Compare commits

..

1 Commits

Author SHA1 Message Date
5edb07a5b1 mps matmul 2023-12-20 02:53:18 +01:00
660 changed files with 11741 additions and 111978 deletions

View File

@ -1,7 +0,0 @@
version: 2
updates:
- package-ecosystem: "cargo"
directory: "/"
schedule:
interval: "weekly"
open-pull-requests-limit: 5

40
.github/workflows/book-cd.yml vendored Normal file
View File

@ -0,0 +1,40 @@
name: Deploy Rust book
on:
push:
branches:
- main
jobs:
deploy:
runs-on: ubuntu-latest
permissions:
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Install latest mdbook
run: |
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
mkdir mdbook
curl -sSL $url | tar -xz --directory=./mdbook
echo `pwd`/mdbook >> $GITHUB_PATH
- name: Deploy GitHub Pages
run: |
# This assumes your book is in the root of your repository.
# Just add a `cd` here if you need to change to another directory.
cd candle-book
mdbook build
git worktree add gh-pages
git config user.name "Deploy from CI"
git config user.email ""
cd gh-pages
# Delete the ref to avoid keeping history.
git update-ref -d refs/heads/gh-pages
rm -rf *
mv ../book/* .
git add .
git commit -m "Deploy $GITHUB_SHA to gh-pages"
git push --force --set-upstream origin gh-pages

29
.github/workflows/book.yml vendored Normal file
View File

@ -0,0 +1,29 @@
name: CI
on:
pull_request:
jobs:
test:
name: Test candle-book
runs-on: ubuntu-latest
permissions:
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
steps:
- uses: actions/checkout@master
- name: Install Rust
run: |
rustup set profile minimal
rustup toolchain install stable
rustup default stable
- name: Install latest mdbook
run: |
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
mkdir bin
curl -sSL $url | tar -xz --directory=bin
echo "$(pwd)/bin" >> $GITHUB_PATH
- name: Run tests
run: cd candle-book && cargo build && mdbook test -L ../target/debug/deps/

View File

@ -5,16 +5,47 @@ on:
pull_request:
jobs:
start-runner:
name: Start self-hosted EC2 runner
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
EC2_AMI_ID: ami-03cfed9ea28f4b002
EC2_INSTANCE_TYPE: g5.xlarge
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
EC2_SECURITY_GROUP: sg-030175c435ac141d6
outputs:
label: ${{ steps.start-ec2-runner.outputs.label }}
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Start EC2 runner
id: start-ec2-runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: start
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
ec2-image-id: ${{ env.EC2_AMI_ID }}
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
subnet-id: ${{ env.EC2_SUBNET_ID }}
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
aws-resource-tags: > # optional, requires additional permissions
[
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
]
test-cuda:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
runs-on:
group: aws-g4dn-2xlarge
container:
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
options: --gpus 0
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
needs: start-runner # required to start the main job when the runner is ready
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
permissions:
contents: write
packages: write
@ -25,10 +56,32 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Install dependencies
run: apt-get update && apt install curl build-essential libssl-dev protobuf-compiler pkg-config -y
- name: Install Rust Stable
uses: actions-rust-lang/setup-rust-toolchain@v1
run: curl https://sh.rustup.rs -sSf | sh -s -- -y
- uses: Swatinem/rust-cache@v2
- run: apt-get update -y && apt-get install libssl-dev protobuf-compiler -y
- name: Test (cuda)
run: cargo test --features cuda
run: PATH=$PATH:/usr/local/cuda-11.8/bin/ /root/.cargo/bin/cargo test --features cuda
stop-runner:
name: Stop self-hosted EC2 runner
needs:
- start-runner
- test-cuda
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Stop EC2 runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: stop
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
label: ${{ needs.start-runner.outputs.label }}
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}

Binary file not shown.

View File

@ -18,9 +18,9 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest] # For now, only test on Linux
steps:
steps:
- name: Checkout repository
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Install Rust
uses: actions-rs/toolchain@v1
@ -65,4 +65,4 @@ jobs:
working-directory: ./candle-pyo3
run: |
source .env/bin/activate
python -m pytest -s -v tests
python -m pytest -s -v tests

View File

@ -1,6 +1,6 @@
on:
on:
push:
branches:
branches:
- main
pull_request:
@ -15,10 +15,7 @@ jobs:
os: [ubuntu-latest, windows-latest, macOS-latest]
rust: [stable]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
profile: minimal
@ -37,13 +34,7 @@ jobs:
os: [ubuntu-latest, windows-latest, macOS-latest]
rust: [stable]
steps:
- name: Delete huge unnecessary tools folder
if: runner.os == 'Linux'
run: rm -rf /opt/hostedtoolcache
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
profile: minimal
@ -58,7 +49,7 @@ jobs:
name: Rustfmt
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
profile: minimal
@ -74,7 +65,7 @@ jobs:
name: Clippy
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
with:
profile: minimal

View File

@ -1,15 +0,0 @@
on:
push:
name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

10
.gitignore vendored
View File

@ -9,10 +9,6 @@ target/
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
Cargo.lock
# editor config
.helix
.vscode
# These are backup files generated by rustfmt
**/*.rs.bk
@ -40,9 +36,3 @@ candle-wasm-examples/*/package-lock.json
candle-wasm-examples/**/config*.json
.DS_Store
.idea/*
__pycache__
out.safetensors
out.wav
bria.mp3
bria.safetensors
bria.wav

View File

@ -63,7 +63,7 @@ This documents the main changes to the `candle` crate.
[760](https://github.com/huggingface/candle/pull/760).
- Add the Segment-Anything Model (SAM) as an example
[773](https://github.com/huggingface/candle/pull/773).
- TinyViT backbone for the segment anything example
- TinyViT backbone for the segemnt anything example
[787](https://github.com/huggingface/candle/pull/787).
- Shape with holes support
[770](https://github.com/huggingface/candle/pull/770).

View File

@ -3,15 +3,14 @@ members = [
"candle-core",
"candle-datasets",
"candle-examples",
"candle-book",
"candle-nn",
"candle-pyo3",
"candle-transformers",
"candle-wasm-examples/*",
"candle-wasm-tests",
"tensor-tools",
]
exclude = [
"candle-book",
"candle-flash-attn",
"candle-kernels",
"candle-metal-kernels",
@ -20,7 +19,7 @@ exclude = [
resolver = "2"
[workspace.package]
version = "0.9.0-alpha.2"
version = "0.3.1"
edition = "2021"
description = "Minimalist ML framework."
repository = "https://github.com/huggingface/candle"
@ -29,53 +28,40 @@ categories = ["science"]
license = "MIT OR Apache-2.0"
[workspace.dependencies]
ab_glyph = "0.2.23"
accelerate-src = { version = "0.3.2" }
anyhow = { version = "1", features = ["backtrace"] }
byteorder = "1.4.3"
candle = { path = "./candle-core", package = "candle-core", version = "0.9.0-alpha.2" }
candle-datasets = { path = "./candle-datasets", version = "0.9.0-alpha.2" }
candle-flash-attn = { path = "./candle-flash-attn", version = "0.9.0-alpha.2" }
candle-kernels = { path = "./candle-kernels", version = "0.9.0-alpha.2" }
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.9.0-alpha.2" }
candle-nn = { path = "./candle-nn", version = "0.9.0-alpha.2" }
candle-onnx = { path = "./candle-onnx", version = "0.9.0-alpha.2" }
candle-transformers = { path = "./candle-transformers", version = "0.9.0-alpha.2" }
clap = { version = "4.2.4", features = ["derive"] }
criterion = { version = "0.5.1", default-features=false }
cudarc = { version = "0.15.1", features = ["std", "cublas", "cublaslt", "curand", "driver", "nvrtc", "f16", "cuda-version-from-build-system", "dynamic-linking"], default-features=false }
fancy-regex = "0.13.0"
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
hf-hub = "0.4.1"
half = { version = "2.5.0", features = ["num-traits", "use-intrinsics", "rand_distr"] }
hound = "3.5.1"
image = { version = "0.25.2", default-features = false, features = ["jpeg", "png"] }
imageproc = { version = "0.24.0", default-features = false }
cudarc = { version = "0.9.14", features = ["f16"] }
gemm = { version = "0.16.6", features = ["wasm-simd128-enable"] }
hf-hub = "0.3.0"
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
imageproc = { version = "0.23.0", default-features = false }
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
libc = { version = "0.2.147" }
log = "0.4"
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
memmap2 = { version = "0.7.1", features = ["stable_deref_trait"] }
num_cpus = "1.15.0"
num-traits = "0.2.15"
parquet = { version = "51.0.0" }
rand = "0.9.0"
rand_distr = "0.5.1"
parquet = { version = "45.0.0" }
rand = "0.8.5"
rand_distr = "0.4.3"
rayon = "1.7.0"
safetensors = "0.4.1"
rusttype = { version = "0.9", default-features = false }
safetensors = "0.3.1"
serde = { version = "1.0.171", features = ["derive"] }
serde_plain = "1.0.2"
serde_json = "1.0.99"
thiserror = "1"
tokenizers = { version = "0.21.0", default-features = false }
tokenizers = { version = "0.13.4", default-features = false }
tracing = "0.1.37"
tracing-chrome = "0.7.1"
tracing-subscriber = "0.3.7"
ug = "0.3.1"
ug-cuda = "0.3.1"
ug-metal = "0.3.1"
wav = "1.0.0"
yoke = { version = "0.7.2", features = ["derive"] }
zip = { version = "1.1.1", default-features = false }
metal = { version = "0.27.0", features = ["mps"]}
zip = { version = "0.6.6", default-features = false }
metal = { version = "0.27.0", features = ["mps"], package = "candle-metal" }
[profile.release-with-debug]
inherits = "release"

102
README.md
View File

@ -2,8 +2,7 @@
[![discord server](https://dcbadge.vercel.app/api/server/hugging-face-879548962464493619)](https://discord.gg/hugging-face-879548962464493619)
[![Latest version](https://img.shields.io/crates/v/candle-core.svg)](https://crates.io/crates/candle-core)
[![Documentation](https://docs.rs/candle-core/badge.svg)](https://docs.rs/candle-core)
[![License](https://img.shields.io/github/license/base-org/node?color=blue)](https://github.com/huggingface/candle/blob/main/LICENSE-MIT)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue?style=flat-square)](https://github.com/huggingface/candle/blob/main/LICENSE-APACHE)
![License](https://img.shields.io/crates/l/candle-core.svg)
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support)
and ease of use. Try our online demos:
@ -55,37 +54,20 @@ These online demos run entirely in your browser:
- [whisper](https://huggingface.co/spaces/lmz/candle-whisper): speech recognition.
- [LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2): text generation.
- [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation.
- [Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
- [Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
- [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation.
- [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
We also provide a some command line based examples using state of the art models:
- [LLaMA v1, v2, and v3](./candle-examples/examples/llama/): general LLM, includes
the SOLAR-10.7B variant.
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM.
- [Falcon](./candle-examples/examples/falcon/): general LLM.
- [Codegeex4](./candle-examples/examples/codegeex4-9b/): Code completion,code interpreter,web search,fuction calling,repository-level
- [GLM4](./candle-examples/examples/glm4/): Open Multilingual Multimodal Chat LMs by THUDM
- [Gemma v1 and v2](./candle-examples/examples/gemma/): 2b and 7b+/9b general LLMs from Google Deepmind.
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
Griffin based models from Google that mix attention with a RNN like state.
- [Phi-1, Phi-1.5, Phi-2, and Phi-3](./candle-examples/examples/phi/): 1.3b,
2.7b, and 3.8b general LLMs with performance on par with 7b models.
- [Phi-v1 and Phi-v1.5](./candle-examples/examples/phi/): a 1.3b general LLM with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
pre-trained on 1T tokens of English and code datasets. Also supports
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
- [Mamba](./candle-examples/examples/mamba/): an inference only
implementation of the Mamba state space model.
pre-trained on 1T tokens of English and code datasets.
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
better performance than all publicly available 13b models as of 2023-09-28.
- [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of
experts 8x7b general LLM with better performance than a Llama 2 70B model with
much faster inference.
- [StarCoder](./candle-examples/examples/bigcode/) and
[StarCoder2](./candle-examples/examples/starcoder2/): LLM specialized to code generation.
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
- [RWKV v5 and v6](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
performance.
performance larger than all publicly available 13b models as of 2023-09-28.
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
(English/Chinese) general LLMs with 6b and 34b parameters.
@ -96,7 +78,7 @@ We also provide a some command line based examples using state of the art models
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/quantized/assets/aoc.gif" width="600">
- [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to
image generative model, support for the 1.5, 2.1, SDXL 1.0 and Turbo versions.
image generative model, support for the 1.5, 2.1, and SDXL 1.0 versions.
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg" width="200">
@ -115,31 +97,16 @@ We also provide a some command line based examples using state of the art models
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmentation model.
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
model using residual vector quantization.
- [MetaVoice](./candle-examples/examples/metavoice/): foundational model for
text-to-speech.
- [Parler-TTS](./candle-examples/examples/parler-tts/): large text-to-speech
model.
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
using self-supervision (can be used for imagenet classification, depth
evaluation, segmentation).
- [VGG](./candle-examples/examples/vgg/),
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
generate captions for an image.
- [CLIP](./candle-examples/examples/clip/): multi-model vision and language
model.
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
dedicated submodels for hand-writing and printed recognition.
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
model, generates the translated text from the input text.
- [Moondream](./candle-examples/examples/moondream/): tiny computer-vision model
that can answer real-world questions about images.
Run them using commands like:
```
@ -155,7 +122,7 @@ There are also some wasm examples for whisper and
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
[llama2](https://huggingface.co/spaces/lmz/candle-llama2),
[T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm),
[Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm),
[Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm),
[Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm).
For LLaMA2, run the following command to retrieve the weight files and start a
@ -174,22 +141,15 @@ And then head over to
## Useful External Resources
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): A
very detailed tutorial showing how to convert a PyTorch model to Candle.
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): Efficient and
ergonomic LoRA implementation for Candle. `candle-lora` has
out-of-the-box LoRA support for many models from Candle, which can be found
[here](https://github.com/EricLBuehler/candle-lora/tree/master/candle-lora-transformers/examples).
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): Efficient and ergonomic LoRA implemenation for Candle. `candle-lora` has
out-of-the-box LoRA support for many models from Candle, which can be found [here](https://github.com/EricLBuehler/candle-lora/tree/master/candle-lora-transformers/examples).
- [`optimisers`](https://github.com/KGrewal1/optimisers): A collection of optimisers
including SGD with momentum, AdaGrad, AdaDelta, AdaMax, NAdam, RAdam, and RMSprop.
- [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and
serving local LLMs including an OpenAI compatible API server.
- [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle.
- [`candle-coursera-ml`](https://github.com/vishpat/candle-coursera-ml): Implementation of ML algorithms from Coursera's [Machine Learning Specialization](https://www.coursera.org/specializations/machine-learning-introduction) course.
- [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more.
- [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle.
- [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem.
- [`candle-einops`](https://github.com/tomsanbear/candle-einops): A pure rust implementation of the python [einops](https://github.com/arogozhnikov/einops) library.
- [`atoma-infer`](https://github.com/atoma-network/atoma-infer): A Rust library for fast inference at scale, leveraging FlashAttention2 for efficient attention computation, PagedAttention for efficient KV-cache memory management, and multi-GPU support. It is OpenAI api compatible.
- [`llms-from-scratch-rs`](https://github.com/nerdai/llms-from-scratch-rs): A comprehensive Rust translation of the code from Sebastian Raschka's Build an LLM from Scratch book.
If you have an addition to this list, please submit a pull request.
@ -208,46 +168,33 @@ If you have an addition to this list, please submit a pull request.
- WASM support, run your models in a browser.
- Included models.
- Language Models.
- LLaMA v1, v2, and v3 with variants such as SOLAR-10.7B.
- LLaMA v1 and v2.
- Falcon.
- StarCoder, StarCoder2.
- Phi 1, 1.5, 2, and 3.
- Mamba, Minimal Mamba
- Gemma v1 2b and 7b+, v2 2b and 9b.
- StarCoder.
- Phi v1.5.
- Mistral 7b v0.1.
- Mixtral 8x7b v0.1.
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
- StableLM-3B-4E1T.
- Replit-code-v1.5-3B.
- Bert.
- Yi-6B and Yi-34B.
- Qwen1.5, Qwen1.5 MoE.
- RWKV v5 and v6.
- Quantized LLMs.
- Llama 7b, 13b, 70b, as well as the chat and code variants.
- Mistral 7b, and 7b instruct.
- Mixtral 8x7b.
- Zephyr 7b a and b (Mistral-7b based).
- OpenChat 3.5 (Mistral-7b based).
- Zephyr 7b a and b (Mistral based).
- OpenChat 3.5 (Mistral based).
- Text to text.
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
- Marian MT (Machine Translation).
- Whisper (multi-lingual support).
- Text to image.
- Stable Diffusion v1.5, v2.1, XL v1.0.
- Wurstchen v2.
- Image to text.
- BLIP.
- TrOCR.
- Audio.
- Whisper, multi-lingual speech-to-text.
- EnCodec, audio compression model.
- MetaVoice-1B, text-to-speech model.
- Parler-TTS, text-to-speech model.
- Computer Vision Models.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
ConvNeXTv2, MobileOne, EfficientVit (MSRA), MobileNetv4, Hiera, FastViT.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- SegFormer.
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
- Serverless (on CPU), small and fast deployments.
- Quantization support using the llama.cpp quantized types.
@ -384,9 +331,9 @@ git submodule update --init
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ...:
```
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
```
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
```
#### Linking error on windows when running rustdoc or mdbook tests
@ -416,10 +363,3 @@ This may be caused by the models being loaded from `/mnt/c`, more details on
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
error is generated.
#### CudaRC error
If you encounter an error like this one `called `Result::unwrap()` on an `Err` value: LoadLibraryExW { source: Os { code: 126, kind: Uncategorized, message: "The specified module could not be found." } }` on windows. To fix copy and rename these 3 files (make sure they are in path). The paths depend on your cuda version.
`c:\Windows\System32\nvcuda.dll` -> `cuda.dll`
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\cublas64_12.dll` -> `cublas.dll`
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\curand64_10.dll` -> `curand.dll`

View File

@ -11,11 +11,11 @@ readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
candle = { workspace = true }
candle-datasets = { workspace = true }
candle-nn = { workspace = true }
candle-transformers = { workspace = true }
candle-flash-attn = { workspace = true, optional = true }
candle = { path = "../candle-core", version = "0.3.1", package = "candle-core" }
candle-datasets = { path = "../candle-datasets", version = "0.3.1" }
candle-nn = { path = "../candle-nn", version = "0.3.1" }
candle-transformers = { path = "../candle-transformers", version = "0.3.1" }
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.1", optional = true }
safetensors = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }
@ -25,7 +25,7 @@ cudarc = { workspace = true, optional = true }
half = { workspace = true, optional = true }
image = { workspace = true, optional = true }
anyhow = { workspace = true }
tokio = "1.43.0"
tokio = "1.29.1"
[dev-dependencies]
byteorder = { workspace = true }
@ -37,6 +37,7 @@ tokenizers = { workspace = true, features = ["onig"] }
tracing = { workspace = true }
tracing-chrome = { workspace = true }
tracing-subscriber = { workspace = true }
wav = { workspace = true }
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
parquet = { workspace = true }
image = { workspace = true }

View File

@ -28,7 +28,6 @@ let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap()
#[rustfmt::skip]
#[test]
fn book_hub_2() {
{
// ANCHOR: book_hub_2
use candle::Device;
use hf_hub::api::sync::Api;
@ -46,10 +45,9 @@ let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap()
assert_eq!(weights.len(), 206);
}
// #[rustfmt::skip]
// #[test]
// fn book_hub_3() {
{
#[rustfmt::skip]
#[test]
fn book_hub_3() {
// ANCHOR: book_hub_3
use candle::{DType, Device, Tensor};
use hf_hub::api::sync::Api;
@ -81,7 +79,7 @@ let mut tp_shape = view.shape().to_vec();
let size = tp_shape[0];
if size % world_size != 0 {
panic!("The dimension is not divisible by `world_size`");
panic!("The dimension is not divisble by `world_size`");
}
let block_size = size / world_size;
let start = rank * block_size;
@ -104,10 +102,9 @@ let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).un
assert_eq!(view.shape(), &[768, 768]);
assert_eq!(tp_tensor.dims(), &[192, 768]);
}
}
#[allow(unused)]
#[rustfmt::skip]
#[test]
fn book_training_1() -> Result<()>{
// ANCHOR: book_training_1
use hf_hub::{api::sync::Api, Repo, RepoType};

View File

@ -12,9 +12,9 @@ readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
byteorder = { workspace = true }
candle-kernels = { workspace = true, optional = true }
candle-metal-kernels = { workspace = true, optional = true }
metal = { workspace = true, optional = true }
candle-kernels = { path = "../candle-kernels", version = "0.3.1", optional = true }
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.1", optional = true }
metal = { workspace = true, optional = true}
cudarc = { workspace = true, optional = true }
gemm = { workspace = true }
half = { workspace = true }
@ -28,35 +28,17 @@ rand_distr = { workspace = true }
rayon = { workspace = true }
safetensors = { workspace = true }
thiserror = { workspace = true }
ug-cuda = { workspace = true, optional = true }
ug-metal = { workspace = true, optional = true }
yoke = { workspace = true }
zip = { workspace = true }
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
ug = { workspace = true }
[dev-dependencies]
anyhow = { workspace = true }
clap = { workspace = true }
criterion = { workspace = true }
[features]
default = []
cuda = ["cudarc", "dep:candle-kernels", "dep:ug-cuda"]
cuda = ["cudarc", "dep:candle-kernels"]
cudnn = ["cuda", "cudarc/cudnn"]
mkl = ["dep:libc", "dep:intel-mkl-src"]
accelerate = ["dep:libc", "dep:accelerate-src"]
metal = ["dep:metal", "dep:candle-metal-kernels", "dep:ug-metal"]
[[bench]]
name = "bench_main"
harness = false
[[example]]
name = "metal_basics"
required-features = ["metal"]
[[example]]
name = "cuda_basics"
required-features = ["cuda"]
metal = ["dep:metal", "dep:candle-metal-kernels"]

View File

@ -1,14 +0,0 @@
mod benchmarks;
use criterion::criterion_main;
criterion_main!(
benchmarks::affine::benches,
benchmarks::matmul::benches,
benchmarks::random::benches,
benchmarks::reduce::benches,
benchmarks::where_cond::benches,
benchmarks::conv_transpose2d::benches,
benchmarks::qmatmul::benches,
benchmarks::unary::benches
);

View File

@ -1,43 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor) {
a.affine(12.34, 56.78).unwrap();
}
fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let b = 1;
let m = 1024;
let k = 1024;
let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
let flops = b * m * k * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_affine_benchmark(c, &device, DType::F32, "affine_f32");
run_affine_benchmark(c, &device, DType::F16, "affine_f16");
run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,59 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(
x: &Tensor,
k: &Tensor,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
) {
x.conv_transpose2d(k, padding, output_padding, stride, dilation)
.unwrap();
}
fn run_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let t = Tensor::arange(0.0f32, 10000.0, device)
.unwrap()
.reshape((1, 4, 50, 50))
.unwrap()
.to_dtype(dtype)
.unwrap();
let kernel = Tensor::arange(0.0f32, 100.0, device)
.unwrap()
.reshape((4, 1, 5, 5))
.unwrap()
.to_dtype(dtype)
.unwrap();
let flops = t.dims().iter().product::<usize>() * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&t), black_box(&kernel), 1, 0, 1, 2);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_benchmark(c, &device, DType::F32, "conv_transpose2d_f32");
run_benchmark(c, &device, DType::F16, "conv_transpose2d_f16");
run_benchmark(c, &device, DType::BF16, "conv_transpose2d_bf16");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,44 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor, b: &Tensor) {
a.matmul(&b.t().unwrap()).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device) {
let b = 1;
let m = 1;
let n = 2048;
let k = 2048;
let dtype = DType::F32;
let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap();
let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap();
let flops = b * m * n * k;
let mut group = c.benchmark_group(device.bench_name("matmul"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&lhs), black_box(&rhs));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_bench(c, &device);
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,72 +0,0 @@
pub(crate) mod affine;
pub(crate) mod conv_transpose2d;
pub(crate) mod matmul;
pub(crate) mod qmatmul;
pub(crate) mod random;
pub(crate) mod reduce;
pub(crate) mod unary;
pub(crate) mod where_cond;
use candle_core::{Device, Result};
pub(crate) trait BenchDevice {
fn sync(&self) -> Result<()>;
fn bench_name<S: Into<String>>(&self, name: S) -> String;
}
impl BenchDevice for Device {
fn sync(&self) -> Result<()> {
match self {
Device::Cpu => Ok(()),
Device::Cuda(device) => {
#[cfg(feature = "cuda")]
return Ok(device
.synchronize()
.map_err(|e| candle_core::Error::Cuda(Box::new(e)))?);
#[cfg(not(feature = "cuda"))]
panic!("Cuda device without cuda feature enabled: {:?}", device)
}
Device::Metal(device) => {
#[cfg(feature = "metal")]
return Ok(device.wait_until_completed()?);
#[cfg(not(feature = "metal"))]
panic!("Metal device without metal feature enabled: {:?}", device)
}
}
}
fn bench_name<S: Into<String>>(&self, name: S) -> String {
match self {
Device::Cpu => {
let cpu_type = if cfg!(feature = "accelerate") {
"accelerate"
} else if cfg!(feature = "mkl") {
"mkl"
} else {
"cpu"
};
format!("{}_{}", cpu_type, name.into())
}
Device::Cuda(_) => format!("cuda_{}", name.into()),
Device::Metal(_) => format!("metal_{}", name.into()),
}
}
}
struct BenchDeviceHandler {
devices: Vec<Device>,
}
impl BenchDeviceHandler {
pub fn new() -> Result<Self> {
let mut devices = Vec::new();
if cfg!(feature = "metal") {
devices.push(Device::new_metal(0)?);
} else if cfg!(feature = "cuda") {
devices.push(Device::new_cuda(0)?);
}
devices.push(Device::Cpu);
Ok(Self { devices })
}
}

View File

@ -1,72 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{
quantized::{self, GgmlDType, QMatMul},
Device, Module, Tensor,
};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(matmul: &QMatMul, x: &Tensor) {
matmul.forward(x).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
let b = 1;
let m = 1;
let n = 1024;
let k = 1024;
let lhs = (0..(m * k))
.map(|v| v as f32 / (m * k) as f32)
.collect::<Vec<_>>();
let rhs = (0..(k * n))
.map(|v| v as f32 / (n * k) as f32)
.collect::<Vec<_>>();
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
let flops = b * m * n * k;
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
group.sample_size(200);
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&matmul), black_box(&lhs));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
for dtype in [
GgmlDType::F32,
GgmlDType::F16,
GgmlDType::Q4_0,
GgmlDType::Q4_1,
GgmlDType::Q5_0,
GgmlDType::Q5_1,
GgmlDType::Q8_0,
GgmlDType::Q2K,
GgmlDType::Q3K,
GgmlDType::Q4K,
GgmlDType::Q5K,
GgmlDType::Q6K,
] {
run_bench(c, &device, dtype);
}
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,63 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn rand_uniform(a: &Tensor) {
a.rand_like(-1.0, 123.0).unwrap();
}
fn rand_normal(a: &Tensor) {
a.randn_like(100.0, 15.0).unwrap();
}
fn run_random_bench(c: &mut Criterion, device: &Device) {
let b = 1;
let rows = 2048;
let cols = 2048;
let dtype = DType::F32;
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
let flops = b * rows * cols * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name("random_uniform"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |benches| {
benches.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
rand_uniform(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
let mut group = c.benchmark_group(device.bench_name("random_normal"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |benches| {
benches.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
rand_normal(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_random_bench(c, &device);
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,158 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use half::{bf16, f16};
use std::time::Instant;
fn run_sum(a: &Tensor) {
a.sum_keepdim(2).unwrap();
}
fn run_arg_min(a: &Tensor) {
a.argmin_keepdim(2).unwrap();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
let (lo, up) = (-1000.0f32, 1000.0f32);
for device in handler.devices {
run_reduce(c, &device, (lo, up), false);
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
run_arg_reduce(c, &device, (lo, up), false);
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
run_reduce(c, &device, (lo, up), true);
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
run_arg_reduce(c, &device, (lo, up), true);
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
}
}
fn run_reduce<T: candle_core::FloatDType>(
c: &mut Criterion,
device: &Device,
(lo, up): (T, T),
strided: bool,
) {
let b = 1;
let m = 1024;
let k = 1024;
let a = if strided {
Tensor::rand(lo, up, (b, m, k), &device)
.unwrap()
.transpose(0, 2)
.unwrap()
} else {
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
};
let flops = b * m * k * T::DTYPE.size_in_bytes();
let name = match T::DTYPE {
DType::F32 => {
if strided {
"reduce_f32_strided"
} else {
"reduce_f32"
}
}
DType::F16 => {
if strided {
"reduce_f16_strided"
} else {
"reduce_f16"
}
}
DType::BF16 => {
if strided {
"reduce_bf16_strided"
} else {
"reduce_bf16"
}
}
_ => "unknown",
};
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run_sum(black_box(&a));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn run_arg_reduce<T: candle_core::FloatDType>(
c: &mut Criterion,
device: &Device,
(lo, up): (T, T),
strided: bool,
) {
let b = 1;
let m = 1024;
let k = 1024;
let a = if strided {
Tensor::rand(lo, up, (b, m, k), &device)
.unwrap()
.transpose(0, 2)
.unwrap()
} else {
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
};
let flops = b * m * k * T::DTYPE.size_in_bytes();
let name = match T::DTYPE {
DType::F32 => {
if strided {
"arg_reduce_f32_strided"
} else {
"arg_reduce_f32"
}
}
DType::F16 => {
if strided {
"arg_reduce_f16_strided"
} else {
"arg_reduce_f16"
}
}
DType::BF16 => {
if strided {
"arg_reduce_bf16_strided"
} else {
"arg_reduce_bf16"
}
}
_ => "unknown",
};
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run_arg_min(black_box(&a));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,49 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor) {
a.sqrt().unwrap();
}
fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let b = 1;
let m = 1024;
let k = 1024;
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
.unwrap()
.to_dtype(dtype)
.unwrap()
.reshape((b, m, k))
.unwrap();
let flops = b * m * k * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
for dtype in [DType::F32, DType::BF16, DType::F16] {
let name = format!("sqrt_{:?}", dtype);
run_unary_benchmark(c, &device, dtype, &name);
}
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,64 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
a.where_cond(b, c).unwrap();
}
const fn create_cond_arr<const N: usize>() -> [u8; N] {
let mut arr = [0u8; N];
let mut i = 0;
while i < N {
arr[i] = (i % 2) as u8;
i += 1;
}
arr
}
const B: usize = 1;
const M: usize = 1024;
const K: usize = 1024;
const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(
black_box(&tensor),
black_box(&on_true),
black_box(&on_false),
);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let device = BenchDeviceHandler::new().unwrap();
for d in device.devices {
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -9,25 +9,21 @@ use candle_core::{Device, Tensor};
fn main() -> Result<()> {
let device = Device::new_cuda(0)?;
let x = Tensor::randn(0f32, 1.0, (8 * 4096, 8 * 4096), &device)?
.to_dtype(candle_core::DType::BF16)?;
candle_core::cuda::set_gemm_reduced_precision_f32(false);
candle_core::cuda::set_gemm_reduced_precision_bf16(false);
let _x1 = x.matmul(&x)?;
drop(_x1);
let start_time = std::time::Instant::now();
let _x1 = x.matmul(&x)?;
device.synchronize()?;
println!("fp32: {:?}", start_time.elapsed());
drop(_x1);
candle_core::cuda::set_gemm_reduced_precision_f32(true);
candle_core::cuda::set_gemm_reduced_precision_bf16(true);
let _x1 = x.matmul(&x)?;
drop(_x1);
let start_time = std::time::Instant::now();
let _x1 = x.matmul(&x)?;
device.synchronize()?;
println!("tf32: {:?}", start_time.elapsed());
drop(_x1);
let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?;
let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?;
let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
println!("{out_t}");
let in_t = in_t.to_device(&Device::Cpu)?;
let k_t = k_t.to_device(&Device::Cpu)?;
let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
let diff = (out_t.to_device(&Device::Cpu)? - out_t2)?
.sqr()?
.sum_all()?;
println!("{diff}");
let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?;
let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?;
let res = t.conv2d(&w, 1, 1, 1, 1)?;
println!("{res:?}");
Ok(())
}

View File

@ -1,28 +0,0 @@
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::Result;
use candle_core::{Device, Tensor};
fn main() -> Result<()> {
// This requires the code to be run with MTL_CAPTURE_ENABLED=1
let device = Device::new_metal(0)?;
let metal_device = match &device {
Device::Metal(m) => m,
_ => anyhow::bail!("unexpected device"),
};
metal_device.capture("/tmp/candle.gputrace")?;
// This first synchronize ensures that a new command buffer gets created after setting up the
// capture scope.
device.synchronize()?;
let x = Tensor::randn(0f32, 1.0, (128, 128), &device)?;
let x1 = x.add(&x)?;
println!("{x1:?}");
// This second synchronize ensures that the command buffer gets commited before the end of the
// capture scope.
device.synchronize()?;
Ok(())
}

View File

@ -1,5 +1,5 @@
use candle::quantized::{gguf_file, GgmlDType, QTensor};
use candle::{Device, Result};
use candle_core::quantized::{gguf_file, k_quants, QTensor};
use candle_core::{Device, Result, Tensor};
use clap::{Parser, Subcommand, ValueEnum};
use rayon::prelude::*;
@ -11,7 +11,12 @@ enum QuantizationMode {
}
impl QuantizationMode {
fn quantize(&self, name: &str, tensor: QTensor, dtype: GgmlDType) -> Result<QTensor> {
fn quantize(
&self,
name: &str,
tensor: QTensor,
default: fn(&Tensor) -> Result<QTensor>,
) -> Result<QTensor> {
match self {
Self::Llama => {
// Same behavior as the llama.cpp quantization.
@ -19,9 +24,9 @@ impl QuantizationMode {
if should_quantize {
let tensor = tensor.dequantize(&Device::Cpu)?;
if name == "output.weight" {
QTensor::quantize(&tensor, GgmlDType::Q6K)
QTensor::quantize::<k_quants::BlockQ6K>(&tensor)
} else {
QTensor::quantize(&tensor, dtype)
default(&tensor)
}
} else {
Ok(tensor)
@ -55,27 +60,6 @@ enum Quantization {
F32,
}
impl Quantization {
fn dtype(&self) -> GgmlDType {
match self {
Quantization::Q4_0 => GgmlDType::Q4_0,
Quantization::Q4_1 => GgmlDType::Q4_1,
Quantization::Q5_0 => GgmlDType::Q5_0,
Quantization::Q5_1 => GgmlDType::Q5_1,
Quantization::Q8_0 => GgmlDType::Q8_0,
Quantization::Q8_1 => GgmlDType::Q8_1,
Quantization::Q2k => GgmlDType::Q2K,
Quantization::Q3k => GgmlDType::Q3K,
Quantization::Q4k => GgmlDType::Q4K,
Quantization::Q5k => GgmlDType::Q5K,
Quantization::Q6k => GgmlDType::Q6K,
Quantization::Q8k => GgmlDType::Q8K,
Quantization::F16 => GgmlDType::F16,
Quantization::F32 => GgmlDType::F32,
}
}
}
#[derive(ValueEnum, Debug, Clone)]
enum Format {
Safetensors,
@ -117,26 +101,8 @@ enum Command {
verbose: bool,
},
Print {
file: std::path::PathBuf,
names: Vec<String>,
/// The file format to use, if unspecified infer from the file extension.
#[arg(long, value_enum)]
format: Option<Format>,
/// Print the whole content of each tensor.
#[arg(long)]
full: bool,
/// Line width for printing the tensors.
#[arg(long)]
line_width: Option<usize>,
},
Quantize {
/// The input file(s), in safetensors format.
/// The input file, in gguf format.
in_file: Vec<std::path::PathBuf>,
/// The output file, in gguf format.
@ -151,15 +117,6 @@ enum Command {
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
mode: QuantizationMode,
},
Dequantize {
/// The input file, in gguf format.
in_file: std::path::PathBuf,
/// The output file, in safetensors format.
#[arg(long)]
out_file: std::path::PathBuf,
},
}
#[derive(Parser, Debug, Clone)]
@ -168,20 +125,7 @@ struct Args {
command: Command,
}
fn run_print(
file: &std::path::PathBuf,
names: Vec<String>,
format: Option<Format>,
full: bool,
line_width: Option<usize>,
device: &Device,
) -> Result<()> {
if full {
candle::display::set_print_options_full();
}
if let Some(line_width) = line_width {
candle::display::set_line_width(line_width)
}
fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> Result<()> {
let format = match format {
Some(format) => format,
None => match Format::infer(file) {
@ -196,127 +140,7 @@ fn run_print(
};
match format {
Format::Npz => {
let tensors = candle::npy::NpzTensors::new(file)?;
let names = if names.is_empty() {
tensors.names().into_iter().map(|v| v.to_string()).collect()
} else {
names
};
for name in names.iter() {
println!("==== {name} ====");
match tensors.get(name)? {
Some(tensor) => println!("{tensor}"),
None => println!("not found"),
}
}
}
Format::Safetensors => {
use candle::safetensors::Load;
let tensors = unsafe { candle::safetensors::MmapedSafetensors::new(file)? };
let tensors: std::collections::HashMap<_, _> = tensors.tensors().into_iter().collect();
let names = if names.is_empty() {
tensors.keys().map(|v| v.to_string()).collect()
} else {
names
};
for name in names.iter() {
println!("==== {name} ====");
match tensors.get(name) {
Some(tensor_view) => {
let tensor = tensor_view.load(device)?;
println!("{tensor}")
}
None => println!("not found"),
}
}
}
Format::Pth => {
let pth_file = candle::pickle::PthTensors::new(file, None)?;
let names = if names.is_empty() {
pth_file
.tensor_infos()
.keys()
.map(|v| v.to_string())
.collect()
} else {
names
};
for name in names.iter() {
println!("==== {name} ====");
match pth_file.get(name)? {
Some(tensor) => {
println!("{tensor}")
}
None => println!("not found"),
}
}
}
Format::Pickle => {
candle::bail!("pickle format is not supported for print")
}
Format::Ggml => {
let mut file = std::fs::File::open(file)?;
let content = candle::quantized::ggml_file::Content::read(&mut file, device)?;
let names = if names.is_empty() {
content.tensors.keys().map(|v| v.to_string()).collect()
} else {
names
};
for name in names.iter() {
println!("==== {name} ====");
match content.tensors.get(name) {
Some(tensor) => {
let tensor = tensor.dequantize(device)?;
println!("{tensor}")
}
None => println!("not found"),
}
}
}
Format::Gguf => {
let mut file = std::fs::File::open(file)?;
let content = gguf_file::Content::read(&mut file)?;
let names = if names.is_empty() {
content.tensor_infos.keys().map(|v| v.to_string()).collect()
} else {
names
};
for name in names.iter() {
println!("==== {name} ====");
match content.tensor(&mut file, name, device) {
Ok(tensor) => {
let tensor = tensor.dequantize(device)?;
println!("{tensor}")
}
Err(_) => println!("not found"),
}
}
}
}
Ok(())
}
fn run_ls(
file: &std::path::PathBuf,
format: Option<Format>,
verbose: bool,
device: &Device,
) -> Result<()> {
let format = match format {
Some(format) => format,
None => match Format::infer(file) {
Some(format) => format,
None => {
println!(
"{file:?}: cannot infer format from file extension, use the --format flag"
);
return Ok(());
}
},
};
match format {
Format::Npz => {
let tensors = candle::npy::NpzTensors::new(file)?;
let tensors = candle_core::npy::NpzTensors::new(file)?;
let mut names = tensors.names();
names.sort();
for name in names {
@ -328,12 +152,12 @@ fn run_ls(
}
}
Format::Safetensors => {
let tensors = unsafe { candle::safetensors::MmapedSafetensors::new(file)? };
let tensors = unsafe { candle_core::safetensors::MmapedSafetensors::new(file)? };
let mut tensors = tensors.tensors();
tensors.sort_by(|a, b| a.0.cmp(&b.0));
for (name, view) in tensors.iter() {
let dtype = view.dtype();
let dtype = match candle::DType::try_from(dtype) {
let dtype = match candle_core::DType::try_from(dtype) {
Ok(dtype) => format!("{dtype:?}"),
Err(_) => format!("{dtype:?}"),
};
@ -342,7 +166,7 @@ fn run_ls(
}
}
Format::Pth => {
let mut tensors = candle::pickle::read_pth_tensor_info(file, verbose, None)?;
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose)?;
tensors.sort_by(|a, b| a.name.cmp(&b.name));
for tensor_info in tensors.iter() {
println!(
@ -359,7 +183,7 @@ fn run_ls(
Format::Pickle => {
let file = std::fs::File::open(file)?;
let mut reader = std::io::BufReader::new(file);
let mut stack = candle::pickle::Stack::empty();
let mut stack = candle_core::pickle::Stack::empty();
stack.read_loop(&mut reader)?;
for (i, obj) in stack.stack().iter().enumerate() {
println!("{i} {obj:?}");
@ -367,7 +191,7 @@ fn run_ls(
}
Format::Ggml => {
let mut file = std::fs::File::open(file)?;
let content = candle::quantized::ggml_file::Content::read(&mut file, device)?;
let content = candle_core::quantized::ggml_file::Content::read(&mut file)?;
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
tensors.sort_by(|a, b| a.0.cmp(&b.0));
for (name, qtensor) in tensors.iter() {
@ -403,13 +227,42 @@ fn run_quantize_safetensors(
let mut out_file = std::fs::File::create(out_file)?;
let mut tensors = std::collections::HashMap::new();
for in_file in in_files.iter() {
let in_tensors = candle::safetensors::load(in_file, &Device::Cpu)?;
let in_tensors = candle_core::safetensors::load(in_file, &Device::Cpu)?;
tensors.extend(in_tensors)
}
println!("tensors: {}", tensors.len());
let dtype = q.dtype();
let block_size = dtype.block_size();
let quantize_fn = match q {
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
Quantization::F16 => QTensor::quantize::<half::f16>,
Quantization::F32 => QTensor::quantize::<f32>,
};
let block_size = match q {
Quantization::Q4_0 => k_quants::QK4_0,
Quantization::Q4_1 => k_quants::QK4_1,
Quantization::Q5_0 => k_quants::QK5_0,
Quantization::Q5_1 => k_quants::QK5_1,
Quantization::Q8_0 => k_quants::QK8_0,
Quantization::Q8_1 => k_quants::QK8_1,
Quantization::Q2k
| Quantization::Q3k
| Quantization::Q4k
| Quantization::Q5k
| Quantization::Q6k
| Quantization::Q8k => k_quants::QK_K,
Quantization::F16 | Quantization::F32 => 1,
};
let qtensors = tensors
.into_par_iter()
@ -417,9 +270,9 @@ fn run_quantize_safetensors(
let should_quantize = tensor.rank() == 2 && tensor.dim(1)? % block_size == 0;
println!(" quantizing {name} {tensor:?} {should_quantize}");
let tensor = if should_quantize {
QTensor::quantize(&tensor, dtype)?
quantize_fn(&tensor)?
} else {
QTensor::quantize(&tensor, GgmlDType::F32)?
QTensor::quantize::<f32>(&tensor)?
};
Ok((name, tensor))
})
@ -432,36 +285,18 @@ fn run_quantize_safetensors(
Ok(())
}
fn run_dequantize(
in_file: std::path::PathBuf,
out_file: std::path::PathBuf,
device: &Device,
) -> Result<()> {
let mut in_file = std::fs::File::open(in_file)?;
let content = gguf_file::Content::read(&mut in_file)?;
let mut tensors = std::collections::HashMap::new();
for (tensor_name, _) in content.tensor_infos.iter() {
let tensor = content.tensor(&mut in_file, tensor_name, device)?;
let tensor = tensor.dequantize(device)?;
tensors.insert(tensor_name.to_string(), tensor);
}
candle::safetensors::save(&tensors, out_file)?;
Ok(())
}
fn run_quantize(
in_files: &[std::path::PathBuf],
out_file: std::path::PathBuf,
q: Quantization,
qmode: QuantizationMode,
device: &Device,
) -> Result<()> {
if in_files.is_empty() {
candle::bail!("no specified input files")
candle_core::bail!("no specified input files")
}
if let Some(extension) = out_file.extension() {
if extension == "safetensors" {
candle::bail!("the generated file cannot use the safetensors extension")
candle_core::bail!("the generated file cannot use the safetensors extension")
}
}
if let Some(extension) = in_files[0].extension() {
@ -471,7 +306,7 @@ fn run_quantize(
}
if in_files.len() != 1 {
candle::bail!("only a single in-file can be used when quantizing gguf files")
candle_core::bail!("only a single in-file can be used when quantizing gguf files")
}
// Open the out file early so as to fail directly on missing directories etc.
@ -480,15 +315,31 @@ fn run_quantize(
let content = gguf_file::Content::read(&mut in_)?;
println!("tensors: {}", content.tensor_infos.len());
let dtype = q.dtype();
let quantize_fn = match q {
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
Quantization::F16 => QTensor::quantize::<half::f16>,
Quantization::F32 => QTensor::quantize::<f32>,
};
let qtensors = content
.tensor_infos
.par_iter()
.map(|(name, _)| {
println!(" quantizing {name}");
let mut in_file = std::fs::File::open(&in_files[0])?;
let tensor = content.tensor(&mut in_file, name, device)?;
let tensor = qmode.quantize(name, tensor, dtype)?;
let tensor = content.tensor(&mut in_file, name)?;
let tensor = qmode.quantize(name, tensor, quantize_fn)?;
Ok((name, tensor))
})
.collect::<Result<Vec<_>>>()?;
@ -508,7 +359,6 @@ fn run_quantize(
fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = Device::Cpu;
match args.command {
Command::Ls {
files,
@ -520,23 +370,15 @@ fn main() -> anyhow::Result<()> {
if multiple_files {
println!("--- {file:?} ---");
}
run_ls(file, format.clone(), verbose, &device)?
run_ls(file, format.clone(), verbose)?
}
}
Command::Print {
file,
names,
format,
full,
line_width,
} => run_print(&file, names, format, full, line_width, &device)?,
Command::Quantize {
in_file,
out_file,
quantization,
mode,
} => run_quantize(&in_file, out_file, quantization, mode, &device)?,
Command::Dequantize { in_file, out_file } => run_dequantize(in_file, out_file, &device)?,
} => run_quantize(&in_file, out_file, quantization, mode)?,
}
Ok(())
}

