mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
@ -27,7 +27,7 @@ intel-mkl-src = { workspace = true, optional = true }
|
||||
num-traits = { workspace = true }
|
||||
palette = { version = "0.7.6", optional = true }
|
||||
enterpolation = { version = "0.2.1", optional = true}
|
||||
pyo3 = { version = "0.21.0", features = ["auto-initialize"], optional = true }
|
||||
pyo3 = { version = "0.22.0", features = ["auto-initialize"], optional = true }
|
||||
rayon = { workspace = true }
|
||||
rubato = { version = "0.15.0", optional = true }
|
||||
safetensors = { workspace = true }
|
||||
@ -121,4 +121,4 @@ required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "colpali"
|
||||
required-features = ["pdf2image"]
|
||||
required-features = ["pdf2image"]
|
||||
|
@ -20,10 +20,10 @@ candle-nn = { workspace = true }
|
||||
candle-onnx = { workspace = true, optional = true }
|
||||
half = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
pyo3 = { version = "0.21.0", features = ["extension-module", "abi3-py38"] }
|
||||
pyo3 = { version = "0.22.0", features = ["extension-module", "abi3-py38"] }
|
||||
|
||||
[build-dependencies]
|
||||
pyo3-build-config = "0.21"
|
||||
pyo3-build-config = "0.22"
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
@ -33,9 +33,7 @@ def has_mkl() -> bool:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def load_ggml(
|
||||
path: Union[str, PathLike], device: Optional[Device] = None
|
||||
) -> Tuple[Dict[str, QTensor], Dict[str, Any], List[str]]:
|
||||
def load_ggml(path, device=None) -> Tuple[Dict[str, QTensor], Dict[str, Any], List[str]]:
|
||||
"""
|
||||
Load a GGML file. Returns a tuple of three objects: a dictionary mapping tensor names to tensors,
|
||||
a dictionary mapping hyperparameter names to hyperparameter values, and a vocabulary.
|
||||
@ -43,9 +41,7 @@ def load_ggml(
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def load_gguf(
|
||||
path: Union[str, PathLike], device: Optional[Device] = None
|
||||
) -> Tuple[Dict[str, QTensor], Dict[str, Any]]:
|
||||
def load_gguf(path, device=None) -> Tuple[Dict[str, QTensor], Dict[str, Any]]:
|
||||
"""
|
||||
Loads a GGUF file. Returns a tuple of two dictionaries: the first maps tensor names to tensors,
|
||||
and the second maps metadata keys to metadata values.
|
||||
@ -60,7 +56,7 @@ def load_safetensors(path: Union[str, PathLike]) -> Dict[str, Tensor]:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def save_gguf(path: Union[str, PathLike], tensors: Dict[str, QTensor], metadata: Dict[str, Any]):
|
||||
def save_gguf(path, tensors, metadata):
|
||||
"""
|
||||
Save quanitzed tensors and metadata to a GGUF file.
|
||||
"""
|
||||
|
@ -6,7 +6,6 @@ use pyo3::types::{IntoPyDict, PyDict, PyTuple};
|
||||
use pyo3::ToPyObject;
|
||||
use std::collections::hash_map::DefaultHasher;
|
||||
use std::hash::{Hash, Hasher};
|
||||
use std::os::raw::c_long;
|
||||
use std::sync::Arc;
|
||||
|
||||
use half::{bf16, f16};
|
||||
@ -115,7 +114,7 @@ impl PyDevice {
|
||||
}
|
||||
|
||||
impl<'source> FromPyObject<'source> for PyDevice {
|
||||
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
||||
fn extract_bound(ob: &Bound<'source, PyAny>) -> PyResult<Self> {
|
||||
let device: String = ob.extract()?;
|
||||
let device = match device.as_str() {
|
||||
"cpu" => PyDevice::Cpu,
|
||||
@ -217,11 +216,11 @@ enum Indexer {
|
||||
IndexSelect(Tensor),
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Debug)]
|
||||
struct TorchTensor(PyObject);
|
||||
|
||||
impl<'source> pyo3::FromPyObject<'source> for TorchTensor {
|
||||
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
||||
fn extract_bound(ob: &Bound<'source, PyAny>) -> PyResult<Self> {
|
||||
let numpy_value: PyObject = ob.getattr("numpy")?.call0()?.extract()?;
|
||||
Ok(TorchTensor(numpy_value))
|
||||
}
|
||||
@ -540,7 +539,7 @@ impl PyTensor {
|
||||
))
|
||||
} else if let Ok(slice) = py_indexer.downcast::<pyo3::types::PySlice>() {
|
||||
// Handle a single slice e.g. tensor[0:1] or tensor[0:-1]
|
||||
let index = slice.indices(dims[current_dim] as c_long)?;
|
||||
let index = slice.indices(dims[current_dim] as isize)?;
|
||||
Ok((
|
||||
Indexer::Slice(index.start as usize, index.stop as usize),
|
||||
current_dim + 1,
|
||||
@ -1284,7 +1283,7 @@ fn save_safetensors(
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
#[pyo3(text_signature = "(path:Union[str,PathLike], device: Optional[Device] = None)")]
|
||||
#[pyo3(signature = (path, device = None))]
|
||||
/// Load a GGML file. Returns a tuple of three objects: a dictionary mapping tensor names to tensors,
|
||||
/// a dictionary mapping hyperparameter names to hyperparameter values, and a vocabulary.
