format!("{p}.weight")).unwrap()).collect();
println!("shapes {:?}", weights.iter().map(|w| w.shape()).collect::<Vec<_>>());
let weight = Tensor::cat(&weights, 0)?;
Ok(Self::new(weight))
}
}
impl RmsNorm{
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self>{
let scale = vb.get(&format!("{prefix}.weight"))?;
Ok(Self::new(scale))
}
}
impl CausalSelfAttention{
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self>{
let c_attn = Linear::load_multi(&[&format!("{prefix}.q_proj"), &format!("{prefix}.k_proj"), &format!("{prefix}.v_proj")], vb)?;
let o_proj = Linear::load(&format!("{prefix}.o_proj"), vb)?;
Ok(Self::new(c_attn,o_proj, config.n_head, cache))
}
}
impl Mlp{
fn load(prefix: &str, vb: &VarBuilder, config: &Config) -> Result<Self>{
let c_fc1 = Linear::load(&format!("{prefix}.gate_proj"), vb)?;
let c_fc2 = Linear::load(&format!("{prefix}.up_proj"), vb)?;
let c_proj = Linear::load(&format!("{prefix}.down_proj"), vb)?;
Ok(Self::new(c_fc1, c_fc2, c_proj))
}
}
impl Block{
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self>{
let attn = CausalSelfAttention::load(&format!("{prefix}.self_attn"), vb, cache, config)?;
let mlp = Mlp::load(&format!("{prefix}.mlp"), vb, config)?;
let input_layernorm = RmsNorm::load(&format!("{prefix}.input_layernorm"), vb)?;
let post_attention_layernorm = RmsNorm::load(&format!("{prefix}.post_attention_layernorm"), vb)?;
Ok(Self::new(input_layernorm, attn, post_attention_layernorm, mlp))
}
}
impl Llama{
pub fn load(device: &Device, filenames: &[PathBuf], cache: &Cache, config: &Config) -> Result<Self>{
let handles: Vec<_> = filenames.iter().map(|f| {
let file = File::open(f).unwrap();
let buffer = unsafe { MmapOptions::new().map(&file).unwrap() };
buffer
}).collect();
let tensors: Vec<_> = handles.iter().map(|h| {
let tensors = SafeTensors::deserialize(h).unwrap();
tensors
}).collect();
let vb = VarBuilder::new(tensors, device.clone());
let embedding = vb.get("model.embed_tokens.weight")?;
let wte = Embedding::new(embedding);
let lm_head = Linear::load("lm_head", &vb)?;
let norm = RmsNorm::load("model.norm", &vb)?;
let blocks: Vec<_> = (0..config.n_layer).map(|i| Block::load(&format!("model.layers.{i}"), &vb, cache, config).unwrap()).collect();
Ok(Self::new(
wte,
blocks,
norm,
lm_head
))
}
}