View File

@ -380,16 +380,6 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_exp_inplace(y: &mut [f32]) {
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vd_exp_inplace(y: &mut [f64]) {
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
@ -412,28 +402,6 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
}
}
#[inline]
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vs_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
#[inline]
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vd_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
macro_rules! binary_op {
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
#[inline]

View File

@ -1,5 +1,3 @@
//! Traits to Define Backend Behavior
//!
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
@ -100,19 +98,6 @@ pub trait BackendStorage: Sized {
) -> Result<Self>;
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
#[allow(clippy::too_many_arguments)]
// Similar to cudaMemcpy2D, though values are in elements and not in bytes.
fn copy2d(
&self,
_: &mut Self,
_d1: usize,
_d2: usize,
_src_stride1: usize,
_dst_stride1: usize,
_src_offset: usize,
_dst_offset: usize,
) -> Result<()>;
}
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
@ -129,24 +114,11 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
/// # Safety
/// This function is unsafe as it doesn't initialize the underlying data store.
/// The caller should ensure that the data is properly initialized as early as possible
/// after this call.
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage>;
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
fn set_seed(&self, _: u64) -> Result<()>;
/// Synchronize should block until all the operations on the device are completed.
fn synchronize(&self) -> Result<()>;
}

View File

@ -1,4 +1,3 @@
//! Methods for backpropagation of gradients.
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
use crate::{Error, Result, Tensor, TensorId};
use std::collections::HashMap;
@ -32,7 +31,7 @@ impl Tensor {
/// elements having dependencies on the latter ones, e.g. the first element if any is the
/// argument.
/// This assumes that the op graph is a DAG.
pub fn sorted_nodes(&self) -> Vec<&Tensor> {
fn sorted_nodes(&self) -> Vec<&Tensor> {
// The vec of sorted nodes is passed as an owned value rather than a mutable reference
// to get around some lifetime limitations.
fn walk<'a>(
@ -112,11 +111,10 @@ impl Tensor {
}
Op::Unary(_node, UnaryOp::Ceil)
| Op::Unary(_node, UnaryOp::Floor)
| Op::Unary(_node, UnaryOp::Round)
| Op::Unary(_node, UnaryOp::Sign) => nodes,
| Op::Unary(_node, UnaryOp::Round) => nodes,
Op::Reshape(node)
| Op::UpsampleNearest1D { arg: node, .. }
| Op::UpsampleNearest2D { arg: node, .. }
| Op::UpsampleNearest1D(node)
| Op::UpsampleNearest2D(node)
| Op::AvgPool2D { arg: node, .. }
| Op::MaxPool2D { arg: node, .. }
| Op::Copy(node)
@ -177,7 +175,7 @@ impl Tensor {
// the backprop graph of the backprop itself. This would be an issue for second order
// derivatives but these are out of scope at the moment.
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
let grad = if do_not_detach { grad } else { grad.detach() };
let grad = if do_not_detach { grad } else { grad.detach()? };
if let Some(op) = node.op() {
match op {
Op::Binary(lhs, rhs, BinaryOp::Add) => {
@ -252,7 +250,6 @@ impl Tensor {
out_padding,
*stride,
*dilation,
/* groups */ 1,
)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
@ -312,32 +309,9 @@ impl Tensor {
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
op: "conv-transpose1d",
})?,
Op::ConvTranspose2D {
arg,
kernel,
padding,
stride,
dilation,
output_padding: _output_padding,
} => {
let grad_arg = grad.conv2d(kernel, *padding, *stride, *dilation, 1)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
let grad_kernel = grad
.transpose(0, 1)?
.conv2d(&arg.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0, k1) = kernel.dims4()?;
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
op: "conv-transpose2d",
})?,
Op::AvgPool2D {
arg,
kernel_size,
@ -373,39 +347,12 @@ impl Tensor {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
}
Op::UpsampleNearest1D { arg, target_size } => {
let (_n, c, size) = arg.dims3()?;
if target_size % size != 0 {
crate::bail!("backward not supported for non integer upscaling factors")
}
let scale = target_size / size;
let kernel = Tensor::ones((c, 1, scale), arg.dtype(), arg.device())?;
let conv_sum = grad.conv1d(&kernel, 0, scale, 1, c)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = conv_sum;
}
Op::UpsampleNearest2D {
arg,
target_h,
target_w,
} => {
let (_n, c, h, w) = arg.dims4()?;
if target_h % h != 0 || target_w % w != 0 {
crate::bail!("backward not supported for non integer upscaling factors")
}
let scale_h = target_h / h;
let scale_w = target_w / w;
if scale_h != scale_w {
crate::bail!("backward not supported for non uniform upscaling factors")
};
let kernel =
Tensor::ones((c, 1, scale_h, scale_w), arg.dtype(), arg.device())?;
let conv_sum = grad.conv2d(&kernel, 0, scale_h, 1, c)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = conv_sum;
}
Op::UpsampleNearest1D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest1d",
})?,
Op::UpsampleNearest2D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest2d",
})?,
Op::SliceScatter0(lhs, rhs, start_rhs) => {
let rhs_sum_grad = grads.or_insert(rhs)?;
let rhs_grad = grad.narrow(0, *start_rhs, rhs.dim(0)?)?;
@ -489,6 +436,7 @@ impl Tensor {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad)?;
}
Op::Cmp(_args, _) => {}
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
let node = broadcast_back(arg, node, reduced_dims)?;
let grad = broadcast_back(arg, &grad, reduced_dims)?;
@ -578,18 +526,20 @@ impl Tensor {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(_, UnaryOp::Floor)
| Op::Unary(_, UnaryOp::Round)
| Op::Reduce(_, ReduceOp::ArgMin, _)
| Op::Reduce(_, ReduceOp::ArgMax, _)
| Op::Unary(_, UnaryOp::Sign)
| Op::Cmp(_, _) => {}
Op::Reduce(_, ReduceOp::ArgMin, _) => {}
Op::Reduce(_, ReduceOp::ArgMax, _) => {}
Op::Reshape(arg) => {
let arg_grad = grad.reshape(arg.dims())?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(_, UnaryOp::Ceil) => Err(Error::BackwardNotSupported { op: "ceil" })?,
Op::Unary(_, UnaryOp::Floor) => {
Err(Error::BackwardNotSupported { op: "floor" })?
}
Op::Unary(_, UnaryOp::Round) => {
Err(Error::BackwardNotSupported { op: "round" })?
}
Op::Unary(arg, UnaryOp::Gelu) => {
let sum_grad = grads.or_insert(arg)?;
let cube = arg.powf(3.)?;
@ -621,21 +571,13 @@ impl Tensor {
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
}
Op::Unary(arg, UnaryOp::Silu) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x))) = sigmoid(x) * (1 - node) + node
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
let silu_grad = &sigmoid_arg * (1. - *node) + *node;
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
}
Op::Elu(arg, alpha) => {
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
let sum_grad = grads.or_insert(arg)?;
let zeros = arg.zeros_like()?;
let positive_mask = arg.gt(&zeros)?.to_dtype(arg.dtype())?;
let negative_mask = arg.le(&zeros)?.to_dtype(arg.dtype())?;
// node == alpha * (e^x - 1) for x <= 0, reuse it
let negative_exp_mask = (negative_mask * (*node + *alpha))?;
let negative_exp_mask = ((negative_mask * arg.exp())? * *alpha)?;
let combined_mask = (positive_mask + negative_exp_mask)?;
*sum_grad = sum_grad.add(&(grad * combined_mask)?)?
}
@ -713,38 +655,30 @@ impl Tensor {
}
}
/// A store for gradients, associating a tensor id to the corresponding gradient tensor, used for back propagation.
#[derive(Debug)]
pub struct GradStore(HashMap<TensorId, Tensor>);
impl GradStore {
/// Create a new gradient store
fn new() -> Self {
GradStore(HashMap::new())
}
/// Get the gradient tensor corresponding to the given tensor id
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
self.0.get(&id)
}
/// Get the gradient tensor associated with the given tensor
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
self.0.get(&tensor.id())
}
/// Remove the gradient tensor associated with the given tensor, returning it if it exists
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
self.0.remove(&tensor.id())
}
/// Insert a gradient tensor associated with the given tensor, returning the previous gradient tensor if it existed
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
self.0.insert(tensor.id(), grad)
}
/// Get the gradient tensor associated with the given tensor, or, if it does not exist,
/// insert a tensor of zeroes, with the same shape and type as the given tensors and return it
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
use std::collections::hash_map::Entry;
let grad = match self.0.entry(tensor.id()) {
@ -756,9 +690,4 @@ impl GradStore {
};
Ok(grad)
}
/// Get the tensor ids of the stored gradient tensors
pub fn get_ids(&self) -> impl Iterator<Item = &TensorId> {
self.0.keys()
}
}

View File

@ -1,5 +1,3 @@
//! 1D and 2D Convolutions
//!
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
#[derive(Debug, Clone, PartialEq, Eq)]
@ -14,7 +12,6 @@ pub struct ParamsConv1D {
pub(crate) padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
pub(crate) cudnn_fwd_algo: Option<CudnnFwdAlgo>,
}
impl ParamsConv1D {
@ -175,7 +172,6 @@ impl Tensor {
padding,
stride,
dilation,
cudnn_fwd_algo: Some(CudnnFwdAlgo::ImplicitGemm),
};
if groups == 1 {
self.conv1d_single_group(kernel, &params)
@ -191,16 +187,36 @@ impl Tensor {
}
}
fn conv_transpose1d_single_group(
/// Applies a 1D transposed convolution over the input tensor.
pub fn conv_transpose1d(
&self,
kernel: &Self,
params: &ParamsConvTranspose1D,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
) -> Result<Self> {
let (b_size, c_in, l_in) = self.dims3()?;
let (c_in_k, c_out, k_size) = kernel.dims3()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
let params = ParamsConvTranspose1D {
b_size,
l_in,
k_size,
c_out,
c_in,
padding,
output_padding,
stride,
dilation,
};
let storage = self.storage().conv_transpose1d(
self.layout(),
&kernel.storage(),
kernel.layout(),
params,
&params,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
arg,
@ -214,49 +230,6 @@ impl Tensor {
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
/// Applies a 1D transposed convolution over the input tensor.
pub fn conv_transpose1d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (c_in_k, c_out, k_size) = kernel.dims3()?;
let (b_size, c_in, l_in) = self.dims3()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
if c_in % groups != 0 {
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
}
let params = ParamsConvTranspose1D {
b_size,
l_in,
k_size,
c_out,
c_in: c_in / groups,
padding,
output_padding,
stride,
dilation,
};
if groups == 1 {
self.conv_transpose1d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
let storage =
self.storage()

View File

@ -1,9 +1,6 @@
//! Traits and methods for CPU-backed Tensors
pub mod erf;
pub mod kernels;
#[allow(unused)]
trait Cpu<const ARR: usize> {
type Unit;
type Array;
@ -21,7 +18,6 @@ trait Cpu<const ARR: usize> {
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
}
#[allow(unused)]
trait CpuF16<const ARR: usize> {
type Unit;
type Array;

View File

@ -1,17 +1,10 @@
//! Implementation of Backend Fns for CPU
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{DType, Error, IntDType, Layout, Result, Shape, WithDType};
use half::{bf16, f16};
use rayon::prelude::*;
mod utils;
pub use utils::{
binary_map, binary_map_vec, unary_map, unary_map_vec, Map1, Map1Any, Map2, Map2U8,
};
const USE_IM2COL_CONV1D: bool = true;
const USE_COL2IM_CONV1D_TR: bool = true;
const USE_IM2COL_CONV2D: bool = true;
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
@ -28,18 +21,103 @@ pub enum CpuStorage {
}
#[derive(Debug, Clone)]
pub enum CpuStorageRef<'a> {
U8(&'a [u8]),
U32(&'a [u32]),
I64(&'a [i64]),
BF16(&'a [bf16]),
F16(&'a [f16]),
F32(&'a [f32]),
F64(&'a [f64]),
pub struct CpuDevice;
pub trait Map1 {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U8(vs) => Ok(CpuStorage::U8(self.f(vs, layout)?)),
CpuStorage::U32(vs) => Ok(CpuStorage::U32(self.f(vs, layout)?)),
CpuStorage::I64(vs) => Ok(CpuStorage::I64(self.f(vs, layout)?)),
CpuStorage::BF16(vs) => Ok(CpuStorage::BF16(self.f(vs, layout)?)),
CpuStorage::F16(vs) => Ok(CpuStorage::F16(self.f(vs, layout)?)),
CpuStorage::F32(vs) => Ok(CpuStorage::F32(self.f(vs, layout)?)),
CpuStorage::F64(vs) => Ok(CpuStorage::F64(self.f(vs, layout)?)),
}
}
}
#[derive(Debug, Clone)]
pub struct CpuDevice;
pub trait Map1Any {
fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
&self,
vs: &[T],
layout: &Layout,
wrap: W,
) -> Result<CpuStorage>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U8(vs) => Ok(self.f(vs, layout, CpuStorage::U8)?),
CpuStorage::U32(vs) => Ok(self.f(vs, layout, CpuStorage::U32)?),
CpuStorage::I64(vs) => Ok(self.f(vs, layout, CpuStorage::I64)?),
CpuStorage::BF16(vs) => Ok(self.f(vs, layout, CpuStorage::BF16)?),
CpuStorage::F16(vs) => Ok(self.f(vs, layout, CpuStorage::F16)?),
CpuStorage::F32(vs) => Ok(self.f(vs, layout, CpuStorage::F32)?),
CpuStorage::F64(vs) => Ok(self.f(vs, layout, CpuStorage::F64)?),
}
}
}
type C = CpuStorage;
pub trait Map2 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub trait Map2U8 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
struct Cmp(CmpOp);
impl Map2U8 for Cmp {
@ -66,7 +144,7 @@ impl Map2U8 for Cmp {
struct WCond<'a, T: IntDType>(&'a [T], &'a Layout);
impl<I: IntDType> Map2 for WCond<'_, I> {
impl<'a, I: IntDType> Map2 for WCond<'a, I> {
const OP: &'static str = "where";
#[inline(always)]
fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
@ -122,8 +200,7 @@ impl ReduceIndex {
let dst_len = src_l.shape().elem_count() / reduce_dim_size;
let mut dst: Vec<U> = Vec::with_capacity(dst_len);
let dst_to_set = dst.spare_capacity_mut();
let dst_to_set =
unsafe { std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(dst_to_set) };
let dst_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(dst_to_set) };
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
@ -216,7 +293,7 @@ struct ReduceSum<'a> {
reduce_dims_and_stride: Vec<(usize, usize)>,
}
impl ReduceSum<'_> {
impl<'a> ReduceSum<'a> {
#[inline(always)]
fn fold_impl<T>(&self, src: &[T], src_l: &Layout, start_elt: T) -> Result<Vec<T>>
where
@ -281,13 +358,282 @@ impl ReduceSum<'_> {
}
}
impl Map1 for ReduceSum<'_> {
impl<'a> Map1 for ReduceSum<'a> {
#[inline(always)]
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
self.fold_impl(src, src_l, T::zero())
}
}
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
vs: &[T],
layout: &Layout,
mut f: F,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
[start_offset..start_offset + len]
.iter()
.map(|&v| f(v))
.collect(),
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut result = Vec::with_capacity(layout.shape().elem_count());
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
} else {
for index in block_start_index {
for offset in 0..block_len {
let v = unsafe { vs.get_unchecked(index + offset) };
result.push(f(*v))
}
}
}
result
}
}
}
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
vs: &[T],
layout: &Layout,
mut f: F,
mut f_vec: FV,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let mut ys: Vec<U> = Vec::with_capacity(len);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(len) };
ys
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let el_count = layout.shape().elem_count();
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
let mut result = Vec::with_capacity(el_count);
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
result
} else {
let mut ys: Vec<U> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
let mut dst_index = 0;
for src_index in block_start_index {
let vs = &vs[src_index..src_index + block_len];
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
f_vec(vs, ys);
dst_index += block_len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
}
}
}
// This function maps over two strided index sequences.
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
) -> Vec<U> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter()
.zip(rhs[o_r1..o_r2].iter())
.map(|(&l, &r)| f(l, r))
.collect(),
(Some((o_l1, o_l2)), None) => {
// TODO: Maybe we want to avoid going through the layout twice.
match rhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
lhs[o_l1..o_l2]
.iter()
.map(|&l| {
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(l, *r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
(None, Some((o_r1, o_r2))) => {
// TODO: Maybe we want to avoid going through the layout twice.
match lhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
rhs[o_r1..o_r2]
.iter()
.map(|&r| {
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(*l, r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
// Similar to binary_map but with vectorized variants.
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
mut f_vec: FV,
) -> Vec<T> {
let el_count = lhs_l.shape().elem_count();
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_l1..o_l2).step_by(ob.len) {
f_vec(
&lhs[src_i..src_i + ob.len],
rhs,
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys = lhs[o_l1..o_l2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &r) in rhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(*v, r)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_r1..o_r2).step_by(ob.len) {
f_vec(
lhs,
&rhs[src_i..src_i + ob.len],
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys = rhs[o_r1..o_r2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &l) in lhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(l, *v)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
struct Affine(f64, f64);
impl Map1 for Affine {
@ -454,7 +800,7 @@ struct Gather<'a, I: IntDType> {
dim: usize,
}
impl<I: IntDType> Map1 for Gather<'_, I> {
impl<'a, I: IntDType> Map1 for Gather<'a, I> {
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
@ -507,7 +853,7 @@ struct IndexSelect<'a, T: IntDType> {
dim: usize,
}
impl<I: IntDType> Map1 for IndexSelect<'_, I> {
impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
let src = match layout.contiguous_offsets() {
Some((a, b)) => &src[a..b],
@ -560,7 +906,7 @@ struct ScatterAdd<'a, I: IntDType> {
dim: usize,
}
impl<I: IntDType> Map2 for ScatterAdd<'_, I> {
impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
const OP: &'static str = "scatter-add";
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let dst_len = l1.shape().elem_count();
@ -616,7 +962,7 @@ struct IndexAdd<'a, I: IntDType> {
dim: usize,
}
impl<I: IntDType> Map2 for IndexAdd<'_, I> {
impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
const OP: &'static str = "index-add";
// https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html#torch.Tensor.index_add_
// v1, l1 -> self
@ -676,26 +1022,6 @@ impl<I: IntDType> Map2 for IndexAdd<'_, I> {
}
}
#[allow(clippy::too_many_arguments)]
fn copy2d_<T: Copy>(
src: &[T],
dst: &mut [T],
d1: usize,
d2: usize,
src_stride1: usize,
dst_stride1: usize,
src_offset: usize,
dst_offset: usize,
) {
for i1 in 0..d1 {
let dst_idx = i1 * dst_stride1 + dst_offset;
let src_idx = i1 * src_stride1 + src_offset;
let dst = &mut dst[dst_idx..dst_idx + d2];
let src = &src[src_idx..src_idx + d2];
dst.copy_from_slice(src)
}
}
fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l: &Layout) {
match src_l.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
@ -736,7 +1062,7 @@ fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l
struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
impl Map2 for Conv1D<'_> {
impl<'a> Map2 for Conv1D<'a> {
const OP: &'static str = "conv1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
@ -930,42 +1256,13 @@ impl Map1 for Im2Col {
}
}
struct Col2Im1D {
stride: usize,
}
impl Map1 for Col2Im1D {
fn f<T: WithDType>(&self, col: &[T], l: &Layout) -> Result<Vec<T>> {
let (b_size, l_in, c_out, k_size) = l.shape().dims4()?;
let stride = self.stride;
let l_out = (l_in - 1) * stride + k_size;
let mut im = vec![T::zero(); b_size * c_out * l_out];
let (dst_s0, dst_s1) = (c_out * l_out, l_out);
let (src_s0, src_s1, src_s2) = (c_out * k_size * l_in, c_out * k_size, k_size);
for l_in_i in 0..l_in {
for k_i in 0..k_size {
let l_out_i = l_in_i * stride + k_i;
for b_i in 0..b_size {
for c_i in 0..c_out {
let dst_idx = b_i * dst_s0 + c_i * dst_s1 + l_out_i;
let src_idx = b_i * src_s0 + l_in_i * src_s1 + c_i * src_s2 + k_i;
im[dst_idx] += col[src_idx]
}
}
}
}
Ok(im)
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl Map2 for ConvTranspose1D<'_> {
impl<'a> Map2 for ConvTranspose1D<'a> {
const OP: &'static str = "conv_transpose1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let k = &k[k_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
@ -1029,7 +1326,7 @@ impl Map2 for ConvTranspose1D<'_> {
struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
impl Map2 for Conv2D<'_> {
impl<'a> Map2 for Conv2D<'a> {
const OP: &'static str = "conv2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
@ -1117,7 +1414,7 @@ impl Map2 for Conv2D<'_> {
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
impl Map2 for ConvTranspose2D<'_> {
impl<'a> Map2 for ConvTranspose2D<'a> {
const OP: &'static str = "conv_transpose2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
@ -1217,30 +1514,6 @@ impl MatMul {
}))
.bt()
}
fn ab_skip(&self, lhs_l: &Layout, rhs_l: &Layout) -> Result<(usize, usize)> {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let (_b, m, n, k) = self.0;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[_, stride] if lhs_l.dims()[0] == 1 => stride,
[stride, _] if lhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[_, stride] if rhs_l.dims()[0] == 1 => stride,
[stride, _] if rhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
Ok((a_skip, b_skip))
}
}
impl Map2 for MatMul {
@ -1274,7 +1547,18 @@ impl Map2 for MatMul {
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let dst_shape: Shape = (m, n).into();
@ -1289,15 +1573,6 @@ impl Map2 for MatMul {
} else {
Parallelism::None
};
let (b, m, n, k) = if b_skip == 0 && a_skip == m * k {
// a_skip and c_skip should be updated but step is always 0 so
// it wouldn't matter.
(1, b * m, n, k)
} else if a_skip == 0 && b_skip == n * k {
(1, m, b * n, k)
} else {
(b, m, n, k)
};
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
@ -1343,8 +1618,20 @@ impl Map2 for MatMul {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
@ -1352,7 +1639,7 @@ impl Map2 for MatMul {
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
@ -1360,7 +1647,7 @@ impl Map2 for MatMul {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
@ -1434,8 +1721,20 @@ impl Map2 for MatMul {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
@ -1443,7 +1742,7 @@ impl Map2 for MatMul {
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
@ -1451,7 +1750,7 @@ impl Map2 for MatMul {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
@ -2123,48 +2422,6 @@ impl BackendStorage for CpuStorage {
}
}
fn copy2d(
&self,
dst: &mut Self,
d1: usize,
d2: usize,
src_s: usize,
dst_s: usize,
src_o: usize,
dst_o: usize,
) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o),
(Self::U32(src), Self::U32(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::I64(src), Self::I64(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::BF16(src), Self::BF16(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F16(src), Self::F16(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F32(src), Self::F32(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F64(src), Self::F64(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(_, dst) => {
return Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: dst.dtype(),
op: "copy2d",
}
.bt());
}
}
Ok(())
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
@ -2233,10 +2490,7 @@ impl BackendStorage for CpuStorage {
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
@ -2244,7 +2498,7 @@ impl BackendStorage for CpuStorage {
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, l_out, params.c_out)).transpose(1, 2)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
@ -2256,52 +2510,7 @@ impl BackendStorage for CpuStorage {
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
let can_use_col2im = kernel_l.is_contiguous()
&& params.dilation == 1
&& params.padding == 0
&& params.output_padding == 0;
if USE_COL2IM_CONV1D_TR && can_use_col2im {
let (b_size, c_in, l_in) = l.shape().dims3()?;
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
if !kernel_l.is_contiguous() {
crate::bail!(
"convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}"
)
}
if c_in != c_in2 {
crate::bail!(
"convtr1d: shape mismatch on c_in {:?} {:?}",
l.shape(),
kernel_l.shape()
)
}
let col = {
// This merges the last two dimensions of the kernel together.
let kernel_l_mm = Layout::new(
(b_size, c_in, k_size * c_out).into(),
vec![0, k_size * c_out, 1],
kernel_l.start_offset(),
);
self.matmul(
kernel,
(
b_size,
/* m */ l_in,
/* n */ c_out * k_size,
/* k */ c_in,
),
&l.transpose(1, 2)?,
&kernel_l_mm,
)?
};
let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
Col2Im1D {
stride: params.stride,
}
.map(&col, &col_l)
} else {
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
}
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
}
fn conv2d(
@ -2335,10 +2544,7 @@ impl BackendStorage for CpuStorage {
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
@ -2348,7 +2554,7 @@ impl BackendStorage for CpuStorage {
let res_l = Layout::contiguous((b, h_out, w_out, params.c_out))
.transpose(1, 2)?
.transpose(1, 3)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
@ -2368,7 +2574,7 @@ impl BackendStorage for CpuStorage {
Self::U8(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select").bt()),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select")),
}
}
@ -2377,7 +2583,7 @@ impl BackendStorage for CpuStorage {
Self::U8(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => Gather { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather").bt()),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather")),
}
}
@ -2394,7 +2600,7 @@ impl BackendStorage for CpuStorage {
Self::U8(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::U32(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::I64(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add").bt()),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add")),
}
}
@ -2467,18 +2673,10 @@ impl BackendDevice for CpuDevice {
true
}
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
Ok(T::to_cpu_storage(s))
}
fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
Ok(s.clone())
}
fn storage_from_cpu_storage_owned(&self, s: CpuStorage) -> Result<Self::Storage> {
Ok(s)
}
fn new(_: usize) -> Result<Self> {
Ok(Self)
}
@ -2491,15 +2689,15 @@ impl BackendDevice for CpuDevice {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::rng();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt())
}
DType::BF16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distr::Uniform::new(bf16::from_f64(min), bf16::from_f64(max))
.map_err(Error::wrap)?;
let uniform =
rand::distributions::Uniform::new(bf16::from_f64(min), bf16::from_f64(max));
for _i in 0..elem_count {
data.push(rng.sample::<bf16, _>(uniform))
}
@ -2507,8 +2705,8 @@ impl BackendDevice for CpuDevice {
}
DType::F16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distr::Uniform::new(f16::from_f64(min), f16::from_f64(max))
.map_err(Error::wrap)?;
let uniform =
rand::distributions::Uniform::new(f16::from_f64(min), f16::from_f64(max));
for _i in 0..elem_count {
data.push(rng.sample::<f16, _>(uniform))
}
@ -2516,8 +2714,7 @@ impl BackendDevice for CpuDevice {
}
DType::F32 => {
let mut data = Vec::with_capacity(elem_count);
let uniform =
rand::distr::Uniform::new(min as f32, max as f32).map_err(Error::wrap)?;
let uniform = rand::distributions::Uniform::new(min as f32, max as f32);
for _i in 0..elem_count {
data.push(rng.sample::<f32, _>(uniform))
}
@ -2525,7 +2722,7 @@ impl BackendDevice for CpuDevice {
}
DType::F64 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distr::Uniform::new(min, max).map_err(Error::wrap)?;
let uniform = rand::distributions::Uniform::new(min, max);
for _i in 0..elem_count {
data.push(rng.sample::<f64, _>(uniform))
}
@ -2538,7 +2735,7 @@ impl BackendDevice for CpuDevice {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::rng();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt())
@ -2581,53 +2778,6 @@ impl BackendDevice for CpuDevice {
}
}
#[allow(clippy::uninit_vec)]
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
// The code below is highly unsafe but hopefully not directly unsound as we only consider
// types that are Copy, not Drop, and for which all bit patterns are proper values.
// It's still pretty risky, see the following for more details:
// https://github.com/rust-lang/rust-clippy/issues/4483
let storage = match dtype {
DType::U8 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::U8(v)
}
DType::U32 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::U32(v)
}
DType::I64 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::I64(v)
}
DType::BF16 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::BF16(v)
}
DType::F16 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F16(v)
}
DType::F32 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F32(v)
}
DType::F64 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F64(v)
}
};
Ok(storage)
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
let storage = match dtype {
@ -2655,10 +2805,6 @@ impl BackendDevice for CpuDevice {
};
Ok(storage)
}
fn synchronize(&self) -> Result<()> {
Ok(())
}
}
#[macro_export]

View File

@ -1,360 +0,0 @@
/// Helper functions to write CPU kernels.
use crate::backend::BackendStorage;
use crate::{Error, Layout, Result, WithDType};
type C = super::CpuStorage;
pub trait Map1 {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
match vs {
C::U8(vs) => Ok(C::U8(self.f(vs, layout)?)),
C::U32(vs) => Ok(C::U32(self.f(vs, layout)?)),
C::I64(vs) => Ok(C::I64(self.f(vs, layout)?)),
C::BF16(vs) => Ok(C::BF16(self.f(vs, layout)?)),
C::F16(vs) => Ok(C::F16(self.f(vs, layout)?)),
C::F32(vs) => Ok(C::F32(self.f(vs, layout)?)),
C::F64(vs) => Ok(C::F64(self.f(vs, layout)?)),
}
}
}
pub trait Map1Any {
fn f<T: WithDType, W: Fn(Vec<T>) -> C>(&self, vs: &[T], layout: &Layout, wrap: W) -> Result<C>;
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
match vs {
C::U8(vs) => Ok(self.f(vs, layout, C::U8)?),
C::U32(vs) => Ok(self.f(vs, layout, C::U32)?),
C::I64(vs) => Ok(self.f(vs, layout, C::I64)?),
C::BF16(vs) => Ok(self.f(vs, layout, C::BF16)?),
C::F16(vs) => Ok(self.f(vs, layout, C::F16)?),
C::F32(vs) => Ok(self.f(vs, layout, C::F32)?),
C::F64(vs) => Ok(self.f(vs, layout, C::F64)?),
}
}
}
pub trait Map2 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub trait Map2U8 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
) -> Vec<U> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter()
.zip(rhs[o_r1..o_r2].iter())
.map(|(&l, &r)| f(l, r))
.collect(),
(Some((o_l1, o_l2)), None) => {
// TODO: Maybe we want to avoid going through the layout twice.
match rhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
lhs[o_l1..o_l2]
.iter()
.map(|&l| {
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(l, *r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
(None, Some((o_r1, o_r2))) => {
// TODO: Maybe we want to avoid going through the layout twice.
match lhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
rhs[o_r1..o_r2]
.iter()
.map(|&r| {
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(*l, r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
// Similar to binary_map but with vectorized variants.
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
mut f_vec: FV,
) -> Vec<T> {
let el_count = lhs_l.shape().elem_count();
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe {
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
};
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe {
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
};
let mut dst_i = 0;
for src_i in (o_l1..o_l2).step_by(ob.len) {
f_vec(
&lhs[src_i..src_i + ob.len],
rhs,
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys = lhs[o_l1..o_l2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &r) in rhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(*v, r)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe {
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
};
let mut dst_i = 0;
for src_i in (o_r1..o_r2).step_by(ob.len) {
f_vec(
lhs,
&rhs[src_i..src_i + ob.len],
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys = rhs[o_r1..o_r2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &l) in lhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(l, *v)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
vs: &[T],
layout: &Layout,
mut f: F,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
[start_offset..start_offset + len]
.iter()
.map(|&v| f(v))
.collect(),
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut result = Vec::with_capacity(layout.shape().elem_count());
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
} else {
for index in block_start_index {
for offset in 0..block_len {
let v = unsafe { vs.get_unchecked(index + offset) };
result.push(f(*v))
}
}
}
result
}
}
}
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
vs: &[T],
layout: &Layout,
mut f: F,
mut f_vec: FV,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let mut ys: Vec<U> = Vec::with_capacity(len);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe {
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
};
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(len) };
ys
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let el_count = layout.shape().elem_count();
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
let mut result = Vec::with_capacity(el_count);
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
result
} else {
let mut ys: Vec<U> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe {
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
};
let mut dst_index = 0;
for src_index in block_start_index {
let vs = &vs[src_index..src_index + block_len];
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
f_vec(vs, ys);
dst_index += block_len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
}
}
}

View File

@ -1,225 +0,0 @@
use crate::WithDType;
use cudarc;
use cudarc::cudnn::safe::{ConvForward, Cudnn};
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
use std::cell::RefCell;
use std::collections::HashMap;
use std::sync::Arc;
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
// send nor sync.
thread_local! {
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
}
impl From<cudarc::cudnn::CudnnError> for crate::Error {
fn from(err: cudarc::cudnn::CudnnError) -> Self {
crate::Error::wrap(err)
}
}
impl From<cudarc::driver::DriverError> for crate::Error {
fn from(err: cudarc::driver::DriverError) -> Self {
crate::Error::wrap(err)
}
}
pub(crate) fn launch_conv2d<
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
Y: cudarc::cudnn::CudnnDataType,
>(
src: &CudaView<T>,
src_l: &crate::Layout,
filter: &CudaView<T>,
dst: &mut CudaSlice<T>,
params: &crate::conv::ParamsConv2D,
dev: &crate::cuda_backend::CudaDevice,
) -> crate::Result<()> {
use crate::conv::CudnnFwdAlgo as CandleAlgo;
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
let device_id = dev.id();
let cudnn = CUDNN.with(|cudnn| {
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
return Ok(cudnn.clone());
}
let c = Cudnn::new(dev.cuda_stream());
if let Ok(c) = &c {
cudnn.borrow_mut().insert(device_id, c.clone());
}
c
})?;
let conv = cudnn.create_conv2d::<Y>(
/* pad */ [params.padding as i32, params.padding as i32],
/* stride */ [params.stride as i32, params.stride as i32],
/* dilation */ [params.dilation as i32, params.dilation as i32],
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
)?;
let x_shape = [
params.b_size as i32,
params.c_in as i32,
params.i_h as i32,
params.i_w as i32,
];
// Note that `src` already starts at the proper offset.
let x = if src_l.is_contiguous() {
cudnn.create_4d_tensor::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
x_shape,
)?
} else {
let s = src_l.stride();
cudnn.create_4d_tensor_ex::<T>(
x_shape,
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
)?
};
let w = cudnn.create_4d_filter::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[
params.c_out as i32,
params.c_in as i32,
params.k_h as i32,
params.k_w as i32,
],
)?;
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
let y = cudnn.create_4d_tensor::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[params.b_size as i32, params.c_out as i32, h_out, w_out],
)?;
let conv2d = ConvForward {
conv: &conv,
x: &x,
w: &w,
y: &y,
};
let alg = match params.cudnn_fwd_algo {
None => conv2d.pick_algorithm()?,
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
Some(CandleAlgo::ImplicitPrecompGemm) => {
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
}
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
};
let workspace_size = conv2d.get_workspace_size(alg)?;
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
unsafe {
conv2d.launch::<CudaSlice<u8>, _, _, _>(
alg,
Some(&mut workspace),
(T::one(), T::zero()),
src,
filter,
dst,
)?;
}
Ok(())
}
pub(crate) fn launch_conv1d<
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
Y: cudarc::cudnn::CudnnDataType,
>(
src: &CudaView<T>,
src_l: &crate::Layout,
filter: &CudaView<T>,
dst: &mut CudaSlice<T>,
params: &crate::conv::ParamsConv1D,
dev: &crate::cuda_backend::CudaDevice,
) -> crate::Result<()> {
use crate::conv::CudnnFwdAlgo as CandleAlgo;
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
let device_id = dev.id();
let cudnn = CUDNN.with(|cudnn| {
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
return Ok(cudnn.clone());
}
let c = Cudnn::new(dev.cuda_stream());
if let Ok(c) = &c {
cudnn.borrow_mut().insert(device_id, c.clone());
}
c
})?;
let conv = cudnn.create_conv2d::<Y>(
/* pad */ [params.padding as i32, 0],
/* stride */ [params.stride as i32, 1],
/* dilation */ [params.dilation as i32, 1],
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
)?;
// https://docs.nvidia.com/deeplearning/cudnn/backend/latest/api/cudnn-ops-library.html#cudnnsettensornddescriptor
// > Tensors are restricted to having at least 4 dimensions, and at most CUDNN_DIM_MAX
// > dimensions (defined in cudnn.h). When working with lower dimensional data, it is
// > recommended that the user create a 4D tensor, and set the size along unused dimensions
// > to 1.
let x_shape = [
params.b_size as i32,
params.c_in as i32,
params.l_in as i32,
1,
];
// Note that `src` already starts at the proper offset.
let x = if src_l.is_contiguous() {
cudnn.create_4d_tensor::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
x_shape,
)?
} else {
let s = src_l.stride();
cudnn.create_4d_tensor_ex::<T>(x_shape, [s[0] as i32, s[1] as i32, s[2] as i32, 1i32])?
};
let w = cudnn.create_4d_filter::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[
params.c_out as i32,
params.c_in as i32,
params.k_size as i32,
1,
],
)?;
let l_out = params.l_out() as i32;
let y = cudnn.create_4d_tensor::<T>(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[params.b_size as i32, params.c_out as i32, l_out, 1],
)?;
let conv1d = ConvForward {
conv: &conv,
x: &x,
w: &w,
y: &y,
};
let alg = match params.cudnn_fwd_algo {
None => conv1d.pick_algorithm()?,
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
Some(CandleAlgo::ImplicitPrecompGemm) => {
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
}
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
};
let workspace_size = conv1d.get_workspace_size(alg)?;
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
unsafe {
conv1d.launch::<CudaSlice<u8>, _, _, _>(
alg,
Some(&mut workspace),
(T::one(), T::zero()),
src,
filter,
dst,
)?;
}
Ok(())
}