|
||||
/// &RETURNS&: Tuple[Dict[str,QTensor], Dict[str,Any], List[str]]
|
||||
@ -1325,7 +1324,7 @@ fn load_ggml(
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
#[pyo3(text_signature = "(path:Union[str,PathLike], device: Optional[Device] = None)")]
|
||||
#[pyo3(signature = (path, device = None))]
|
||||
/// Loads a GGUF file. Returns a tuple of two dictionaries: the first maps tensor names to tensors,
|
||||
/// and the second maps metadata keys to metadata values.
|
||||
/// &RETURNS&: Tuple[Dict[str,QTensor], Dict[str,Any]]
|
||||
@ -1384,7 +1383,7 @@ fn load_gguf(
|
||||
|
||||
#[pyfunction]
|
||||
#[pyo3(
|
||||
text_signature = "(path:Union[str,PathLike], tensors:Dict[str,QTensor], metadata:Dict[str,Any])"
|
||||
signature = (path, tensors, metadata)
|
||||
)]
|
||||
/// Save quanitzed tensors and metadata to a GGUF file.
|
||||
fn save_gguf(path: &str, tensors: PyObject, metadata: PyObject, py: Python<'_>) -> PyResult<()> {
|
||||
@ -1430,7 +1429,7 @@ fn save_gguf(path: &str, tensors: PyObject, metadata: PyObject, py: Python<'_>)
|
||||
Ok(v)
|
||||
}
|
||||
let tensors = tensors
|
||||
.extract::<&PyDict>(py)
|
||||
.downcast_bound::<PyDict>(py)
|
||||
.map_err(|_| PyErr::new::<PyValueError, _>("expected a dict"))?
|
||||
.iter()
|
||||
.map(|(key, value)| {
|
||||
@ -1443,7 +1442,7 @@ fn save_gguf(path: &str, tensors: PyObject, metadata: PyObject, py: Python<'_>)
|
||||
.collect::<PyResult<Vec<_>>>()?;
|
||||
|
||||
let metadata = metadata
|
||||
.extract::<&PyDict>(py)
|
||||
.downcast_bound::<PyDict>(py)
|
||||
.map_err(|_| PyErr::new::<PyValueError, _>("expected a dict"))?
|
||||
.iter()
|
||||
.map(|(key, value)| {
|
||||
|
@ -6,7 +6,7 @@ use pyo3::prelude::*;
|
||||
pub struct PyShape(Vec<usize>);
|
||||
|
||||
impl<'source> pyo3::FromPyObject<'source> for PyShape {
|
||||
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
||||
fn extract_bound(ob: &Bound<'source, PyAny>) -> PyResult<Self> {
|
||||
if ob.is_none() {
|
||||
return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(
|
||||
"Shape cannot be None",
|
||||
@ -16,10 +16,10 @@ impl<'source> pyo3::FromPyObject<'source> for PyShape {
|
||||
let tuple = ob.downcast::<pyo3::types::PyTuple>()?;
|
||||
if tuple.len() == 1 {
|
||||
let first_element = tuple.get_item(0)?;
|
||||
let dims: Vec<usize> = pyo3::FromPyObject::extract(first_element)?;
|
||||
let dims: Vec<usize> = pyo3::FromPyObject::extract_bound(&first_element)?;
|
||||
Ok(PyShape(dims))
|
||||
} else {
|
||||
let dims: Vec<usize> = pyo3::FromPyObject::extract(tuple)?;
|
||||
let dims: Vec<usize> = pyo3::FromPyObject::extract_bound(tuple)?;
|
||||
Ok(PyShape(dims))
|
||||
}
|
||||
}
|
||||
@ -36,7 +36,7 @@ impl From<PyShape> for ::candle::Shape {
|
||||
pub struct PyShapeWithHole(Vec<isize>);
|
||||
|
||||
impl<'source> pyo3::FromPyObject<'source> for PyShapeWithHole {
|
||||
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
||||
fn extract_bound(ob: &Bound<'source, PyAny>) -> PyResult<Self> {
|
||||
if ob.is_none() {
|
||||
return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(
|
||||
"Shape cannot be None",
|
||||
@ -46,9 +46,9 @@ impl<'source> pyo3::FromPyObject<'source> for PyShapeWithHole {
|
||||
let tuple = ob.downcast::<pyo3::types::PyTuple>()?;
|
||||
let dims: Vec<isize> = if tuple.len() == 1 {
|
||||
let first_element = tuple.get_item(0)?;
|
||||
pyo3::FromPyObject::extract(first_element)?
|
||||
pyo3::FromPyObject::extract_bound(&first_element)?
|
||||
} else {
|
||||
pyo3::FromPyObject::extract(tuple)?
|
||||
pyo3::FromPyObject::extract_bound(tuple)?
|
||||
};
|
||||
|
||||
// Ensure we have only positive numbers and at most one "hole" (-1)
|
||||
|
Reference in New Issue
Block a user