* Add the flux autoencoder.
* Add the encoder down-blocks.
* Upsampling in the decoder.
* Sketch the flow matching model.
* More flux model.
* Add some of the positional embeddings.
* Add the rope embeddings.
* Add the sampling functions.
* Add the flux example.
* Fix the T5 bits.
* Proper T5 tokenizer.
* Clip encoder path fix.
* Get the clip embeddings.
* No configurable weights in layer norm.
* More weights related fixes.
* Yet another shape fix.
* DType fix.
* Fix a couple more shape issues.
* DType fixes.
* Fix the latent dims.
* Fix more shape issues.
* Autoencoder fixes.
* Get some generations out.
* Bugfix.
* T5 padding.
* Clippy fix.
* Add the decode only mode.
* Fix.
* More fixes.
* Finally get some generations to work.
* Add readme.
* bert attention mask
* Allow for using None as a mask.
* Revert part of the changes so that the proper default mask applies.
* Cosmetic change.
* Another cosmetic tweak.
---------
Co-authored-by: Laurent <laurent.mazare@gmail.com>
* Add Llama 3.1 rope
* Clippy
* Format
* Clippy
* Add support for multiple eos tokens:
* Untagged either
* Remove either dep and fix settings.json
* Make the max positional embeddings configurable
* Add: DINOv2Reg4 with PlantCLEF2024 weights and example ( See https://arxiv.org/abs/2309.16588 and https://zenodo.org/records/10848263 )
* Remove extra files + update README to download them + remove extra lines
* minor fix (README remove extra spaces)
* minor fix (README: Fix image url)
* Modif: Add back interpolate_pos_encoding() + fix when no interpolation + remove extra comments + Update README ( source image changed and so the predictions )
* Fix: Improve code lisibility with '$ cargo clippy' and '$ cargo fmt'
* Another clippy fix.
---------
Co-authored-by: x-VEspit <vincent.espitalier@cirad.fr>
Co-authored-by: laurent <laurent.mazare@gmail.com>
* define structs
* construct ResidualConvUnit
* forward() for ResidualConvUnit
* implement FeatureFusionBlock
* implement Scratch
* implement DPTHead
* add identity module
* implement forward for DTPHead
* add get_intermediate_layers to DinoVisionTransformer
* implement DepthAnythingV2
* some minor tweaks
* fix compile errors
* fix var builder prefixes
* setup initial example
* use fixed patch size of 37 (518 / 14)
* debugged until output
* print min and max values
* add some dynamism to the output location
* scale input image
* extract prep function
* extract output path function
* normalize image with magic mean and std
* add spectral coloring
* squeeze in the right place
* make enterpolation optional
* use bail instead of panic
* omit unnecessary Shape call
* remove empty curly braces
* use bail instead of assert
* use vb and pp
* remove closures
* extract config object
* Apply rustfmt.
* Fix some clippy lints.
* More lints.
* Use the array methods.
---------
Co-authored-by: laurent <laurent.mazare@gmail.com>
* Add a slice_set op.
* Add some testing.
* Add the dedicated kv-cache module.
* Derive debug and clone.
* Expose more kv-cache functions.
* Return the current data when appending.
* Use the new cache in the quantized phi3 model.
* Support embedding model gte-Qwen1.5-7B-instruct
This is a text embedding model based on Qwen2. They share same
model architecture except the last MLP module. This commit brings in
minimal modification of the old Qwen2 implementation to support both
models.
An example is provided, and had been verified according to the official
PyTorch implementation.
* Avoid doing the 'last-token filtering' based on the absence of attention mask.
---------
Co-authored-by: Laurent <laurent.mazare@gmail.com>
* Separate quantized phi-3 implementation.
* Integrate the quantized phi3 model.=
* Small fixes, get the generation to work properly.
* Keep the old llama implementation around.
* Change the default.
* Add the argsort cuda kernels.
* CPU version of arg-sort.
* Hook the cuda kernel + rework the cpu bits.
* Add some dedicated test.
* Working cuda kernel.
* Metal kernel.
* Metal adjustments.
* Bugfix.
* Use the fast rope in qwen.
* Rework the expert selection in qwen.
* Quantized phi in a separate file.
* Add the quantized phi example + rework the model code.
* Improve the phi model.
* Get some generation out.
* Use the appropriate rope shape.
* Tweak the default prompt.
---------
Co-authored-by: Jane Doe <jane.doe@example.org>
* moondream implementation
* add moondream example
* change config default activation
* Add assets and integrate phi mixformer with example
* Make use of kv cache and fix seq_len bug; Clean up example code
* Add README link to example
* Remove pos_embed scaling; Remove assets; Add to README; Expand VisionConfig
* Delete image
* Use apply instead of forward
* Use latest release special token; Fix token/s accuracy; Use GeluPytorchTanh in VisionConfig v2
* Derive debug and clone traits for Moondream model.
* This change avoids crashes when running T5 models with F16 tensors on CPU.
* This enables running ProstT5's (https://huggingface.co/Rostlab/ProstT5) encoder-only mode in Candle. This ProstT5 mode stores it's embed_tokens weights within the encoder, as its decoding stage was replaced with a CNN. You could write more, like: This alone is not sufficient to run ProstT5 within Candle examples. We will develop a ProstT5 runner outside candle for now, but would be willing to upstream it to candle-examples at a later point.
* Revert "This enables running ProstT5's (https://huggingface.co/Rostlab/ProstT5) encoder-only mode in Candle. This ProstT5 mode stores it's embed_tokens weights within the encoder, as its decoding stage was replaced with a CNN. You could write more, like: This alone is not sufficient to run ProstT5 within Candle examples. We will develop a ProstT5 runner outside candle for now, but would be willing to upstream it to candle-examples at a later point."
This reverts commit d886d3ce5e.
* This change avoids crashes when running T5 models with F16 tensors on CPU.
* This enables running ProstT5's (https://huggingface.co/Rostlab/ProstT5) encoder-only mode in Candle. This ProstT5 mode stores it's embed_tokens weights within the encoder, as its decoding stage was replaced with a CNN. This alone is not sufficient to run ProstT5 within Candle examples. We will develop a ProstT5 runner outside candle for now, but would be willing to upstream it to candle-examples at a later point.
* Start adding the recurrent-gemma model.
* More griffin.
* Add the example + get the weights to load from the HF version.
* More inference code.
* Rope + kv-cache on the attention side.
* Add to the inference code.
* Add more to the recurrent gemma inference.
* Get some first inference to run.
* Add the softcap on logits.
* Fixes.
* Use partial rotary embeddings.
* Get inference to work.
* Add a comment.
* And add a readme.