Get the sampling to work.

This commit is contained in:
laurent
2025-04-03 14:58:44 +02:00
parent 3fb67e0c2c
commit e319cd78d9
2 changed files with 45 additions and 10 deletions

View File

@ -161,7 +161,7 @@ fn main() -> Result<()> {
}
};
let device = candle_examples::device(args.cpu)?;
let (_model, device) = {
let (mut model, device) = {
let dtype = device.bf16_default_to_f32();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
@ -176,8 +176,22 @@ fn main() -> Result<()> {
};
println!("loaded the model in {:?}", start.elapsed());
let prompt = tokenizer.encode(args.prompt, true).map_err(E::msg)?;
println!("{prompt:?}");
if args.prompt.ends_with(".safetensors") {
let prompt = candle::safetensors::load(args.prompt, &device)?;
let tokens = prompt
.get("tokens")
.expect("no tokens in prompt")
.to_dtype(DType::U32)?;
let mask = prompt.get("mask").expect("no mask in prompt").clone();
println!("tokens:\n{tokens:?}");
println!("mask:\n{mask:?}");
let mut lp = candle_transformers::generation::LogitsProcessor::new(42, Some(0.8), None);
let frame = model.generate_frame(&tokens, &mask, 0, &mut lp)?;
println!("frame:\n{frame:?}");
} else {
let prompt = tokenizer.encode(args.prompt, true).map_err(E::msg)?;
println!("{prompt:?}");
}
Ok(())
}

View File

@ -1,4 +1,3 @@
#![allow(unused)]
//! Implementation of the Conversational Speech Model (CSM) from Sesame
//!
//! See: [CSM](Conversational Speech Model)
@ -8,7 +7,6 @@
/// smaller audio decoder that produces Mimi audio codes.
///
use crate::generation::LogitsProcessor;
use crate::models::encodec;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder};
use std::sync::Arc;
@ -30,6 +28,7 @@ pub struct Config {
pub text_vocab_size: usize,
}
#[allow(unused)]
#[derive(Debug, Clone)]
pub struct LlamaConfig {
vocab_size: usize,
@ -421,10 +420,32 @@ impl Model {
input_pos: usize,
lp: &mut LogitsProcessor,
) -> Result<Vec<u32>> {
let h = tokens.clone(); // TODO
let h = self.backbone.forward(&h, input_pos)?;
let (b_sz, seq_len, _cb_plus_one) = tokens.dims3()?;
let audio_tokens = tokens.narrow(2, 0, self.config.audio_num_codebooks)?;
let text_tokens = tokens.narrow(2, self.config.audio_num_codebooks, 1)?;
let text_embeds = self.text_embeddings.forward(&text_tokens)?;
let arange = (Tensor::arange(
0u32,
self.config.audio_num_codebooks as u32,
&self.decoder.device,
)? * self.config.audio_vocab_size as f64)?;
let audio_tokens = audio_tokens.broadcast_add(&arange.reshape((1, 1, ()))?)?;
let audio_embeds = self.audio_embeddings.forward(&audio_tokens)?.reshape((
b_sz,
seq_len,
self.config.audio_num_codebooks,
(),
))?;
let embeds = Tensor::cat(&[&audio_embeds, &text_embeds], D::Minus2)?;
let embeds = embeds.broadcast_mul(
&tokens_mask
.to_dtype(self.backbone.dtype)?
.unsqueeze(D::Minus1)?,
)?;
let embeds = embeds.sum(2)?;
let h = self.backbone.forward(&embeds, input_pos)?;
let c0_logits = h.apply(&self.codebook0_head)?;
let c0_sample = lp.sample(&c0_logits)?;
let c0_sample = lp.sample(&c0_logits.i((0, 0))?)?;
let mut all_samples = vec![c0_sample];
let c0_sample = Tensor::from_slice(&[c0_sample], (1, 1), &self.decoder.device)?;
let c0_embed = self.audio_embeddings.forward(&c0_sample)?;
@ -434,8 +455,8 @@ impl Model {
for i in 0..(self.config.audio_num_codebooks - 1) {
let proj_h = curr_h.apply(&self.projection)?;
let decoder_h = self.decoder.forward(&proj_h, i)?;
let ci_logits = decoder_h.matmul(&self.audio_head.get(i)?)?;
let ci_sample = lp.sample(&ci_logits)?;
let ci_logits = decoder_h.broadcast_matmul(&self.audio_head.get(i)?)?;
let ci_sample = lp.sample(&ci_logits.i((0, 0))?)?;
all_samples.push(ci_sample);
let ci_sample = Tensor::from_slice(&[ci_sample], (1, 1), &self.decoder.device)?;
let ci_embed = self.audio_embeddings.forward(&ci_sample)?;