mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Fixing softmax.
This commit is contained in:
@ -113,21 +113,23 @@ impl MetalDevice {
|
||||
self._new_buffer(size, MTLResourceOptions::StorageModePrivate, name)
|
||||
}
|
||||
|
||||
fn _new_buffer(&self, size: NSUInteger, option: MTLResourceOptions, name: &str) -> Arc<Buffer> {
|
||||
// println!("Creating new buffer {name}");
|
||||
fn _new_buffer(
|
||||
&self,
|
||||
size: NSUInteger,
|
||||
option: MTLResourceOptions,
|
||||
_name: &str,
|
||||
) -> Arc<Buffer> {
|
||||
let mut buffers = self.buffers.try_write().unwrap();
|
||||
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
|
||||
|
||||
for sub in &mut *subbuffers {
|
||||
if Arc::strong_count(sub) == 1 {
|
||||
// println!("Reusing tensor {size} {name}");
|
||||
return sub.clone();
|
||||
}
|
||||
}
|
||||
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
|
||||
let new_buffer = Arc::new(new_buffer);
|
||||
subbuffers.push(new_buffer.clone());
|
||||
// println!("Created tensor {size} {name}");
|
||||
for subbuffers in buffers.values_mut() {
|
||||
let newbuffers = subbuffers
|
||||
.iter()
|
||||
|
@ -67,7 +67,6 @@ kernel void NAME( \
|
||||
threadgroup_barrier(mem_flags::mem_none); \
|
||||
} \
|
||||
\
|
||||
threadgroup_barrier(mem_flags::mem_none); \
|
||||
dst[dst_id] = shared_memory[0]; \
|
||||
} \
|
||||
|
||||
@ -94,11 +93,10 @@ kernel void NAME(
|
||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
|
||||
size_t idx = start_idx + tid; \
|
||||
\
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
\
|
||||
float tmp = 0; \
|
||||
float tmp = -INFINITY; \
|
||||
while (idx < stop_idx) { \
|
||||
tmp = MAX(tmp, src[idx]); \
|
||||
tmp = MAX(tmp, float(src[idx])); \
|
||||
idx += block_dim; \
|
||||
} \
|
||||
shared_memory[tid] = tmp; \
|
||||
@ -109,12 +107,15 @@ kernel void NAME(
|
||||
if (tid < s) { \
|
||||
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
} \
|
||||
\
|
||||
/* wait for shared_memory[0] to be filled */ \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
\
|
||||
float _max = shared_memory[0]; \
|
||||
\
|
||||
/* prevent tid=0 from overwriting _max before other threads have written it */ \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
shared_memory[tid] = 0; \
|
||||
\
|
||||
@ -125,10 +126,12 @@ kernel void NAME(
|
||||
shared_memory[tid] += val; \
|
||||
idx += block_dim; \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
||||
if (tid < s) { \
|
||||
shared_memory[tid] += shared_memory[tid + s]; \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
} \
|
||||
\
|
||||
const T inv_acc = T(1.0/shared_memory[0]); \
|
||||
|
@ -220,7 +220,7 @@ impl candle::CustomOp1 for SoftmaxLastDim {
|
||||
};
|
||||
|
||||
let n = layout.stride().len();
|
||||
if !(layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
|
||||
if !(layout.is_contiguous() && layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
|
||||
candle::bail!("Non contiguous softmax-last-dim is not implemented");
|
||||
}
|
||||
|
||||
|
@ -272,10 +272,6 @@ impl MHA {
|
||||
}
|
||||
|
||||
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
// let view = xs.to_string();
|
||||
// if view.contains("NaN") {
|
||||
// panic!("NaN");
|
||||
// }
|
||||
let _enter = self.span.enter();
|
||||
let (b_size, seq_len, _n_embd) = xs.dims3()?;
|
||||
let qkv = self
|
||||
|
Reference in New Issue
Block a user