View File

@ -1,646 +0,0 @@
use crate::backend::BackendDevice;
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
pub use candle_kernels as kernels;
pub use cudarc;
use cudarc::driver::{CudaFunction, LaunchConfig, PushKernelArg};
use half::{bf16, f16};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr};
/// Unique identifier for cuda devices.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct DeviceId(usize);
impl DeviceId {
fn new() -> Self {
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
use std::sync::atomic;
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
}
}
struct CudaRng(cudarc::curand::CudaRng);
unsafe impl Send for CudaRng {}
pub struct ModuleStore {
mdls: [Option<Arc<cudarc::driver::CudaModule>>; kernels::ALL_IDS.len()],
}
#[derive(Clone)]
pub struct CudaDevice {
id: DeviceId,
context: Arc<cudarc::driver::CudaContext>,
modules: Arc<std::sync::RwLock<ModuleStore>>,
custom_modules: Arc<std::sync::RwLock<HashMap<String, Arc<cudarc::driver::CudaModule>>>>,
stream: Arc<cudarc::driver::CudaStream>,
pub(crate) blas: Arc<cudarc::cublas::CudaBlas>,
curand: Arc<Mutex<CudaRng>>,
}
impl std::fmt::Debug for CudaDevice {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "CudaDevice({:?})", self.id)
}
}
impl CudaDevice {
#[allow(clippy::missing_safety_doc)]
pub unsafe fn alloc<T: cudarc::driver::DeviceRepr>(
&self,
len: usize,
) -> Result<cudarc::driver::CudaSlice<T>> {
self.stream.alloc::<T>(len).w()
}
pub fn alloc_zeros<T: cudarc::driver::DeviceRepr + cudarc::driver::ValidAsZeroBits>(
&self,
len: usize,
) -> Result<cudarc::driver::CudaSlice<T>> {
self.stream.alloc_zeros::<T>(len).w()
}
pub fn memcpy_htod<
T: cudarc::driver::DeviceRepr,
Src: cudarc::driver::HostSlice<T> + ?Sized,
Dst: cudarc::driver::DevicePtrMut<T>,
>(
&self,
src: &Src,
dst: &mut Dst,
) -> Result<()> {
self.stream.memcpy_htod(src, dst).w()
}
pub fn memcpy_dtov<T: cudarc::driver::DeviceRepr, Src: cudarc::driver::DevicePtr<T>>(
&self,
src: &Src,
) -> Result<Vec<T>> {
self.stream.memcpy_dtov(src).w()
}
pub fn memcpy_dtod<
T,
Src: cudarc::driver::DevicePtr<T>,
Dst: cudarc::driver::DevicePtrMut<T>,
>(
&self,
src: &Src,
dst: &mut Dst,
) -> Result<()> {
self.stream.memcpy_dtod(src, dst).w()
}
pub fn memcpy_stod<
T: cudarc::driver::DeviceRepr,
Src: cudarc::driver::HostSlice<T> + ?Sized,
>(
&self,
src: &Src,
) -> Result<cudarc::driver::CudaSlice<T>> {
self.stream.memcpy_stod(src).w()
}
}
pub struct CudaFunc {
func: CudaFunction,
stream: Arc<cudarc::driver::CudaStream>,
}
impl std::ops::Deref for CudaFunc {
type Target = CudaFunction;
fn deref(&self) -> &Self::Target {
&self.func
}
}
impl CudaFunc {
pub fn into_cuda_function(self) -> CudaFunction {
self.func
}
}
#[macro_export]
macro_rules! builder_arg {
($b:ident, $($arg:expr),*) => {
$(
let __arg = $arg;
$b.arg(&__arg);
)*
};
}
impl CudaFunc {
pub fn builder(&self) -> cudarc::driver::LaunchArgs<'_> {
self.stream.launch_builder(&self.func)
}
}
impl CudaDevice {
pub fn cuda_stream(&self) -> Arc<cudarc::driver::CudaStream> {
self.stream.clone()
}
#[cfg(not(target_arch = "wasm32"))]
pub fn compile(
&self,
func_name: &'static str,
kernel: ug::lang::ssa::Kernel,
) -> Result<CudaFunc> {
let mut buf = vec![];
ug_cuda::code_gen::gen(&mut buf, func_name, &kernel)?;
let cuda_code = String::from_utf8(buf)?;
let opts = cudarc::nvrtc::CompileOptions {
use_fast_math: Some(true),
..Default::default()
};
let ptx = cudarc::nvrtc::safe::compile_ptx_with_opts(cuda_code, opts).w()?;
let module = self.context.load_module(ptx).w()?;
let func = module.load_function(func_name).w()?;
Ok(CudaFunc {
func,
stream: self.stream.clone(),
})
}
pub fn id(&self) -> DeviceId {
self.id
}
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
let slice = match dtype {
DType::U8 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<u8>(elem_count)? };
let func = self.get_or_load_func("fill_u8", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = v as u8;
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<u32>(elem_count)? };
let func = self.get_or_load_func("fill_u32", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = v as u32;
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<i64>(elem_count)? };
let func = self.get_or_load_func("fill_i64", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = v as i64;
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<bf16>(elem_count)? };
let func = self.get_or_load_func("fill_bf16", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = bf16::from_f64(v);
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f16>(elem_count)? };
let func = self.get_or_load_func("fill_f16", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = f16::from_f64(v);
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f32>(elem_count)? };
let func = self.get_or_load_func("fill_f32", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
let v = v as f32;
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f64>(elem_count) }?;
let func = self.get_or_load_func("fill_f64", &kernels::FILL)?;
let mut builder = self.stream.launch_builder(&func);
builder.arg(&data);
builder.arg(&v);
builder.arg(&elem_count);
unsafe { builder.launch(cfg) }.w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
pub fn get_or_load_custom_func(
&self,
fn_name: &str,
module_name: &str,
ptx: &str,
) -> Result<CudaFunc> {
let ms = self.custom_modules.read().unwrap();
if let Some(mdl) = ms.get(module_name).as_ref() {
let func = mdl.load_function(fn_name).w()?;
return Ok(CudaFunc {
func,
stream: self.stream.clone(),
});
}
drop(ms);
let mut ms = self.custom_modules.write().unwrap();
let cuda_module = self.context.load_module(ptx.into()).w()?;
ms.insert(module_name.to_string(), cuda_module.clone());
let func = cuda_module.load_function(fn_name).w()?;
Ok(CudaFunc {
func,
stream: self.stream.clone(),
})
}
pub fn get_or_load_func(&self, fn_name: &str, mdl: &kernels::Module) -> Result<CudaFunc> {
let ms = self.modules.read().unwrap();
if let Some(mdl) = ms.mdls[mdl.index()].as_ref() {
let func = mdl.load_function(fn_name).w()?;
return Ok(CudaFunc {
func,
stream: self.stream.clone(),
});
}
drop(ms);
let mut ms = self.modules.write().unwrap();
let cuda_module = self.context.load_module(mdl.ptx().into()).w()?;
ms.mdls[mdl.index()] = Some(cuda_module.clone());
let func = cuda_module.load_function(fn_name).w()?;
Ok(CudaFunc {
func,
stream: self.stream.clone(),
})
}
}
impl CudaDevice {
pub fn new_with_stream(ordinal: usize) -> Result<Self> {
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
let stream = context.new_stream().w()?;
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
let module_store = ModuleStore {
mdls: [const { None }; kernels::ALL_IDS.len()],
};
Ok(Self {
id: DeviceId::new(),
context,
stream,
blas: Arc::new(blas),
curand: Arc::new(Mutex::new(CudaRng(curand))),
modules: Arc::new(std::sync::RwLock::new(module_store)),
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
})
}
}
impl BackendDevice for CudaDevice {
type Storage = CudaStorage;
fn new(ordinal: usize) -> Result<Self> {
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
let stream = context.default_stream();
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
let module_store = ModuleStore {
mdls: [const { None }; kernels::ALL_IDS.len()],
};
Ok(Self {
id: DeviceId::new(),
context,
stream,
blas: Arc::new(blas),
curand: Arc::new(Mutex::new(CudaRng(curand))),
modules: Arc::new(std::sync::RwLock::new(module_store)),
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
})
}
fn set_seed(&self, seed: u64) -> Result<()> {
// We do not call set_seed but instead create a new curand object. This ensures that the
// state will be identical and the same random numbers will be generated.
let mut curand = self.curand.lock().unwrap();
curand.0 = cudarc::curand::CudaRng::new(seed, self.stream.clone()).w()?;
Ok(())
}
fn location(&self) -> crate::DeviceLocation {
crate::DeviceLocation::Cuda {
gpu_id: self.context.ordinal(),
}
}
fn same_device(&self, rhs: &Self) -> bool {
self.id == rhs.id
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let slice = match dtype {
DType::U8 => {
let data = self.alloc_zeros::<u8>(elem_count)?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
let data = self.alloc_zeros::<u32>(elem_count)?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
let data = self.alloc_zeros::<i64>(elem_count)?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
let data = self.alloc_zeros::<bf16>(elem_count)?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
let data = self.alloc_zeros::<f16>(elem_count)?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
let data = self.alloc_zeros::<f32>(elem_count)?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let data = self.alloc_zeros::<f64>(elem_count)?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let curand = self.curand.lock().unwrap();
let slice = match dtype {
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
// cudarc changes.
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
Err(CudaError::UnsupportedDtype {
dtype,
op: "rand_uniform",
})
.w()?
}
DType::F32 => {
let mut data = unsafe { self.alloc::<f32>(elem_count)? };
curand.0.fill_with_uniform(&mut data).w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let mut data = unsafe { self.alloc::<f64>(elem_count)? };
curand.0.fill_with_uniform(&mut data).w()?;
CudaStorageSlice::F64(data)
}
};
let slice = if lo == 0. && up == 1.0 {
slice
} else {
use super::utils::Map1;
let layout = Layout::contiguous(shape);
super::Affine(up - lo, lo).map(&slice, self, &layout)?
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
// cudarc changes.
let elem_count = shape.elem_count();
let curand = self.curand.lock().unwrap();
// curand can only generate an odd number of values.
// https://github.com/huggingface/candle/issues/734
let elem_count_round = if elem_count % 2 == 1 {
elem_count + 1
} else {
elem_count
};
let slice = match dtype {
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
Err(CudaError::UnsupportedDtype {
dtype,
op: "rand_normal",
})
.w()?
}
DType::F32 => {
let mut data = unsafe { self.alloc::<f32>(elem_count_round)? };
curand
.0
.fill_with_normal(&mut data, mean as f32, std as f32)
.w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let mut data = unsafe { self.alloc::<f64>(elem_count_round)? };
curand.0.fill_with_normal(&mut data, mean, std).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
self.const_impl(1., shape, dtype)
}
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
let elem_count = shape.elem_count();
let slice = match dtype {
DType::U8 => {
let data = self.alloc::<u8>(elem_count)?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
let data = self.alloc::<u32>(elem_count)?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
let data = self.alloc::<i64>(elem_count)?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
let data = self.alloc::<bf16>(elem_count)?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
let data = self.alloc::<f16>(elem_count)?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
let data = self.alloc::<f32>(elem_count)?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let data = self.alloc::<f64>(elem_count)?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
let slice = match T::cpu_storage_ref(s) {
CpuStorageRef::U8(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::U8(data)
}
CpuStorageRef::U32(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::U32(data)
}
CpuStorageRef::I64(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::I64(data)
}
CpuStorageRef::BF16(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::BF16(data)
}
CpuStorageRef::F16(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F16(data)
}
CpuStorageRef::F32(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F32(data)
}
CpuStorageRef::F64(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
let slice = match storage {
CpuStorage::U8(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::U8(data)
}
CpuStorage::U32(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::U32(data)
}
CpuStorage::I64(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::I64(data)
}
CpuStorage::BF16(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::BF16(data)
}
CpuStorage::F16(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F16(data)
}
CpuStorage::F32(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F32(data)
}
CpuStorage::F64(storage) => {
let data = self.memcpy_stod(storage)?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> {
let slice = match storage {
CpuStorage::U8(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::U8(data)
}
CpuStorage::U32(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::U32(data)
}
CpuStorage::I64(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::I64(data)
}
CpuStorage::BF16(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::BF16(data)
}
CpuStorage::F16(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::F16(data)
}
CpuStorage::F32(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::F32(data)
}
CpuStorage::F64(storage) => {
let data = self.memcpy_stod(&storage)?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn synchronize(&self) -> Result<()> {
self.stream.synchronize().map_err(crate::Error::wrap)?;
Ok(())
}
}

View File

@ -1,62 +0,0 @@
use crate::{DType, Layout};
/// cudarc related errors
#[derive(thiserror::Error, Debug)]
pub enum CudaError {
#[error(transparent)]
Cuda(#[from] cudarc::driver::DriverError),
#[error(transparent)]
Compiler(#[from] cudarc::nvrtc::CompileError),
#[error(transparent)]
Cublas(#[from] cudarc::cublas::result::CublasError),
#[error(transparent)]
Curand(#[from] cudarc::curand::result::CurandError),
#[error("missing kernel '{module_name}'")]
MissingKernel { module_name: String },
#[error("unsupported dtype {dtype:?} for {op}")]
UnsupportedDtype { dtype: DType, op: &'static str },
#[error("internal error '{0}'")]
InternalError(&'static str),
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
MatMulNonContiguous {
lhs_stride: Layout,
rhs_stride: Layout,
mnk: (usize, usize, usize),
},
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
UnexpectedDType {
msg: &'static str,
expected: DType,
got: DType,
},
#[error("{cuda} when loading {module_name}")]
Load {
cuda: cudarc::driver::DriverError,
module_name: String,
},
}
impl From<CudaError> for crate::Error {
fn from(val: CudaError) -> Self {
crate::Error::Cuda(Box::new(val)).bt()
}
}
pub trait WrapErr<O> {
fn w(self) -> std::result::Result<O, crate::Error>;
}
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
fn w(self) -> std::result::Result<O, crate::Error> {
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())).bt())
}
}

View File

@ -1,172 +0,0 @@
/// Helper functions to plug cuda kernels in candle.
use crate::{Layout, Result, Shape, WithDType};
pub use cudarc;
use cudarc::driver::{CudaSlice, DeviceRepr, ValidAsZeroBits};
use super::{CudaDevice, CudaError, WrapErr};
pub type S = super::CudaStorageSlice;
pub trait Map1 {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>>;
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
let out = match s {
S::U8(s) => S::U8(self.f(s, d, l)?),
S::U32(s) => S::U32(self.f(s, d, l)?),
S::I64(s) => S::I64(self.f(s, d, l)?),
S::BF16(s) => S::BF16(self.f(s, d, l)?),
S::F16(s) => S::F16(self.f(s, d, l)?),
S::F32(s) => S::F32(self.f(s, d, l)?),
S::F64(s) => S::F64(self.f(s, d, l)?),
};
Ok(out)
}
}
pub trait Map2 {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src1: &CudaSlice<T>,
layout1: &Layout,
src2: &CudaSlice<T>,
layout2: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>>;
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
let out = match (s1, s2) {
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
};
Ok(out)
}
}
pub trait Map3 {
#[allow(clippy::too_many_arguments)]
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src1: &CudaSlice<T>,
layout1: &Layout,
src2: &CudaSlice<T>,
layout2: &Layout,
src3: &CudaSlice<T>,
layout3: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>>;
#[allow(clippy::too_many_arguments)]
fn map(
&self,
s1: &S,
l1: &Layout,
s2: &S,
l2: &Layout,
s3: &S,
l3: &Layout,
d: &CudaDevice,
) -> Result<S> {
let out = match (s1, s2, s3) {
(S::U8(s1), S::U8(s2), S::U8(s3)) => S::U8(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::U32(s1), S::U32(s2), S::U32(s3)) => S::U32(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::I64(s1), S::I64(s2), S::I64(s3)) => S::I64(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::BF16(s1), S::BF16(s2), S::BF16(s3)) => S::BF16(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::F16(s1), S::F16(s2), S::F16(s3)) => S::F16(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::F32(s1), S::F32(s2), S::F32(s3)) => S::F32(self.f(s1, l1, s2, l2, s3, l3, d)?),
(S::F64(s1), S::F64(s2), S::F64(s3)) => S::F64(self.f(s1, l1, s2, l2, s3, l3, d)?),
_ => Err(CudaError::InternalError("dtype mismatch in ternary op"))?,
};
Ok(out)
}
}
pub trait Map2InPlace {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
dst: &mut CudaSlice<T>,
dst_shape: &Shape,
src: &CudaSlice<T>,
src_l: &Layout,
dev: &CudaDevice,
) -> Result<()>;
fn map(
&self,
dst: &mut S,
dst_s: &Shape,
src: &S,
src_l: &Layout,
d: &CudaDevice,
) -> Result<()> {
match (dst, src) {
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
}
}
}
pub trait Map1Any {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
wrap: W,
) -> Result<S>;
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
let out = match s {
S::U8(s) => self.f(s, d, l, S::U8)?,
S::U32(s) => self.f(s, d, l, S::U32)?,
S::I64(s) => self.f(s, d, l, S::I64)?,
S::BF16(s) => self.f(s, d, l, S::BF16)?,
S::F16(s) => self.f(s, d, l, S::F16)?,
S::F32(s) => self.f(s, d, l, S::F32)?,
S::F64(s) => self.f(s, d, l, S::F64)?,
};
Ok(out)
}
}
pub trait Map2Any {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src1: &CudaSlice<T>,
layout1: &Layout,
src2: &CudaSlice<T>,
layout2: &Layout,
dev: &CudaDevice,
) -> Result<S>;
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
let out = match (s1, s2) {
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
};
Ok(out)
}
}

123
candle-core/src/cudnn.rs Normal file
View File

@ -0,0 +1,123 @@
use crate::WithDType;
use cudarc;
use cudarc::cudnn::safe::{Conv2dForward, Cudnn};
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
use std::cell::RefCell;
use std::collections::HashMap;
use std::sync::Arc;
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
// send nor sync.
thread_local! {
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
}
impl From<cudarc::cudnn::CudnnError> for crate::Error {
fn from(err: cudarc::cudnn::CudnnError) -> Self {
crate::Error::wrap(err)
}
}
impl From<cudarc::driver::DriverError> for crate::Error {
fn from(err: cudarc::driver::DriverError) -> Self {
crate::Error::wrap(err)
}
}
pub(crate) fn launch_conv2d<
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
>(
src: &CudaView<T>,
src_l: &crate::Layout,
filter: &CudaView<T>,
dst: &mut CudaSlice<T>,
params: &crate::conv::ParamsConv2D,
dev: &crate::cuda_backend::CudaDevice,
) -> crate::Result<()> {
use crate::conv::CudnnFwdAlgo as CandleAlgo;
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
let device_id = dev.id();
let cudnn = CUDNN.with(|cudnn| {
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
return Ok(cudnn.clone());
}
let c = Cudnn::new(dev.cuda_device());
if let Ok(c) = &c {
cudnn.borrow_mut().insert(device_id, c.clone());
}
c
})?;
let conv = cudnn.create_conv2d::<T>(
/* pad */ [params.padding as i32, params.padding as i32],
/* stride */ [params.stride as i32, params.stride as i32],
/* dilation */ [params.dilation as i32, params.dilation as i32],
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
)?;
let x_shape = [
params.b_size as i32,
params.c_in as i32,
params.i_h as i32,
params.i_w as i32,
];
// Note that `src` already starts at the proper offset.
let x = if src_l.is_contiguous() {
cudnn.create_4d_tensor(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
x_shape,
)?
} else {
let s = src_l.stride();
cudnn.create_4d_tensor_ex(
x_shape,
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
)?
};
let w = cudnn.create_4d_filter(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[
params.c_out as i32,
params.c_in as i32,
params.k_h as i32,
params.k_w as i32,
],
)?;
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
let y = cudnn.create_4d_tensor(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[params.b_size as i32, params.c_out as i32, h_out, w_out],
)?;
let conv2d = Conv2dForward {
conv: &conv,
x: &x,
w: &w,
y: &y,
};
let alg = match params.cudnn_fwd_algo {
None => conv2d.pick_algorithm()?,
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
Some(CandleAlgo::ImplicitPrecompGemm) => {
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
}
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
};
let workspace_size = conv2d.get_workspace_size(alg)?;
let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?;
unsafe {
conv2d.launch::<CudaSlice<u8>, _, _, _>(
alg,
Some(&mut workspace),
(T::one(), T::zero()),
src,
filter,
dst,
)?;
}
Ok(())
}

View File

@ -1,490 +0,0 @@
use crate::op::{BackpropOp, Op};
use crate::tensor::from_storage;
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
use std::sync::Arc;
/// Unary ops that can be defined in user-land.
pub trait CustomOp1 {
// Box<dyn> does not support const yet, so use a function to get the name.
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_storage: &MetalStorage,
_layout: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
/// This function takes as argument the argument `arg` used in the forward pass, the result
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
/// The function should return the gradient of the argument.
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp2 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp3 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
s3: &CpuStorage,
l3: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_arg3: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
impl Tensor {
/// Applies a unary custom op without backward support
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a binary custom op without backward support
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
let (storage, shape) =
self.storage()
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a ternary custom op without backward support
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a unary custom op.
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
let (storage, shape) = self
.storage()
.apply_op1(self.layout(), c.as_ref().as_ref())?;
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
self.apply_op1_arc(Arc::new(Box::new(c)))
}
/// Applies a binary custom op.
pub fn apply_op2_arc(
&self,
rhs: &Self,
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op2(
self.layout(),
&rhs.storage(),
rhs.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
self.apply_op2_arc(r, Arc::new(Box::new(c)))
}
/// Applies a ternary custom op.
pub fn apply_op3_arc(
&self,
t2: &Self,
t3: &Self,
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
Op::CustomOp3(t1, t2, t3, c.clone())
});
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
&self,
t2: &Self,
t3: &Self,
c: C,
) -> Result<Self> {
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
}
}
// In place ops.
/// Unary ops that can be defined in user-land.
/// These ops work in place and as such back-prop is unsupported.
pub trait InplaceOp1 {
// Box<dyn> does not support const yet, so use a function to get the name.
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, storage: &mut CpuStorage, layout: &Layout) -> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _storage: &mut CudaStorage, _layout: &Layout) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(&self, _storage: &mut MetalStorage, _layout: &Layout) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
pub trait InplaceOp2 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, s1: &mut CpuStorage, l1: &Layout, s2: &CpuStorage, l2: &Layout)
-> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _: &mut CudaStorage, _: &Layout, _: &CudaStorage, _: &Layout) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &mut MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
pub trait InplaceOp3 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &mut CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
s3: &CpuStorage,
l3: &Layout,
) -> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &mut CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &mut MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
impl Tensor {
/// Applies a unary custom op in place.
pub fn inplace_op1<C: InplaceOp1>(&self, c: &C) -> Result<()> {
self.storage_mut().inplace_op1(self.layout(), c)
}
/// Applies a unary custom op in place (for the first tensor).
pub fn inplace_op2<C: InplaceOp2>(&self, rhs: &Self, c: &C) -> Result<()> {
self.storage_mut()
.inplace_op2(self.layout(), &rhs.storage(), rhs.layout(), c)
}
/// Applies a ternary custom op in place (for the first tensor).
pub fn inplace_op3<C: InplaceOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<()> {
self.storage_mut().inplace_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)
}
}
pub struct UgIOp1 {
name: &'static str,
#[cfg(feature = "cuda")]
func: cudarc::driver::CudaFunction,
#[cfg(feature = "metal")]
func: metal::ComputePipelineState,
}
impl UgIOp1 {
#[allow(unused)]
#[cfg(not(target_arch = "wasm32"))]
pub fn new(
name: &'static str,
kernel: ug::lang::ssa::Kernel,
device: &crate::Device,
) -> Result<Self> {
#[cfg(feature = "cuda")]
{
let device = device.as_cuda_device()?;
let func = device.compile(name, kernel)?;
Ok(Self {
name,
func: func.into_cuda_function(),
})
}
#[cfg(feature = "metal")]
{
let device = device.as_metal_device()?;
let func = device.compile(name, kernel)?;
Ok(Self { name, func })
}
#[cfg(not(any(feature = "cuda", feature = "metal")))]
{
Ok(Self { name })
}
}
}
impl InplaceOp1 for UgIOp1 {
fn name(&self) -> &'static str {
self.name
}
fn cpu_fwd(&self, _: &mut CpuStorage, _: &Layout) -> Result<()> {
crate::bail!("ug ops are only supported on metal/cuda at the moment")
}
#[cfg(feature = "metal")]
fn metal_fwd(&self, sto: &mut MetalStorage, layout: &Layout) -> Result<()> {
use crate::backend::BackendStorage;
use candle_metal_kernels::utils::EncoderProvider;
let elem_count = layout.shape().elem_count();
if sto.dtype() != crate::DType::F32 {
// TODO: support more dtypes.
crate::bail!("input is not a f32 tensor")
}
let device = sto.device();
println!("here");
let command_buffer = device.command_buffer()?;
let command_buffer = &command_buffer;
let encoder = command_buffer.encoder();
let encoder = encoder.as_ref();
encoder.set_compute_pipeline_state(&self.func);
let (g, b) = if elem_count % 32 == 0 {
(elem_count / 32, 32)
} else {
(elem_count, 1)
};
let grid_dims = metal::MTLSize {
width: g as u64,
height: 1,
depth: 1,
};
let group_dims = candle_metal_kernels::utils::get_block_dims(b as u64, 1, 1);
candle_metal_kernels::utils::set_param(encoder, 0, (sto.buffer(), 0usize));
encoder.use_resource(sto.buffer(), metal::MTLResourceUsage::Write);
encoder.dispatch_threads(grid_dims, group_dims);
Ok(())
}
#[cfg(feature = "cuda")]
fn cuda_fwd(&self, sto: &mut CudaStorage, layout: &Layout) -> Result<()> {
use crate::cuda_backend::WrapErr;
use cudarc::driver::PushKernelArg;
let elem_count = layout.shape().elem_count();
let stream = sto.device.cuda_stream();
// TODO: support more dtypes.
let sto = sto.as_cuda_slice::<f32>()?;
let sto = match layout.contiguous_offsets() {
None => crate::bail!("input has to be contiguous"),
Some((o1, o2)) => sto.slice(o1..o2),
};
let (g, b) = if elem_count % 32 == 0 {
(elem_count / 32, 32)
} else {
(elem_count, 1)
};
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (g as u32, 1, 1),
block_dim: (b as u32, 1, 1),
shared_mem_bytes: 0,
};
let mut builder = stream.launch_builder(&self.func);
builder.arg(&sto);
unsafe { builder.launch(cfg) }.w()?;
Ok(())
}
}

View File

@ -11,7 +11,6 @@ pub enum DeviceLocation {
Metal { gpu_id: usize },
}
/// Cpu, Cuda, or Metal
#[derive(Debug, Clone)]
pub enum Device {
Cpu,
@ -131,26 +130,6 @@ impl Device {
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
}
pub fn as_cuda_device(&self) -> Result<&crate::CudaDevice> {
match self {
Self::Cuda(d) => Ok(d),
Self::Cpu => crate::bail!("expected a cuda device, got cpu"),
Self::Metal(_) => crate::bail!("expected a cuda device, got Metal"),
}
}
pub fn as_metal_device(&self) -> Result<&crate::MetalDevice> {
match self {
Self::Cuda(_) => crate::bail!("expected a metal device, got cuda"),
Self::Cpu => crate::bail!("expected a metal device, got cpu"),
Self::Metal(d) => Ok(d),
}
}
pub fn new_cuda_with_stream(ordinal: usize) -> Result<Self> {
Ok(Self::Cuda(crate::CudaDevice::new_with_stream(ordinal)?))
}
pub fn new_metal(ordinal: usize) -> Result<Self> {
Ok(Self::Metal(crate::MetalDevice::new(ordinal)?))
}
@ -192,22 +171,6 @@ impl Device {
matches!(self, Self::Metal(_))
}
pub fn supports_bf16(&self) -> bool {
match self {
Self::Cuda(_) | Self::Metal(_) => true,
Self::Cpu => false,
}
}
/// Return `BF16` for devices that support it, otherwise default to `F32`.
pub fn bf16_default_to_f32(&self) -> DType {
if self.supports_bf16() {
DType::BF16
} else {
DType::F32
}
}
pub fn cuda_if_available(ordinal: usize) -> Result<Self> {
if crate::utils::cuda_is_available() {
Self::new_cuda(ordinal)
@ -238,9 +201,10 @@ impl Device {
Ok(Storage::Cuda(storage))
}
}
Device::Metal(device) => {
let storage = device.rand_uniform(shape, dtype, lo, up)?;
Ok(Storage::Metal(storage))
Device::Metal(_device) => {
// let storage = device.rand_uniform(shape, dtype, lo, up)?;
// Ok(Storage::Metal(storage))
crate::bail!("Metal rand_uniform not implemented")
}
}
}
@ -326,48 +290,17 @@ impl Device {
}
}
pub(crate) unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
match self {
Device::Cpu => {
let storage = CpuDevice.alloc_uninit(shape, dtype)?;
Ok(Storage::Cpu(storage))
}
Device::Cuda(device) => {
let storage = device.alloc_uninit(shape, dtype)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = device.alloc_uninit(shape, dtype)?;
Ok(Storage::Metal(storage))
}
}
}
pub(crate) fn storage_from_slice<D: WithDType>(&self, data: &[D]) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(data.to_cpu_storage())),
Device::Cuda(device) => {
let storage = device.storage_from_slice(data)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = device.storage_from_slice(data)?;
Ok(Storage::Metal(storage))
}
}
}
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
Device::Cuda(device) => {
let storage = array.to_cpu_storage();
let storage = device.storage_from_cpu_storage_owned(storage)?;
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = array.to_cpu_storage();
let storage = device.storage_from_cpu_storage_owned(storage)?;
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Metal(storage))
}
}
@ -378,22 +311,14 @@ impl Device {
Device::Cpu => Ok(Storage::Cpu(S::to_cpu_storage_owned(data))),
Device::Cuda(device) => {
let storage = S::to_cpu_storage_owned(data);
let storage = device.storage_from_cpu_storage_owned(storage)?;
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = S::to_cpu_storage_owned(data);
let storage = device.storage_from_cpu_storage_owned(storage)?;
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Metal(storage))
}
}
}
pub fn synchronize(&self) -> Result<()> {
match self {
Self::Cpu => Ok(()),
Self::Cuda(d) => d.synchronize(),
Self::Metal(d) => d.synchronize(),
}
}
}

View File

@ -1,7 +1,6 @@
//! Pretty printing of tensors
//!
//! This implementation should be in line with the [PyTorch version](https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py).
//!
/// Pretty printing of tensors
/// This implementation should be in line with the PyTorch version.
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
use crate::{DType, Result, Tensor, WithDType};
use half::{bf16, f16};
@ -66,13 +65,12 @@ impl std::fmt::Debug for Tensor {
}
/// Options for Tensor pretty printing
#[derive(Debug, Clone)]
pub struct PrinterOptions {
pub precision: usize,
pub threshold: usize,
pub edge_items: usize,
pub line_width: usize,
pub sci_mode: Option<bool>,
precision: usize,
threshold: usize,
edge_items: usize,
line_width: usize,
sci_mode: Option<bool>,
}
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
@ -91,10 +89,6 @@ impl PrinterOptions {
}
}
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
&PRINT_OPTS
}
pub fn set_print_options(options: PrinterOptions) {
*PRINT_OPTS.lock().unwrap() = options
}
@ -123,26 +117,6 @@ pub fn set_print_options_full() {
}
}
pub fn set_line_width(line_width: usize) {
PRINT_OPTS.lock().unwrap().line_width = line_width
}
pub fn set_precision(precision: usize) {
PRINT_OPTS.lock().unwrap().precision = precision
}
pub fn set_edge_items(edge_items: usize) {
PRINT_OPTS.lock().unwrap().edge_items = edge_items
}
pub fn set_threshold(threshold: usize) {
PRINT_OPTS.lock().unwrap().threshold = threshold
}
pub fn set_sci_mode(sci_mode: Option<bool>) {
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
}
struct FmtSize {
current_size: usize,
}

View File

@ -1,7 +1,7 @@
//! Types for elements that can be stored and manipulated using tensors.
#![allow(clippy::redundant_closure_call)]
use crate::backend::BackendStorage;
use crate::{CpuStorage, CpuStorageRef, Error, Result};
use crate::{CpuStorage, Error, Result};
/// The different types of elements allowed in tensors.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
@ -23,15 +23,7 @@ pub enum DType {
}
#[derive(Debug, PartialEq, Eq)]
pub struct DTypeParseError(String);
impl std::fmt::Display for DTypeParseError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "cannot parse '{}' as a dtype", self.0)
}
}
impl std::error::Error for DTypeParseError {}
pub struct DTypeParseError;
impl std::str::FromStr for DType {
type Err = DTypeParseError;
@ -44,7 +36,7 @@ impl std::str::FromStr for DType {
"f16" => Ok(Self::F16),
"f32" => Ok(Self::F32),
"f64" => Ok(Self::F64),
_ => Err(DTypeParseError(s.to_string())),
_ => Err(DTypeParseError),
}
}
}
@ -100,14 +92,12 @@ pub trait WithDType:
+ 'static
+ Send
+ Sync
+ std::any::Any
+ crate::cpu::kernels::VecOps
{
const DTYPE: DType;
fn from_f64(v: f64) -> Self;
fn to_f64(self) -> f64;
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_>;
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
@ -131,10 +121,6 @@ macro_rules! with_dtype {
$to_f64(self)
}
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_> {
CpuStorageRef::$dtype(data)
}
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
CpuStorage::$dtype(data)
}

View File

@ -1,5 +1,3 @@
//! Implementation of the Cuda backend when Cuda support has not been compiled in.
//!
#![allow(dead_code)]
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
@ -16,12 +14,6 @@ macro_rules! fail {
};
}
impl CudaDevice {
pub fn new_with_stream(_: usize) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
}
impl crate::backend::BackendStorage for CudaStorage {
type Device = CudaDevice;
@ -162,19 +154,6 @@ impl crate::backend::BackendStorage for CudaStorage {
Err(Error::NotCompiledWithCudaSupport)
}
fn copy2d(
&self,
_: &mut Self,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
) -> Result<()> {
Err(Error::NotCompiledWithCudaSupport)
}
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
@ -218,22 +197,10 @@ impl crate::backend::BackendDevice for CudaDevice {
Err(Error::NotCompiledWithCudaSupport)
}
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
@ -241,38 +208,4 @@ impl crate::backend::BackendDevice for CudaDevice {
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn synchronize(&self) -> Result<()> {
Ok(())
}
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn gemm_reduced_precision_f16() -> bool {
true
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn set_gemm_reduced_precision_f16(_: bool) {}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn gemm_reduced_precision_bf16() -> bool {
true
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn set_gemm_reduced_precision_bf16(_: bool) {}
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
/// allowed with f32 GEMMs.
pub fn gemm_reduced_precision_f32() -> bool {
true
}
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
/// allowed with f32 GEMMs.
pub fn set_gemm_reduced_precision_f32(_b: bool) {}

View File

@ -166,19 +166,6 @@ impl crate::backend::BackendStorage for MetalStorage {
Err(Error::NotCompiledWithMetalSupport)
}
fn copy2d(
&self,
_: &mut Self,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
@ -222,22 +209,10 @@ impl crate::backend::BackendDevice for MetalDevice {
Err(Error::NotCompiledWithMetalSupport)
}
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
@ -245,8 +220,4 @@ impl crate::backend::BackendDevice for MetalDevice {
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn synchronize(&self) -> Result<()> {
Ok(())
}
}

View File

@ -1,4 +1,3 @@
//! Candle-specific Error and Result
use crate::{DType, DeviceLocation, Layout, MetalError, Shape};
#[derive(Debug, Clone)]
@ -9,14 +8,8 @@ pub struct MatMulUnexpectedStriding {
pub msg: &'static str,
}
impl std::fmt::Debug for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{self}")
}
}
/// Main library error type.
#[derive(thiserror::Error)]
#[derive(thiserror::Error, Debug)]
pub enum Error {
// === DType Errors ===
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
@ -172,10 +165,6 @@ pub enum Error {
#[error("Metal error {0}")]
Metal(#[from] MetalError),
#[cfg(not(target_arch = "wasm32"))]
#[error(transparent)]
Ug(#[from] ug::Error),
#[error(transparent)]
TryFromIntError(#[from] core::num::TryFromIntError),
@ -190,10 +179,6 @@ pub enum Error {
#[error(transparent)]
ParseInt(#[from] std::num::ParseIntError),
/// Utf8 parse error.
#[error(transparent)]
FromUtf8(#[from] std::string::FromUtf8Error),
/// I/O error.
#[error(transparent)]
Io(#[from] std::io::Error),
@ -206,14 +191,8 @@ pub enum Error {
UnsupportedSafeTensorDtype(safetensors::Dtype),
/// Arbitrary errors wrapping.
#[error("{0}")]
Wrapped(Box<dyn std::fmt::Display + Send + Sync>),
#[error("{context}\n{inner}")]
Context {
inner: Box<Self>,
context: Box<dyn std::fmt::Display + Send + Sync>,
},
#[error(transparent)]
Wrapped(Box<dyn std::error::Error + Send + Sync>),
/// Adding path information to an error.
#[error("path: {path:?} {inner}")]
@ -231,26 +210,19 @@ pub enum Error {
/// User generated error message, typically created via `bail!`.
#[error("{0}")]
Msg(String),
#[error("unwrap none")]
UnwrapNone,
}
pub type Result<T> = std::result::Result<T, Error>;
impl Error {
pub fn wrap(err: impl std::fmt::Display + Send + Sync + 'static) -> Self {
pub fn wrap(err: impl std::error::Error + Send + Sync + 'static) -> Self {
Self::Wrapped(Box::new(err)).bt()
}
pub fn msg(err: impl std::fmt::Display) -> Self {
pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self {
Self::Msg(err.to_string()).bt()
}
pub fn debug(err: impl std::fmt::Debug) -> Self {
Self::Msg(format!("{err:?}")).bt()
}
pub fn bt(self) -> Self {
let backtrace = std::backtrace::Backtrace::capture();
match backtrace.status() {
@ -269,13 +241,6 @@ impl Error {
path: p.as_ref().to_path_buf(),
}
}
pub fn context(self, c: impl std::fmt::Display + Send + Sync + 'static) -> Self {
Self::Context {
inner: Box::new(self),
context: Box::new(c),
}
}
}
#[macro_export]
@ -298,41 +263,3 @@ pub fn zip<T, U>(r1: Result<T>, r2: Result<U>) -> Result<(T, U)> {
(_, Err(e)) => Err(e),
}
}
// Taken from anyhow.
pub trait Context<T> {
/// Wrap the error value with additional context.
fn context<C>(self, context: C) -> Result<T>
where
C: std::fmt::Display + Send + Sync + 'static;
/// Wrap the error value with additional context that is evaluated lazily
/// only once an error does occur.
fn with_context<C, F>(self, f: F) -> Result<T>
where
C: std::fmt::Display + Send + Sync + 'static,
F: FnOnce() -> C;
}
impl<T> Context<T> for Option<T> {
fn context<C>(self, context: C) -> Result<T>
where
C: std::fmt::Display + Send + Sync + 'static,
{
match self {
Some(v) => Ok(v),
None => Err(Error::UnwrapNone.context(context).bt()),
}
}
fn with_context<C, F>(self, f: F) -> Result<T>
where
C: std::fmt::Display + Send + Sync + 'static,
F: FnOnce() -> C,
{
match self {
Some(v) => Ok(v),
None => Err(Error::UnwrapNone.context(f()).bt()),
}
}
}

