Merge pull request #54 from LaurentMazare/more-pyo3-2

Add dtype support in the pyo3 bindings.
This commit is contained in:
Laurent Mazare
2023-07-02 20:21:37 +01:00
committed by GitHub
3 changed files with 54 additions and 6 deletions

View File

@ -10,6 +10,24 @@ pub enum DType {
F64,
}
#[derive(Debug, PartialEq, Eq)]
pub struct DTypeParseError;
impl std::str::FromStr for DType {
type Err = DTypeParseError;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s {
"u8" => Ok(Self::U8),
"u32" => Ok(Self::U32),
"bf16" => Ok(Self::BF16),
"f16" => Ok(Self::F16),
"f32" => Ok(Self::F32),
"f64" => Ok(Self::F64),
_ => Err(DTypeParseError),
}
}
}
impl DType {
pub fn as_str(&self) -> &'static str {
match self {

View File

@ -1,6 +1,6 @@
use pyo3::exceptions::{PyTypeError, PyValueError};
use pyo3::prelude::*;
use pyo3::types::{PyString, PyTuple};
use pyo3::types::PyTuple;
use half::{bf16, f16};
@ -22,13 +22,32 @@ impl std::ops::Deref for PyTensor {
}
}
trait PyDType: WithDType {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct PyDType(DType);
impl<'source> FromPyObject<'source> for PyDType {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
use std::str::FromStr;
let dtype: &str = ob.extract()?;
let dtype = DType::from_str(dtype)
.map_err(|_| PyTypeError::new_err(format!("invalid dtype {dtype}")))?;
Ok(Self(dtype))
}
}
impl ToPyObject for PyDType {
fn to_object(&self, py: Python<'_>) -> PyObject {
self.0.as_str().to_object(py)
}
}
trait PyWithDType: WithDType {
fn to_py(&self, py: Python<'_>) -> PyObject;
}
macro_rules! pydtype {
($ty:ty, $conv:expr) => {
impl PyDType for $ty {
impl PyWithDType for $ty {
fn to_py(&self, py: Python<'_>) -> PyObject {
$conv(*self).to_object(py)
}
@ -45,7 +64,7 @@ pydtype!(f64, |v| v);
// TODO: Something similar to this should probably be a part of candle core.
trait MapDType {
type Output;
fn f<T: PyDType>(&self, t: &Tensor) -> PyResult<Self::Output>;
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output>;
fn map(&self, t: &Tensor) -> PyResult<Self::Output> {
match t.dtype() {
@ -83,7 +102,7 @@ impl PyTensor {
struct M<'a>(Python<'a>);
impl<'a> MapDType for M<'a> {
type Output = PyObject;
fn f<T: PyDType>(&self, t: &Tensor) -> PyResult<Self::Output> {
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output> {
match t.rank() {
0 => Ok(t.to_scalar::<T>().map_err(wrap_err)?.to_py(self.0)),
1 => {
@ -133,7 +152,7 @@ impl PyTensor {
#[getter]
fn dtype(&self, py: Python<'_>) -> PyObject {
PyString::new(py, self.0.dtype().as_str()).to_object(py)
PyDType(self.0.dtype()).to_object(py)
}
#[getter]
@ -269,6 +288,10 @@ impl PyTensor {
fn copy(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.copy().map_err(wrap_err)?))
}
fn to_dtype(&self, dtype: PyDType) -> PyResult<Self> {
Ok(PyTensor(self.0.to_dtype(dtype.0).map_err(wrap_err)?))
}
}
/// Concatenate the tensors across one axis.
@ -286,10 +309,16 @@ fn stack(tensors: Vec<PyTensor>, dim: usize) -> PyResult<PyTensor> {
Ok(PyTensor(tensor))
}
#[pyfunction]
fn tensor(py: Python<'_>, vs: PyObject) -> PyResult<PyTensor> {
PyTensor::new(py, vs)
}
#[pymodule]
fn candle(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_class::<PyTensor>()?;
m.add_function(wrap_pyfunction!(cat, m)?)?;
m.add_function(wrap_pyfunction!(tensor, m)?)?;
m.add_function(wrap_pyfunction!(stack, m)?)?;
Ok(())
}

View File

@ -10,3 +10,4 @@ print(t)
print(t+t)
t = t.reshape([2, 4])
print(t.matmul(t.t()))
print(t.to_dtype("u8"))