Compare commits

...

1 Commits

Author SHA1 Message Date
0bb344f798 [RFC] Start removal of VarBuilder.
- Uses `Initializer` trait instead.
- Allows more decoupling between init and load, which are very different
  ops.
- Allows more decoupling between backends (safetensors, npy, ggml,
  etc...)

This is a minimum viable change.

There are 3 kind of objects with various relations.

The `Model`:
    This is `Llama`, `Linear`, `Rms` ...
    They contain tensors (and possibly other things).  and are used to
    call `forward` basically.
    They should have no ownership of any internals like Rng state or
    actual shapes of the tensors (the tensors already own those)

The `Initializer`:
    This is a struct containing necessary information to generate new
    random tensors. Typically they should own a random generator, and
    generate different kind of random tensors based on what kind of
    `Model` they are initializing.
    This do not own any information about the `Model` itself.
    Default init stores the `Vec<Var>` for now, in order to send to the
    optimizer.

Ths `Config`:
    This is the necessary information to link between the `Model` and
    the `Initializer`. This is another struct which is a companion of
    the implementation of the initalization.
    Typical information is the shape of the tensors for simple `Model`,
    the `eps` for RMS, the `use_bias` boolean to know whether we should
    have a bias in the linear layer.

This should remove all need for `VarBuilder` during intialization, and
allow removing every initialization bit within `VarBuilder`.

Modifying `llama2-c` to follow that initialization is left on purpose
for a follow-up to keep the current PR rather small.
2023-08-16 14:39:36 +02:00
3 changed files with 85 additions and 16 deletions

View File

@ -1,5 +1,6 @@
use candle::{DType, Device, Result, Tensor};
use candle_nn::{linear, AdamW, Linear, ParamsAdamW, VarBuilder, VarMap};
use candle_nn::init::{DefaultInit, ModelInitializer};
use candle_nn::{AdamW, Linear, ParamsAdamW};
fn gen_data() -> Result<(Tensor, Tensor)> {
// Generate some sample linear data.
@ -15,14 +16,15 @@ fn main() -> Result<()> {
let (sample_xs, sample_ys) = gen_data()?;
// Use backprop to run a linear regression between samples and get the coefficients back.
let varmap = VarMap::new();
let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::Cpu);
let model = linear(2, 1, vb.pp("linear"))?;
// let varmap = VarMap::new();
// let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::Cpu);
let mut initializer = DefaultInit::new(DType::F32, Device::Cpu);
let model = Linear::init(&mut initializer, ((2, 1), true))?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(varmap.all_vars(), params)?;
let mut opt = AdamW::new(initializer.vars().to_vec(), params)?;
for step in 0..10000 {
let ys = model.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;

View File

@ -3,6 +3,50 @@
// https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py#
use candle::{DType, Device, Result, Shape, Tensor, Var};
pub trait Initializer<M> {
type Config;
fn init(&mut self, config: Self::Config) -> Result<M>;
}
pub trait ModelInitializer: Sized {
fn init<INIT: Initializer<Self>>(initializer: &mut INIT, config: INIT::Config) -> Result<Self> {
initializer.init(config)
}
}
pub struct DefaultInit {
vars: Vec<Var>,
dtype: DType,
device: Device,
}
impl DefaultInit {
pub fn new(dtype: DType, device: Device) -> Self {
let vars = vec![];
Self {
dtype,
device,
vars,
}
}
pub fn dtype(&self) -> DType {
self.dtype
}
pub fn device(&self) -> &Device {
&self.device
}
pub fn vars(&self) -> &[Var] {
&self.vars
}
pub fn push_var(&mut self, var: Var) {
self.vars.push(var)
}
}
/// Number of features as input or output of a layer.
/// In Kaiming initialization, choosing `FanIn` preserves
/// the magnitude of the variance of the weights in the

View File

@ -17,6 +17,7 @@
//! assert_eq!(ys.to_vec2::<f32>()?, &[[210.0, 430.0, 650.0]]);
//! # Ok(()) }
//! ```
use crate::init::{DefaultInit, Initializer, ModelInitializer};
use candle::{Result, Tensor};
#[derive(Debug)]
@ -43,23 +44,45 @@ impl Linear {
}
}
/// Create or initialize a new linear layer.
impl ModelInitializer for Linear {}
impl Initializer<Linear> for DefaultInit {
type Config = ((usize, usize), bool);
fn init(&mut self, (shape, has_bias): Self::Config) -> Result<Linear> {
let dtype = self.dtype();
let device = self.device().clone();
let (out_dim, in_dim) = shape;
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = init_ws.var(shape, dtype, &device)?;
self.push_var(ws.clone());
let ws = ws.as_tensor().clone();
if has_bias {
let bound = 1. / (in_dim as f64).sqrt();
let init_bs = crate::Init::Uniform {
lo: -bound,
up: bound,
};
let bs = init_bs.var(out_dim, dtype, &device)?;
self.push_var(bs.clone());
let bs = bs.as_tensor().clone();
Ok(Linear::new(ws, Some(bs)))
} else {
Ok(Linear::new(ws, None))
}
}
}
/// Loads a linear layer.
///
/// This uses some default names for weight and biases, namely `"weight"` and `"bias"`.
pub fn linear(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init((out_dim, in_dim), "weight", init_ws)?;
let bound = 1. / (in_dim as f64).sqrt();
let init_bs = crate::Init::Uniform {
lo: -bound,
up: bound,
};
let bs = vs.get_or_init(out_dim, "bias", init_bs)?;
let ws = vs.get((out_dim, in_dim), "weight")?;
let bs = vs.get(out_dim, "bias")?;
Ok(Linear::new(ws, Some(bs)))
}
pub fn linear_no_bias(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init((out_dim, in_dim), "weight", init_ws)?;
let ws = vs.get((out_dim, in_dim), "weight")?;
Ok(Linear::new(ws, None))
}