View File

@ -64,7 +64,7 @@ impl Tensor {
#[derive(Debug)]
/// Generic structure used to index a slice of the tensor
pub enum TensorIndexer {
/// This selects the elements for which an index has some specific value.
/// This selects the elemnts for which an index has some specific value.
Select(usize),
/// This is a regular slice, purely indexing a chunk of the tensor
Narrow(Bound<usize>, Bound<usize>),
@ -141,117 +141,28 @@ impl<T> IndexOp<T> for Tensor
where
T: Into<TensorIndexer>,
{
///```rust
/// use candle_core::{Tensor, DType, Device, IndexOp};
/// let a = Tensor::new(&[
/// [0., 1.],
/// [2., 3.],
/// [4., 5.]
/// ], &Device::Cpu)?;
///
/// let b = a.i(0)?;
/// assert_eq!(b.shape().dims(), &[2]);
/// assert_eq!(b.to_vec1::<f64>()?, &[0., 1.]);
///
/// let c = a.i(..2)?;
/// assert_eq!(c.shape().dims(), &[2, 2]);
/// assert_eq!(c.to_vec2::<f64>()?, &[
/// [0., 1.],
/// [2., 3.]
/// ]);
///
/// let d = a.i(1..)?;
/// assert_eq!(d.shape().dims(), &[2, 2]);
/// assert_eq!(d.to_vec2::<f64>()?, &[
/// [2., 3.],
/// [4., 5.]
/// ]);
/// # Ok::<(), candle_core::Error>(())
/// ```
fn i(&self, index: T) -> Result<Tensor, Error> {
self.index(&[index.into()])
}
}
impl<A> IndexOp<(A,)> for Tensor
where
A: Into<TensorIndexer>,
{
///```rust
/// use candle_core::{Tensor, DType, Device, IndexOp};
/// let a = Tensor::new(&[
/// [0f32, 1.],
/// [2. , 3.],
/// [4. , 5.]
/// ], &Device::Cpu)?;
///
/// let b = a.i((0,))?;
/// assert_eq!(b.shape().dims(), &[2]);
/// assert_eq!(b.to_vec1::<f32>()?, &[0., 1.]);
///
/// let c = a.i((..2,))?;
/// assert_eq!(c.shape().dims(), &[2, 2]);
/// assert_eq!(c.to_vec2::<f32>()?, &[
/// [0., 1.],
/// [2., 3.]
/// ]);
///
/// let d = a.i((1..,))?;
/// assert_eq!(d.shape().dims(), &[2, 2]);
/// assert_eq!(d.to_vec2::<f32>()?, &[
/// [2., 3.],
/// [4., 5.]
/// ]);
/// # Ok::<(), candle_core::Error>(())
/// ```
fn i(&self, (a,): (A,)) -> Result<Tensor, Error> {
self.index(&[a.into()])
}
}
#[allow(non_snake_case)]
impl<A, B> IndexOp<(A, B)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
{
///```rust
/// use candle_core::{Tensor, DType, Device, IndexOp};
/// let a = Tensor::new(&[[0f32, 1., 2.], [3., 4., 5.], [6., 7., 8.]], &Device::Cpu)?;
///
/// let b = a.i((1, 0))?;
/// assert_eq!(b.to_vec0::<f32>()?, 3.);
///
/// let c = a.i((..2, 1))?;
/// assert_eq!(c.shape().dims(), &[2]);
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
///
/// let d = a.i((2.., ..))?;
/// assert_eq!(c.shape().dims(), &[2]);
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
/// # Ok::<(), candle_core::Error>(())
/// ```
fn i(&self, (a, b): (A, B)) -> Result<Tensor, Error> {
self.index(&[a.into(), b.into()])
}
}
macro_rules! index_op_tuple {
($doc:tt, $($t:ident),+) => {
($($t:ident),+) => {
#[allow(non_snake_case)]
impl<$($t),*> IndexOp<($($t,)*)> for Tensor
where
$($t: Into<TensorIndexer>,)*
{
#[doc=$doc]
fn i(&self, ($($t,)*): ($($t,)*)) -> Result<Tensor, Error> {
self.index(&[$($t.into(),)*])
}
}
};
}
index_op_tuple!("see [TensorIndex#method.i]", A, B, C);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F, G);
index_op_tuple!(A);
index_op_tuple!(A, B);
index_op_tuple!(A, B, C);
index_op_tuple!(A, B, C, D);
index_op_tuple!(A, B, C, D, E);
index_op_tuple!(A, B, C, D, E, F);
index_op_tuple!(A, B, C, D, E, F, G);

View File

@ -1,4 +1,3 @@
//! Tensor Layouts including contiguous or sparse strides
use crate::{Error, Result, Shape};
#[derive(Debug, PartialEq, Eq, Clone)]
@ -36,12 +35,6 @@ impl Layout {
self.shape.dims()
}
/// The dimension size for a specified dimension index.
pub fn dim<D: crate::shape::Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(&self.shape, "dim")?;
Ok(self.dims()[dim])
}
pub fn shape(&self) -> &Shape {
&self.shape
}
@ -77,7 +70,7 @@ impl Layout {
self.shape.is_fortran_contiguous(&self.stride)
}
pub fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
pub(crate) fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
let dims = self.shape().dims();
if dim >= dims.len() {
Err(Error::DimOutOfRange {
@ -106,7 +99,7 @@ impl Layout {
})
}
pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
pub(crate) fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
let rank = self.shape.rank();
if rank <= dim1 || rank <= dim2 {
Err(Error::UnexpectedNumberOfDims {
@ -127,7 +120,7 @@ impl Layout {
})
}
pub fn permute(&self, idxs: &[usize]) -> Result<Self> {
pub(crate) fn permute(&self, idxs: &[usize]) -> Result<Self> {
let is_permutation =
idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
if !is_permutation {

View File

@ -7,14 +7,14 @@
//!
//! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
//! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
//! let c = a.matmul(&b)?;
//!
//! let c = a.matmul(&b)?;
//! # Ok(())}
//! ```
//!
//! ## Features
//!
//! - Simple syntax (looks and feels like PyTorch)
//! - Simple syntax (looks and like PyTorch)
//! - CPU and Cuda backends (and M1 support)
//! - Enable serverless (CPU) small and fast deployments
//! - Model training
@ -32,36 +32,23 @@
//! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
//!
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
//!
//! ## Other Crates
//!
//! Candle consists of a number of crates. This crate holds core the common data structures but you may wish
//! to look at the docs for the other crates which can be found here:
//!
//! - [candle-core](https://docs.rs/candle-core/). Core Datastructures and DataTypes.
//! - [candle-nn](https://docs.rs/candle-nn/). Building blocks for Neural Nets.
//! - [candle-datasets](https://docs.rs/candle-datasets/). Rust access to commonly used Datasets like MNIST.
//! - [candle-examples](https://docs.rs/candle-examples/). Examples of Candle in Use.
//! - [candle-onnx](https://docs.rs/candle-onnx/). Loading and using ONNX models.
//! - [candle-pyo3](https://docs.rs/candle-pyo3/). Access to Candle from Python.
//! - [candle-transformers](https://docs.rs/candle-transformers/). Candle implemntation of many published transformer models.
//!
#[cfg(feature = "accelerate")]
mod accelerate;
pub mod backend;
pub mod backprop;
pub mod conv;
mod conv;
mod convert;
pub mod cpu;
pub mod cpu_backend;
#[cfg(feature = "cuda")]
pub mod cuda_backend;
mod custom_op;
#[cfg(feature = "cudnn")]
pub mod cudnn;
mod device;
pub mod display;
mod dtype;
pub mod dummy_cuda_backend;
mod dummy_cuda_backend;
mod dummy_metal_backend;
pub mod error;
mod indexer;
@ -71,46 +58,37 @@ pub mod metal_backend;
#[cfg(feature = "mkl")]
mod mkl;
pub mod npy;
pub mod op;
mod op;
pub mod pickle;
pub mod quantized;
pub mod safetensors;
pub mod scalar;
pub mod shape;
mod sort;
mod storage;
pub mod streaming;
mod strided_index;
mod tensor;
mod tensor_cat;
pub mod test_utils;
pub mod utils;
mod variable;
#[cfg(feature = "cudnn")]
pub use cuda_backend::cudnn;
pub use cpu_backend::{CpuStorage, CpuStorageRef};
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3, UgIOp1};
pub use device::{Device, DeviceLocation, NdArray};
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
pub use error::{Context, Error, Result};
pub use indexer::{IndexOp, TensorIndexer};
pub use cpu_backend::CpuStorage;
pub use device::{Device, DeviceLocation};
pub use dtype::{DType, FloatDType, IntDType, WithDType};
pub use error::{Error, Result};
pub use indexer::IndexOp;
pub use layout::Layout;
pub use op::{CustomOp1, CustomOp2, CustomOp3};
pub use shape::{Shape, D};
pub use storage::Storage;
pub use streaming::{StreamTensor, StreamingBinOp, StreamingModule};
pub use strided_index::{StridedBlocks, StridedIndex};
pub use tensor::{Tensor, TensorId};
pub use variable::Var;
#[cfg(feature = "cuda")]
pub use cuda_backend as cuda;
pub use cuda_backend::{CudaDevice, CudaStorage};
#[cfg(not(feature = "cuda"))]
pub use dummy_cuda_backend as cuda;
pub use cuda::{CudaDevice, CudaStorage};
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
#[cfg(feature = "metal")]
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
@ -140,7 +118,7 @@ impl ToUsize2 for (usize, usize) {
}
}
/// Defining a module with forward method using a single argument.
// A simple trait defining a module with forward method using a single argument.
pub trait Module {
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
}
@ -151,17 +129,8 @@ impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
}
}
impl<M: Module> Module for Option<&M> {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
None => Ok(xs.clone()),
Some(m) => m.forward(xs),
}
}
}
/// A single forward method using a single single tensor argument and a flag to
/// separate the training and evaluation behaviors.
// A trait defining a module with forward method using a single tensor argument and a flag to
// separate the training and evaluation behaviors.
pub trait ModuleT {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,340 +0,0 @@
use crate::{DType, Result};
use candle_metal_kernels::Kernels;
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
use std::collections::HashMap;
use std::path::Path;
use std::sync::{Arc, Mutex, RwLock};
use super::MetalError;
/// Unique identifier for cuda devices.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct DeviceId(usize);
impl DeviceId {
pub(crate) fn new() -> Self {
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
use std::sync::atomic;
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
}
}
type BufferMap = HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>;
pub(crate) struct Commands {
/// Single command queue for the entire device.
command_queue: CommandQueue,
/// One command buffer at a time.
/// The scheduler works by allowing multiple
/// [ComputeCommandEncoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc)
/// on a single command buffer. Using a single command buffer would be fastest on the GPU but
/// prevents overlapping of CPU and GPU commands (because command buffer needs to be committed
/// to start to work).
/// Despite what the documentation says, command buffers are NOT ordered. They are ordered
/// for their START time, but there's no guarantee that command buffer1 will finish before
/// command buffer2 starts (or there are metal bugs there)
command_buffer: CommandBuffer,
/// Keeps track of the current amount of compute command encoders on the current
/// command buffer
/// Arc, RwLock because of the interior mutability.
command_buffer_index: usize,
/// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc)
compute_per_buffer: usize,
}
impl Commands {
pub(crate) fn new(command_queue: CommandQueue) -> Result<Self> {
let command_buffer = command_queue.new_command_buffer().to_owned();
command_buffer.enqueue();
let compute_per_buffer = match std::env::var("CANDLE_METAL_COMPUTE_PER_BUFFER") {
Ok(val) => val.parse()?,
_ => 50,
};
Ok(Self {
command_queue,
command_buffer,
command_buffer_index: 0,
compute_per_buffer,
})
}
pub fn command_buffer(&mut self) -> Result<(bool, CommandBuffer)> {
let mut command_buffer = self.command_buffer.to_owned();
let mut flushed = false;
if self.command_buffer_index > self.compute_per_buffer {
self.command_buffer.commit();
command_buffer = self.command_queue.new_command_buffer().to_owned();
self.command_buffer = command_buffer.clone();
self.command_buffer_index = 0;
flushed = true;
}
self.command_buffer_index += 1;
Ok((flushed, command_buffer))
}
pub fn wait_until_completed(&mut self) -> Result<()> {
match self.command_buffer.status() {
metal::MTLCommandBufferStatus::Committed
| metal::MTLCommandBufferStatus::Scheduled
| metal::MTLCommandBufferStatus::Completed => {
panic!("Already committed");
}
_ => {}
}
self.command_buffer.commit();
self.command_buffer.wait_until_completed();
self.command_buffer = self.command_queue.new_command_buffer().to_owned();
Ok(())
}
}
#[derive(Clone)]
pub struct MetalDevice {
/// Unique identifier, the registryID is not sufficient as it identifies the GPU rather than
/// the device itself.
pub(crate) id: DeviceId,
/// Raw metal device: <https://developer.apple.com/documentation/metal/mtldevice?language=objc>
pub(crate) device: metal::Device,
pub(crate) commands: Arc<RwLock<Commands>>,
/// Simple allocator struct.
/// The buffers are stored in size buckets since ML tends to use similar shapes over and over.
/// We store the buffers in [`Arc`] because it's much faster than Obj-c internal ref counting
/// (could be linked to FFI communication overhead).
///
/// Whenever a buffer has a strong_count==1, we can reuse it, it means it was dropped in the
/// graph calculation, and only we the allocator kept a reference to it, therefore it's free
/// to be reused. However, in order for this to work, we need to guarantee the order of
/// operation, so that this buffer is not being used by another kernel at the same time.
/// Arc is the CPU reference count, it doesn't mean anything on the GPU side of things.
///
/// Whenever we actually allocate a new buffer, we make a full sweep to clean up unused buffers
/// (strong_count = 1).
pub(crate) buffers: Arc<RwLock<BufferMap>>,
/// Simple keeper struct to keep track of the already compiled kernels so we can reuse them.
/// Heavily used by [`candle_metal_kernels`]
pub(crate) kernels: Arc<Kernels>,
/// Seed for random number generation.
pub(crate) seed: Arc<Mutex<Buffer>>,
}
impl std::fmt::Debug for MetalDevice {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "MetalDevice({:?})", self.id)
}
}
impl std::ops::Deref for MetalDevice {
type Target = metal::DeviceRef;
fn deref(&self) -> &Self::Target {
&self.device
}
}
impl MetalDevice {
#[cfg(not(target_arch = "wasm32"))]
pub fn compile(
&self,
func_name: &'static str,
kernel: ug::lang::ssa::Kernel,
) -> Result<metal::ComputePipelineState> {
let mut buf = vec![];
ug_metal::code_gen::gen(&mut buf, func_name, &kernel)?;
let metal_code = String::from_utf8(buf)?;
let lib = self
.device
.new_library_with_source(&metal_code, &metal::CompileOptions::new())
.map_err(MetalError::from)?;
let func = lib
.get_function(func_name, None)
.map_err(MetalError::from)?;
let pl = self
.device
.new_compute_pipeline_state_with_function(&func)
.map_err(MetalError::from)?;
Ok(pl)
}
pub fn id(&self) -> DeviceId {
self.id
}
pub fn metal_device(&self) -> &metal::Device {
&self.device
}
fn drop_unused_buffers(&self) -> Result<()> {
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
for subbuffers in buffers.values_mut() {
let newbuffers = subbuffers
.iter()
.filter(|s| Arc::strong_count(*s) > 1)
.map(Arc::clone)
.collect();
*subbuffers = newbuffers;
}
Ok(())
}
pub fn command_buffer(&self) -> Result<CommandBuffer> {
let mut commands = self.commands.write().map_err(MetalError::from)?;
let (flushed, command_buffer) = commands.command_buffer()?;
if flushed {
self.drop_unused_buffers()?
}
Ok(command_buffer)
}
pub fn wait_until_completed(&self) -> Result<()> {
let mut commands = self.commands.write().map_err(MetalError::from)?;
commands.wait_until_completed()
}
pub fn kernels(&self) -> &Kernels {
&self.kernels
}
pub fn device(&self) -> &metal::Device {
&self.device
}
/// Creates a new buffer (not necessarily zeroed).
/// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode)
/// This means the buffer data cannot be read on the CPU directly.
///
/// [`name`] is only used to keep track of the resource origin in case of bugs
pub fn new_buffer(
&self,
element_count: usize,
dtype: DType,
name: &str,
) -> Result<Arc<Buffer>> {
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
self.allocate_buffer(size, MTLResourceOptions::StorageModePrivate, name)
}
/// Creates a new buffer (not necessarily zeroed).
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
/// This means the buffer can be read on the CPU but will require manual
/// synchronization when the CPU memory is modified
/// Used as a bridge to gather data back from the GPU
pub fn new_buffer_managed(&self, size: NSUInteger) -> Result<Arc<Buffer>> {
self.allocate_buffer(size, MTLResourceOptions::StorageModeManaged, "managed")
}
/// Creates a new buffer from data.
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
///
/// Does not require synchronization, as [newBufferWithBytes](https://developer.apple.com/documentation/metal/mtldevice/1433429-newbufferwithbytes)
/// allocates the buffer and copies over the existing data before returning the MTLBuffer.
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Result<Arc<Buffer>> {
let size = core::mem::size_of_val(data) as NSUInteger;
let new_buffer = self.device.new_buffer_with_data(
data.as_ptr().cast(),
size,
MTLResourceOptions::StorageModeManaged,
);
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
let subbuffers = buffers
.entry((size, MTLResourceOptions::StorageModeManaged))
.or_insert(vec![]);
let new_buffer = Arc::new(new_buffer);
subbuffers.push(new_buffer.clone());
Ok(new_buffer)
}
pub fn allocate_zeros(&self, size_in_bytes: usize) -> Result<Arc<Buffer>> {
let buffer = self.allocate_buffer(
size_in_bytes as NSUInteger,
MTLResourceOptions::StorageModePrivate,
"allocate_zeros",
)?;
let command_buffer = self.command_buffer()?;
command_buffer.set_label("zeros");
let blit = command_buffer.new_blit_command_encoder();
blit.fill_buffer(
&buffer,
metal::NSRange {
location: 0,
length: buffer.length(),
},
0,
);
blit.end_encoding();
Ok(buffer)
}
/// The critical allocator algorithm
fn allocate_buffer(
&self,
size: NSUInteger,
option: MTLResourceOptions,
_name: &str,
) -> Result<Arc<Buffer>> {
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
if let Some(b) = find_available_buffer(size, option, &buffers) {
// Cloning also ensures we increment the strong count
return Ok(b.clone());
}
let size = buf_size(size);
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
let new_buffer = Arc::new(new_buffer);
subbuffers.push(new_buffer.clone());
Ok(new_buffer)
}
/// Create a metal GPU capture trace on [`path`].
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
let capture = metal::CaptureManager::shared();
let descriptor = metal::CaptureDescriptor::new();
descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
descriptor.set_capture_device(self);
// The [set_output_url] call requires an absolute path so we convert it if needed.
if path.as_ref().is_absolute() {
descriptor.set_output_url(path);
} else {
let path = std::env::current_dir()?.join(path);
descriptor.set_output_url(path);
}
capture
.start_capture(&descriptor)
.map_err(MetalError::from)?;
Ok(())
}
}
fn buf_size(size: NSUInteger) -> NSUInteger {
size.saturating_sub(1).next_power_of_two() as NSUInteger
}
fn find_available_buffer(
size: NSUInteger,
option: MTLResourceOptions,
buffers: &BufferMap,
) -> Option<Arc<Buffer>> {
let mut best_buffer: Option<&Arc<Buffer>> = None;
let mut best_buffer_size: NSUInteger = NSUInteger::MAX;
for ((buffer_size, buffer_option), subbuffers) in buffers.iter() {
if buffer_size >= &size && buffer_size < &best_buffer_size && buffer_option == &option {
for sub in subbuffers {
if Arc::strong_count(sub) == 1 {
best_buffer = Some(sub);
best_buffer_size = *buffer_size;
}
}
}
}
best_buffer.cloned()
}

File diff suppressed because it is too large Load Diff

View File

@ -333,16 +333,6 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vs_exp_inplace(y: &mut [f32]) {
unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vd_exp_inplace(y: &mut [f64]) {
unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
@ -365,28 +355,6 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
}
}
#[inline]
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vs_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
#[inline]
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vd_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
macro_rules! binary_op {
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
#[inline]

View File

@ -330,7 +330,7 @@ impl Tensor {
path: P,
) -> Result<()> {
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
let options: zip::write::FileOptions<()> =
let options =
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
for (name, tensor) in ts.iter() {

View File

@ -1,7 +1,5 @@
//! Tensor Opertion Enums and Traits
//!
#![allow(clippy::redundant_closure_call)]
use crate::Tensor;
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
use half::{bf16, f16};
use num_traits::float::Float;
@ -63,12 +61,10 @@ pub enum UnaryOp {
GeluErf,
Erf,
Relu,
Silu,
Tanh,
Floor,
Ceil,
Round,
Sign,
}
#[derive(Clone)]
@ -135,15 +131,8 @@ pub enum Op {
stride: (usize, usize),
},
UpsampleNearest1D {
arg: Tensor,
target_size: usize,
},
UpsampleNearest2D {
arg: Tensor,
target_h: usize,
target_w: usize,
},
UpsampleNearest1D(Tensor),
UpsampleNearest2D(Tensor),
Cat(Vec<Tensor>, usize),
@ -164,23 +153,168 @@ pub enum Op {
Permute(Tensor, Vec<usize>),
Elu(Tensor, f64),
Powf(Tensor, f64),
CustomOp1(
Tensor,
std::sync::Arc<Box<dyn crate::CustomOp1 + Send + Sync>>,
),
CustomOp1(Tensor, std::sync::Arc<Box<dyn CustomOp1 + Send + Sync>>),
CustomOp2(
Tensor,
Tensor,
std::sync::Arc<Box<dyn crate::CustomOp2 + Send + Sync>>,
std::sync::Arc<Box<dyn CustomOp2 + Send + Sync>>,
),
CustomOp3(
Tensor,
Tensor,
Tensor,
std::sync::Arc<Box<dyn crate::CustomOp3 + Send + Sync>>,
std::sync::Arc<Box<dyn CustomOp3 + Send + Sync>>,
),
}
/// Unary ops that can be defined in user-land.
pub trait CustomOp1 {
// Box<dyn> does not support const yet, so use a function to get the name.
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_storage: &MetalStorage,
_layout: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
/// This function takes as argument the argument `arg` used in the forward pass, the result
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
/// The function should return the gradient of the argument.
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp2 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp3 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
s3: &CpuStorage,
l3: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_arg3: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait UnaryOpT {
const NAME: &'static str;
const KERNEL: &'static str;
@ -252,12 +386,10 @@ pub(crate) struct Gelu;
pub(crate) struct GeluErf;
pub(crate) struct Erf;
pub(crate) struct Relu;
pub(crate) struct Silu;
pub(crate) struct Tanh;
pub(crate) struct Floor;
pub(crate) struct Ceil;
pub(crate) struct Round;
pub(crate) struct Sign;
macro_rules! bin_op {
($op:ident, $name: literal, $e: expr, $f32_vec: ident, $f64_vec: ident) => {
@ -461,13 +593,6 @@ unary_op!(Recip, "recip", v, v.recip());
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
// Hardcode the value for sqrt(2/pi)
// https://github.com/huggingface/candle/issues/1982
#[allow(clippy::excessive_precision)]
const SQRT_TWO_OVER_PI_F32: f32 = 0.79788456080286535587989211986876373;
#[allow(clippy::excessive_precision)]
const SQRT_TWO_OVER_PI_F64: f64 = 0.79788456080286535587989211986876373;
/// Tanh based approximation of the `gelu` operation
/// GeluErf is the more precise one.
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
@ -480,7 +605,7 @@ impl UnaryOpT for Gelu {
* v
* (bf16::ONE
+ bf16::tanh(
bf16::from_f32_const(SQRT_TWO_OVER_PI_F32)
(bf16::from_f32_const(2.0) / bf16::PI).sqrt()
* v
* (bf16::ONE + bf16::from_f32_const(0.044715) * v * v),
))
@ -491,18 +616,22 @@ impl UnaryOpT for Gelu {
* v
* (f16::ONE
+ f16::tanh(
f16::from_f32_const(SQRT_TWO_OVER_PI_F32)
(f16::from_f32_const(2.0) / f16::PI).sqrt()
* v
* (f16::ONE + f16::from_f32_const(0.044715) * v * v),
))
}
#[inline(always)]
fn f32(v: f32) -> f32 {
0.5 * v * (1.0 + f32::tanh(SQRT_TWO_OVER_PI_F32 * v * (1.0 + 0.044715 * v * v)))
0.5 * v
* (1.0
+ f32::tanh((2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
}
#[inline(always)]
fn f64(v: f64) -> f64 {
0.5 * v * (1.0 + f64::tanh(SQRT_TWO_OVER_PI_F64 * v * (1.0 + 0.044715 * v * v)))
0.5 * v
* (1.0
+ f64::tanh((2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
}
#[inline(always)]
fn u8(_: u8) -> u8 {
@ -591,77 +720,6 @@ impl UnaryOpT for Erf {
}
}
/// Silu operation
impl UnaryOpT for Silu {
const NAME: &'static str = "silu";
const V: Self = Silu;
#[inline(always)]
fn bf16(v: bf16) -> bf16 {
v / (bf16::ONE + (-v).exp())
}
#[inline(always)]
fn f16(v: f16) -> f16 {
v / (f16::ONE + (-v).exp())
}
#[inline(always)]
fn f32(v: f32) -> f32 {
v / (1.0 + (-v).exp())
}
#[inline(always)]
fn f64(v: f64) -> f64 {
v / (1.0 + (-v).exp())
}
#[inline(always)]
fn u8(_: u8) -> u8 {
0
}
#[inline(always)]
fn u32(_: u32) -> u32 {
0
}
#[inline(always)]
fn i64(_: i64) -> i64 {
0
}
const KERNEL: &'static str = "usilu";
#[cfg(feature = "mkl")]
const F32_VEC: bool = true;
#[cfg(feature = "mkl")]
#[inline(always)]
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
crate::mkl::vs_silu(xs, ys)
}
#[cfg(feature = "mkl")]
const F64_VEC: bool = true;
#[cfg(feature = "mkl")]
#[inline(always)]
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
crate::mkl::vd_silu(xs, ys)
}
#[cfg(feature = "accelerate")]
const F32_VEC: bool = true;
#[cfg(feature = "accelerate")]
#[inline(always)]
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
crate::accelerate::vs_silu(xs, ys)
}
#[cfg(feature = "accelerate")]
const F64_VEC: bool = true;
#[cfg(feature = "accelerate")]
#[inline(always)]
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
crate::accelerate::vd_silu(xs, ys)
}
}
impl UnaryOpT for Abs {
const NAME: &'static str = "abs";
const KERNEL: &'static str = "uabs";
@ -929,37 +987,3 @@ impl std::ops::Deref for BackpropOp {
&self.0
}
}
impl UnaryOpT for Sign {
const NAME: &'static str = "sign";
const KERNEL: &'static str = "usign";
const V: Self = Sign;
#[inline(always)]
fn bf16(v: bf16) -> bf16 {
bf16::from((v > bf16::ZERO) as i8) - bf16::from((v < bf16::ZERO) as i8)
}
#[inline(always)]
fn f16(v: f16) -> f16 {
f16::from((v > f16::ZERO) as i8) - f16::from((v < f16::ZERO) as i8)
}
#[inline(always)]
fn f32(v: f32) -> f32 {
f32::from(v > 0.) - f32::from(v < 0.)
}
#[inline(always)]
fn f64(v: f64) -> f64 {
f64::from(v > 0.) - f64::from(v < 0.)
}
#[inline(always)]
fn u8(v: u8) -> u8 {
u8::min(1, v)
}
#[inline(always)]
fn u32(v: u32) -> u32 {
u32::min(1, v)
}
#[inline(always)]
fn i64(v: i64) -> i64 {
(v > 0) as i64 - (v < 0) as i64
}
}

View File

@ -1,7 +1,7 @@
//! Just enough pickle support to be able to read PyTorch checkpoints.
// Just enough pickle support to be able to read PyTorch checkpoints.
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
// composable/tensor agnostic at some point.
use crate::{Context, DType, Error as E, Layout, Result, Tensor};
use crate::{DType, Error as E, Layout, Result, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
use std::io::BufRead;
@ -42,10 +42,9 @@ pub enum OpCode {
Stop = b'.',
NewObj = 0x81,
EmptyList = b']',
BinFloat = b'G',
BinFloat = b'g',
Append = b'a',
Appends = b'e',
Long1 = 0x8a,
}
// Avoid using FromPrimitive so as not to drag another dependency.
@ -85,7 +84,6 @@ impl TryFrom<u8> for OpCode {
b'G' => Ok(Self::BinFloat),
b'a' => Ok(Self::Append),
b'e' => Ok(Self::Appends),
0x8a => Ok(Self::Long1),
value => Err(value),
}
}
@ -108,7 +106,6 @@ pub enum Object {
class_name: String,
},
Int(i32),
Long(i64),
Float(f64),
Unicode(String),
Bool(bool),
@ -173,14 +170,6 @@ impl Object {
}
}
pub fn int_or_long(self) -> OResult<i64> {
match self {
Self::Int(t) => Ok(t as i64),
Self::Long(t) => Ok(t),
_ => Err(self),
}
}
pub fn tuple(self) -> OResult<Vec<Self>> {
match self {
Self::Tuple(t) => Ok(t),
@ -228,13 +217,6 @@ impl Object {
let args = args.remove(1);
(callable, args)
}
Object::Class {
module_name,
class_name,
} if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
let mut args = args.tuple()?;
args.remove(0).reduce()?
}
_ => (callable, args),
};
match callable {
@ -245,11 +227,13 @@ impl Object {
_ => return Ok(None),
};
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
let mut path = dir_name.to_path_buf();
path.push(file_path);
Ok(Some(TensorInfo {
name,
dtype,
layout,
path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
path: path.to_string_lossy().into_owned(),
storage_size,
}))
}
@ -361,10 +345,8 @@ impl Stack {
module_name,
class_name,
} => {
if module_name == "collections"
&& (class_name == "OrderedDict" || class_name == "defaultdict")
{
// TODO: have a separate ordered dict and a separate default dict.
if module_name == "collections" && class_name == "OrderedDict" {
// TODO: have a separate ordered dict.
Some(Object::Dict(vec![]))
} else {
None
@ -473,10 +455,7 @@ impl Stack {
self.push(Object::Int(arg))
}
OpCode::BinFloat => {
// Somehow floats are encoded using BigEndian whereas int types use LittleEndian.
// https://github.com/python/cpython/blob/0c80da4c14d904a367968955544dd6ae58c8101c/Lib/pickletools.py#L855
// https://github.com/pytorch/pytorch/blob/372d078f361e726bb4ac0884ac334b04c58179ef/torch/_weights_only_unpickler.py#L243
let arg = r.read_f64::<byteorder::BigEndian>()?;
let arg = r.read_f64::<LittleEndian>()?;
self.push(Object::Float(arg))
}
OpCode::BinUnicode => {
@ -548,7 +527,7 @@ impl Stack {
crate::bail!("setitems: not an even number of objects")
}
while let Some(value) = objs.pop() {
let key = objs.pop().context("empty objs")?;
let key = objs.pop().unwrap();
d.push((key, value))
}
} else {
@ -568,7 +547,7 @@ impl Stack {
crate::bail!("setitems: not an even number of objects")
}
while let Some(value) = objs.pop() {
let key = objs.pop().context("empty objs")?;
let key = objs.pop().unwrap();
pydict.push((key, value))
}
self.push(Object::Dict(pydict))
@ -601,15 +580,6 @@ impl Stack {
let obj = self.new_obj(class, args)?;
self.push(obj)
}
OpCode::Long1 => {
let n_bytes = r.read_u8()?;
let mut v = 0;
// Decode the next n bytes in little endian
for i in 0..n_bytes {
v |= (r.read_u8()? as i64) << (i * 8);
}
self.push(Object::Long(v))
}
}
Ok(false)
}
@ -627,10 +597,10 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
let mut args = args.tuple()?;
let stride = Vec::<usize>::try_from(args.remove(3))?;
let size = Vec::<usize>::try_from(args.remove(2))?;
let offset = args.remove(1).int_or_long()? as usize;
let offset = args.remove(1).int()? as usize;
let storage = args.remove(0).persistent_load()?;
let mut storage = storage.tuple()?;
let storage_size = storage.remove(4).int_or_long()? as usize;
let storage_size = storage.remove(4).int()? as usize;
let path = storage.remove(2).unicode()?;
let (_module_name, class_name) = storage.remove(1).class()?;
let dtype = match class_name.as_str() {
@ -644,11 +614,7 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
crate::bail!("unsupported storage type {other}")
}
};
let layout = Layout::new(
crate::Shape::from(size),
stride,
offset * dtype.size_in_bytes(),
);
let layout = Layout::new(crate::Shape::from(size), stride, offset);
Ok((layout, dtype, path, storage_size))
}
@ -661,16 +627,9 @@ pub struct TensorInfo {
pub storage_size: usize,
}
/// Read the tensor info from a .pth file.
///
/// # Arguments
/// * `file` - The path to the .pth file.
/// * `verbose` - Whether to print debug information.
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
file: P,
verbose: bool,
key: Option<&str>,
) -> Result<Vec<TensorInfo>> {
let file = std::fs::File::open(file)?;
let zip_reader = std::io::BufReader::new(file);
@ -685,16 +644,15 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
if !file_name.ends_with("data.pkl") {
continue;
}
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").context("no .pkl")?);
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").unwrap());
let reader = zip.by_name(file_name)?;
let mut reader = std::io::BufReader::new(reader);
let mut stack = Stack::empty();
stack.read_loop(&mut reader)?;
let obj = stack.finalize()?;
if VERBOSE || verbose {
println!("{obj:#?}");
println!("{obj:?}");
}
let obj = match obj {
Object::Build { callable, args } => match *callable {
Object::Reduce { callable, args: _ } => match *callable {
@ -708,24 +666,6 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
},
obj => obj,
};
// If key is provided, then we need to extract the state_dict from the object.
let obj = if let Some(key) = key {
if let Object::Dict(key_values) = obj {
key_values
.into_iter()
.find(|(k, _)| *k == Object::Unicode(key.to_owned()))
.map(|(_, v)| v)
.ok_or_else(|| E::Msg(format!("key {key} not found")))?
} else {
obj
}
} else {
obj
};
// If the object is a dict, then we can extract the tensor info from it.
// NOTE: We are assuming that the `obj` is state_dict by this stage.
if let Object::Dict(key_values) = obj {
for (name, value) in key_values.into_iter() {
match value.into_tensor_info(name, &dir_name) {
@ -748,8 +688,8 @@ pub struct PthTensors {
}
impl PthTensors {
pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
let tensor_infos = tensor_infos
.into_iter()
.map(|ti| (ti.name.to_string(), ti))
@ -763,7 +703,6 @@ impl PthTensors {
}
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
use std::io::Read;
let tensor_info = match self.tensor_infos.get(name) {
None => return Ok(None),
Some(tensor_info) => tensor_info,
@ -772,56 +711,27 @@ impl PthTensors {
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
let mut zip = zip::ZipArchive::new(zip_reader)?;
let mut reader = zip.by_name(&tensor_info.path)?;
let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
let rank = tensor_info.layout.shape().rank();
// Reading the data is a bit tricky as it can be strided, for now only support the basic
// case and when the tensor is fortran contiguous.
if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
// Reading the data is a bit tricky as it can be strided, use an offset, etc.
// For now only support the basic case.
if tensor_info.layout.start_offset() != 0 || !tensor_info.layout.is_contiguous() {
crate::bail!(
"cannot retrieve non-contiguous tensors {:?}",
tensor_info.layout
)
}
let start_offset = tensor_info.layout.start_offset();
if start_offset > 0 {
std::io::copy(
&mut reader.by_ref().take(start_offset as u64),
&mut std::io::sink(),
)?;
}
let tensor = Tensor::from_reader(
tensor_info.layout.shape().clone(),
tensor_info.dtype,
&mut reader,
)?;
if rank > 1 && is_fortran_contiguous {
// Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
let tensor = tensor.reshape(shape_reversed)?;
// Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
let tensor = tensor.permute(dim_indeces_reversed)?;
Ok(Some(tensor))
} else {
Ok(Some(tensor))
}
Ok(Some(tensor))
}
}
/// Read all the tensors from a PyTorch pth file with a given key.
///
/// # Arguments
/// * `path` - Path to the pth file.
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
/// contains multiple objects and the state_dict is the one we are interested in.
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
path: P,
key: Option<&str>,
) -> Result<Vec<(String, Tensor)>> {
let pth = PthTensors::new(path, key)?;
/// Read all the tensors from a PyTorch pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
let pth = PthTensors::new(path)?;
let tensor_names = pth.tensor_infos.keys();
let mut tensors = Vec::with_capacity(tensor_names.len());
for name in tensor_names {
@ -831,11 +741,3 @@ pub fn read_all_with_key<P: AsRef<std::path::Path>>(
}
Ok(tensors)
}
/// Read all the tensors from a PyTorch pth file.
///
/// # Arguments
/// * `path` - Path to the pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
read_all_with_key(path, None)
}

View File

@ -353,7 +353,7 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
q3 = q3.add(32);
// Prepare low and high bits
// We hardcode the shifts here to avoid loading them into a separate register
// We hardcode the shifts here to avoid loading them into a seperate register
let q3l_0 = _mm256_and_si256(q3bits, m3);
let q3h_0 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
@ -586,7 +586,7 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
q5 = q5.add(32);
//Similar to q3k we hardcode the shifts here to avoid loading them into a separate register
//Similar to q3k we hardcode the shifts here to avoid loading them into a seperate register
let q5l_0 = _mm256_and_si256(q5bits, m4);
let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
let q5l_0_right_shift = match j {

View File

@ -1,737 +0,0 @@
use super::{GgmlDType, QStorage};
use crate::quantized::k_quants::GgmlType;
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
use crate::{builder_arg as barg, CudaDevice, CudaStorage, Result};
use half::f16;
use cudarc::driver::{CudaSlice, CudaView, PushKernelArg};
#[derive(Clone, Debug)]
struct PaddedCudaSlice {
inner: CudaSlice<u8>,
len: usize,
}
#[derive(Clone, Debug)]
pub struct QCudaStorage {
data: PaddedCudaSlice,
dtype: GgmlDType,
device: CudaDevice,
}
static FORCE_DMMV: std::sync::atomic::AtomicBool = std::sync::atomic::AtomicBool::new(false);
pub fn set_force_dmmv(f: bool) {
FORCE_DMMV.store(f, std::sync::atomic::Ordering::Relaxed)
}
pub const WARP_SIZE: usize = 32;
pub const MMQ_X_Q4_0_AMPERE: usize = 4;
pub const MMQ_Y_Q4_0_AMPERE: usize = 32;
pub const NWARPS_Q4_0_AMPERE: usize = 4;
pub const GGML_CUDA_MMV_X: usize = 32;
pub const GGML_CUDA_MMV_Y: usize = 1;
pub const CUDA_QUANTIZE_BLOCK_SIZE: usize = 256;
pub const CUDA_DEQUANTIZE_BLOCK_SIZE: usize = 256;
pub const MATRIX_ROW_PADDING: usize = 512;
fn ceil_div(p: usize, q: usize) -> usize {
p.div_ceil(q)
}
fn pad(p: usize, q: usize) -> usize {
ceil_div(p, q) * q
}
fn quantize_q8_1(
src: &CudaView<f32>,
dst: &mut CudaSlice<u8>,
elem_count: usize,
ky: usize,
dev: &CudaDevice,
) -> Result<()> {
let kx = elem_count;
let kx_padded = pad(kx, MATRIX_ROW_PADDING);
let num_blocks = ceil_div(kx_padded, CUDA_QUANTIZE_BLOCK_SIZE);
let func = dev.get_or_load_func("quantize_q8_1", &candle_kernels::QUANTIZED)?;
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (num_blocks as u32, ky as u32, 1),
block_dim: (CUDA_QUANTIZE_BLOCK_SIZE as u32, 1, 1),
shared_mem_bytes: 0,
};
let mut builder = func.builder();
builder.arg(src);
builder.arg(dst);
barg!(builder, kx as i32, kx_padded as i32);
unsafe { builder.launch(cfg) }.w()?;
Ok(())
}
fn dequantize_f32(
data: &PaddedCudaSlice,
dtype: GgmlDType,
elem_count: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
let nb = elem_count.div_ceil(256);
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f32", false, 32, nb),
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f32", false, 32, nb),
GgmlDType::Q5_0 => (
"dequantize_block_q5_0_f32",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q5_1 => (
"dequantize_block_q5_1_f32",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f32", false, 32, nb),
GgmlDType::Q2K => ("dequantize_block_q2_K_f32", true, 64, nb),
GgmlDType::Q3K => ("dequantize_block_q3_K_f32", true, 64, nb),
GgmlDType::Q4K => ("dequantize_block_q4_K_f32", true, 32, nb),
GgmlDType::Q5K => ("dequantize_block_q5_K_f32", true, 64, nb),
GgmlDType::Q6K => ("dequantize_block_q6_K_f32", true, 64, nb),
GgmlDType::Q8K => ("dequantize_block_q8_K_f32", true, 32, nb),
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f32>(elem_count)? };
// See e.g.
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (num_blocks as u32, 1, 1),
block_dim: (block_dim as u32, 1, 1),
shared_mem_bytes: 0,
};
if is_k {
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(&dst);
unsafe { builder.launch(cfg) }.w()?;
} else {
let nb32 = match dtype {
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
_ => elem_count / 32,
};
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(&dst);
barg!(builder, nb32 as i32);
unsafe { builder.launch(cfg) }.w()?;
}
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
fn dequantize_f16(
data: &PaddedCudaSlice,
dtype: GgmlDType,
elem_count: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
let nb = elem_count.div_ceil(256);
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f16", false, 32, nb),
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f16", false, 32, nb),
GgmlDType::Q5_0 => (
"dequantize_block_q5_0_f16",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q5_1 => (
"dequantize_block_q5_1_f16",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f16", false, 32, nb),
GgmlDType::Q2K => ("dequantize_block_q2_K_f16", true, 64, nb),
GgmlDType::Q3K => ("dequantize_block_q3_K_f16", true, 64, nb),
GgmlDType::Q4K => ("dequantize_block_q4_K_f16", true, 32, nb),
GgmlDType::Q5K => ("dequantize_block_q5_K_f16", true, 64, nb),
GgmlDType::Q6K => ("dequantize_block_q6_K_f16", true, 64, nb),
GgmlDType::Q8K => ("dequantize_block_q8_K_f16", true, 32, nb),
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f16>(elem_count)? };
// See e.g.
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (num_blocks as u32, 1, 1),
block_dim: (block_dim as u32, 1, 1),
shared_mem_bytes: 0,
};
if is_k {
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(&dst);
unsafe { builder.launch(cfg) }.w()?;
} else {
let nb32 = match dtype {
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
_ => elem_count / 32,
};
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(&dst);
barg!(builder, nb32 as i32);
unsafe { builder.launch(cfg) }.w()?;
}
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
fn dequantize_mul_mat_vec(
data: &PaddedCudaSlice,
y: &CudaView<f32>,
dtype: GgmlDType,
ncols: usize,
nrows: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
let data_elems = data.len / dtype.type_size() * dtype.block_size();
if data_elems < ncols * nrows {
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
}
if y.len() != ncols {
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
}
let kernel_name = match dtype {
GgmlDType::Q4_0 => "dequantize_mul_mat_vec_q4_0_cuda",
GgmlDType::Q4_1 => "dequantize_mul_mat_vec_q4_1_cuda",
GgmlDType::Q5_0 => "dequantize_mul_mat_vec_q5_0_cuda",
GgmlDType::Q5_1 => "dequantize_mul_mat_vec_q5_1_cuda",
GgmlDType::Q8_0 => "dequantize_mul_mat_vec_q8_0_cuda",
GgmlDType::Q2K => "dequantize_mul_mat_vec_q2_k",
GgmlDType::Q3K => "dequantize_mul_mat_vec_q3_k",
GgmlDType::Q4K => "dequantize_mul_mat_vec_q4_k",
GgmlDType::Q5K => "dequantize_mul_mat_vec_q5_k",
GgmlDType::Q6K => "dequantize_mul_mat_vec_q6_k",
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f32>(nrows)? };
let block_num_y = ceil_div(nrows, GGML_CUDA_MMV_Y);
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (block_num_y as u32, 1, 1),
block_dim: (WARP_SIZE as u32, GGML_CUDA_MMV_Y as u32, 1),
shared_mem_bytes: 0,
};
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(y);
builder.arg(&dst);
barg!(builder, ncols as i32, nrows as i32);
unsafe { builder.launch(cfg) }.w()?;
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
fn mul_mat_vec_via_q8_1(
data: &PaddedCudaSlice,
y: &CudaView<f32>,
dtype: GgmlDType,
ncols: usize,
nrows: usize,
b_size: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
let data_elems = data.len / dtype.type_size() * dtype.block_size();
if data_elems < ncols * nrows {
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
}
if y.len() != ncols * b_size {
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
}
if b_size == 0 || b_size > 8 {
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
}
// Start by quantizing y
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
let y_size_in_bytes =
b_size * ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
quantize_q8_1(y, &mut y_q8_1, ncols, b_size, dev)?;
let kernel_name = match dtype {
GgmlDType::Q4_0 => "mul_mat_vec_q4_0_q8_1_cuda",
GgmlDType::Q4_1 => "mul_mat_vec_q4_1_q8_1_cuda",
GgmlDType::Q5_0 => "mul_mat_vec_q5_0_q8_1_cuda",
GgmlDType::Q5_1 => "mul_mat_vec_q5_1_q8_1_cuda",
GgmlDType::Q8_0 => "mul_mat_vec_q8_0_q8_1_cuda",
GgmlDType::Q2K => "mul_mat_vec_q2_K_q8_1_cuda",
GgmlDType::Q3K => "mul_mat_vec_q3_K_q8_1_cuda",
GgmlDType::Q4K => "mul_mat_vec_q4_K_q8_1_cuda",
GgmlDType::Q5K => "mul_mat_vec_q5_K_q8_1_cuda",
GgmlDType::Q6K => "mul_mat_vec_q6_K_q8_1_cuda",
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
};
let kernel_name = format!("{kernel_name}{b_size}");
let func = dev.get_or_load_func(&kernel_name, &candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f32>(nrows * b_size)? };
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
let (nblocks, nwarps) = match b_size {
1 => (nrows as u32, 4),
2..=4 => ((nrows as u32).div_ceil(2), 4),
5..=8 => ((nrows as u32).div_ceil(2), 2),
_ => crate::bail!("unexpected bsize {b_size}"),
};
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (nblocks, 1, 1),
block_dim: (WARP_SIZE as u32, nwarps, 1),
shared_mem_bytes: 0,
};
let mut builder = func.builder();
builder.arg(&data.inner);
builder.arg(&y_q8_1);
builder.arg(&dst);
barg!(
builder,
/* ncols_x */ ncols as i32,
/* nrows_x */ nrows as i32,
/* nrows_y */ ncols_padded as i32,
/* nrows_dst */ nrows as i32
);
unsafe { builder.launch(cfg) }.w()?;
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
#[allow(clippy::too_many_arguments)]
fn mul_mat_via_q8_1(
data: &PaddedCudaSlice,
y: &CudaView<f32>,
dtype: GgmlDType,
x_rows: usize,
x_cols: usize,
y_rows: usize,
y_cols: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
let data_elems = data.len / dtype.type_size() * dtype.block_size();
if data_elems < x_rows * x_cols {
crate::bail!("unexpected lhs size {}, {x_rows} {x_cols}", data_elems)
}
if y.len() != y_rows * y_cols {
crate::bail!("unexpected y size {}, {y_rows} {y_cols}", y.len())
}
if x_cols != y_rows {
crate::bail!("unexpected x/y size {x_rows} {x_cols} {y_rows} {y_cols}")
}
let k = x_cols;
// Start by quantizing y
let k_padded = pad(k, MATRIX_ROW_PADDING);
let y_size_in_bytes =
k_padded * y_cols * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
quantize_q8_1(y, &mut y_q8_1, k, y_cols, dev)?;
let (kernel_name, mmq_x, mmq_y) = match dtype {
GgmlDType::Q4_0 => ("mul_mat_q4_0", 64, 128),
GgmlDType::Q4_1 => ("mul_mat_q4_1", 64, 128),
GgmlDType::Q5_0 => ("mul_mat_q5_0", 128, 64),
GgmlDType::Q5_1 => ("mul_mat_q5_1", 128, 64),
GgmlDType::Q8_0 => ("mul_mat_q8_0", 128, 64),
GgmlDType::Q2K => ("mul_mat_q2_K", 64, 128),
GgmlDType::Q3K => ("mul_mat_q3_K", 128, 128),
GgmlDType::Q4K => ("mul_mat_q4_K", 64, 128),
GgmlDType::Q5K => ("mul_mat_q5_K", 64, 128),
GgmlDType::Q6K => ("mul_mat_q6_K", 64, 64),
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f32>(x_rows * y_cols)? };
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (
ceil_div(x_rows, mmq_y) as u32,
ceil_div(y_cols, mmq_x) as u32,
1,
),
block_dim: (WARP_SIZE as u32, 4, 1),
shared_mem_bytes: 0,
};
let mut builder = func.builder();
builder.arg(/* vx */ &data.inner);
builder.arg(/* vy */ &y_q8_1);
builder.arg(/* dst */ &dst);
barg!(
builder,
/* ncols_x */ x_cols as i32,
/* nrows_x */ x_rows as i32,
/* ncols_y */ y_cols as i32,
/* nrows_y */ k_padded as i32,
/* nrows_dst */ x_rows as i32
);
unsafe { builder.launch(cfg) }.w()?;
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
impl QCudaStorage {
pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> {
let size_in_bytes = ceil_div(el_count, dtype.block_size()) * dtype.type_size();
let padded_size_in_bytes =
ceil_div(el_count + MATRIX_ROW_PADDING, dtype.block_size()) * dtype.type_size();
let inner = device.alloc_zeros::<u8>(padded_size_in_bytes)?;
Ok(QCudaStorage {
data: PaddedCudaSlice {
inner,
len: size_in_bytes,
},
device: device.clone(),
dtype,
})
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &CudaDevice {
&self.device
}
pub fn dequantize(&self, elem_count: usize) -> Result<CudaStorage> {
fn deq<T: GgmlType>(buffer: &[u8], n: usize, dst: &mut [f32]) -> Result<()> {
let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const T, n) };
let vec = slice.to_vec();
T::to_float(&vec, dst)
}
let fast_kernel = matches!(
self.dtype,
GgmlDType::Q4_0
| GgmlDType::Q4_1
| GgmlDType::Q5_0
| GgmlDType::Q5_1
| GgmlDType::Q8_0
| GgmlDType::Q2K
| GgmlDType::Q3K
| GgmlDType::Q4K
| GgmlDType::Q5K
| GgmlDType::Q6K
| GgmlDType::Q8K
);
if fast_kernel {
return dequantize_f32(&self.data, self.dtype, elem_count, self.device());
}
// Run the dequantization on cpu.
let buffer = self
.device
.memcpy_dtov(&self.data.inner.slice(..self.data.len))?;
let mut out = vec![0.0; elem_count];
let block_len = elem_count / self.dtype.block_size();
match self.dtype {
GgmlDType::F32 => deq::<f32>(&buffer, block_len, &mut out)?,
GgmlDType::F16 => deq::<half::f16>(&buffer, block_len, &mut out)?,
GgmlDType::Q4_0 => deq::<crate::quantized::BlockQ4_0>(&buffer, block_len, &mut out)?,
GgmlDType::Q4_1 => deq::<crate::quantized::BlockQ4_1>(&buffer, block_len, &mut out)?,
GgmlDType::Q5_0 => deq::<crate::quantized::BlockQ5_0>(&buffer, block_len, &mut out)?,
GgmlDType::Q5_1 => deq::<crate::quantized::BlockQ5_1>(&buffer, block_len, &mut out)?,
GgmlDType::Q8_0 => deq::<crate::quantized::BlockQ8_0>(&buffer, block_len, &mut out)?,
GgmlDType::Q8_1 => deq::<crate::quantized::BlockQ8_1>(&buffer, block_len, &mut out)?,
GgmlDType::Q2K => deq::<crate::quantized::BlockQ2K>(&buffer, block_len, &mut out)?,
GgmlDType::Q3K => deq::<crate::quantized::BlockQ3K>(&buffer, block_len, &mut out)?,
GgmlDType::Q4K => deq::<crate::quantized::BlockQ4K>(&buffer, block_len, &mut out)?,
GgmlDType::Q5K => deq::<crate::quantized::BlockQ5K>(&buffer, block_len, &mut out)?,
GgmlDType::Q6K => deq::<crate::quantized::BlockQ6K>(&buffer, block_len, &mut out)?,
GgmlDType::Q8K => deq::<crate::quantized::BlockQ8K>(&buffer, block_len, &mut out)?,
}
self.device
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
}
pub fn dequantize_f16(&self, elem_count: usize) -> Result<CudaStorage> {
dequantize_f16(&self.data, self.dtype, elem_count, self.device())
}
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
// Run the quantization on cpu.
let src = match &src.slice {
crate::cuda_backend::CudaStorageSlice::F32(data) => self.device.memcpy_dtov(data)?,
_ => crate::bail!("only f32 can be quantized"),
};
let src_len = src.len();
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?;
qcpu_storage.quantize(&src)?;
let data = qcpu_storage.data()?;
let padded_len =
data.len() + MATRIX_ROW_PADDING * self.dtype.type_size() / self.dtype.block_size();
let mut inner = unsafe { self.device.alloc::<u8>(padded_len)? };
self.device
.memcpy_htod(data.as_ref(), &mut inner.slice_mut(..data.len()))?;
self.data = PaddedCudaSlice {
inner,
len: data.len(),
};
Ok(())
}
pub fn storage_size_in_bytes(&self) -> usize {
self.data.len
}
pub fn fwd(
&self,
self_shape: &crate::Shape,
storage: &CudaStorage,
layout: &crate::Layout,
) -> Result<(CudaStorage, crate::Shape)> {
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
1
} else {
8
};
let use_vec_kernel = match layout.shape().dims() {
[b, m, _k] => b * m <= max_bm,
[b, _k] => *b <= max_bm,
_ => false,
};
if use_vec_kernel {
self.dequantize_matmul_vec(self_shape, storage, layout)
} else {
self.dequantize_matmul(self_shape, storage, layout)
}
}
}
impl QCudaStorage {
fn dequantize_matmul_vec(
&self,
self_shape: &crate::Shape,
rhs: &CudaStorage,
rhs_l: &crate::Layout,
) -> Result<(CudaStorage, crate::Shape)> {
let (nrows, ncols) = self_shape.dims2()?;
let rhs = rhs.as_cuda_slice::<f32>()?;
let rhs = match rhs_l.contiguous_offsets() {
Some((o1, o2)) => rhs.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?,
};
let (b_size, k) = match rhs_l.shape().dims() {
[b, m, k] => (b * m, *k),
[b, k] => (*b, *k),
_ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()),
};
if ncols != k {
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape())
}
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
dequantize_mul_mat_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
} else {
mul_mat_vec_via_q8_1(
&self.data,
&rhs,
self.dtype,
ncols,
nrows,
b_size,
self.device(),
)?
};
let mut out_shape = rhs_l.shape().dims().to_vec();
out_shape.pop();
out_shape.push(nrows);
Ok((out, out_shape.into()))
}
fn dequantize_matmul(
&self,
self_shape: &crate::Shape,
storage: &CudaStorage,
layout: &crate::Layout,
) -> Result<(CudaStorage, crate::Shape)> {
use crate::backend::BackendStorage;
let (n, k) = self_shape.dims2()?;
let (b, m, k2) = match layout.shape().dims() {
&[b, m, k2] => (b, m, k2),
&[m, k2] => (1, m, k2),
s => crate::bail!("unexpected shape for input {s:?}"),
};
if k2 != k {
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape())
}
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
let data_f32 = self.dequantize(n * k)?;
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?
} else {
let storage = storage.as_cuda_slice::<f32>()?;
let storage = match layout.contiguous_offsets() {
Some((o1, o2)) => storage.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous {
op: "quantized-matmul",
}
.bt())?,
};
mul_mat_via_q8_1(
&self.data,
&storage,
self.dtype,
/* x_rows */ n,
/* x_cols */ k,
/* y_rows */ k,
/* y_cols */ b * m,
self.device(),
)?
};
let mut out_shape = layout.shape().dims().to_vec();
out_shape.pop();
out_shape.push(n);
Ok((out, out_shape.into()))
}
}
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
device: &CudaDevice,
data: &[T],
) -> Result<super::QStorage> {
let data = unsafe {
std::slice::from_raw_parts(data.as_ptr() as *const u8, core::mem::size_of_val(data))
};
let dtype = T::DTYPE;
let padded_len = data.len() + MATRIX_ROW_PADDING * dtype.type_size() / dtype.block_size();
let mut inner = unsafe { device.alloc::<u8>(padded_len)? };
device.memcpy_htod(data, &mut inner.slice_mut(..data.len()))?;
Ok(QStorage::Cuda(QCudaStorage {
data: PaddedCudaSlice {
inner,
len: data.len(),
},
device: device.clone(),
dtype,
}))
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn cuda_quantize_q8_1() -> Result<()> {
let dev = CudaDevice::new(0)?;
let el = 256;
let el_padded = pad(el, MATRIX_ROW_PADDING);
let y_size_in_bytes =
el_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
let vs: Vec<f32> = (0..el).map(|v| v as f32).collect();
let y = dev.memcpy_stod(&vs)?;
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, 1, &dev)?;
Ok(())
}
#[test]
fn cuda_mmv_q8_1() -> Result<()> {
let dev = CudaDevice::new(0)?;
let ncols = 256;
let vs: Vec<f32> = (0..ncols).map(|v| v as f32).collect();
let y = dev.memcpy_stod(&vs)?;
let mut xs = QCudaStorage::zeros(&dev, ncols, GgmlDType::Q4_0)?;
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
let cuda_storage = mul_mat_vec_via_q8_1(
&xs.data,
&y.slice(..),
/* dtype */ GgmlDType::Q4_0,
/* ncols */ ncols,
/* nrows */ 1,
/* b_size */ 1,
&dev,
)?;
let vs = cuda_storage.as_cuda_slice::<f32>()?;
let vs = dev.memcpy_dtov(&vs.slice(..))?;
assert_eq!(vs.len(), 1);
// for n = 255, n.(n+1).(2n+1) / 6 = 5559680
// Q8 means 1/256 precision.
assert_eq!(vs[0], 5561664.5);
let cuda_storage = dequantize_mul_mat_vec(
&xs.data,
&y.slice(..),
/* dtype */ GgmlDType::Q4_0,
/* ncols */ ncols,
/* nrows */ 1,
&dev,
)?;
let vs = cuda_storage.as_cuda_slice::<f32>()?;
let vs = dev.memcpy_dtov(&vs.slice(..))?;
assert_eq!(vs.len(), 1);
assert_eq!(vs[0], 5561851.0);
Ok(())
}
#[test]
fn cuda_mm_q8_1() -> Result<()> {
let dev = CudaDevice::new(0)?;
let ncols = 256;
let vs: Vec<f32> = (0..ncols * 4).map(|v| v as f32 / 4.).collect();
let y = dev.memcpy_stod(&vs)?;
let mut xs = QCudaStorage::zeros(&dev, ncols * 4, GgmlDType::Q4_0)?;
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
let cuda_storage = mul_mat_via_q8_1(
&xs.data,
&y.slice(..),
/* dtype */ GgmlDType::Q4_0,
/* x_rows */ 4,
/* x_cols */ ncols,
/* y_rows */ ncols,
/* y_cols */ 4,
&dev,
)?;
let vs = cuda_storage.as_cuda_slice::<f32>()?;
let vs = dev.memcpy_dtov(&vs.slice(..))?;
/*
x = torch.tensor([float(v) for v in range(1024)]).reshape(4, 256)
x @ x.t() / 16
tensor([[ 347480.0000, 869720.0000, 1391960.0000, 1914200.0000],
[ 869720.0000, 2440536.0000, 4011352.0000, 5582166.5000],
[ 1391960.0000, 4011352.0000, 6630742.0000, 9250132.0000],
[ 1914200.0000, 5582166.5000, 9250132.0000, 12918099.0000]])
*/
assert_eq!(vs.len(), 16);
assert_eq!(vs[0], 347604.0);
assert_eq!(vs[1], 888153.06);
assert_eq!(vs[4], 869780.7);
assert_eq!(vs[5], 2483145.0);
assert_eq!(vs[11], 9407368.0);
assert_eq!(vs[14], 9470856.0);
assert_eq!(vs[15], 13138824.0);
Ok(())
}
// The following test used to fail under compute-sanitizer until #2526.
#[test]
fn cuda_mm_q8_1_pad() -> Result<()> {
let dev = CudaDevice::new(0)?;
let (x_rows, ncols, y_cols) = (4, 16, 2048);
let vs: Vec<f32> = (0..ncols * y_cols).map(|v| v as f32 / 256.).collect();
let y = dev.memcpy_stod(&vs)?;
let mut xs = QCudaStorage::zeros(&dev, ncols * x_rows, GgmlDType::Q4_0)?;
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
let cuda_storage = mul_mat_via_q8_1(
&xs.data,
&y.slice(..),
/* dtype */ GgmlDType::Q4_0,
/* x_rows */ x_rows,
/* x_cols */ ncols,
/* y_rows */ ncols,
/* y_cols */ y_cols,
&dev,
)?;
let vs = cuda_storage.as_cuda_slice::<f32>()?;
let _vs = dev.memcpy_dtov(&vs.slice(..))?;
Ok(())
}
}

View File

@ -1,54 +0,0 @@
#![allow(unused)]
use super::GgmlDType;
use crate::{CudaDevice, CudaStorage, Error, Result};
pub struct QCudaStorage {
dtype: GgmlDType,
device: CudaDevice,
}
impl QCudaStorage {
pub fn zeros(_: &CudaDevice, _: usize, _: GgmlDType) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &CudaDevice {
&self.device
}
pub fn dequantize(&self, _elem_count: usize) -> Result<CudaStorage> {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn dequantize_f16(&self, _elem_count: usize) -> Result<CudaStorage> {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn storage_size_in_bytes(&self) -> usize {
0
}
pub fn fwd(
&self,
_self_shape: &crate::Shape,
_storage: &CudaStorage,
_layout: &crate::Layout,
) -> Result<(CudaStorage, crate::Shape)> {
Err(Error::NotCompiledWithCudaSupport)
}
}
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
_device: &CudaDevice,
_data: &[T],
) -> Result<super::QStorage> {
Err(Error::NotCompiledWithCudaSupport)
}

View File

@ -1,50 +0,0 @@
#![allow(unused)]
use super::GgmlDType;
use crate::{Error, MetalDevice, MetalStorage, Result};
pub struct QMetalStorage {
dtype: GgmlDType,
device: MetalDevice,
}
impl QMetalStorage {
pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &MetalDevice {
&self.device
}
pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn storage_size_in_bytes(&self) -> usize {
0
}
pub fn fwd(
&self,
_self_shape: &crate::Shape,
_storage: &MetalStorage,
_layout: &crate::Layout,
) -> Result<(MetalStorage, crate::Shape)> {
Err(Error::NotCompiledWithMetalSupport)
}
}
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
_device: &MetalDevice,
_data: &[T],
) -> Result<super::QStorage> {
Err(Error::NotCompiledWithMetalSupport)
}

View File

@ -1,7 +1,7 @@
//! Support for the GGML file format.
use super::{k_quants, GgmlDType, QStorage};
use crate::{Device, Result};
use super::{k_quants, GgmlDType};
use crate::Result;
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
@ -121,68 +121,41 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
raw_data: &[u8],
size_in_bytes: usize,
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let raw_data_ptr = raw_data.as_ptr();
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
let data: QStorage = match device {
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
Device::Metal(metal) => super::metal::load_quantized(metal, data)?,
Device::Cuda(cuda) => super::cuda::load_quantized(cuda, data)?,
};
super::QTensor::new(data, dims)
super::QTensor::new(data.to_vec(), dims)
}
/// Creates a Tensor from a raw GGML tensor.
/// Creates a [Tensor] from a raw GGML tensor.
pub fn qtensor_from_ggml(
ggml_dtype: GgmlDType,
raw_data: &[u8],
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let tensor_elems = dims.iter().product::<usize>();
let block_size = ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
let blck_size = ggml_dtype.blck_size();
if tensor_elems % blck_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
)
}
let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();
let size_in_bytes = tensor_elems / blck_size * ggml_dtype.type_size();
match ggml_dtype {
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
GgmlDType::Q4_0 => {
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4_1 => {
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_0 => {
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_1 => {
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q8_0 => {
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q2K => {
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q3K => {
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4K => {
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5K => {
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q6K => {
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims),
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims),
GgmlDType::Q4_0 => from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q4_1 => from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims),
GgmlDType::Q5_0 => from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q5_1 => from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims),
GgmlDType::Q8_0 => from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q2K => from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims),
GgmlDType::Q3K => from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims),
GgmlDType::Q4K => from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims),
GgmlDType::Q5K => from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims),
GgmlDType::Q6K => from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims),
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
}
}
@ -190,7 +163,6 @@ pub fn qtensor_from_ggml(
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
reader: &mut R,
magic: VersionedMagic,
device: &Device,
) -> Result<(String, super::QTensor)> {
let n_dims = reader.read_u32::<LittleEndian>()?;
let name_len = reader.read_u32::<LittleEndian>()?;
@ -211,11 +183,11 @@ fn read_one_tensor<R: std::io::Seek + std::io::Read>(
}
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
// TODO: Mmap version to avoid copying the data around?
let mut raw_data = vec![0u8; size_in_bytes];
reader.read_exact(&mut raw_data)?;
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
match qtensor_from_ggml(ggml_dtype, &raw_data, dims) {
Ok(tensor) => Ok((name, tensor)),
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
}
@ -226,14 +198,10 @@ pub struct Content {
pub hparams: HParams,
pub vocab: Vocab,
pub tensors: HashMap<String, super::QTensor>,
pub device: Device,
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(
reader: &mut R,
device: &Device,
) -> Result<Content> {
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Content> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
reader.seek(std::io::SeekFrom::Start(0))?;
@ -243,16 +211,14 @@ impl Content {
let mut tensors = HashMap::new();
while reader.stream_position()? != last_position {
let (name, tensor) = read_one_tensor(reader, magic, device)?;
let (name, tensor) = read_one_tensor(reader, magic)?;
tensors.insert(name, tensor);
}
let device = device.clone();
Ok(Self {
magic,
hparams,
vocab,
tensors,
device,
})
}

View File

@ -1,8 +1,9 @@
//! Support for the [GGUF file format](https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md).
//! Support for the GGUF file format.
//!
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
use super::{GgmlDType, QTensor};
use crate::{Context, Device, Result};
use crate::Result;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::collections::HashMap;
@ -40,7 +41,7 @@ impl VersionedMagic {
(Magic::Gguf, 1) => Self::GgufV1,
(Magic::Gguf, 2) => Self::GgufV2,
(Magic::Gguf, 3) => Self::GgufV3,
_ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
@ -58,25 +59,19 @@ impl TensorInfo {
&self,
reader: &mut R,
tensor_data_offset: u64,
device: &Device,
) -> Result<QTensor> {
let tensor_elems = self.shape.elem_count();
let block_size = self.ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
let blck_size = self.ggml_dtype.blck_size();
if tensor_elems % blck_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
)
}
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
let size_in_bytes = tensor_elems / blck_size * self.ggml_dtype.type_size();
let mut raw_data = vec![0u8; size_in_bytes];
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
reader.read_exact(&mut raw_data)?;
super::ggml_file::qtensor_from_ggml(
self.ggml_dtype,
&raw_data,
self.shape.dims().to_vec(),
device,
)
super::ggml_file::qtensor_from_ggml(self.ggml_dtype, &raw_data, self.shape.dims().to_vec())
}
}
@ -134,6 +129,7 @@ pub enum ValueType {
// The value is a UTF-8 non-null-terminated string, with length prepended.
String,
// The value is an array of other values, with the length and type prepended.
///
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
Array,
}
@ -216,16 +212,10 @@ impl Value {
}
}
/// This will also automatically upcast any integral types which will not truncate.
pub fn to_u64(&self) -> Result<u64> {
match self {
Self::U64(v) => Ok(*v),
// Autoupcast cases here
Self::U8(v) => Ok(*v as u64),
Self::U16(v) => Ok(*v as u64),
Self::U32(v) => Ok(*v as u64),
Self::Bool(v) => Ok(*v as u64),
v => crate::bail!("not a u64 or upcastable to u64 {v:?}"),
v => crate::bail!("not a u64 {v:?}"),
}
}
@ -338,7 +328,7 @@ impl Value {
if value_type.len() != 1 {
crate::bail!("multiple value-types in the same array {value_type:?}")
}
value_type.into_iter().next().context("empty value_type")?
value_type.into_iter().next().unwrap()
};
w.write_u32::<LittleEndian>(value_type.to_u32())?;
w.write_u64::<LittleEndian>(v.len() as u64)?;
@ -457,7 +447,7 @@ impl Content {
Some(Value::I32(v)) if *v >= 0 => *v as u64,
_ => DEFAULT_ALIGNMENT,
};
let tensor_data_offset = position.div_ceil(alignment) * alignment;
let tensor_data_offset = (position + alignment - 1) / alignment * alignment;
Ok(Self {
magic,
metadata,
@ -470,13 +460,12 @@ impl Content {
&self,
reader: &mut R,
name: &str,
device: &Device,
) -> Result<QTensor> {
let tensor_info = match self.tensor_infos.get(name) {
Some(tensor_info) => tensor_info,
None => crate::bail!("cannot find tensor info for {name}"),
None => crate::bail!("cannot find tensor-infor for {name}"),
};
tensor_info.read(reader, self.tensor_data_offset, device)
tensor_info.read(reader, self.tensor_data_offset)
}
}
@ -528,9 +517,10 @@ pub fn write<W: std::io::Seek + std::io::Write>(
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
)
}
let data = tensor.data()?;
let size_in_bytes = data.len();
w.write_all(&data)?;
let data_ptr = tensor.as_ptr();
let size_in_bytes = tensor.storage_size_in_bytes();
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
w.write_all(data)?;
let padding = 31 - (31 + size_in_bytes) % 32;
w.write_all(&vec![0u8; padding])?;
}

View File

@ -1545,13 +1545,13 @@ impl GgmlType for BlockQ5K {
let d2 = d * sc as f32;
let m2 = min * m as f32;
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
let to_add = if qh & u1 != 0 { 16 } else { 1 };
y[ys_index] = d1 * ((ql & 0xF) + to_add) as f32 - m1;
ys_index += 1;
}
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
let to_add = if qh & u2 != 0 { 16 } else { 1 };
y[ys_index] = d2 * ((ql >> 4) + to_add) as f32 - m2;
ys_index += 1;
}
is += 2;
@ -1850,8 +1850,8 @@ pub fn matmul<T: GgmlType>(
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
}
let k_in_lhs_blocks = k.div_ceil(T::BLCK_SIZE);
let k_in_rhs_blocks = k.div_ceil(T::VecDotType::BLCK_SIZE);
let k_in_lhs_blocks = (k + T::BLCK_SIZE - 1) / T::BLCK_SIZE;
let k_in_rhs_blocks = (k + T::VecDotType::BLCK_SIZE - 1) / T::VecDotType::BLCK_SIZE;
// TODO: Do not make this copy if the DotType is f32.
// TODO: Pre-allocate this.
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];

View File

@ -1,230 +0,0 @@
use super::{GgmlDType, QStorage};
use crate::backend::BackendStorage;
use crate::{DType, MetalDevice, MetalStorage, Result, Shape};
use metal::Buffer;
use std::sync::Arc;
pub struct QMetalStorage {
dtype: GgmlDType,
device: MetalDevice,
buffer: Arc<Buffer>,
}
impl QMetalStorage {
pub fn zeros(device: &MetalDevice, elem_count: usize, dtype: GgmlDType) -> Result<Self> {
let size = elem_count * dtype.type_size() / dtype.block_size();
let buffer = device.allocate_zeros(size)?;
Ok(Self {
buffer,
device: device.clone(),
dtype,
})
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &MetalDevice {
&self.device
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
use crate::quantized::k_quants::GgmlType;
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
let command_buffer = self.device.command_buffer()?;
command_buffer.set_label("to_cpu");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("blit_to_cpu");
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
blit.end_encoding();
self.device.wait_until_completed()?;
let mut out = vec![0.0; elem_count];
let block_len = elem_count / self.dtype.block_size();
match self.dtype {
GgmlDType::F32 => {
let vec: Vec<f32> = read_to_vec(&buffer, block_len);
f32::to_float(&vec, &mut out)?;
}
GgmlDType::F16 => {
let vec: Vec<half::f16> = read_to_vec(&buffer, block_len);
half::f16::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_0 => {
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_1 => {
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_0 => {
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_1 => {
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_0 => {
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_1 => {
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q2K => {
let vec: Vec<crate::quantized::BlockQ2K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
}
GgmlDType::Q3K => {
let vec: Vec<crate::quantized::BlockQ3K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
}
GgmlDType::Q4K => {
let vec: Vec<crate::quantized::BlockQ4K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
}
GgmlDType::Q5K => {
let vec: Vec<crate::quantized::BlockQ5K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
}
GgmlDType::Q6K => {
let vec: Vec<crate::quantized::BlockQ6K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
}
GgmlDType::Q8K => {
let vec: Vec<crate::quantized::BlockQ8K> = read_to_vec(&buffer, block_len);
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
}
}
let buffer = self.device.new_buffer_with_data(&out)?;
Ok(MetalStorage::new(
buffer,
self.device.clone(),
elem_count,
DType::F32,
))
}
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
// Quantization only happens on CPU for now.
let src = src.to_cpu::<f32>()?;
let elem_count = src.len();
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
let mut qcpu_storage = crate::Device::Cpu.qzeros(elem_count, self.dtype)?;
qcpu_storage.quantize(&src)?;
let buffer = self.device.new_buffer_with_data(&qcpu_storage.data()?)?;
self.buffer = buffer;
Ok(())
}
pub fn storage_size_in_bytes(&self) -> usize {
self.buffer.length() as usize
}
pub fn fwd(
&self,
self_shape: &Shape,
storage: &MetalStorage,
layout: &crate::Layout,
) -> Result<(MetalStorage, Shape)> {
use crate::MetalError;
if !layout.is_contiguous() {
crate::bail!("input tensor is not contiguous {layout:?}")
}
let src_shape = layout.shape();
// self is transposed so n is first then k.
if src_shape.rank() < 2 {
crate::bail!("input tensor has only one dimension {layout:?}")
}
let (n, k) = self_shape.dims2()?;
let mut dst_shape = src_shape.dims().to_vec();
// We always use a single batch dimension and stack all the tensors in the batch on the
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
// properly.
let m = match dst_shape.len() {
3 => dst_shape[0] * dst_shape[1],
2 => dst_shape[0],
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
};
let last_k = dst_shape.pop().unwrap();
if last_k != k {
crate::bail!("input tensor {layout:?} incompatible with {:?}", self_shape)
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
let device = storage.device().clone();
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
let command_buffer = device.command_buffer()?;
// In some cases it would be better to use the mm variant, though it has its drawbacks
// around memory alignemnt.
for batch_id in 0..m {
candle_metal_kernels::call_quantized_matmul_mv_t(
device.device(),
&command_buffer,
device.kernels(),
self.dtype.into(),
(1, 1, n, k),
storage.buffer(),
(layout.start_offset() + batch_id * k) * storage.dtype().size_in_bytes(),
&self.buffer,
batch_id * n * DType::F32.size_in_bytes(),
&dst,
)
.map_err(MetalError::from)?;
}
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
Ok((dst_storage, dst_shape))
}
}
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
device: &MetalDevice,
data: &[T],
) -> Result<QStorage> {
let buffer = device.new_buffer_with_data(data)?;
let device = device.clone();
Ok(QStorage::Metal(QMetalStorage {
dtype: T::DTYPE,
device,
buffer,
}))
}
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
let ptr = buffer.contents() as *const T;
assert!(!ptr.is_null());
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
slice.to_vec()
}
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
fn from(value: GgmlDType) -> Self {
match value {
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
}
}
}

View File

@ -1,135 +1,23 @@
//! Code for GGML and GGUF files
use crate::{Context, CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
use k_quants::*;
use std::borrow::Cow;
use crate::{Device, Result, Shape, Tensor};
#[cfg(target_feature = "avx")]
pub mod avx;
mod dummy_cuda;
mod dummy_metal;
pub mod ggml_file;
pub mod gguf_file;
pub mod k_quants;
#[cfg(feature = "metal")]
pub mod metal;
#[cfg(not(feature = "metal"))]
mod metal {
pub use super::dummy_metal::*;
}
#[cfg(feature = "cuda")]
pub mod cuda;
#[cfg(not(feature = "cuda"))]
mod cuda {
pub use super::dummy_cuda::*;
}
#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(target_feature = "simd128")]
pub mod simd128;
pub mod utils;
use half::f16;
pub use k_quants::GgmlType;
pub struct QTensor {
storage: QStorage,
data: Box<dyn QuantizedType>,
shape: Shape,
}
impl Device {
fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
match self {
Device::Cpu => {
let storage = dtype.cpu_zeros(elem_count);
Ok(QStorage::Cpu(storage))
}
Device::Metal(metal) => {
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
Ok(QStorage::Metal(storage))
}
Device::Cuda(cuda) => {
let storage = cuda::QCudaStorage::zeros(cuda, elem_count, dtype)?;
Ok(QStorage::Cuda(storage))
}
}
}
}
pub enum QStorage {
Cpu(Box<dyn QuantizedType>),
Metal(metal::QMetalStorage),
Cuda(cuda::QCudaStorage),
}
impl QStorage {
fn block_size(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.block_size(),
QStorage::Metal(storage) => storage.dtype().block_size(),
QStorage::Cuda(storage) => storage.dtype().block_size(),
}
}
fn dtype(&self) -> GgmlDType {
match self {
QStorage::Cpu(storage) => storage.dtype(),
QStorage::Metal(storage) => storage.dtype(),
QStorage::Cuda(storage) => storage.dtype(),
}
}
fn device(&self) -> Device {
match self {
QStorage::Cpu(_storage) => Device::Cpu,
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
QStorage::Cuda(storage) => Device::Cuda(storage.device().clone()),
}
}
fn size_in_bytes(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
QStorage::Cuda(storage) => storage.storage_size_in_bytes(),
}
}
fn quantize(&mut self, src: &Storage) -> Result<()> {
match (self, src) {
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
storage.from_float(src.as_slice::<f32>()?)?;
}
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
(QStorage::Cuda(storage), Storage::Cuda(src)) => storage.quantize(src)?,
_ => crate::bail!("Invalid dequantize storage locations do not match"),
}
Ok(())
}
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
match self {
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
QStorage::Cuda(storage) => Ok(Storage::Cuda(storage.dequantize(elem_count)?)),
}
}
fn data(&self) -> Result<Cow<[u8]>> {
match self {
QStorage::Cpu(storage) => {
let data_ptr = storage.as_ptr();
let size_in_bytes = storage.storage_size_in_bytes();
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
Ok(Cow::from(data))
}
QStorage::Metal(_) | QStorage::Cuda(_) => {
crate::bail!("not implemented");
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GgmlDType {
F32,
@ -189,25 +77,6 @@ impl GgmlDType {
}
}
/// The block dtype
pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
match self {
Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
}
}
/// The type size for blocks in bytes.
pub fn type_size(&self) -> usize {
use k_quants::*;
@ -231,7 +100,7 @@ impl GgmlDType {
}
/// The block size, i.e. the number of elements stored in each block.
pub fn block_size(&self) -> usize {
pub fn blck_size(&self) -> usize {
match self {
Self::F32 => 1,
Self::F16 => 1,
@ -250,13 +119,9 @@ impl GgmlDType {
pub trait QuantizedType: Send + Sync {
fn dtype(&self) -> GgmlDType;
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
fn to_float(&self, ys: &mut [f32]) -> Result<()>;
fn storage_size_in_bytes(&self) -> usize;
fn as_ptr(&self) -> *const u8;
fn block_size(&self) -> usize;
#[allow(clippy::wrong_self_convention)]
fn from_float(&mut self, xs: &[f32]) -> Result<()>;
fn size(&self) -> usize;
}
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
@ -264,26 +129,12 @@ impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
}
fn size(&self) -> usize {
self.len() * core::mem::size_of::<T>()
}
fn from_float(&mut self, xs: &[f32]) -> Result<()> {
T::from_float(xs, self)
}
fn dtype(&self) -> GgmlDType {
T::DTYPE
}
fn block_size(&self) -> usize {
T::BLCK_SIZE
}
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
let mut ys = vec![0.0f32; elem_count];
T::to_float(self.as_slice(), &mut ys)?;
Ok(CpuStorage::F32(ys))
fn to_float(&self, ys: &mut [f32]) -> Result<()> {
T::to_float(self.as_slice(), ys)
}
fn storage_size_in_bytes(&self) -> usize {
@ -301,53 +152,56 @@ impl std::fmt::Debug for QTensor {
}
}
fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
fn check_shape<T: k_quants::GgmlType>(shape: &Shape) -> Result<()> {
let dims = shape.dims();
if dims.is_empty() {
crate::bail!("scalar tensor cannot be quantized {shape:?}")
}
if dims[dims.len() - 1] % block_size != 0 {
if dims[dims.len() - 1] % T::BLCK_SIZE != 0 {
crate::bail!(
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
block_size
T::BLCK_SIZE
)
}
Ok(())
}
impl QTensor {
pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
data: Vec<T>,
shape: S,
) -> Result<Self> {
let shape = shape.into();
check_shape(&shape, storage.block_size())?;
Ok(Self { storage, shape })
check_shape::<T>(&shape)?;
Ok(Self {
data: Box::new(data),
shape,
})
}
pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
let shape = src.shape();
let block_size = dtype.block_size();
check_shape(shape, block_size)?;
let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
let elem_count = shape.elem_count();
if elem_count % block_size != 0 {
check_shape::<T>(shape)?;
let src = src
.to_dtype(crate::DType::F32)?
.flatten_all()?
.to_vec1::<f32>()?;
if src.len() % T::BLCK_SIZE != 0 {
crate::bail!(
"tensor size ({shape:?}) is not divisible by block size {}",
block_size
T::BLCK_SIZE
)
}
let mut storage = src.device().qzeros(elem_count, dtype)?;
storage.quantize(&src.storage())?;
let mut data = vec![T::zeros(); src.len() / T::BLCK_SIZE];
T::from_float(&src, &mut data)?;
Ok(Self {
storage,
data: Box::new(data),
shape: shape.clone(),
})
}
pub fn dtype(&self) -> GgmlDType {
self.storage.dtype()
}
pub fn device(&self) -> Device {
self.storage.device()
self.data.dtype()
}
pub fn rank(&self) -> usize {
@ -359,34 +213,21 @@ impl QTensor {
}
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
let storage = self.storage.dequantize(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
let mut f32_data = vec![0f32; self.shape.elem_count()];
self.data.to_float(&mut f32_data)?;
Tensor::from_vec(f32_data, &self.shape, device)
}
pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
// In the CUDA case, we have a specialized kernel as this can be useful for volta
// architectures. https://github.com/huggingface/candle/issues/2136
match &self.storage {
QStorage::Cuda(s) => {
let s = s.dequantize_f16(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
.to_device(device)
}
_ => {
let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
Ok(s)
}
}
pub fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
self.data.matmul_t(mkn, lhs, dst)
}
pub fn storage_size_in_bytes(&self) -> usize {
self.storage.size_in_bytes()
self.data.storage_size_in_bytes()
}
pub fn data(&self) -> Result<Cow<'_, [u8]>> {
self.storage.data()
pub fn as_ptr(&self) -> *const u8 {
self.data.as_ptr()
}
}
@ -394,7 +235,6 @@ impl QTensor {
pub enum QMatMul {
QTensor(std::sync::Arc<QTensor>),
Tensor(Tensor),
TensorF16(Tensor),
}
thread_local! {
@ -408,17 +248,6 @@ thread_local! {
}
}
thread_local! {
static DEQUANTIZE_ALL_F16: bool = {
match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
Ok(s) => {
!s.is_empty() && s != "0"
},
Err(_) => false,
}
}
}
impl QMatMul {
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
let dequantize = match qtensor.dtype() {
@ -426,11 +255,8 @@ impl QMatMul {
_ => DEQUANTIZE_ALL.with(|b| *b),
};
let t = if dequantize {
let tensor = qtensor.dequantize(&qtensor.device())?;
let tensor = qtensor.dequantize(&Device::Cpu)?;
Self::Tensor(tensor)
} else if DEQUANTIZE_ALL_F16.with(|b| *b) {
let tensor = qtensor.dequantize_f16(&qtensor.device())?;
Self::TensorF16(tensor)
} else {
Self::QTensor(qtensor)
};
@ -440,25 +266,6 @@ impl QMatMul {
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
Self::from_arc(std::sync::Arc::new(qtensor))
}
pub fn dequantize_f16(&self) -> Result<Tensor> {
match self {
Self::QTensor(t) => t.dequantize_f16(&t.device()),
Self::Tensor(t) => t.to_dtype(DType::F16),
Self::TensorF16(t) => Ok(t.clone()),
}
}
pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
let w = self.dequantize_f16()?;
let in_dtype = xs.dtype();
let w = match *xs.dims() {
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
_ => w.t()?,
};
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
}
}
impl crate::CustomOp1 for QTensor {
@ -481,47 +288,23 @@ impl crate::CustomOp1 for QTensor {
crate::bail!("input tensor has only one dimension {layout:?}")
}
let mut dst_shape = src_shape.dims().to_vec();
let last_k = dst_shape.pop().context("empty dst_shape")?;
let last_k = dst_shape.pop().unwrap();
if last_k != k {
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
#[allow(clippy::infallible_destructuring_match)]
let self_storage = match &self.storage {
QStorage::Cpu(storage) => storage,
QStorage::Metal(_) | QStorage::Cuda(_) => crate::bail!("Invalid storage"),
};
let slice = storage.as_slice::<f32>()?;
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
let storage = storage.as_slice::<f32>()?;
let storage =
&storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
self.matmul_t(
(dst_shape.elem_count() / n, k, n),
storage,
&mut dst_storage,
)?;
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
}
fn metal_fwd(
&self,
storage: &crate::MetalStorage,
layout: &crate::Layout,
) -> Result<(crate::MetalStorage, Shape)> {
let self_storage = match &self.storage {
QStorage::Metal(metal) => metal,
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
};
self_storage.fwd(&self.shape, storage, layout)
}
fn cuda_fwd(
&self,
storage: &crate::CudaStorage,
layout: &crate::Layout,
) -> Result<(crate::CudaStorage, Shape)> {
let self_storage = match &self.storage {
QStorage::Cuda(cuda) => cuda,
_ => unreachable!("Cannot call cuda matmul on non cuda QTensor"),
};
self_storage.fwd(&self.shape, storage, layout)
}
}
impl crate::Module for QMatMul {
@ -536,15 +319,6 @@ impl crate::Module for QMatMul {
};
xs.matmul(&w)
}
Self::TensorF16(w) => {
let in_dtype = xs.dtype();
let w = match *xs.dims() {
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
_ => w.t()?,
};
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
}
}
}
}

View File

@ -12,14 +12,6 @@ use core::arch::arm::*;
#[cfg(target_arch = "aarch64")]
use core::arch::aarch64::*;
#[inline(always)]
unsafe fn vdotq_s32(a: int8x16_t, b: int8x16_t) -> int32x4_t {
// TODO: dotprod
let p0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
let p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))
}
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
@ -51,8 +43,15 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
let v1_0l = vld1q_s8(y0.qs.as_ptr());
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
let pl0 = vdotq_s32(v0_0ls, v1_0l);
let ph0 = vdotq_s32(v0_0hs, v1_0h);
// TODO: Support dotprod when it's available outside of nightly.
let pl0l = vmull_s8(vget_low_s8(v0_0ls), vget_low_s8(v1_0l));
let pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
let ph0l = vmull_s8(vget_low_s8(v0_0hs), vget_low_s8(v1_0h));
let ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
let pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
let ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
sumv0 = vmlaq_n_f32(
sumv0,
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
@ -83,8 +82,14 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
let y0_0 = vld1q_s8(y0.qs.as_ptr());
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
let p0 = vdotq_s32(x0_0, y0_0);
let p1 = vdotq_s32(x0_1, y0_1);
// TODO dotprod once this is the intrinsics are.
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
let p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
sumv0 = vmlaq_n_f32(
sumv0,
@ -113,7 +118,10 @@ pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Res
for i in (0..QK_K).step_by(16) {
let xs = vld1q_s8(xs.add(i));
let ys = vld1q_s8(ys.add(i));
let xy = vdotq_s32(xs, ys);
let xy_lo = vmull_s8(vget_low_s8(xs), vget_low_s8(ys));
let xy_up = vmull_s8(vget_high_s8(xs), vget_high_s8(ys));
let xy = vaddq_s32(vpaddlq_s16(xy_lo), vpaddlq_s16(xy_up));
sum_i = vaddq_s32(sum_i, xy)
}
sumf += vaddvq_s32(sum_i) as f32 * scale
@ -183,16 +191,30 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
scale = scale.add(2);
let q8bytes = vld1q_s8_x4(q8);
@ -212,16 +234,29 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
// TODO: dotprod case.
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
scale = scale.add(2);
}
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
@ -298,14 +333,28 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
let p0 = vdotq_s32(q5bytes_0, q8bytes.0);
let p1 = vdotq_s32(q5bytes_1, q8bytes.1);
sumi += vaddvq_s32(vaddq_s32(p0, p1)) * *scales as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q5bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q5bytes_1), vget_high_s8(q8bytes.1)),
);
sumi += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * *scales as i32;
scales = scales.add(1);
let p2 = vdotq_s32(q5bytes_2, q8bytes.2);
let p3 = vdotq_s32(q5bytes_3, q8bytes.3);
sumi += vaddvq_s32(vaddq_s32(p2, p3)) * *scales as i32;
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q5bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q5bytes_3), vget_high_s8(q8bytes.3)),
);
sumi += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * *scales as i32;
scales = scales.add(1);
}
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
@ -368,15 +417,22 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
for j in 0..QK_K / 64 {
let q4bits = vld1q_u8_x2(q4);
q4 = q4.add(32);
// TODO: dotprod
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
let q4bytes = int8x16x2_t(
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
);
let p0 = vdotq_s32(q4bytes.0, q8bytes.0);
let p1 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi1 += vaddvq_s32(vaddq_s32(p0, p1)) * scales[2 * j] as i32;
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
);
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * scales[2 * j] as i32;
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
@ -384,9 +440,15 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
);
let p2 = vdotq_s32(q4bytes.0, q8bytes.0);
let p3 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi2 += vaddvq_s32(vaddq_s32(p2, p3)) * scales[2 * j + 1] as i32;
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
);
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * scales[2 * j + 1] as i32;
}
sumf += d * (sumi1 + sumi2) as f32;
}
@ -464,14 +526,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_1.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_1.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_1.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_1.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_1.0)),
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_1.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_1.1)),
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_1.1)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_1.2)),
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_1.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_1.3)),
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_1.3)),
);
isum += vaddvq_s16(p0) as i32 * *scale as i32
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
scale = scale.add(4);
let q3h_0 = vbicq_u8(m2, qhbits.0);
@ -496,14 +571,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_2.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_2.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_2.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_2.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_2.0)),
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_2.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_2.1)),
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_2.1)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_2.2)),
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_2.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_2.3)),
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_2.3)),
);
isum += vaddvq_s16(p0) as i32 * *scale as i32
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
scale = scale.add(4);
if j == 0 {
@ -561,6 +649,7 @@ pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Res
let mut is = 0usize;
// TODO: dotprod
for _j in 0..QK_K / 128 {
let q2bits = vld1q_u8_x2(q2);
q2 = q2.add(32);
@ -607,7 +696,14 @@ unsafe fn multiply_accum_with_scale(
q2bytes: int8x16x2_t,
q8bytes: int8x16x2_t,
) -> i32 {
let p1 = vdotq_s32(q2bytes.0, q8bytes.0);
let p2 = vdotq_s32(q2bytes.1, q8bytes.1);
vaddvq_s32(p1) * aux[is + index] as i32 + vaddvq_s32(p2) * aux[is + 1 + index] as i32
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q2bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q2bytes.0), vget_high_s8(q8bytes.0)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q2bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q2bytes.1), vget_high_s8(q8bytes.1)),
);
vaddvq_s16(p1) as i32 * aux[is + index] as i32
+ vaddvq_s16(p2) as i32 * aux[is + 1 + index] as i32
}

View File

@ -1,14 +1,3 @@
//! Module to load `safetensor` files into CPU/GPU memory.
//!
//! There are multiple ways to load tensors from safetensor files:
//! - `load` function for loading directly into memory and returning a HashMap of tensors
//! - `MmapedSafetensors` for memory mapping files and avoiding full allocation
//! - `SliceSafetensors` for working with in-memory buffers
//! - `BufferedSafetensors` for owning a buffer of data
//!
//! Tensors can also be serialized to safetensor format using the `save` function or
//! `Tensor::save_safetensors` method.
//!
use crate::{DType, Device, Error, Result, Tensor, WithDType};
use safetensors::tensor as st;
use safetensors::tensor::SafeTensors;
@ -182,7 +171,7 @@ pub trait Load {
fn load(&self, device: &Device) -> Result<Tensor>;
}
impl Load for st::TensorView<'_> {
impl<'a> Load for st::TensorView<'a> {
fn load(&self, device: &Device) -> Result<Tensor> {
convert(self, device)
}
@ -360,30 +349,6 @@ impl MmapedSafetensors {
}
}
pub struct SliceSafetensors<'a> {
safetensors: SafeTensors<'a>,
}
impl<'a> SliceSafetensors<'a> {
/// Creates a wrapper around a binary buffer and deserialize the safetensors header.
pub fn new(buffer: &'a [u8]) -> Result<Self> {
let safetensors = safetensors::SafeTensors::deserialize(buffer)?;
Ok(Self { safetensors })
}
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
self.safetensors.tensor(name)?.load(dev)
}
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
self.safetensors.tensors()
}
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
Ok(self.safetensors.tensor(name)?)
}
}
pub struct BufferedSafetensors {
safetensors: yoke::Yoke<SafeTensors_<'static>, Vec<u8>>,
}

View File

@ -1,5 +1,3 @@
//! TensorScalar Enum and Trait
//!
use crate::{Result, Tensor, WithDType};
pub enum TensorScalar {

View File

@ -43,22 +43,43 @@ impl From<usize> for Shape {
}
}
macro_rules! impl_from_tuple {
($tuple:ty, $($index:tt),+) => {
impl From<$tuple> for Shape {
fn from(d: $tuple) -> Self {
Self(vec![$(d.$index,)+])
}
}
impl From<(usize,)> for Shape {
fn from(d1: (usize,)) -> Self {
Self(vec![d1.0])
}
}
impl_from_tuple!((usize,), 0);
impl_from_tuple!((usize, usize), 0, 1);
impl_from_tuple!((usize, usize, usize), 0, 1, 2);
impl_from_tuple!((usize, usize, usize, usize), 0, 1, 2, 3);
impl_from_tuple!((usize, usize, usize, usize, usize), 0, 1, 2, 3, 4);
impl_from_tuple!((usize, usize, usize, usize, usize, usize), 0, 1, 2, 3, 4, 5);
impl From<(usize, usize)> for Shape {
fn from(d12: (usize, usize)) -> Self {
Self(vec![d12.0, d12.1])
}
}
impl From<(usize, usize, usize)> for Shape {
fn from(d123: (usize, usize, usize)) -> Self {
Self(vec![d123.0, d123.1, d123.2])
}
}
impl From<(usize, usize, usize, usize)> for Shape {
fn from(d1234: (usize, usize, usize, usize)) -> Self {
Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
}
}
impl From<(usize, usize, usize, usize, usize)> for Shape {
fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
}
}
impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
Self(vec![
d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
])
}
}
impl From<Vec<usize>> for Shape {
fn from(dims: Vec<usize>) -> Self {
@ -121,12 +142,6 @@ impl Shape {
&self.0
}
/// The dimension size for a specified dimension index.
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(self, "dim")?;
Ok(self.dims()[dim])
}
/// The total number of elements, this is the product of all dimension sizes.
pub fn elem_count(&self) -> usize {
self.0.iter().product()
@ -156,7 +171,7 @@ impl Shape {
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
if dim > 1 && stride != acc {
if stride != acc {
return false;
}
acc *= dim;
@ -171,7 +186,7 @@ impl Shape {
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
if dim > 1 && stride != acc {
if stride != acc {
return false;
}
acc *= dim;
@ -289,7 +304,6 @@ impl Dim for usize {
pub enum D {
Minus1,
Minus2,
Minus(usize),
}
impl D {
@ -297,7 +311,6 @@ impl D {
let dim = match self {
Self::Minus1 => -1,
Self::Minus2 => -2,
Self::Minus(u) => -(*u as i32),
};
Error::DimOutOfRange {
shape: shape.clone(),
@ -314,7 +327,6 @@ impl Dim for D {
match self {
Self::Minus1 if rank >= 1 => Ok(rank - 1),
Self::Minus2 if rank >= 2 => Ok(rank - 2),
Self::Minus(u) if *u > 0 && rank >= *u => Ok(rank - *u),
_ => Err(self.out_of_range(shape, op)),
}
}
@ -324,7 +336,6 @@ impl Dim for D {
match self {
Self::Minus1 => Ok(rank),
Self::Minus2 if rank >= 1 => Ok(rank - 1),
Self::Minus(u) if *u > 0 && rank + 1 >= *u => Ok(rank + 1 - *u),
_ => Err(self.out_of_range(shape, op)),
}
}
@ -467,6 +478,23 @@ extract_dims!(
(usize, usize, usize, usize, usize)
);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
}
pub trait ShapeWithOneHole {
fn into_shape(self, el_count: usize) -> Result<Shape>;
}
@ -599,36 +627,3 @@ impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
Ok((d1, d2, d3, d4, d).into())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
#[test]
fn test_from_tuple() {
let shape = Shape::from((2,));
assert_eq!(shape.dims(), &[2]);
let shape = Shape::from((2, 3));
assert_eq!(shape.dims(), &[2, 3]);
let shape = Shape::from((2, 3, 4));
assert_eq!(shape.dims(), &[2, 3, 4]);
let shape = Shape::from((2, 3, 4, 5));
assert_eq!(shape.dims(), &[2, 3, 4, 5]);
let shape = Shape::from((2, 3, 4, 5, 6));
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6]);
let shape = Shape::from((2, 3, 4, 5, 6, 7));
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6, 7]);
}
}

View File

@ -1,250 +0,0 @@
use crate::{Result, Tensor};
use rayon::prelude::*;
#[derive(Debug, Clone, Copy)]
struct ArgSort {
asc: bool,
last_dim: usize,
}
impl ArgSort {
fn asort<T: crate::WithDType>(&self, vs: &[T], layout: &crate::Layout) -> Vec<u32> {
#[allow(clippy::uninit_vec)]
// Safety: indexes are set later in the parallelized section.
let mut sort_indexes = unsafe {
let el_count = layout.shape().elem_count();
let mut v = Vec::with_capacity(el_count);
v.set_len(el_count);
v
};
if self.asc {
sort_indexes
.par_chunks_exact_mut(self.last_dim)
.zip(vs.par_chunks_exact(self.last_dim))
.for_each(|(indexes, vs)| {
indexes
.iter_mut()
.enumerate()
.for_each(|(i, v)| *v = i as u32);
indexes.sort_by(|&i, &j| {
vs[i as usize]
.partial_cmp(&vs[j as usize])
.unwrap_or(std::cmp::Ordering::Greater)
})
});
} else {
sort_indexes
.par_chunks_exact_mut(self.last_dim)
.zip(vs.par_chunks_exact(self.last_dim))
.for_each(|(indexes, vs)| {
indexes
.iter_mut()
.enumerate()
.for_each(|(i, v)| *v = i as u32);
indexes.sort_by(|&j, &i| {
vs[i as usize]
.partial_cmp(&vs[j as usize])
.unwrap_or(std::cmp::Ordering::Greater)
})
});
}
sort_indexes
}
}
#[cfg(feature = "cuda")]
mod cuda {
use super::*;
use crate::cuda_backend::cudarc::driver::{
CudaSlice, DeviceRepr, LaunchConfig, ValidAsZeroBits,
};
use crate::cuda_backend::{kernel_name, kernels, CudaStorageSlice as S, WrapErr};
use crate::{CudaDevice, WithDType};
impl crate::cuda_backend::Map1Any for ArgSort {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &crate::Layout,
_wrap: W,
) -> Result<S> {
use cudarc::driver::PushKernelArg;
let slice = match layout.contiguous_offsets() {
None => crate::bail!("input has to be contiguous"),
Some((o1, o2)) => src.slice(o1..o2),
};
let elem_count = layout.shape().elem_count();
let dst = unsafe { dev.alloc::<u32>(elem_count)? };
let func = if self.asc {
dev.get_or_load_func(&kernel_name::<T>("asort_asc"), &kernels::SORT)?
} else {
dev.get_or_load_func(&kernel_name::<T>("asort_desc"), &kernels::SORT)?
};
let ncols = self.last_dim;
let nrows = elem_count / ncols;
let ncols_pad = next_power_of_2(ncols);
let cfg = LaunchConfig {
grid_dim: (1, nrows as u32, 1),
block_dim: (ncols_pad as u32, 1, 1),
shared_mem_bytes: (ncols_pad * std::mem::size_of::<u32>()) as u32,
};
let stream = dev.cuda_stream();
let mut builder = stream.launch_builder(&func);
let ncols = ncols as i32;
let ncols_pad = ncols_pad as i32;
builder.arg(&slice).arg(&dst).arg(&ncols).arg(&ncols_pad);
unsafe { builder.launch(cfg) }.w()?;
Ok(S::U32(dst))
}
}
}
impl crate::CustomOp1 for ArgSort {
fn name(&self) -> &'static str {
"argsort"
}
fn cpu_fwd(
&self,
storage: &crate::CpuStorage,
layout: &crate::Layout,
) -> Result<(crate::CpuStorage, crate::Shape)> {
let sort_indexes = match storage {
crate::CpuStorage::U8(vs) => self.asort(vs, layout),
crate::CpuStorage::U32(vs) => self.asort(vs, layout),
crate::CpuStorage::I64(vs) => self.asort(vs, layout),
crate::CpuStorage::BF16(vs) => self.asort(vs, layout),
crate::CpuStorage::F16(vs) => self.asort(vs, layout),
crate::CpuStorage::F32(vs) => self.asort(vs, layout),
crate::CpuStorage::F64(vs) => self.asort(vs, layout),
};
let sort_indexes = crate::CpuStorage::U32(sort_indexes);
Ok((sort_indexes, layout.shape().into()))
}
#[cfg(feature = "cuda")]
fn cuda_fwd(
&self,
storage: &crate::CudaStorage,
layout: &crate::Layout,
) -> Result<(crate::CudaStorage, crate::Shape)> {
use crate::backend::BackendStorage;
use crate::cuda_backend::Map1Any;
let dev = storage.device();
let slice = self.map(&storage.slice, dev, layout)?;
let dst = crate::cuda_backend::CudaStorage {
slice,
device: dev.clone(),
};
Ok((dst, layout.shape().clone()))
}
#[cfg(feature = "metal")]
fn metal_fwd(
&self,
storage: &crate::MetalStorage,
layout: &crate::Layout,
) -> Result<(crate::MetalStorage, crate::Shape)> {
use crate::backend::BackendStorage;
use crate::DType;
let name = {
if self.asc {
match storage.dtype() {
DType::BF16 => "asort_asc_bf16",
DType::F16 => "asort_asc_f16",
DType::F32 => "asort_asc_f32",
DType::F64 => "asort_asc_f64",
DType::U8 => "asort_asc_u8",
DType::U32 => "asort_asc_u32",
DType::I64 => "asort_asc_i64",
}
} else {
match storage.dtype() {
DType::BF16 => "asort_desc_bf16",
DType::F16 => "asort_desc_f16",
DType::F32 => "asort_desc_f32",
DType::F64 => "asort_desc_f64",
DType::U8 => "asort_desc_u8",
DType::U32 => "asort_desc_u32",
DType::I64 => "asort_desc_i64",
}
}
};
let device = storage.device();
let kernels = device.kernels();
let command_buffer = device.command_buffer()?;
let el = layout.shape().elem_count();
let ncols = self.last_dim;
let nrows = el / ncols;
let src = crate::metal_backend::buffer_o(storage.buffer(), layout, storage.dtype());
let dst = device.new_buffer(el, DType::U32, "asort")?;
let mut ncols_pad = 1;
while ncols_pad < ncols {
ncols_pad *= 2;
}
candle_metal_kernels::call_arg_sort(
device.metal_device(),
&command_buffer,
kernels,
name,
nrows,
ncols,
ncols_pad,
src,
&dst,
)
.map_err(crate::Error::wrap)?;
let dst = crate::MetalStorage::new(dst, device.clone(), el, DType::U32);
Ok((dst, layout.shape().clone()))
}
}
#[allow(unused)]
fn next_power_of_2(x: usize) -> usize {
let mut n = 1;
while n < x {
n *= 2
}
n
}
impl Tensor {
/// Returns the indices that sort the tensor along the last dimension.
///
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
/// descending order. The sort is unstable so there is no guarantees on the final order when it
/// comes to ties.
pub fn arg_sort_last_dim(&self, asc: bool) -> Result<Tensor> {
if !self.is_contiguous() {
return Err(crate::Error::RequiresContiguous {
op: "arg_sort_last_dim",
});
}
let last_dim = match self.dims().last() {
None => crate::bail!("empty last-dim in arg-sort"),
Some(last_dim) => *last_dim,
};
// No need for a backward pass for arg sort.
self.apply_op1_no_bwd(&ArgSort { asc, last_dim })
}
/// Sorts the tensor along the last dimension, returns the sorted tensor together with the
/// sorted indexes.
///
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
/// descending order. The sort is unstable so there is no guarantees on the final order when it
/// comes to ties.
pub fn sort_last_dim(&self, asc: bool) -> Result<(Tensor, Tensor)> {
if !self.is_contiguous() {
return Err(crate::Error::RequiresContiguous {
op: "sort_last_dim",
});
}
let asort = self.arg_sort_last_dim(asc)?;
let sorted = self.gather(&asort, crate::D::Minus1)?;
Ok((sorted, asort))
}
}

View File

@ -1,7 +1,6 @@
use crate::backend::BackendStorage;
use crate::op::{self, CmpOp, ReduceOp};
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
use crate::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
// We do not want to implement Clone on Storage as cloning may fail because of
// out of memory. Instead try_clone should be used.
@ -44,19 +43,9 @@ impl Storage {
}
pub(crate) fn same_device(&self, rhs: &Self, op: &'static str) -> Result<()> {
let lhs_device = self.device();
let rhs_device = rhs.device();
let lhs = lhs_device.location();
let rhs = rhs_device.location();
let same_device = if self.device().is_metal() {
// On metal, we require the device to be exactly the same rather than
// having the same location. In cuda this is not necessary as all CudaDevice on the
// same GPU will use the same cuda stream.
lhs_device.same_device(&rhs_device)
} else {
lhs == rhs
};
if !same_device {
let lhs = self.device().location();
let rhs = rhs.device().location();
if lhs != rhs {
Err(Error::DeviceMismatchBinaryOp { lhs, rhs, op }.bt())
} else {
Ok(())
@ -263,51 +252,6 @@ impl Storage {
}
}
pub(crate) fn inplace_op1(&mut self, l: &Layout, c: &dyn InplaceOp1) -> Result<()> {
match self {
Self::Cpu(storage) => c.cpu_fwd(storage, l),
Self::Cuda(storage) => c.cuda_fwd(storage, l),
Self::Metal(storage) => c.metal_fwd(storage, l),
}
}
pub(crate) fn inplace_op2(
&mut self,
l1: &Layout,
t2: &Self,
l2: &Layout,
c: &dyn InplaceOp2,
) -> Result<()> {
self.same_device(t2, c.name())?;
match (self, t2) {
(Self::Cpu(s1), Self::Cpu(s2)) => c.cpu_fwd(s1, l1, s2, l2),
(Self::Cuda(s1), Self::Cuda(s2)) => c.cuda_fwd(s1, l1, s2, l2),
(Self::Metal(s1), Self::Metal(s2)) => c.metal_fwd(s1, l1, s2, l2),
_ => unreachable!(),
}
}
pub(crate) fn inplace_op3(
&mut self,
l1: &Layout,
t2: &Self,
l2: &Layout,
t3: &Self,
l3: &Layout,
c: &dyn InplaceOp3,
) -> Result<()> {
self.same_device(t2, c.name())?;
self.same_device(t3, c.name())?;
match (self, t2, t3) {
(Self::Cpu(s1), Self::Cpu(s2), Self::Cpu(s3)) => c.cpu_fwd(s1, l1, s2, l2, s3, l3),
(Self::Cuda(s1), Self::Cuda(s2), Self::Cuda(s3)) => c.cuda_fwd(s1, l1, s2, l2, s3, l3),
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
c.metal_fwd(s1, l1, s2, l2, s3, l3)
}
_ => unreachable!(),
}
}
pub(crate) fn unary_impl<B: op::UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
match self {
Storage::Cpu(storage) => {
@ -408,10 +352,6 @@ impl Storage {
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
Ok(Self::Cuda(s))
}
(Storage::Metal(inp), Storage::Metal(kernel)) => {
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
Ok(Self::Metal(s))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -757,32 +697,4 @@ impl Storage {
.bt()),
}
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn copy2d(
&self,
dst: &mut Self,
d1: usize,
d2: usize,
src_s: usize,
dst_s: usize,
src_o: usize,
dst_o: usize,
) -> Result<()> {
match (self, dst) {
(Self::Cpu(src), Self::Cpu(dst)) => src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o),
(Self::Cuda(src), Self::Cuda(dst)) => {
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
}
(Self::Metal(src), Self::Metal(dst)) => {
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
op: "copy2d",
}
.bt()),
}
}
}

View File

@ -1,208 +0,0 @@
//! StreamTensror useful for streaming ops.
//!
use crate::{Result, Shape, Tensor};
pub trait Dim: crate::shape::Dim + Copy {}
impl<T: crate::shape::Dim + Copy> Dim for T {}
/// A stream tensor is used in streaming module. It can either contain an actual tensor or be
/// empty.
#[derive(Clone)]
pub struct StreamTensor(Option<Tensor>);
impl std::fmt::Debug for StreamTensor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.0 {
Some(t) => write!(f, "{:?}", t.shape()),
None => write!(f, "Empty"),
}
}
}
impl std::convert::From<Option<Tensor>> for StreamTensor {
fn from(value: Option<Tensor>) -> Self {
Self(value)
}
}
impl std::convert::From<Tensor> for StreamTensor {
fn from(value: Tensor) -> Self {
Self(Some(value))
}
}
impl std::convert::From<()> for StreamTensor {
fn from(_value: ()) -> Self {
Self(None)
}
}
impl StreamTensor {
pub fn empty() -> Self {
Self(None)
}
pub fn from_tensor(tensor: Tensor) -> Self {
Self(Some(tensor))
}
pub fn shape(&self) -> Option<&Shape> {
self.0.as_ref().map(|t| t.shape())
}
pub fn cat2<D: Dim>(&self, rhs: &Self, dim: D) -> Result<Self> {
let xs = match (&self.0, &rhs.0) {
(Some(lhs), Some(rhs)) => {
let xs = Tensor::cat(&[lhs, rhs], dim)?;
Some(xs)
}
(Some(xs), None) | (None, Some(xs)) => Some(xs.clone()),
(None, None) => None,
};
Ok(Self(xs))
}
pub fn seq_len<D: Dim>(&self, dim: D) -> Result<usize> {
match &self.0 {
None => Ok(0),
Some(v) => v.dim(dim),
}
}
pub fn reset(&mut self) {
self.0 = None
}
pub fn narrow<D: Dim>(&self, dim: D, offset: usize, len: usize) -> Result<StreamTensor> {
let t = match &self.0 {
None => None,
Some(t) => {
let seq_len = t.dim(dim)?;
if seq_len <= offset {
None
} else {
let t = t.narrow(dim, offset, usize::min(len, seq_len - offset))?;
Some(t)
}
}
};
Ok(Self(t))
}
/// Splits the Streaming Tensor on the time axis `dim` with the first `lhs_len` elements
/// returned in the first output and the remaining in the second output.
pub fn split<D: Dim>(&self, dim: D, lhs_len: usize) -> Result<(Self, Self)> {
match &self.0 {
None => Ok((Self::empty(), Self::empty())),
Some(t) => {
let seq_len = t.dim(dim)?;
let lhs_len = usize::min(seq_len, lhs_len);
if lhs_len == 0 {
Ok((Self::empty(), t.clone().into()))
} else {
let lhs = Self::from_tensor(t.narrow(dim, 0, lhs_len)?);
let rhs_len = seq_len - lhs_len;
let rhs = if rhs_len == 0 {
Self::empty()
} else {
Self::from_tensor(t.narrow(dim, lhs_len, rhs_len)?)
};
Ok((lhs, rhs))
}
}
}
}
pub fn as_option(&self) -> Option<&Tensor> {
self.0.as_ref()
}
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
match &self.0 {
None => Ok(Self::empty()),
Some(t) => Ok(Self::from_tensor(t.apply(m)?)),
}
}
}
/// Streaming modules take as input a stream tensor and return a stream tensor. They may perform
/// some internal buffering so that enough data has been received for the module to be able to
/// perform some operations.
pub trait StreamingModule {
// TODO: Should we also have a flush method?
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor>;
fn reset_state(&mut self);
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BinOp {
Add,
Mul,
Sub,
Div,
}
#[derive(Debug, Clone)]
pub struct StreamingBinOp {
prev_lhs: StreamTensor,
prev_rhs: StreamTensor,
pub op: BinOp,
pub dim: crate::D,
}
impl StreamingBinOp {
pub fn new(op: BinOp, dim: crate::D) -> Self {
Self {
prev_lhs: StreamTensor::empty(),
prev_rhs: StreamTensor::empty(),
op,
dim,
}
}
pub fn reset_state(&mut self) {
self.prev_lhs.reset();
self.prev_rhs.reset();
}
pub fn forward(&self, lhs: &Tensor, rhs: &Tensor) -> Result<Tensor> {
match self.op {
BinOp::Add => Tensor::add(lhs, rhs),
BinOp::Mul => Tensor::mul(lhs, rhs),
BinOp::Sub => Tensor::sub(lhs, rhs),
BinOp::Div => Tensor::div(lhs, rhs),
}
}
pub fn step(&mut self, lhs: &StreamTensor, rhs: &StreamTensor) -> Result<StreamTensor> {
let lhs = StreamTensor::cat2(&self.prev_lhs, lhs, self.dim)?;
let rhs = StreamTensor::cat2(&self.prev_rhs, rhs, self.dim)?;
let lhs_len = lhs.seq_len(self.dim)?;
let rhs_len = rhs.seq_len(self.dim)?;
let common_len = usize::min(lhs_len, rhs_len);
let (lhs, prev_lhs) = lhs.split(self.dim, common_len)?;
let (rhs, prev_rhs) = rhs.split(self.dim, common_len)?;
let ys = match (lhs.0, rhs.0) {
(Some(lhs), Some(rhs)) => {
let ys = self.forward(&lhs, &rhs)?;
StreamTensor::from_tensor(ys)
}
(None, None) => StreamTensor::empty(),
(lhs, rhs) => crate::bail!("INTERNAL ERROR inconsistent lhs and rhs {lhs:?} {rhs:?}"),
};
self.prev_lhs = prev_lhs;
self.prev_rhs = prev_rhs;
Ok(ys)
}
}
/// Simple wrapper that doesn't do any buffering.
pub struct Map<T: crate::Module>(T);
impl<T: crate::Module> StreamingModule for Map<T> {
fn reset_state(&mut self) {}
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor> {
xs.apply(&self.0)
}
}

View File

@ -32,11 +32,14 @@ impl<'a> StridedIndex<'a> {
}
}
impl Iterator for StridedIndex<'_> {
impl<'a> Iterator for StridedIndex<'a> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
let storage_index = self.next_storage_index?;
let storage_index = match self.next_storage_index {
None => return None,
Some(storage_index) => storage_index,
};
let mut updated = false;
let mut next_storage_index = storage_index;
for ((multi_i, max_i), stride_i) in self

View File

@ -1,7 +1,9 @@
//! Tensors are N-dimensional matrixes of elements using a single data type.
//! Tensors are N-dimenional matrixes of elements using a single data type.
#![allow(clippy::redundant_closure_call)]
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BackpropOp, BinaryOp, CmpOp, Op, ReduceOp, UnaryOp};
use crate::op::{
BackpropOp, BinaryOp, CmpOp, CustomOp1, CustomOp2, CustomOp3, Op, ReduceOp, UnaryOp,
};
use crate::scalar::TensorOrScalar;
use crate::shape::{Dim, Dims};
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
@ -79,9 +81,6 @@ macro_rules! unary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self) -> Result<Self> {
let shape = self.shape();
if shape.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self
.storage()
.unary_impl::<crate::op::$op_name>(self.layout())?;
@ -95,9 +94,6 @@ macro_rules! binary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
if shape.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().binary_impl::<crate::op::$op_name>(
&*rhs.storage(),
self.layout(),
@ -120,9 +116,6 @@ macro_rules! binary_op_scalar {
.broadcast_as(self.shape())?,
};
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().binary_impl::<crate::op::$op_name>(
&*rhs.storage(),
self.layout(),
@ -242,7 +235,7 @@ impl Tensor {
Self::zeros_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with zeros with same shape, dtype, and device as the other
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other
/// tensor.
///
/// ```rust
@ -368,33 +361,7 @@ impl Tensor {
Self::new_impl(array, shape, device, false)
}
/// Returns a new tensor with all the elements having the same specified value. Note that
/// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed.
///```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::full(3.5, (2, 4), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [3.5, 3.5, 3.5, 3.5],
/// [3.5, 3.5, 3.5, 3.5],
/// ]);
/// # Ok::<(), candle_core::Error>(())
pub fn full<D: crate::WithDType, S: Into<Shape>>(
value: D,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(vec![value], (), device, false)?.broadcast_as(shape)
}
/// Creates a new 1D tensor from an iterator.
///```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::from_iter( [1.0, 2.0, 3.0, 4.0].into_iter(), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[1.0, 2.0, 3.0, 4.0]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn from_iter<D: crate::WithDType>(
iter: impl IntoIterator<Item = D>,
device: &Device,
@ -406,26 +373,12 @@ impl Tensor {
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `1` from `start`.
///```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::arange(2., 5., &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[2., 3., 4.]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn arange<D: crate::WithDType>(start: D, end: D, device: &Device) -> Result<Self> {
Self::arange_step(start, end, D::one(), device)
}
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `step` from `start`.
///```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::arange_step(2.0, 4.0, 0.5, &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[2.0, 2.5, 3.0, 3.5]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn arange_step<D: crate::WithDType>(
start: D,
end: D,
@ -433,7 +386,7 @@ impl Tensor {
device: &Device,
) -> Result<Self> {
if D::is_zero(&step) {
bail!("step cannot be zero")
crate::bail!("step cannot be zero")
}
let mut data = vec![];
let mut current = start;
@ -471,16 +424,6 @@ impl Tensor {
/// Creates a new tensor initialized with values from the input vector. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
/// If the device is cpu, no data copy is made.
///```rust
/// use candle_core::{Tensor, Device};
/// let a = Tensor::from_vec(vec!{1., 2., 3., 4., 5., 6.}, (2, 3), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [1., 2., 3.],
/// [4., 5., 6.]
/// ]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn from_vec<S: Into<Shape>, D: crate::WithDType>(
data: Vec<D>,
shape: S,
@ -491,31 +434,12 @@ impl Tensor {
/// Creates a new tensor initialized with values from the input slice. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
///```rust
/// use candle_core::{Tensor, Device};
/// let values = vec![1., 2., 3., 4., 5., 6., 7., 8.];
/// let a = Tensor::from_slice(&values[1..7], (2, 3), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [2., 3., 4.],
/// [5., 6., 7.]
/// ]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn from_slice<S: Into<Shape>, D: crate::WithDType>(
array: &[D],
shape: S,
device: &Device,
) -> Result<Self> {
let shape = shape.into();
let n: usize = shape.elem_count();
let buffer_size: usize = array.len();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage_from_slice(array)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, false))
Self::new_impl(array, shape.into(), device, false)
}
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
@ -574,11 +498,9 @@ impl Tensor {
unary_op!(gelu_erf, GeluErf);
unary_op!(erf, Erf);
unary_op!(relu, Relu);
unary_op!(silu, Silu);
unary_op!(ceil, Ceil);
unary_op!(floor, Floor);
unary_op!(round, Round);
unary_op!(sign, Sign);
/// Round element of the input tensor to the nearest integer.
///
@ -641,9 +563,9 @@ impl Tensor {
///
/// * `args` - A slice of 1D tensors.
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
/// first dimension corresponds to the cardinality of the second input and the second
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
/// dimensions are in the same order as the cardinality of the inputs.
/// first dimension corresponds to the cardinality of the second input and the second
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
/// dimensions are in the same order as the cardinality of the inputs.
///
/// # Examples
///
@ -714,9 +636,6 @@ impl Tensor {
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().affine(self.layout(), mul, add)?;
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
Ok(from_storage(storage, self.shape(), op, false))
@ -724,9 +643,6 @@ impl Tensor {
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
pub fn elu(&self, alpha: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().elu(self.layout(), alpha)?;
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
Ok(from_storage(storage, self.shape(), op, false))
@ -734,15 +650,12 @@ impl Tensor {
/// Raise the tensor to some float exponent `e`.
pub fn powf(&self, e: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().powf(self.layout(), e)?;
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
Ok(from_storage(storage, self.shape(), op, false))
}
pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
if dim >= self.dims().len() {
Err(Error::DimOutOfRange {
shape: self.shape().clone(),
@ -756,7 +669,7 @@ impl Tensor {
}
/// Split a tensor into the specified number of chunks, this may return less chunks than
/// specified.
/// specificed.
pub fn chunk<D: Dim>(&self, chunks: usize, dim: D) -> Result<Vec<Self>> {
let dim = dim.to_index(self.shape(), "chunk")?;
let size = self.dim(dim)?;
@ -783,30 +696,6 @@ impl Tensor {
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
/// ranges from `start` to `start + len`.
/// ```
/// use candle_core::{Tensor, Device};
/// let a = Tensor::new(&[
/// [0f32, 1., 2.],
/// [3. , 4., 5.],
/// [6. , 7., 8.]
/// ], &Device::Cpu)?;
///
/// let b = a.narrow(0, 1, 2)?;
/// assert_eq!(b.shape().dims(), &[2, 3]);
/// assert_eq!(b.to_vec2::<f32>()?, &[
/// [3., 4., 5.],
/// [6., 7., 8.]
/// ]);
///
/// let c = a.narrow(1, 1, 1)?;
/// assert_eq!(c.shape().dims(), &[3, 1]);
/// assert_eq!(c.to_vec2::<f32>()?, &[
/// [1.],
/// [4.],
/// [7.]
/// ]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> {
let dims = self.dims();
let dim = dim.to_index(self.shape(), "narrow")?;
@ -905,35 +794,6 @@ impl Tensor {
}
}
/// Roll the tensor input along the given dimension.
/// Elements that are shifted beyond the last position are re-introduced at the first position.
///
/// ```rust
/// # use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]);
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(-1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self>
where
D: Dim + Clone,
{
let dim = dim.to_index(self.shape(), "roll")?;
let dim_size = self.dim(dim)?;
let shift = shift.rem_euclid(dim_size as i32) as usize;
if shift == 0 {
Ok(self.clone())
} else {
let a = self.narrow(dim, 0, dim_size - shift)?;
let b = self.narrow(dim, dim_size - shift, shift)?;
Tensor::cat(&[&b, &a], dim)
}
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions.
///
@ -1115,7 +975,7 @@ impl Tensor {
/// tensor also has three dimensions, `(batch, channels, target_size)`.
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
let (n, c, _l) = self.dims3()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest1D { arg, target_size });
let op = BackpropOp::new1(self, Op::UpsampleNearest1D);
let storage = self
.storage()
.upsample_nearest1d(self.layout(), target_size)?;
@ -1134,11 +994,7 @@ impl Tensor {
/// tensor also has four dimensions, `(batch, channels, target_h, target_w)`.
pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest2D {
arg,
target_h,
target_w,
});
let op = BackpropOp::new1(self, Op::UpsampleNearest2D);
let storage = self
.storage()
.upsample_nearest2d(self.layout(), target_h, target_w)?;
@ -1171,9 +1027,6 @@ impl Tensor {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
@ -1209,9 +1062,6 @@ impl Tensor {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
@ -1255,9 +1105,6 @@ impl Tensor {
let n = b_dims[dim - 1];
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
if c_shape.elem_count() == 0 || k == 0 {
return Tensor::zeros(c_shape, self.dtype(), self.device());
}
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
@ -1454,7 +1301,7 @@ impl Tensor {
}
.bt())?
}
let mut storage = unsafe { self.device().alloc_uninit(self.shape(), self.dtype())? };
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let offset = start * src.dims()[1..].iter().product::<usize>();
@ -1520,15 +1367,14 @@ impl Tensor {
/// # Arguments
///
/// * `self` - The input tensor.
/// * `indexes` - The indices of elements to gather, this should have same number of dimensions as `self`
/// and indexes.dims()[d] <= self.dims()[d] for all dimensions d != dim
/// * `indexes` - The indices of elements to gather, this should have the same shape as `self`
/// but can have a different number of elements on the target dimension.
/// * `dim` - the target dimension.
///
/// The resulting tensor has the same shape as `indexes` and use values from `self` indexed on
/// dimension `dim` by the values in `indexes`.
pub fn gather<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "gather")?;
let self_dims = self.dims();
let indexes_dims = indexes.dims();
let mismatch = if indexes_dims.len() != self_dims.len() {
@ -1536,7 +1382,7 @@ impl Tensor {
} else {
let mut mismatch = false;
for (i, (&d1, &d2)) in self_dims.iter().zip(indexes_dims.iter()).enumerate() {
if i != dim && d1 < d2 {
if i != dim && d1 != d2 {
mismatch = true;
break;
}
@ -1760,42 +1606,6 @@ impl Tensor {
&self.op
}
/// Computes the max of all the elements in this tensor and returns a tensor holding this
/// scalar with zero dimensions.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.max_all()?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 5.);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn max_all(&self) -> Result<Tensor> {
if self.rank() == 0 {
Ok(self.clone())
} else {
self.flatten_all()?.max(0)
}
}
/// Computes the min of all the elements in this tensor and returns a tensor holding this
/// scalar with zero dimensions.
///
/// ```rust
/// use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.min_all()?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 0.);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn min_all(&self) -> Result<Tensor> {
if self.rank() == 0 {
Ok(self.clone())
} else {
self.flatten_all()?.min(0)
}
}
/// Computes the sum of all the elements in this tensor and returns a tensor holding this
/// scalar with zero dimensions.
///
@ -1974,7 +1784,7 @@ impl Tensor {
let is_permutation =
dims.len() == self.rank() && (0..dims.len()).all(|i| dims.contains(&i));
if !is_permutation {
bail!(
crate::bail!(
"dimension mismatch in permute, tensor {:?}, dims: {:?}",
self.dims(),
dims
@ -2023,9 +1833,9 @@ impl Tensor {
/// this new node. The storage of this tensor is shared with the initial tensor.
///
/// If the tensor is already detached from the computation graph, the same tensor is returned.
pub fn detach(&self) -> Tensor {
pub fn detach(&self) -> Result<Tensor> {
if self.op.is_none() && !self.is_variable {
self.clone()
Ok(self.clone())
} else {
let tensor_ = Tensor_ {
id: TensorId::new(),
@ -2036,7 +1846,7 @@ impl Tensor {
dtype: self.dtype,
device: self.device.clone(),
};
Tensor(Arc::new(tensor_))
Ok(Tensor(Arc::new(tensor_)))
}
}
@ -2053,7 +1863,10 @@ impl Tensor {
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => {
// println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
Storage::Cpu(storage.to_cpu_storage()?)
}
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.
@ -2062,11 +1875,7 @@ impl Tensor {
}
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
_ => {
bail!(
"not implemented yet, self.device: {:?}, device: {:?}",
self.device(),
device
)
bail!("not implemented yet")
}
};
let op = BackpropOp::new1(self, Op::ToDevice);
@ -2145,7 +1954,7 @@ impl Tensor {
Ok(self.clone())
} else {
let shape = self.shape();
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
let mut storage = self.device().zeros(shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let op = BackpropOp::new1(self, Op::Copy);
@ -2153,21 +1962,11 @@ impl Tensor {
}
}
/// Returns a tensor that is in row major order. This always makes a copy.
pub fn force_contiguous(&self) -> Result<Tensor> {
let shape = self.shape();
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let op = BackpropOp::new1(self, Op::Copy);
Ok(from_storage(storage, shape.clone(), op, false))
}
/// Create a variable based on the values currently stored in a tensor. The storage is always
/// copied.
pub(crate) fn make_var(&self) -> Result<Tensor> {
let shape = self.shape().clone();
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
let mut storage = self.device().zeros(&shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, BackpropOp::none(), true))
@ -2220,7 +2019,7 @@ impl Tensor {
};
Ok(Tensor(Arc::new(tensor_)))
} else {
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
let mut storage = self.device().zeros(&shape, self.dtype())?;
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, op, false))
@ -2247,19 +2046,8 @@ impl Tensor {
let dim = dim.to_index(self.shape(), "squeeze")?;
if dims[dim] == 1 {
let mut dims = dims.to_vec();
let mut strides = self.stride().to_vec();
dims.remove(dim);
strides.remove(dim);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
op: BackpropOp::new1(self, Op::Reshape),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
self.reshape(dims)
} else {
Ok(self.clone())
}
@ -2280,24 +2068,10 @@ impl Tensor {
/// ```
pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> {
let mut dims = self.dims().to_vec();
let mut strides = self.stride().to_vec();
let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?;
// Cannot panic because to_index_plus_one already checks dimensions
dims.insert(dim, 1);
// Any stride would work here, but we pick one so as to maximize the probability to remain
// C contiguous.
let stride = if dim < strides.len() { strides[dim] } else { 1 };
strides.insert(dim, stride);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
op: BackpropOp::new1(self, Op::Reshape),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
self.reshape(dims)
}
/// Stacks two or more tensors along a particular dimension.
@ -2328,6 +2102,152 @@ impl Tensor {
Self::cat(&args, dim)
}
/// Concatenates two or more tensors along a particular dimension.
///
/// All tensors must of the same rank, and the output will have
/// the same rank
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::cat(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[4, 3]);
///
/// let c = Tensor::cat(&[&a, &b], 1)?;
/// assert_eq!(c.shape().dims(), &[2, 6]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let dim = dim.to_index(arg0.shape(), "cat")?;
for arg in args {
arg.as_ref().check_dim(dim, "cat")?;
}
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg0.rank() != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: arg0.rank(),
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx != dim && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
}
if dim == 0 {
Self::cat0(args)
} else {
// TODO: Avoid these transpositions and have an implementation that works
// for dim != 0...
let args: Vec<Tensor> = args
.iter()
.map(|a| a.as_ref().transpose(0, dim))
.collect::<Result<Vec<_>>>()?;
let cat = Self::cat0(&args)?;
cat.transpose(0, dim)
}
}
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let rank = arg0.rank();
let device = arg0.device();
let dtype = arg0.dtype();
let first_dims = arg0.shape().dims();
let mut cat_dims = first_dims.to_vec();
cat_dims[0] = 0;
let mut offsets = vec![0usize];
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg.dtype() != dtype {
Err(Error::DTypeMismatchBinaryOp {
lhs: dtype,
rhs: arg.dtype(),
op: "cat",
}
.bt())?
}
if arg.device().location() != device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: device.location(),
rhs: arg.device().location(),
op: "cat",
}
.bt())?
}
if rank != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: rank,
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx == 0 {
cat_dims[0] += v2;
}
if dim_idx != 0 && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
let next_offset = offsets.last().unwrap() + arg.elem_count();
offsets.push(next_offset);
}
let shape = Shape::from(cat_dims);
let op = BackpropOp::new(args, |args| Op::Cat(args, 0));
let mut storage = device.zeros(&shape, dtype)?;
for (arg, &offset) in args.iter().zip(offsets.iter()) {
let arg = arg.as_ref();
arg.storage()
.copy_strided_src(&mut storage, offset, arg.layout())?;
}
Ok(from_storage(storage, shape, op, false))
}
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
@ -2362,7 +2282,7 @@ impl Tensor {
if left == 0 && right == 0 {
Ok(self.clone())
} else if self.elem_count() == 0 {
bail!("cannot use pad_with_same on an empty tensor")
crate::bail!("cannot use pad_with_same on an empty tensor")
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
@ -2410,10 +2330,6 @@ impl Tensor {
self.storage.read().unwrap()
}
pub(crate) fn storage_mut(&self) -> std::sync::RwLockWriteGuard<'_, Storage> {
self.storage.write().unwrap()
}
// If we extend the visibility of this function to be usable outside of this crate, we should
// make it unsafe.
pub(crate) fn storage_mut_and_layout(
@ -2435,18 +2351,108 @@ impl Tensor {
std::ptr::eq(lhs, rhs)
}
/// Applies a unary custom op without backward support
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a binary custom op without backward support
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
let (storage, shape) =
self.storage()
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a ternary custom op without backward support
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a unary custom op.
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
let (storage, shape) = self
.storage()
.apply_op1(self.layout(), c.as_ref().as_ref())?;
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
self.apply_op1_arc(Arc::new(Box::new(c)))
}
/// Applies a binary custom op.
pub fn apply_op2_arc(
&self,
rhs: &Self,
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op2(
self.layout(),
&rhs.storage(),
rhs.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
self.apply_op2_arc(r, Arc::new(Box::new(c)))
}
/// Applies a ternary custom op.
pub fn apply_op3_arc(
&self,
t2: &Self,
t3: &Self,
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
Op::CustomOp3(t1, t2, t3, c.clone())
});
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
&self,
t2: &Self,
t3: &Self,
c: C,
) -> Result<Self> {
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
}
/// Normalize a 'relative' axis value: positive values are kept, negative
/// values means counting the dimensions from the back.
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
let rank = self.rank() as i64;
if rank <= axis {
bail!("axis {axis} is too large, tensor rank {rank}")
crate::bail!("axis {axis} is too large, tensor rank {rank}")
} else if 0 <= axis {
Ok(axis as usize)
} else {
let naxis = rank + axis;
if naxis < 0 {
bail!("axis {axis} is too small, tensor rank {rank}")
crate::bail!("axis {axis} is too small, tensor rank {rank}")
}
Ok(naxis as usize)
}
@ -2508,14 +2514,14 @@ impl Tensor {
let src_dims = src.dims();
let self_dims = self.dims();
if self_dims.len() != src_dims.len() {
bail!(
crate::bail!(
"slice-assign requires input with the same rank {} <> {}",
self_dims.len(),
src_dims.len()
)
}
if self_dims.len() != ranges.len() {
bail!(
crate::bail!(
"slice-assign requires input with the same rank as there are ranges {} <> {}",
self_dims.len(),
ranges.len()
@ -2535,16 +2541,18 @@ impl Tensor {
std::ops::Bound::Excluded(v) => *v,
};
if end_excluded <= start_included {
bail!("slice-assign: empty range for dim {i}, {start_included} {end_excluded}")
crate::bail!(
"slice-assign: empty range for dim {i}, {start_included} {end_excluded}"
)
}
if self_dims[i] < end_excluded {
bail!(
crate::bail!(
"slice-assign: upper bound is out of range for dim {i}, {end_excluded} {}",
self_dims[i]
)
}
if end_excluded - start_included != src_dims[i] {
bail!(
crate::bail!(
"slice-assign: the range for dim {i} ({start_included}..{end_excluded}) does not match the size of src {}", src_dims[i]
)
}
@ -2553,55 +2561,6 @@ impl Tensor {
}
mask.where_cond(/* on_true= */ &src, /* on_false= */ self)
}
/// Returns log(sum(exp(tensor), dim)).
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
let sum_dims = sum_dims.to_indexes(self.shape(), "log-sum-exp")?;
if sum_dims.is_empty() {
return Ok(self.clone());
}
let max = sum_dims[1..]
.iter()
.try_fold(self.max_keepdim(sum_dims[0])?, |max, &dim| {
max.max_keepdim(dim)
})?;
let exp = self.broadcast_sub(&max)?.exp()?;
let sum = exp.sum(sum_dims.clone())?;
sum.log()? + max.squeeze_dims(&sum_dims)
}
/// Pointwise pow operation.
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.mul(&self.log()?)?.exp()
}
/// Broadcasting version of `pow`.
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.broadcast_mul(&self.log()?)?.exp()
}
/// Returns a new tensor with the order of elements reversed along the specified dimensions.
/// This function makes a copy of the tensors data.
///
/// ```rust
/// # use candle_core::{Tensor, Device};
/// let t = Tensor::arange(0., 6., &Device::Cpu)?.reshape((2, 3))?;
/// assert_eq!(t.to_vec2::<f64>()?, &[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
/// let t_flipped = t.flip(&[0])?;
/// assert_eq!(t_flipped.to_vec2::<f64>()?, &[[3.0, 4.0, 5.0], [0.0, 1.0, 2.0]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn flip(&self, dims: &[usize]) -> Result<Tensor> {
let mut result = self.clone();
for &dim in dims.iter() {
let size = result.dim(dim)?;
let indices: Vec<i64> = (0..size).rev().map(|x| x as i64).collect();
let indices_tensor = Tensor::from_vec(indices, (size,), result.device())?;
result = result.index_select(&indices_tensor, dim)?;
}
Ok(result)
}
}
macro_rules! bin_trait {

View File

@ -1,303 +0,0 @@
use crate::{shape::Dim, Context, Error, Result, Shape, Tensor};
impl Tensor {
/// Concatenates two or more tensors along a particular dimension.
///
/// All tensors must of the same rank, and the output will have
/// the same rank
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::cat(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[4, 3]);
///
/// let c = Tensor::cat(&[&a, &b], 1)?;
/// assert_eq!(c.shape().dims(), &[2, 6]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let dim = dim.to_index(arg0.shape(), "cat")?;
for arg in args {
arg.as_ref().check_dim(dim, "cat")?;
}
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg0.rank() != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: arg0.rank(),
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx != dim && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
}
let all_contiguous = args.iter().all(|v| v.as_ref().is_contiguous());
if all_contiguous {
Self::cat_contiguous(args, dim)
} else if dim == 0 {
Self::cat0(args)
} else {
let args: Vec<Tensor> = args
.iter()
.map(|a| a.as_ref().transpose(0, dim))
.collect::<Result<Vec<_>>>()?;
let cat = Self::cat0(&args)?;
cat.transpose(0, dim)
}
}
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let rank = arg0.rank();
let device = arg0.device();
let dtype = arg0.dtype();
let first_dims = arg0.shape().dims();
let mut cat_dims = first_dims.to_vec();
cat_dims[0] = 0;
let mut offsets = vec![0usize];
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg.dtype() != dtype {
Err(Error::DTypeMismatchBinaryOp {
lhs: dtype,
rhs: arg.dtype(),
op: "cat",
}
.bt())?
}
if arg.device().location() != device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: device.location(),
rhs: arg.device().location(),
op: "cat",
}
.bt())?
}
if rank != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: rank,
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx == 0 {
cat_dims[0] += v2;
}
if dim_idx != 0 && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
let next_offset = offsets.last().context("empty offsets")? + arg.elem_count();
offsets.push(next_offset);
}
let shape = Shape::from(cat_dims);
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, 0));
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
for (arg, &offset) in args.iter().zip(offsets.iter()) {
let arg = arg.as_ref();
arg.storage()
.copy_strided_src(&mut storage, offset, arg.layout())?;
}
Ok(crate::tensor::from_storage(storage, shape, op, false))
}
fn cat_contiguous<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let rank = arg0.rank();
let device = arg0.device();
let dtype = arg0.dtype();
let first_dims = arg0.shape().dims();
let mut cat_dims = first_dims.to_vec();
cat_dims[dim] = 0;
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg.dtype() != dtype {
Err(Error::DTypeMismatchBinaryOp {
lhs: dtype,
rhs: arg.dtype(),
op: "cat",
}
.bt())?
}
if arg.device().location() != device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: device.location(),
rhs: arg.device().location(),
op: "cat",
}
.bt())?
}
if rank != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: rank,
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx == dim {
cat_dims[dim] += v2;
}
if dim_idx != dim && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
}
let cat_target_dim_len = cat_dims[dim];
let block_size: usize = cat_dims.iter().skip(1 + dim).product();
let shape = Shape::from(cat_dims);
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, dim));
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
let mut dst_o = 0;
for arg in args.iter() {
let arg = arg.as_ref();
let arg_dims = arg.shape().dims();
let d1: usize = arg_dims.iter().take(dim).product();
let d2 = block_size * arg_dims[dim];
let dst_s = block_size * cat_target_dim_len;
let src_o = arg.layout().start_offset();
arg.storage().copy2d(
&mut storage,
d1,
d2,
/* src_s */ d2,
dst_s,
src_o,
dst_o,
)?;
dst_o += d2;
}
Ok(crate::tensor::from_storage(storage, shape, op, false))
}
/// Set the values on `self` using values from `src`. The copy starts at the specified
/// `offset` for the target dimension `dim` on `self`.
/// `self` and `src` must have the same shape except on dimension `dim` where the `self` size
/// has to be greater than or equal to `offset` plus the `src` size.
///
/// Note that this modifies `self` in place and as such is not compatibel with
/// back-propagation.
pub fn slice_set<D: Dim>(&self, src: &Self, dim: D, offset: usize) -> Result<()> {
let dim = dim.to_index(self.shape(), "slice-set")?;
if !self.is_contiguous() || !src.is_contiguous() {
Err(Error::RequiresContiguous { op: "slice-set" }.bt())?
}
if self.same_storage(src) {
crate::bail!("cannot use slice_set when self and src share their storage")
}
if self.dtype() != src.dtype() {
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: src.dtype(),
op: "slice-set",
}
.bt())?
}
if self.device().location() != src.device().location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: self.device().location(),
rhs: src.device().location(),
op: "slice-set",
}
.bt())?
}
if self.rank() != src.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: self.rank(),
got: src.rank(),
shape: self.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in self.dims().iter().zip(src.dims().iter()).enumerate() {
if dim_idx == dim && *v2 + offset > *v1 {
crate::bail!("shape mismatch on target dim, dst: {v1}, src: {v2} + {offset}")
}
if dim_idx != dim && v1 != v2 {
crate::bail!("shape mismatch on dim {dim_idx}, {v1} <> {v2}")
}
}
let block_size: usize = src.dims().iter().skip(1 + dim).product();
let d1: usize = src.dims().iter().take(dim).product();
let d2 = block_size * src.dims()[dim];
let dst_o = self.layout().start_offset() + offset * block_size;
let src_o = src.layout().start_offset();
src.storage().copy2d(
&mut self.storage_mut(),
d1,
d2,
/* src_s */ d2,
/* dst_s */ block_size * self.dims()[dim],
src_o,
dst_o,
)?;
Ok(())
}
}

View File

@ -24,15 +24,6 @@ macro_rules! test_device {
};
}
pub fn assert_tensor_eq(t1: &Tensor, t2: &Tensor) -> Result<()> {
assert_eq!(t1.shape(), t2.shape());
// Default U8 may not be large enough to hold the sum (`t.sum_all` defaults to the dtype of `t`)
let eq_tensor = t1.eq(t2)?.to_dtype(crate::DType::U32)?;
let all_equal = eq_tensor.sum_all()?;
assert_eq!(all_equal.to_scalar::<u32>()?, eq_tensor.elem_count() as u32);
Ok(())
}
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
let b = 10f32.powi(digits);
let t = t.to_vec0::<f32>()?;

View File

@ -1,4 +1,3 @@
//! Useful functions for checking features.
use std::str::FromStr;
pub fn get_num_threads() -> usize {

View File

@ -34,14 +34,9 @@ impl Var {
Ok(Self(inner))
}
// Convert a tensor to a variable, if the tensor is already a variable then it is returned as is.
pub fn from_tensor(t: &Tensor) -> Result<Self> {
if t.is_variable() {
Ok(Self(t.clone()))
} else {
let inner = t.make_var()?;
Ok(Self(inner))
}
let inner = t.make_var()?;
Ok(Self(inner))
}
pub fn rand_f64<S: Into<Shape>>(
@ -112,10 +107,6 @@ impl Var {
Ok(Self(inner))
}
pub fn as_detached_tensor(&self) -> Tensor {
self.0.detach()
}
pub fn as_tensor(&self) -> &Tensor {
&self.0
}

View File

@ -18,9 +18,6 @@ w_t = w.transpose(0, 1)
res = torch.nn.functional.conv_transpose1d(t, w_t)
print(res.shape)
print(res)
res = torch.nn.functional.conv_transpose1d(t, w_t, groups=2)
print(res.shape)
print(res)
*/
fn conv1d(dev: &Device) -> Result<()> {
let t = Tensor::new(
@ -53,25 +50,8 @@ fn conv1d(dev: &Device) -> Result<()> {
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
);
let res = {
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
t.conv1d(&w, /*padding*/ 1, 1, 1, 1)?
};
assert_eq!(res.dims(), [3, 2, 5]);
// Same as pytorch default padding: use zeros.
assert_eq!(
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
);
assert_eq!(
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
);
let w = w.transpose(0, 1)?;
// The CPU kernels applied in the contiguous and non contiguous cases are different.
for w in [w.clone(), w.contiguous()?] {
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 1)?;
if dev.is_cpu() {
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
assert_eq!(res.dims(), [1, 2, 7]);
assert_eq!(
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
@ -80,17 +60,6 @@ fn conv1d(dev: &Device) -> Result<()> {
4.7076, -5.9745, -0.8276, 1.621
],
);
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 2)?;
assert_eq!(res.dims(), [1, 4, 7]);
assert_eq!(
test_utils::to_vec2_round(&res.squeeze(0)?, 4)?,
[
[-1.5596, -1.8099, 2.0407, 4.8764, -0.1743, -0.735, -0.7819],
[0.7816, 3.8152, -0.5926, 2.2515, -5.1844, -0.3157, 1.4721],
[1.6295, 0.52, 6.2611, 0.7109, 2.6315, -1.8793, 0.7113],
[1.0949, 1.0166, 1.7464, 2.4561, -0.79, -0.5119, 0.1488]
]
);
}
Ok(())
}
@ -149,7 +118,7 @@ fn conv2d(dev: &Device) -> Result<()> {
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
],
dev,
)?;
@ -177,25 +146,7 @@ fn conv2d(dev: &Device) -> Result<()> {
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
]
);
let res = {
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
t.conv2d(&w, 0, 1, 1, 1)?
};
assert_eq!(res.dims(), [3, 2, 3, 3]);
assert_eq!(
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
);
assert_eq!(
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
[
-4.2812, 2.0923, 5.2187, 7.5184, 0.752, -14.9426, 10.0087, 4.391, 0.2918, 1.6715,
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
]
);
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
assert_eq!(res.dims(), [1, 2, 7, 7]);
assert_eq!(
test_utils::to_vec3_round(&res.i(0)?, 4)?,
@ -220,7 +171,6 @@ fn conv2d(dev: &Device) -> Result<()> {
]
]
);
// Dilations.
let res = t.conv2d(&w, 0, 1, 2, 1)?;
assert_eq!(res.dims(), [1, 2, 1, 1]);
@ -259,7 +209,6 @@ fn conv2d(dev: &Device) -> Result<()> {
]
]
);
Ok(())
}
@ -306,13 +255,13 @@ fn conv2d_small(dev: &Device) -> Result<()> {
assert_eq!(
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
[
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1640,
-0.0111, -0.1742, 0.0, 0.0, 0.0, 0.0, 2.6437, -2.0268, 1.1823, 0.0, 0.0, 0.0, 0.0,
3.2855, -1.0324, 0.2539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1640, -0.0111, -0.1742, 0.0000, 0.0000,
0.0000, 0.0000, 2.6437, -2.0268, 1.1823, 0.0000, 0.0000, 0.0000, 0.0000, 3.2855,
-1.0324, 0.2539, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
]
);
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
assert_eq!(res.dims(), [1, 1, 3, 3]);
assert_eq!(
@ -414,7 +363,6 @@ print(w.grad.shape)
print(w.grad[0])
*/
fn conv2d_grad(dev: &Device) -> Result<()> {
// conv-transposes are not implemented for metal
use candle_core::Var;
let t = Var::from_slice(
&[
@ -427,7 +375,7 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
],
(1, 4, 5, 5),
dev,
@ -612,251 +560,6 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
]
);
// Conv Transpose 2d Test
//tested against following python
// import torch
// torch.manual_seed(4242)
// padding = 4
// outpadding = 2
// dilation = 3
// stride = 3
// input = torch.randn((1, 4, 7, 5), requires_grad=True)
// kernel = torch.randn((4, 2, 3, 5), requires_grad=True)
// print("input", input.flatten())
// print("kernel", kernel.flatten())
// res = torch.nn.functional.conv_transpose2d(
// input,
// kernel,
// stride=stride,
// padding=padding,
// dilation=dilation,
// output_padding=outpadding,
// )
// res.retain_grad()
// print(res.shape)
// loss = (res**2).sum()
// print(loss)
// loss.backward()
// print(input.grad.shape)
// print("input grad", torch.round(input.grad, decimals=1))
// print(kernel.grad.shape)
// print("kernel grad", torch.round(kernel.grad.flatten(), decimals=1))
let padding = 4;
let outpadding = 2;
let dilation = 3;
let stride = 3;
let t = Var::from_slice(
&[
0.4056_f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997,
3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843,
0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013,
-0.6836, 0.2477, 1.3127, -0.2260, 0.2622, -1.2974, -0.8140, -0.8404, -0.3490, 0.0130,
1.3123, 1.7569, -0.3956, -1.8255, 0.1727, -0.3538, 2.6941, 1.0529, 0.4219, -0.2071,
1.1586, 0.4717, 0.3865, -0.5690, -0.5010, -0.1310, 0.7796, 0.6630, -0.2021, 2.6090,
0.2049, 0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323,
-1.3712, 0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742,
0.3790, -0.4431, -0.4720, -0.7890, 0.2620, 0.5411, -1.1715, -2.4997, 2.3249, -0.8912,
-0.4733, -0.5701, -2.8888, -1.4112, -0.5471, -0.9234, -1.1660, 0.4189, -0.7465,
-0.6473, 0.1402, 0.7875, 0.5377, -0.6779, -0.8088, -0.4864, -0.2312, 0.9279, 0.1264,
1.5480, 0.8265, -0.1025, 0.5138, -0.2512, 0.1576, 1.2705, 0.3641, -0.9325, 0.6451,
-0.8537, 0.2378, 0.1794, 0.2752, -0.3687, -1.1149, -0.1410, -0.5829, -0.0892, 1.4258,
-2.2789, 0.5270, 0.1825, 1.7007, -0.5263, -0.2954, 0.4440, 0.5537, 0.3492, 0.6186,
1.6475, 0.2219,
],
(1, 4, 7, 5),
dev,
)?;
#[rustfmt::skip]
let w = Var::from_slice(
&[
-1.1744_f32, 0.3266, 2.5893, 1.0142, 0.1763, 0.7752, 0.6604, 0.2029, -0.2145, 0.7234,
-0.3441, -1.5400, -0.6333, 0.6613, 0.2083, 0.6230, -1.7002, 0.3393, 0.4049, 1.0762,
0.2723, 1.4181, 0.0029, -0.2122, 1.7668, 1.4168, 0.3320, -0.2719, 0.7932, -0.7204,
0.4447, 0.1211, 0.5908, 1.0089, -0.1646, 1.8033, -0.6286, 0.2016, -0.3370, 1.2555,
0.8009, -0.6488, -0.4652, -1.5685, 1.5860, 0.5583, 0.4623, 0.6026, 0.8828, 2.4990,
0.6811, -0.3369, 1.3320, 1.7669, -1.1067, 1.2958, -0.9415, -0.9655, -0.4462, 0.7181,
0.5181, -1.1658, -1.8467, -0.7763, 1.2769, 0.8651, 0.9890, 1.5092, 0.7207, -0.8481,
0.7417, 0.3375, -1.2685, 1.4572, 1.0915, 0.1093, -0.8550, -0.5831, -0.6309, -0.2509,
0.5220, -0.0914, 0.7900, 0.1096, 0.3258, 0.2723, -1.0942, -0.3393, -0.1653, 0.5732,
-0.8014, 1.8194, -1.9023, 0.2127, 1.8636, -0.8979, 0.1927, -0.2778, 0.3105, 0.0071,
-1.1823, 0.2476, -0.7178, -1.3821, 1.0769, -0.4376, -0.9967, -0.1227, 1.6197, -1.0604,
0.1372, 0.8141, -0.6163, 0.7304, -0.8285, 2.0636, -0.7176, 0.2495, -0.2581, -0.4478,
],
(4, 2, 3, 5),
dev,
)?;
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
let loss = res.sqr()?.sum_all()?;
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 2904.0);
let grads = loss.backward()?;
let grad_t = grads.get(&t).unwrap();
let grad_w = grads.get(&w).unwrap();
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
assert_eq!(
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
[
// torch gets 89.1
-89.0, -135.3, 136.7, 102.0, -53.4, 117.9, 118.6, -43.9, -218.0, -58.5, -114.3, -150.0,
-15.6, 172.1, 66.3, -64.3, -27.9, -19.8, 31.7, 62.1, 5.5, 92.6, 28.2, -29.6, 55.9,
52.7, -72.7, -119.8, 53.8, -25.5, 128.8, 19.3, 68.0, 190.9, -64.1, -86.2, -111.2,
106.6, -67.7, 37.8, 115.9, 50.4, -77.7, -54.9, 22.3, -4.6, 89.8, 61.7, 122.4, 192.6,
-27.8, -104.6, 57.0, 166.4, 27.1, 6.1, 18.7, -93.2, 31.5, 168.2, -3.7, -99.5, -55.5,
-10.8, 17.5, 20.8, 16.9, 43.8, 42.0, -89.2, 18.8, -9.6, -84.1, 212.6, 19.7, -50.0,
-52.0, -40.0, -166.6, -73.2, -10.8, -73.3, 31.5, -23.4, -79.3, -27.0, -84.4, -42.9,
-20.3, 51.8, -16.7, 76.3, -120.5, -65.8, 96.5, -10.7, -45.9, -88.1, 65.4, -7.0, -1.5,
92.8, -25.1, -114.2, -5.8, -14.8, -51.2, -20.7, 54.2, -79.8, 47.7, -29.2, -8.8, 53.5,
-28.4, 85.0, -18.3, 107.0, 28.3, -71.8
]
);
assert_eq!(
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
[
[
[32.3, -41.6, -24.0, 14.1, 17.6],
[-11.8, 72.5, 87.6, 46.4, 61.5],
[115.0, 108.5, -48.6, -63.4, -50.0],
[51.3, 5.4, 31.3, 91.1, -30.9],
[52.7, 92.8, -68.0, -47.0, 83.0],
// pytorch gets -107.1
[-10.2, -107.0, -5.4, 213.1, -31.4],
[-2.4, 65.1, 9.2, -146.2, -24.2]
],
[
[-72.6, -63.9, -61.9, 45.3, 33.0],
[79.3, -0.5, -26.2, 78.2, 42.7],
[90.9, 141.6, 40.1, -62.7, 37.0],
[32.8, 198.2, -0.8, -31.1, 27.3],
// torch gets 48.0
[34.5, 34.9, -47.9, 127.6, -12.3],
[-61.4, -3.2, -2.9, -10.9, -16.6],
[74.6, 60.1, -68.9, 34.5, -50.4]
],
[
[37.5, -56.9, -43.6, -13.5, -9.9],
[40.0, 97.3, 28.6, 14.2, -30.1],
[-22.3, -126.3, -68.8, -8.2, 26.1],
[-32.9, 37.3, 108.5, -54.8, 29.6],
[34.9, -176.9, -125.0, -28.3, -13.9],
[-54.9, 142.6, 62.1, -80.4, -65.6],
[7.4, -91.1, -67.6, 35.0, 39.7]
],
[
[-57.2, -40.9, -10.1, 32.6, 29.4],
[18.7, -18.0, 29.5, -1.2, 59.2],
[-14.0, -74.4, 19.8, -117.0, 58.2],
[-21.8, 163.5, -71.1, -99.0, 80.9],
[-58.9, -10.9, 93.8, -139.6, 98.0],
// torch gets 54.5
[-54.4, 135.3, 6.0, -79.1, 134.6],
[27.5, -76.0, 43.4, -2.8, -7.8]
]
]
);
// Test the same, but then with the following properties, t & w are unmodified.
let padding = 1;
let outpadding = 1;
let dilation = 1;
let stride = 2;
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
let loss = res.sqr()?.sum_all()?;
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 3627.0); // torch gives 3626.8560
let grads = loss.backward()?;
let grad_t = grads.get(&t).unwrap();
let grad_w = grads.get(&w).unwrap();
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
#[rustfmt::skip]
assert_eq!(
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
[
[
[ 13.2, -40.7, -9.7, -47.3, -82.7],
[ -98.2, 9.7, 57.7, -6.2, 180.7],
[ 100.2, 24.1, 3.7, -100.5, -48.1],
[ -0.3, 13.5, -2.9, 80.0, -49.8],
[ 47.2, -25.6, -74.4, 61.2, -18.4],
[ 4.6, -69.5, 27.9, 66.5, -88.1],
// 4th column on next row; torch is 4.2
[ -12.0, 79.2, -40.0, 4.1, -97.1],
],
[
[ -42.2, -36.5, -51.1, 7.5, 32.3],
[ 74.1, -44.6, -68.8, 19.5, 7.7],
[ 137.1, 54.2, 153.8, -58.0, 45.5],
[ 24.4, -56.8, 9.7, -41.0, -14.5],
[ -3.7, 72.6, 8.3, 134.8, 40.5],
[ 43.2, -56.9, -47.5, -89.4, -95.4],
[ 68.2, 108.1, -80.0, 57.0, -121.1]
],
[
[ 31.1, -11.4, -34.8, 33.1, -44.2],
[ 29.4, -31.6, -40.2, 13.7, 13.1],
[ -0.8, -83.8, -7.8, -17.3, 78.2],
[ 12.0, -118.7, 137.5, -76.7, 50.8],
[ -28.7, -114.2, -3.7, -96.3, -13.8],
[ -31.8, 28.5, -14.3, 4.6, 13.4],
[ 28.0, -0.2, -38.9, -29.7, -59.0]
],
[
[ -16.8, 38.5, 15.5, 26.6, 48.9],
[ 14.5, 49.6, -24.8, 65.6, 61.7],
[ 22.1, -64.7, -4.3, -51.0, 36.3],
[ 31.0, -88.9, 47.1, -123.5, -3.8],
[ -14.8, -39.8, 128.2, -110.3, 42.6],
// 1st column on next row; torch is -7.2
[ -7.1, 95.3, -21.3, -58.7, -13.9],
[ 26.9, 21.3, 16.1, 70.3, 32.1]
]
]
);
#[rustfmt::skip]
assert_eq!(
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
[
// 2nd value; torch gets -3.2, 3rd value; torch gets 221.8
-2.460e+01, -3.100e+00, 2.219e+02, 7.400e+00, 5.620e+01,
7.420e+01, 7.830e+01, 8.900e+00, 1.050e+01, 2.810e+01,
5.100e+00, -1.046e+02, -1.572e+02, 8.710e+01, -9.840e+01,
-4.230e+01, -1.898e+02, 1.860e+01, -3.570e+01, 9.810e+01,
4.680e+01, 1.182e+02, 4.020e+01, -1.900e+00, 1.508e+02,
1.094e+02, 1.018e+02, -4.620e+01, 1.591e+02, -2.320e+01,
// 5th value; torch gets 7.1
-8.450e+01, -4.600e+00, 6.330e+01, 1.123e+02, -7.000e+00,
1.101e+02, -6.620e+01, 2.090e+01, -5.120e+01, 8.990e+01,
9.050e+01, -6.990e+01, 6.800e+01, -9.250e+01, 1.380e+02,
4.720e+01, 4.710e+01, 6.210e+01, 8.870e+01, 2.098e+02,
3.870e+01, -1.390e+01, 6.270e+01, 1.484e+02, -9.920e+01,
-4.200e+01, -1.505e+02, -1.480e+01, -2.620e+01, 8.220e+01,
-3.350e+01, -2.260e+01, -1.198e+02, -5.080e+01, 1.259e+02,
5.600e+01, 9.270e+01, 1.209e+02, 6.590e+01, -8.330e+01,
7.000e+00, -2.600e+01, -1.133e+02, 3.870e+01, 4.020e+01,
-6.300e+00, -8.710e+01, -5.150e+01, -8.510e+01, 2.000e-01,
3.640e+01, -6.100e+00, 6.590e+01, -2.700e+00, 6.550e+01,
// 4th value; torch gets 3.8
5.300e+00, -6.760e+01, -4.270e+01, -3.900e+00, 2.880e+01,
5.260e+01, 6.170e+01, -1.203e+02, -1.610e+01, 7.740e+01,
-1.008e+02, -1.070e+01, -9.900e+00, 3.300e+00, -2.620e+01,
-4.440e+01, 2.580e+01, -6.920e+01, -4.220e+01, 1.108e+02,
1.240e+01, -3.440e+01, -2.800e+00, 7.880e+01, -6.690e+01,
1.480e+01, 2.310e+01, -4.260e+01, -1.500e+00, -4.760e+01,
5.350e+01, -2.260e+01, 8.000e-01, -3.840e+01, -2.500e+00
]
);
Ok(())
}

View File

@ -112,70 +112,3 @@ fn custom_op1_with_backward() -> Result<()> {
Ok(())
}
impl candle_core::InplaceOp1 for Elu {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &mut CpuStorage, _l: &Layout) -> Result<()> {
let alpha = self.alpha;
match s {
CpuStorage::BF16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F32(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F64(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
_ => candle_core::bail!("unsupported dtype for inplace elu"),
}
Ok(())
}
}
#[test]
fn inplace_op1() -> Result<()> {
let cpu = &Device::Cpu;
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
let t = (t - 5.)?;
t.inplace_op1(&Elu { alpha: 1. })?;
assert_eq!(
to_vec1_round(&t, 4)?,
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
);
Ok(())
}
#[cfg(any(feature = "cuda", feature = "metal"))]
#[allow(clippy::approx_constant)]
#[test]
fn ug_op() -> Result<()> {
let kernel = {
use ug::lang::op;
let layout = ug::Layout::from_shape(&[12]);
let ptr = op::Arg::ptr(ug::DType::F32);
let src = op::load(ptr.id(), layout.clone(), ug::DType::F32)?;
let src = op::unary(op::UnaryOp::Exp, src)?;
let st = op::store(ptr.id(), layout, src)?;
let kernel = op::Kernel::new("exp".to_string(), vec![ptr], vec![st]);
let opts: ug::lower_op::Opts = Default::default();
kernel.lower(&opts)?
};
let device = if candle_core::utils::cuda_is_available() {
Device::new_cuda(0)?
} else if candle_core::utils::metal_is_available() {
Device::new_metal(0)?
} else {
candle_core::bail!("metal/cuda is mandatory for this test")
};
let op = candle_core::UgIOp1::new("test", kernel, &device)?;
let t = Tensor::arange(0u32, 12u32, &device)?.to_dtype(DType::F32)?;
t.inplace_op1(&op)?;
assert_eq!(
to_vec1_round(&t, 2)?,
&[
1.0, 2.72, 7.39, 20.09, 54.6, 148.41, 403.43, 1096.63, 2980.96, 8103.08, 22026.47,
59874.13
]
);
Ok(())
}

View File

@ -1,6 +1,5 @@
#![allow(clippy::approx_constant)]
use anyhow::{Context, Result};
use candle_core::{test_device, test_utils, DType, Device, Shape, Tensor, Var};
use candle_core::{test_device, test_utils, Device, Shape, Tensor, Var};
fn simple_grad(device: &Device) -> Result<()> {
let x = Var::new(&[3f32, 1., 4.], device)?;
@ -97,24 +96,24 @@ fn unary_grad(device: &Device) -> Result<()> {
let grads = y.backward()?;
let grad_x = grads.get(x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[20.0855, 2.7183, 54.5982, 1.1618]
y.to_vec1::<f32>()?,
[20.085537, 2.7182817, 54.59815, 1.1618342]
);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[20.0855, 2.7183, 54.5982, 1.1618]
grad_x.to_vec1::<f32>()?,
[20.085537, 2.7182817, 54.59815, 1.1618342]
);
let y = x.exp()?.sqr()?;
let grads = y.backward()?;
let grad_x = grads.get(x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 3)?,
[403.429, 7.389, 2980.958, 1.35]
y.to_vec1::<f32>()?,
[403.4288, 7.3890557, 2980.9578, 1.3498588]
);
// exp(x)^2 = exp(2*x)
assert_eq!(
test_utils::to_vec1_round(grad_x, 2)?,
[806.86, 14.78, 5961.92, 2.7]
grad_x.to_vec1::<f32>()?,
[806.8576, 14.778111, 5961.9155, 2.6997175]
);
let y = x.sin()?;
let grads = y.backward()?;
@ -262,7 +261,6 @@ fn unary_grad(device: &Device) -> Result<()> {
let y = elu_x.elu(2.)?;
let grads = y.backward()?;
let grad_x = grads.get(&elu_x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[-1.2642, 0.0000, -1.7293, 3.0000]
@ -272,194 +270,6 @@ fn unary_grad(device: &Device) -> Result<()> {
[0.7358, 2.0000, 0.2707, 1.0000]
);
// testing compared to pytorch nn.Silu()
let y = x.silu()?;
let grads = y.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[2.8577, 0.7311, 3.9281, 0.0806]
);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[1.0881, 0.9277, 1.0527, 0.5747],
);
if device.is_cpu() {
let x = Var::new(&[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]], device)?;
let y = x.interpolate1d(12)?.reshape(36)?;
let z = Tensor::new(
&[
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16.,
17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
33., 34., 35., 36.,
],
device,
)?;
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec3_round(grad_x, 4)?,
[[[10_f32, 26., 42.], [58., 74., 90.], [106., 122., 138.]]]
);
}
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
let y = x.interpolate2d(6, 6)?.reshape(36)?;
let z = Tensor::new(
&[
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
35., 36.,
],
device,
)?;
// gradient should be
// row 1
// 1+2+7+8 = 18
// 3+4+9+10 = 26
// 5+6+11+12 = 34
// row 2
// 13+14+19+20 = 66
// 15+16+21+22 = 74
// 17+18+23+24 = 82
// row 3
// 25+26+31+32 = 114
// 27+28+33+34 = 122
// 29+30+35+36 = 130
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
[[18_f32, 26., 34.], [66., 74., 82.], [114., 122., 130.]]
);
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2.], [4., 5.]]]], device)?;
let y = x.interpolate2d(6, 6)?.reshape(36)?;
let z = Tensor::new(
&[
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
35., 36.,
],
device,
)?;
// gradient should be
// row 1
// 1+2+3+7+8+9+13+14+15 = 72
// 4+5+6+10+11+12+16+17+18 = 99
// row 2
// 19+20+21+25+26+27+31+32+33 = 234
// 22+23+24+28+29+30+34+35+36 = 243
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
[[72_f32, 99.], [234., 261.]]
);
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2.], [4., 5.]], [[6f32, 7.], [8., 9.]]]], device)?;
let y = x.interpolate2d(4, 4)?.reshape(32)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04.,
05., 06., 07., 08.,
09., 10., 11., 12.,
13., 14., 15., 16.,
17., 18., 19., 20.,
21., 22., 23., 24.,
25., 26., 27., 28.,
29., 30., 31., 32.
],
device,
)?;
// gradient should be
// m1r1
// 1+2+5+6=14
// 3+4+7+8=22
// m1r2
// 9+10+13+14=46
// 11+12+15+16=54
// m2r1
// 17+18+21+22=78
// 19+20+23+24=86
// m2r2
// 25+26+29+30=110
// 27+28+31+32=118
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
);
// manually checked: see comments
let x = Var::new(
&[[[[1f32, 2.], [4., 5.]]], [[[6f32, 7.], [8., 9.]]]],
device,
)?;
let y = x.interpolate2d(4, 4)?.reshape(32)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04.,
05., 06., 07., 08.,
09., 10., 11., 12.,
13., 14., 15., 16.,
17., 18., 19., 20.,
21., 22., 23., 24.,
25., 26., 27., 28.,
29., 30., 31., 32.
],
device,
)?;
// gradient should be
// m1r1
// 1+2+5+6=14
// 3+4+7+8=22
// m1r2
// 9+10+13+14=46
// 11+12+15+16=54
// m2r1
// 17+18+21+22=78
// 19+20+23+24=86
// m2r2
// 25+26+29+30=110
// 27+28+31+32=118
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
);
Ok(())
}
@ -505,36 +315,6 @@ fn binary_grad(device: &Device) -> Result<()> {
Ok(())
}
#[test]
fn test_flip_backprop() -> Result<()> {
let device = &Device::Cpu;
// Create a tensor (leaf node) that requires gradients
let x = Var::ones((2, 2), DType::F64, device)?;
let weights = Tensor::arange(1.0, 5.0, device)?.reshape((2, 2))?;
let y = x.matmul(&weights)?;
let expected_y = Tensor::from_vec(vec![4.0, 6.0, 4.0, 6.0], (2, 2), device)?;
candle_core::test_utils::assert_tensor_eq(&y, &expected_y)?;
let z = y.flip(&[1])?;
let expected_z = Tensor::from_vec(vec![6.0, 4.0, 6.0, 4.0], (2, 2), device)?;
candle_core::test_utils::assert_tensor_eq(&z, &expected_z)?;
let loss = z.sum_all()?;
let grad_store = loss.backward()?;
let grad_x = grad_store.get_id(x.id()).unwrap();
let flipped_weights = weights.flip(&[1])?;
let dloss_dy = Tensor::ones((2, 2), DType::F64, device)?;
// dloss/dx = dloss/dy @ dy/dx = ones @ weight.flip.T
let expected_grad = dloss_dy.matmul(&flipped_weights.t()?)?;
candle_core::test_utils::assert_tensor_eq(grad_x, &expected_grad)?;
Ok(())
}
test_device!(
simple_grad,
simple_grad_cpu,

View File

@ -88,7 +88,7 @@ fn strided_blocks() -> Result<()> {
}
};
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
let tensor = tensor.i((.., 1))?.contiguous()?;
let tensor = tensor.i((.., 1))?;
match tensor.strided_blocks() {
candle::StridedBlocks::SingleBlock { start_offset, len } => {
assert_eq!(start_offset, 0);
@ -100,20 +100,6 @@ fn strided_blocks() -> Result<()> {
}
};
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
let tensor = tensor.i((.., 1))?;
match tensor.strided_blocks() {
candle::StridedBlocks::SingleBlock { .. } => {
panic!("unexpected block structure")
}
candle::StridedBlocks::MultipleBlocks {
block_len,
block_start_index,
} => {
assert_eq!(block_len, 4);
assert_eq!(block_start_index.collect::<Vec<_>>(), &[4, 16])
}
};
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
match tensor.t()?.strided_blocks() {
candle::StridedBlocks::SingleBlock { .. } => {
panic!("unexpected block structure")

View File

@ -1,126 +0,0 @@
use candle_core::{test_device, DType, Device, IndexOp, Result, Tensor};
fn matmul(device: &Device) -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), device)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
let c = a.matmul(&b)?;
assert_eq!(c.to_vec3::<f32>()?, &expected);
// Also perform the matmul on contiguous transposed versions.
let a_tt = a.t()?.contiguous()?.t()?;
assert!(!a_tt.is_contiguous());
assert_eq!(a.dims(), a_tt.dims());
assert_eq!(a_tt.stride(), &[6, 1, 2]);
let b_tt = b.t()?.contiguous()?.t()?;
assert!(!b_tt.is_contiguous());
assert_eq!(b.dims(), b_tt.dims());
assert_eq!(b_tt.stride(), &[6, 1, 3]);
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
Ok(())
}
fn matmul_bf16(device: &Device) -> Result<()> {
if !device.supports_bf16() {
return Ok(());
}
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?.to_dtype(DType::BF16)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?.to_dtype(DType::BF16)?;
let c = a.matmul(&b)?.to_dtype(DType::F32)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
Ok(())
}
fn broadcast_matmul(device: &Device) -> Result<()> {
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
let out = lhs.broadcast_matmul(&rhs)?;
assert_eq!(out.dims(), &[3, 6, 4, 2]);
for idx1 in 0..3 {
for idx2 in 0..6 {
let out = out.i((idx1, idx2))?;
let lhs = lhs.i((idx1, 0))?;
let rhs = rhs.i(idx2)?;
let out2 = lhs.matmul(&rhs);
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
// With cuda, we see errors of up to ~1e-12.
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
}
}
Ok(())
}
// https://github.com/huggingface/candle/issues/1948
fn squeeze_mm(device: &Device) -> Result<()> {
let seq_len = 8_usize;
let a = Tensor::zeros((1, seq_len, 16), DType::F32, device)?;
let x = a.i((.., seq_len - 1, ..))?;
let w = Tensor::zeros((32, 16), DType::F32, device)?.t()?;
let x = x.matmul(&w)?;
assert_eq!(x.dims(), &[1, 32]);
Ok(())
}
// https://github.com/huggingface/candle/issues/1992
fn mm_layout(device: &Device) -> Result<()> {
let a = Tensor::arange(0f32, 16f32, device)?.reshape((1, 1, 4, 4))?;
let b = Tensor::arange(0f32, 8f32, device)?.reshape((1, 1, 4, 2))?;
let mm1 = a.matmul(&b)?;
// Forces the layout to be:
// shape: [1, 1, 4, 2], stride: [8, 2, 2, 1], start_offset: 0
// This is still a contiguous matrix but matmul checks are only the two last dimensions have
// non 1 sizes but matmul check may be reluctant to handle it.
let b = b.transpose(1, 2)?.force_contiguous()?.transpose(1, 2)?;
let mm2 = a.matmul(&b)?;
let diff = (mm1 - mm2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
Ok(())
}
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
matmul_bf16,
matmul_bf16_cpu,
matmul_bf16_gpu,
matmul_bf16_metal
);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(squeeze_mm, squeeze_mm_cpu, squeeze_mm_gpu, squeeze_mm_metal);
test_device!(mm_layout, mm_layout_cpu, mm_layout_gpu, mm_layout_metal);

View File

@ -43,9 +43,6 @@ res = torch.nn.functional.avg_pool2d(t, 2)
print(res)
*/
fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
if dev.is_metal() {
return Ok(());
}
let t = Tensor::new(
&[
0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616,

View File

@ -1,37 +0,0 @@
import torch
from collections import OrderedDict
# Write a trivial tensor to a pt file
a= torch.tensor([[1,2,3,4], [5,6,7,8]])
o = OrderedDict()
o["test"] = a
# Write a trivial tensor to a pt file
torch.save(o, "test.pt")
############################################################################################################
# Write a trivial tensor to a pt file with a key
torch.save({"model_state_dict": o}, "test_with_key.pt")
############################################################################################################
# Create a tensor with fortran contiguous memory layout
import numpy as np
# Step 1: Create a 3D NumPy array with Fortran order using a range of numbers
# For example, creating a 2x3x4 array
array_fortran = np.asfortranarray(np.arange(1, 2*3*4 + 1).reshape(2, 3, 4))
# Verify the memory order
print("Is Fortran contiguous (F order):", array_fortran.flags['F_CONTIGUOUS']) # Should be True
print("Is C contiguous (C order):", array_fortran.flags['C_CONTIGUOUS']) # Should be False
# Step 2: Convert the NumPy array to a PyTorch tensor
tensor_fortran = torch.from_numpy(array_fortran)
# Verify the tensor layout
print("Tensor stride:", tensor_fortran.stride()) # Stride will reflect the Fortran memory layout
# Step 3: Save the PyTorch tensor to a .pth file
torch.save({"tensor_fortran": tensor_fortran}, 'fortran_tensor_3d.pth')
print("3D Tensor saved with Fortran layout.")

View File

@ -1,31 +0,0 @@
/// Regression test for pth files not loading on Windows.
#[test]
fn test_pth() {
let tensors = candle_core::pickle::PthTensors::new("tests/test.pt", None).unwrap();
tensors.get("test").unwrap().unwrap();
}
#[test]
fn test_pth_with_key() {
let tensors =
candle_core::pickle::PthTensors::new("tests/test_with_key.pt", Some("model_state_dict"))
.unwrap();
tensors.get("test").unwrap().unwrap();
}
#[test]
fn test_pth_fortran_congiguous() {
let tensors =
candle_core::pickle::PthTensors::new("tests/fortran_tensor_3d.pth", None).unwrap();
let tensor = tensors.get("tensor_fortran").unwrap().unwrap();
assert_eq!(tensor.dims3().unwrap(), (2, 3, 4));
assert_eq!(
tensor.to_vec3::<i64>().unwrap(),
[
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]
]
);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,31 +1,5 @@
use candle_core::{DType, Result, Tensor};
struct TmpFile(std::path::PathBuf);
impl TmpFile {
fn create(base: &str) -> TmpFile {
let filename = std::env::temp_dir().join(format!(
"candle-{}-{}-{:?}",
base,
std::process::id(),
std::thread::current().id(),
));
TmpFile(filename)
}
}
impl std::convert::AsRef<std::path::Path> for TmpFile {
fn as_ref(&self) -> &std::path::Path {
self.0.as_path()
}
}
impl Drop for TmpFile {
fn drop(&mut self) {
std::fs::remove_file(&self.0).unwrap()
}
}
#[test]
fn npy() -> Result<()> {
let npy = Tensor::read_npy("tests/test.npy")?;
@ -48,24 +22,3 @@ fn npz() -> Result<()> {
);
Ok(())
}
#[test]
fn safetensors() -> Result<()> {
use candle_core::safetensors::Load;
let tmp_file = TmpFile::create("st");
let t = Tensor::arange(0f32, 24f32, &candle_core::Device::Cpu)?;
t.save_safetensors("t", &tmp_file)?;
// Load from file.
let st = candle_core::safetensors::load(&tmp_file, &candle_core::Device::Cpu)?;
let t2 = st.get("t").unwrap();
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0f32);
// Load from bytes.
let bytes = std::fs::read(tmp_file)?;
let st = candle_core::safetensors::SliceSafetensors::new(&bytes)?;
let t2 = st.get("t").unwrap().load(&candle_core::Device::Cpu);
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0f32);
Ok(())
}

View File

@ -1,4 +1,4 @@
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor, D};
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor};
fn zeros(device: &Device) -> Result<()> {
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
@ -29,44 +29,6 @@ fn ones(device: &Device) -> Result<()> {
Tensor::ones((2, 3), DType::F64, device)?.to_vec2::<f64>()?,
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
);
assert_eq!(
Tensor::ones((2, 3), DType::F16, device)?.to_vec2::<half::f16>()?,
[
[
half::f16::from_f32(1.0),
half::f16::from_f32(1.0),
half::f16::from_f32(1.0)
],
[
half::f16::from_f32(1.0),
half::f16::from_f32(1.0),
half::f16::from_f32(1.0)
]
],
);
assert_eq!(
Tensor::ones((2, 3), DType::BF16, device)?.to_vec2::<half::bf16>()?,
[
[
half::bf16::from_f32(1.0),
half::bf16::from_f32(1.0),
half::bf16::from_f32(1.0)
],
[
half::bf16::from_f32(1.0),
half::bf16::from_f32(1.0),
half::bf16::from_f32(1.0)
]
],
);
Ok(())
}
fn full(device: &Device) -> Result<()> {
assert_eq!(
Tensor::full(42u32, (2, 3), device)?.to_vec2::<u32>()?,
[[42, 42, 42], [42, 42, 42]],
);
Ok(())
}
@ -126,40 +88,6 @@ fn clamp(device: &Device) -> Result<()> {
Ok(())
}
fn asort(device: &Device) -> Result<()> {
let data = &[[3f32, 1., 4., 1.1, 5.], [2.1, 1., 7., 8., 2.]];
let tensor = Tensor::new(data, device)?;
let indexes = tensor.arg_sort_last_dim(true)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
);
let indexes = tensor.arg_sort_last_dim(false)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
);
let (sorted, indexes) = tensor.sort_last_dim(true)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
);
assert_eq!(
sorted.to_vec2::<f32>()?,
[[1.0, 1.1, 3.0, 4.0, 5.0], [1.0, 2.0, 2.1, 7.0, 8.0]]
);
let (sorted, indexes) = tensor.sort_last_dim(false)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
);
assert_eq!(
sorted.to_vec2::<f32>()?,
[[5.0, 4.0, 3.0, 1.1, 1.0], [8.0, 7.0, 2.1, 2.0, 1.0]]
);
Ok(())
}
fn unary_op(device: &Device) -> Result<()> {
let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]];
let tensor = Tensor::new(data, device)?;
@ -170,9 +98,6 @@ fn unary_op(device: &Device) -> Result<()> {
[2.6911, -0.0647, -0.1091, 1.7353, 2.7933]
]
);
let t_f16 = tensor.to_dtype(DType::F16)?.gelu()?.to_dtype(DType::F32)?;
let max_diff = (tensor.gelu()? - t_f16)?.flatten_all()?.max(0)?;
assert!(max_diff.to_vec0::<f32>()? < 5e-3);
assert_eq!(
test_utils::to_vec2_round(&tensor.gelu_erf()?, 4)?,
[
@ -187,13 +112,6 @@ fn unary_op(device: &Device) -> Result<()> {
[0.9999, -0.9891, -0.3079, 0.9891, 0.9999]
]
);
assert_eq!(
test_utils::to_vec2_round(&tensor.silu()?, 4)?,
[
[-0.1423, 0.7311, 3.9281, -0.0475, 0.3112],
[2.53, -0.2553, -0.1205, 1.5447, 2.6395]
]
);
assert_eq!(
test_utils::to_vec2_round(&tensor.ceil()?, 4)?,
[[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]]
@ -215,27 +133,6 @@ fn unary_op(device: &Device) -> Result<()> {
test_utils::to_vec1_round(&tensor.round_to(-2)?, 4)?,
[3000.0, 300.]
);
let tensor = Tensor::new(
&[-1.01f32, -0.9, -0.1, 0.0, -0.0, 0.1, 0.9, 1.0, 1.1],
device,
)?;
assert_eq!(
tensor.sign()?.to_vec1::<f32>()?,
[-1., -1., -1., 0., 0., 1., 1., 1., 1.]
);
let tensor = Tensor::new(&[-1.0f32, 0., -2., 3.], device)?;
let y = tensor.elu(2.)?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[-1.2642, 0.0000, -1.7293, 3.0000]
);
// This test failed on metal prior to the following PR:
// https://github.com/huggingface/candle/pull/2490
let y = tensor.reshape((2, 2))?.t()?.elu(2.)?.flatten_all()?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[-1.2642, -1.7293, 0.0000, 3.0000]
);
Ok(())
}
@ -708,32 +605,6 @@ fn broadcast(device: &Device) -> Result<()> {
Ok(())
}
fn slice_set(device: &Device) -> Result<()> {
let (b, h, max_t, d) = (2, 4, 7, 3);
let cache = Tensor::zeros((b, h, max_t, d), DType::F32, device)?;
let tensor = Tensor::randn(0f32, 1f32, (b, h, 4, d), device)?;
cache.slice_set(&tensor, 2, 0)?;
let cache_t = cache.narrow(2, 0, 4)?;
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
cache.slice_set(&tensor, 2, 1)?;
let cache_t = cache.narrow(2, 1, 4)?;
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let ones = Tensor::ones((b, h, 1, d), DType::F32, device)?;
cache.slice_set(&ones, 2, 6)?;
let diff = cache.narrow(2, 5, 1)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let diff = (cache.narrow(2, 6, 1)? - 1.)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
// This used to create a deadlock rather than returning an actual error.
assert!(cache.slice_set(&cache, 0, 0).is_err());
Ok(())
}
fn cat(device: &Device) -> Result<()> {
// 1D
let t1 = Tensor::new(&[3f32, 1., 4.], device)?;
@ -786,31 +657,6 @@ fn cat(device: &Device) -> Result<()> {
[2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0]
]
);
// 3D
let t1 = Tensor::arange(0, 48i64, device)?.reshape((2, 6, 4))?;
let t2 = Tensor::arange(100, 124i64, device)?.reshape((2, 3, 4))?;
let t3 = Tensor::arange(10000, 10032i64, device)?.reshape((2, 4, 4))?;
let t_cat = Tensor::cat(&[&t1, &t2, &t3], 1)?;
let t1 = t1.t()?.contiguous()?.t()?;
let t2 = t2.t()?.contiguous()?.t()?;
let t3 = t3.t()?.contiguous()?.t()?;
let t_cat2 = Tensor::cat(&[&t1, &t2, &t3], 1)?;
let diff = t_cat.eq(&t_cat2)?.to_dtype(DType::F32)?.sum_all()?;
assert_eq!(diff.to_vec0::<f32>()?, 104.0);
assert_eq!(t_cat.i((0, 0, 0))?.to_vec0::<i64>()?, 0);
assert_eq!(t_cat.i((0, 4, 0))?.to_vec0::<i64>()?, 16);
assert_eq!(t_cat.i((0, 5, 0))?.to_vec0::<i64>()?, 20);
assert_eq!(t_cat.i((1, 5, 0))?.to_vec0::<i64>()?, 44);
assert_eq!(t_cat.i((0, 6, 0))?.to_vec0::<i64>()?, 100);
assert_eq!(t_cat.i((1, 6, 0))?.to_vec0::<i64>()?, 112);
assert_eq!(t_cat.i((0, 6, 1))?.to_vec0::<i64>()?, 101);
assert_eq!(t_cat.i((0, 7, 1))?.to_vec0::<i64>()?, 105);
assert_eq!(t_cat.i((0, 12, 1))?.to_vec0::<i64>()?, 10013);
assert_eq!(t_cat.i((1, 12, 3))?.to_vec0::<i64>()?, 10031);
Ok(())
}
@ -821,8 +667,6 @@ fn embeddings(device: &Device) -> Result<()> {
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
let hs = t.index_select(&ids, 0)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
let hs = t.index_select(&ids.to_dtype(DType::I64)?, 0)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
Ok(())
}
@ -850,47 +694,44 @@ fn index_select(device: &Device) -> Result<()> {
[9.0, 10.0, 11.0]
]
);
for dtype in [DType::U8, DType::U32, DType::I64] {
let ids = ids.to_dtype(dtype)?;
let hs = t.index_select(&ids, 1)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[
[0.0, 2.0, 1.0],
[3.0, 5.0, 4.0],
[6.0, 8.0, 7.0],
[9.0, 11.0, 10.0]
]
);
let hs = t.index_select(&ids, 0)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
);
// Prior to https://github.com/huggingface/candle/pull/1022
// There would be a bug where the last values in the result tensor would be set to 0.
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
let hs = t.index_select(&ids, 0)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[
[0.0, 1.0, 2.0],
[6.0, 7.0, 8.0],
[3.0, 4.0, 5.0],
[0.0, 1.0, 2.0],
[6.0, 7.0, 8.0],
[3.0, 4.0, 5.0],
]
);
let hs = t.index_select(&ids, 1)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[
[0.0, 2.0, 1.0],
[3.0, 5.0, 4.0],
[6.0, 8.0, 7.0],
[9.0, 11.0, 10.0]
]
);
let hs = t.index_select(&ids, 0)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
);
// Prior to https://github.com/huggingface/candle/pull/1022
// There would be a bug where the last values in the result tensor would be set to 0.
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
let hs = t.index_select(&ids, 0)?;
assert_eq!(
hs.to_vec2::<f32>()?,
&[
[0.0, 1.0, 2.0],
[6.0, 7.0, 8.0],
[3.0, 4.0, 5.0],
[0.0, 1.0, 2.0],
[6.0, 7.0, 8.0],
[3.0, 4.0, 5.0],
]
);
// Test when selecting dim > 0 with ids size different from elem count of
// target dim in source/input.
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
let hs = t.index_select(&ids, 1)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
}
// Test when selecting dim > 0 with ids size different from elem count of
// target dim in source/input.
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
let hs = t.index_select(&ids, 1)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
Ok(())
}
@ -1049,280 +890,76 @@ fn gather(device: &Device) -> Result<()> {
let ids = Tensor::new(&[[0u32, 2u32, 0u32], [0u32, 1u32, 1u32]], device)?;
let hs = t.gather(&ids, 0)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 7.0, 2.0], [0.0, 4.0, 5.0]]);
Ok(())
}
// Random data
fn matmul(device: &Device) -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?;
// Dim: 0
let t = Tensor::new(
&[
[
[108_f32, -47., 16., -56., -83., -130., 210.],
[253., 95., 151., 228., -210., -123., -127.],
[-9., -217., 2., -78., 163., 245., -204.],
[-246., 79., -238., 88., -226., -184., 171.],
[8., -48., -153., 234., -34., 166., -153.],
[124., 0., -10., -61., -242., -15., -238.],
],
[
[12., -64., -199., 244., -240., 156., -128.],
[173., -57., 4., -198., 233., -110., 238.],
[95., 82., 0., 240., 53., -211., 209.],
[-122., 167., -212., 227., -144., 61., 118.],
[-63., -146., 200., 244., 168., -167., 116.],
[-125., -147., 110., -253., -178., -250., -18.],
],
[
[57., 86., -50., 56., 92., 205., -78.],
[-137., -156., -18., 248., -61., -239., 14.],
[-248., -30., -50., -70., -251., 250., -83.],
[-221., 67., 72., 59., -24., -154., 232.],
[-144., -23., -74., 5., 93., 171., 205.],
[46., -77., -38., -226., 246., 161., -17.],
],
[
[-153., -231., -236., 161., 126., 2., -22.],
[-229., -41., 209., 164., 234., 160., 57.],
[223., 254., -186., -162., -46., -160., -102.],
[65., 30., 213., -253., 59., 224., -154.],
[-82., -203., -177., 17., 31., -256., -246.],
[176., -135., -65., 54., -56., 210., 76.],
],
[
[-10., -245., 168., 124., -14., -33., -178.],
[25., -43., -39., 132., -89., 169., 179.],
[187., -215., 32., -133., 87., -7., -168.],
[-224., -215., -5., -230., -58., -162., 128.],
[158., -137., -122., -100., -202., -83., 136.],
[30., -185., -144., 250., 209., -40., 127.],
],
[
[-196., 108., -245., 122., 146., -228., 62.],
[-1., -66., 160., 137., 13., -172., -21.],
[244., 199., -164., 28., 119., -175., 198.],
[-62., 253., -162., 195., -95., -230., -211.],
[123., -72., -26., -107., -139., 64., 245.],
[11., -126., -182., 108., -12., 184., -127.],
],
[
[-159., 126., 176., 161., 73., -111., -138.],
[-187., 214., -217., -33., -223., -201., -212.],
[-61., -120., -166., -172., -95., 53., 196.],
[-33., 86., 134., -152., 154., -53., 74.],
[186., -28., -154., -174., 141., -109., 217.],
[82., 35., 252., 145., 181., 74., -87.],
],
],
device,
)?;
let c = a.matmul(&b)?;
let d = a.matmul(&c)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
assert_eq!(d.to_vec2::<f32>()?, &[[37.0, 54.0], [81.0, 118.0]]);
let ids = Tensor::new(
&[
[
[6_u32, 6, 4, 3, 4, 4, 6],
[3, 3, 2, 4, 4, 4, 6],
[3, 3, 0, 2, 4, 6, 4],
[2, 5, 1, 2, 6, 6, 1],
[2, 1, 6, 5, 3, 2, 3],
[6, 1, 0, 1, 0, 2, 6],
],
[
[4, 6, 4, 3, 3, 3, 2],
[4, 3, 2, 4, 4, 4, 6],
[2, 3, 0, 2, 4, 6, 4],
[6, 5, 1, 2, 6, 6, 1],
[4, 1, 6, 5, 3, 2, 3],
[1, 1, 0, 1, 0, 2, 6],
],
[
[3, 6, 4, 3, 3, 3, 2],
[2, 3, 2, 4, 4, 4, 6],
[4, 3, 0, 2, 4, 6, 4],
[0, 5, 1, 2, 6, 6, 1],
[6, 1, 6, 5, 3, 2, 3],
[4, 1, 0, 1, 0, 2, 6],
],
[
[0, 6, 4, 3, 3, 3, 2],
[5, 3, 2, 4, 4, 4, 6],
[0, 3, 0, 2, 4, 6, 4],
[3, 5, 1, 2, 6, 6, 1],
[0, 1, 6, 5, 3, 2, 3],
[3, 1, 0, 1, 0, 2, 6],
],
],
device,
)?;
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let hs = t.gather(&ids, 0)?;
assert_eq!(
hs.to_vec3::<f32>()?,
&[
[
[-159_f32, 126., 168., 161., -14., -33., -138.],
[-229., -41., -18., 132., -89., 169., -212.],
[223., 254., 2., -70., 87., 53., -168.],
[-221., 253., -212., 59., 154., -53., 118.],
[-144., -146., -154., -107., 31., 171., -246.],
[82., -147., -10., -253., -242., 161., -87.]
],
[
[-10., 126., 168., 161., 126., 2., -78.],
[25., -41., -18., 132., -89., 169., -212.],
[-248., 254., 2., -70., 87., 53., -168.],
[-33., 253., -212., 59., 154., -53., 118.],
[158., -146., -154., -107., 31., 171., -246.],
[-125., -147., -10., -253., -242., 161., -87.]
],
[
[-153., 126., 168., 161., 126., 2., -78.],
[-137., -41., -18., 132., -89., 169., -212.],
[187., 254., 2., -70., 87., 53., -168.],
[-246., 253., -212., 59., 154., -53., 118.],
[186., -146., -154., -107., 31., 171., -246.],
[30., -147., -10., -253., -242., 161., -87.]
],
[
[108., 126., 168., 161., 126., 2., -78.],
[-1., -41., -18., 132., -89., 169., -212.],
[-9., 254., 2., -70., 87., 53., -168.],
[65., 253., -212., 59., 154., -53., 118.],
[8., -146., -154., -107., 31., 171., -246.],
[176., -147., -10., -253., -242., 161., -87.]
]
]
);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), device)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
// Dim: 1
let t = Tensor::new(
&[
[
[-117_f32, -175., 69., -163.],
[200., 242., -21., -67.],
[179., 150., -126., -75.],
[-118., 38., -138., -13.],
[-221., 136., -185., 180.],
[58., 182., -204., -149.],
],
[
[3., -148., -58., -154.],
[-43., 45., -108., 4.],
[-69., -249., -71., -21.],
[80., 110., -152., -235.],
[-88., 7., 92., -250.],
[-186., 207., -242., 98.],
],
[
[238., 19., 64., -242.],
[-150., -97., 218., 58.],
[111., -233., 204., -212.],
[-242., -232., 83., 42.],
[153., 62., -251., 219.],
[-117., 36., -119., 10.],
],
[
[215., 159., -169., -27.],
[-83., 101., -88., 169.],
[-205., 93., 225., -64.],
[-162., 240., 214., 23.],
[-112., 6., 21., 245.],
[-38., 113., 93., 215.],
],
[
[91., -188., -148., 101.],
[74., 203., -35., 55.],
[-116., -130., -153., -96.],
[58., 22., -45., -194.],
[-221., -134., 73., 159.],
[-203., -254., 31., 235.],
],
[
[105., -53., 61., 186.],
[-195., 234., 75., -1.],
[51., 139., 160., -108.],
[-173., -167., 161., 19.],
[83., -246., 156., -222.],
[109., 39., -149., 137.],
],
],
device,
)?;
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
let ids = Tensor::new(
&[
[[4_u32, 4, 4, 2]],
[[0, 4, 4, 3]],
[[1, 5, 3, 4]],
[[0, 3, 3, 2]],
[[1, 1, 5, 2]],
[[1, 4, 5, 4]],
],
device,
)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec3::<f32>()?, &expected);
let hs = t.gather(&ids, 1)?;
assert_eq!(
hs.to_vec3::<f32>()?,
&[
[[-221., 136., -185., -75.]],
[[3., 7., 92., -235.]],
[[-150., 36., 83., 219.]],
[[215., 240., 214., -64.]],
[[74., 203., 31., -96.]],
[[-195., -246., -149., -222.]]
]
);
// Also perform the matmul on contiguous transposed versions.
let a_tt = a.t()?.contiguous()?.t()?;
assert!(!a_tt.is_contiguous());
assert_eq!(a.dims(), a_tt.dims());
assert_eq!(a_tt.stride(), &[6, 1, 2]);
// Dim: 2
let t = Tensor::new(
&[
[[-162_f32, 202.], [-126., -39.], [35., -65.], [1., 80.]],
[[37., 248.], [-191., 89.], [117., -40.], [-217., 220.]],
],
device,
)?;
let b_tt = b.t()?.contiguous()?.t()?;
assert!(!b_tt.is_contiguous());
assert_eq!(b.dims(), b_tt.dims());
assert_eq!(b_tt.stride(), &[6, 1, 3]);
let ids = Tensor::new(&[[[1_u32], [0], [1], [1]], [[0], [1], [0], [1]]], device)?;
let hs = t.gather(&ids, 2)?;
assert_eq!(
hs.to_vec3::<f32>()?,
&[
[[202.], [-126.], [-65.], [80.]],
[[37.], [89.], [117.], [220.]]
]
);
let t = Tensor::new(
&[
[[-21_f32, -197.], [194., 122.]],
[[255., -106.], [-191., 250.]],
[[33., -117.], [43., 10.]],
[[-130., 238.], [-217., -92.]],
],
device,
)?;
let ids = Tensor::new(
&[
[[0_u32, 1], [1, 0]],
[[1, 0], [0, 1]],
[[0, 1], [0, 1]],
[[1, 0], [1, 0]],
],
device,
)?;
let hs = t.gather(&ids, 2)?;
assert_eq!(
hs.to_vec3::<f32>()?,
&[
[[-21., -197.], [122., 194.]],
[[-106., 255.], [-191., 250.]],
[[33., -117.], [43., 10.]],
[[238., -130.], [-92., -217.]]
]
);
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
Ok(())
}
fn broadcast_matmul(device: &Device) -> Result<()> {
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
let out = lhs.broadcast_matmul(&rhs)?;
assert_eq!(out.dims(), &[3, 6, 4, 2]);
for idx1 in 0..3 {
for idx2 in 0..6 {
let out = out.i((idx1, idx2))?;
let lhs = lhs.i((idx1, 0))?;
let rhs = rhs.i(idx2)?;
let out2 = lhs.matmul(&rhs);
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
// With cuda, we see errors of up to ~1e-12.
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
}
}
Ok(())
}
@ -1430,66 +1067,18 @@ fn broadcasting(device: &Device) -> Result<()> {
fn randn(device: &Device) -> Result<()> {
let tensor = Tensor::randn(0f32, 1f32, (5, 3), device)?;
assert_eq!(tensor.dims(), [5, 3]);
// Check that the seed gets updated by checking that
// a new series of numbers is generated each time
let tensor2 = Tensor::randn(0f32, 1f32, (5, 3), device)?;
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
let tensor = Tensor::rand(0f32, 1f32, (5, 3), device)?;
assert_eq!(tensor.dims(), [5, 3]);
// Check that the seed gets updated by checking that
// a new series of numbers is generated each time
let tensor2 = Tensor::rand(0f32, 1f32, (5, 3), device)?;
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
// We do not expect deterministic elements at any index.
// There once was a bug that had a deterministic zero element in evenly sized tensors.
const N: usize = 2;
let v = (0..100)
.map(|_| Tensor::randn(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
.collect::<Result<Vec<_>>>()?;
assert!(
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
"There are deterministic values in the randn tensors"
);
let v = (0..100)
.map(|_| Tensor::rand(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
.collect::<Result<Vec<_>>>()?;
assert!(
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
"There are deterministic values in the rand tensors"
);
Ok(())
}
fn zero_dim(device: &Device) -> Result<()> {
let t = Tensor::zeros((4, 0, 1), DType::F32, device)?;
assert_eq!(t.dims3()?, (4, 0, 1));
let t2 = Tensor::zeros((4, 3, 1), DType::F32, device)?;
let t_cat = Tensor::cat(&[&t, &t2], 1)?;
assert_eq!(t_cat.dims3()?, (4, 3, 1));
let t_cat = Tensor::cat(&[&t, &t], 1)?;
assert_eq!(t_cat.dims3()?, (4, 0, 1));
let t_unary = t.sqrt()?;
assert_eq!(t_unary.dims3()?, (4, 0, 1));
let t_plus = (&t + 1.)?;
assert_eq!(t_plus.dims3()?, (4, 0, 1));
let t_mm = t2.matmul(&t.t()?)?;
assert_eq!(t_mm.dims3()?, (4, 3, 0));
let t_mm = t.matmul(&t2.t()?)?;
assert_eq!(t_mm.dims3()?, (4, 0, 3));
let t_mm = t.t()?.matmul(&t)?;
assert_eq!(t_mm.dims3()?, (4, 1, 1));
Ok(())
}
test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal);
test_device!(ones, ones_cpu, ones_gpu, ones_metal);
test_device!(full, full_cpu, full_gpu, full_metal);
test_device!(arange, arange_cpu, arange_gpu, arange_metal);
test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal);
test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal);
test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal);
test_device!(slice_set, ss_cpu, ss_gpu, ss_metal);
test_device!(cat, cat_cpu, cat_gpu, cat_metal);
test_device!(sum, sum_cpu, sum_gpu, sum_metal);
test_device!(min, min_cpu, min_gpu, min_metal);
@ -1501,6 +1090,13 @@ test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(
broadcasting,
broadcasting_cpu,
@ -1529,9 +1125,7 @@ test_device!(
);
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
test_device!(asort, asort_cpu, asort_gpu, asort_metal);
test_device!(var, var_cpu, var_gpu, var_metal);
test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal);
// There was originally a bug on the CPU implementation for randn
// https://github.com/huggingface/candle/issues/381
@ -1629,107 +1223,3 @@ fn cumsum() -> Result<()> {
);
Ok(())
}
/// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data.
/// Assertion passes if the difference of all pairs of a and b is smaller than epsilon.
fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
let a_vec: Vec<f64> = a.to_vec1()?;
let b_vec: Vec<f64> = b.to_vec1()?;
assert_eq!(a_vec.len(), b_vec.len());
for (a, b) in a_vec.iter().zip(b_vec.iter()) {
assert!((a - b).abs() < epsilon);
}
Ok(())
}
#[test]
fn log_sum_exp() -> Result<()> {
let input = Tensor::new(
&[
[[1f64, 2., 3.], [4., 5., 6.]],
[[-1000.0, -999.0, -1001.0], [1000.0, 999.0, 1001.0]],
],
&Device::Cpu,
)?;
let output = input.log_sum_exp(D::Minus1)?;
// The expectations obtained from pytorch.
let expected = Tensor::new(&[[3.4076, 6.4076], [-998.5924, 1001.4076]], &Device::Cpu)?;
assert_eq!(output.dims(), expected.dims());
assert_close(&output.flatten_all()?, &expected.flatten_all()?, 0.00001)?;
assert_eq!(
input.log_sum_exp((0, 1))?.to_vec1::<f64>()?,
[1000.0, 999.0, 1001.0]
);
assert_eq!(
input.log_sum_exp(())?.to_vec3::<f64>()?,
input.to_vec3::<f64>()?
);
Ok(())
}
#[test]
fn pow() -> Result<()> {
let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
let rhs = (&lhs - 2.)?;
let res = lhs.pow(&rhs)?;
assert_eq!(
test_utils::to_vec2_round(&res, 3)?,
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0]]
);
Ok(())
}
#[test]
fn test_flip_1d() -> Result<()> {
// 1D: [0, 1, 2, 3, 4]
let t = Tensor::arange(0.0, 5.0, &Device::Cpu)?.reshape((5,))?;
let flipped = t.flip(&[0])?;
// Expected: [4, 3, 2, 1, 0]
let expected = Tensor::from_vec(vec![4.0, 3.0, 2.0, 1.0, 0.0], (5,), &Device::Cpu)?;
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
Ok(())
}
#[test]
fn test_flip_2d() -> Result<()> {
// 2D:
// [[0, 1, 2],
// [3, 4, 5]]
let t = Tensor::arange(0.0, 6.0, &Device::Cpu)?.reshape((2, 3))?;
let flipped = t.flip(&[0, 1])?;
// Expected:
// [[5, 4, 3],
// [2, 1, 0]]
let expected = Tensor::from_vec(vec![5.0, 4.0, 3.0, 2.0, 1.0, 0.0], (2, 3), &Device::Cpu)?;
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
Ok(())
}
#[test]
fn test_flip_3d_channels() -> Result<()> {
// 3D:
// [[[0,1,2],
// [3,4,5]],
//
// [[6,7,8],
// [9,10,11]]]
let t = Tensor::arange(0.0, 12.0, &Device::Cpu)?.reshape((2, 2, 3))?;
let flipped = t.flip(&[2])?;
// Expected:
// [[[2,1,0],
// [5,4,3]],
//
// [[8,7,6],
// [11,10,9]]]
let expected = Tensor::from_vec(
vec![2.0, 1.0, 0.0, 5.0, 4.0, 3.0, 8.0, 7.0, 6.0, 11.0, 10.0, 9.0],
(2, 2, 3),
&Device::Cpu,
)?;
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
Ok(())
}

Binary file not shown.

Binary file not shown.

View File

@ -11,8 +11,8 @@ readme = "README.md"
[dependencies]
byteorder = { workspace = true }
candle = { workspace = true }
candle-nn = { workspace = true }
candle = { path = "../candle-core", version = "0.3.1", package = "candle-core" }
candle-nn = { path = "../candle-nn", version = "0.3.1" }
hf-hub = { workspace = true}
intel-mkl-src = { workspace = true, optional = true }
memmap2 = { workspace = true }

View File

@ -78,7 +78,7 @@ impl<I: Iterator<Item = Tensor>> Iterator for Batcher<Iter1<I>> {
match self.inner.inner.next() {
Some(item) => items.push(item),
None => {
if self.return_last_incomplete_batch && !items.is_empty() {
if self.return_last_incomplete_batch {
break;
}
return None;
@ -102,7 +102,7 @@ impl<I: Iterator<Item = (Tensor, Tensor)>> Iterator for Batcher<Iter2<I>> {
ys.push(y)
}
None => {
if self.return_last_incomplete_batch && !xs.is_empty() && !ys.is_empty() {
if self.return_last_incomplete_batch {
break;
}
return None;
@ -127,7 +127,7 @@ impl<I: Iterator<Item = Result<Tensor>>> Iterator for Batcher<IterResult1<I>> {
match self.inner.inner.next() {
Some(item) => items.push(item),
None => {
if self.return_last_incomplete_batch && !items.is_empty() {
if self.return_last_incomplete_batch {
break;
}
return None;
@ -154,7 +154,7 @@ impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Iterator for Batcher<IterResu
}
Some(Err(err)) => errs.push(err),
None => {
if self.return_last_incomplete_batch && !xs.is_empty() && !ys.is_empty() {
if self.return_last_incomplete_batch {
break;
}
return None;

View File

@ -60,8 +60,8 @@ pub struct DatasetRandomIter<'a> {
impl<'a> DatasetRandomIter<'a> {
pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self {
use rand::rng;
use rand::seq::SliceRandom;
use rand::thread_rng;
let all_tokens = if valid {
&ds.valid_tokens
@ -69,13 +69,13 @@ impl<'a> DatasetRandomIter<'a> {
&ds.train_tokens
};
let mut tokens = all_tokens.iter().collect::<Vec<_>>();
tokens.shuffle(&mut rng());
tokens.shuffle(&mut thread_rng());
let current_tokens = tokens.pop().unwrap();
let seq_len_in_bytes = seq_len * 2;
let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes)
.step_by(seq_len_in_bytes)
.collect::<Vec<_>>();
indexes_in_bytes.shuffle(&mut rng());
indexes_in_bytes.shuffle(&mut thread_rng());
Self {
all_tokens,
tokens,
@ -87,26 +87,26 @@ impl<'a> DatasetRandomIter<'a> {
}
}
impl Iterator for DatasetRandomIter<'_> {
impl<'a> Iterator for DatasetRandomIter<'a> {
type Item = Result<(Tensor, Tensor)>;
fn next(&mut self) -> Option<Self::Item> {
use byteorder::{LittleEndian, ReadBytesExt};
use rand::rng;
use rand::seq::SliceRandom;
use rand::thread_rng;
let seq_len = self.seq_len;
if self.indexes_in_bytes.is_empty() {
if self.tokens.is_empty() {
self.tokens = self.all_tokens.iter().collect();
self.tokens.shuffle(&mut rng());
self.tokens.shuffle(&mut thread_rng());
}
self.current_tokens = self.tokens.pop().unwrap();
let seq_len_in_bytes = self.seq_len * 2;
self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes)
.step_by(seq_len_in_bytes)
.collect::<Vec<_>>();
self.indexes_in_bytes.shuffle(&mut rng());
self.indexes_in_bytes.shuffle(&mut thread_rng());
}
let start_idx = self.indexes_in_bytes.pop().unwrap();
let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)];

View File

@ -72,8 +72,6 @@ fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor,
if let parquet::record::Field::Group(subrow) = field {
for (_name, field) in subrow.get_column_iter() {
if let parquet::record::Field::Bytes(value) = field {
// image-rs crate convention is to load in (width, height, channels) order
// See: https://docs.rs/image/latest/image/trait.ImageDecoder.html#tymethod.dimensions
let image = image::load_from_memory(value.data()).unwrap();
buffer_images.extend(image.to_rgb8().as_raw());
}
@ -83,10 +81,8 @@ fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor,
}
}
}
// Reorder image-rs convention (width, height, channels) to candle/pytorch convolution convention (channels, height, width)
let images = (Tensor::from_vec(buffer_images, (samples, 32, 32, 3), &Device::Cpu)?
.to_dtype(DType::F32)?
.permute((0, 3, 2, 1))?
let images = (Tensor::from_vec(buffer_images, (samples, 3, 32, 32), &Device::Cpu)?
.to_dtype(DType::U8)?
/ 255.)?;
let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
Ok((images, labels))

View File

@ -89,7 +89,7 @@ fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor,
pub fn load() -> Result<crate::vision::Dataset> {
let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
let dataset_id = "ylecun/mnist".to_string();
let dataset_id = "mnist".to_string();
let repo = Repo::with_revision(
dataset_id,
RepoType::Dataset,

Some files were not shown because too many files have changed in this diff Show More