Compare commits

..

1 Commits

Author SHA1 Message Date
101a4c8389 Moondream first bits. 2024-03-17 17:49:56 +01:00
9 changed files with 277 additions and 357 deletions

View File

@ -608,34 +608,6 @@ impl Map1 for Elu {
}
}
struct Col2Im1D {
stride: usize,
}
impl Map1 for Col2Im1D {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let (b_size, l_in, c_out, k_size) = layout.shape().dims4()?;
let stride = self.stride;
let l_out = (l_in - 1) * stride + k_size;
let dst_el = b_size * c_out * l_out;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let src = &src.slice(layout.start_offset()..);
let func = dev.get_or_load_func(&kernel_name::<T>("col2im1d"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let dst = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (l_in, l_out, c_out, k_size, b_size, stride, src, &dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(dst)
}
}
struct Im2Col1D {
l_k: usize,
stride: usize,
@ -1893,54 +1865,8 @@ impl BackendStorage for CudaStorage {
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
let device = self.device().clone();
const USE_COL2IM_CONV1D_TR: bool = true;
let can_use_col2im = kernel_l.is_contiguous()
&& params.dilation == 1
&& params.padding == 0
&& params.output_padding == 0;
if !can_use_col2im || !USE_COL2IM_CONV1D_TR {
let slice =
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
return Ok(Self { slice, device });
}
let (b_size, c_in, l_in) = l.shape().dims3()?;
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
if !kernel_l.is_contiguous() {
crate::bail!("convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}")
}
if c_in != c_in2 {
crate::bail!(
"convtr1d: shape mismatch on c_in {:?} {:?}",
l.shape(),
kernel_l.shape()
)
}
let col = {
// This merges the last two dimensions of the kernel together.
let kernel_l_mm = Layout::new(
(b_size, c_in, k_size * c_out).into(),
vec![0, k_size * c_out, 1],
kernel_l.start_offset(),
);
self.matmul(
kernel,
(
b_size,
/* m */ l_in,
/* n */ c_out * k_size,
/* k */ c_in,
),
&l.transpose(1, 2)?,
&kernel_l_mm,
)?
};
let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
let slice = Col2Im1D {
stride: params.stride,
}
.map(&col.slice, &device, &col_l)?;
let slice =
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
Ok(Self { slice, device })
}

View File

@ -609,41 +609,28 @@ impl BackendStorage for MetalStorage {
let command_buffer = device.command_buffer()?;
if layout.is_contiguous() && layout.start_offset() == 0 {
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::BF16) => "cast_u32_bf16",
(DType::U32, DType::F16) => "cast_u32_f16",
(DType::U32, DType::F32) => "cast_u32_f32",
(DType::U32, DType::I64) => "cast_u32_i64",
(DType::U32, DType::U8) => "cast_u32_u8",
(DType::U32, DType::I64) => "cast_u32_i64",
(DType::U32, DType::BF16) => "cast_u32_bf16",
(DType::U8, DType::BF16) => "cast_u8_bf16",
(DType::U8, DType::F16) => "cast_u8_f16",
(DType::U8, DType::U32) => "cast_u8_u32",
(DType::U8, DType::F32) => "cast_u8_f32",
(DType::U8, DType::I64) => "cast_u8_i64",
(DType::U8, DType::U32) => "cast_u8_u32",
(DType::U8, DType::BF16) => "cast_u8_bf16",
(DType::F32, DType::BF16) => "cast_f32_bf16",
(DType::F32, DType::F16) => "cast_f32_f16",
(DType::F32, DType::I64) => "cast_f32_i64",
(DType::F32, DType::U32) => "cast_f32_u32",
(DType::F32, DType::U8) => "cast_f32_u8",
(DType::F32, DType::BF16) => "cast_f32_bf16",
(DType::I64, DType::BF16) => "cast_i64_bf16",
(DType::I64, DType::F16) => "cast_i64_f16",
(DType::I64, DType::F32) => "cast_i64_f32",
(DType::I64, DType::U32) => "cast_i64_u32",
(DType::I64, DType::U8) => "cast_i64_u8",
(DType::F16, DType::BF16) => "cast_f16_bf16",
(DType::F16, DType::F32) => "cast_f16_f32",
(DType::F16, DType::I64) => "cast_f16_i64",
(DType::F16, DType::U32) => "cast_f16_u32",
(DType::F16, DType::U8) => "cast_f16_u8",
(DType::BF16, DType::U8) => "cast_bf16_u8",
(DType::BF16, DType::U32) => "cast_bf16_u32",
(DType::BF16, DType::F16) => "cast_bf16_f16",
(DType::BF16, DType::F32) => "cast_bf16_f32",
(DType::BF16, DType::I64) => "cast_bf16_i64",
(DType::BF16, DType::U32) => "cast_bf16_u32",
(DType::BF16, DType::U8) => "cast_bf16_u8",
(left, right) => {
crate::bail!("Metal contiguous to_dtype {left:?} {right:?} not implemented")

View File

@ -109,7 +109,8 @@ fn main() -> Result<()> {
let codes = match args.action {
Action::CodeToAudio => {
let codes = candle::safetensors::load(args.in_file, &device)?;
codes.get("codes").expect("no codes in input file").clone()
let codes = codes.get("codes").expect("no codes in input file").i(0)?;
codes
}
Action::AudioToCode | Action::AudioToAudio => {
let (pcm, sample_rate) = pcm_decode(args.in_file)?;

View File

@ -51,48 +51,6 @@ __device__ void conv1d(
dst[dst_i] = static_cast<T>(d);
}
template <typename T>
__device__ void col2im1d(
const size_t l_in,
const size_t l_out,
const size_t c_out,
const size_t k_size,
const size_t b_size,
const size_t stride,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, l_in, c_out, k_size)
// dst: (b_size, c_out, l_out)
if (dst_i >= b_size * c_out * l_out) {
return;
}
const size_t dst_s0 = c_out * l_out;
const size_t dst_s1 = l_out;
// dst_idx = b_i * dst_s0 + c_i * dst_s1 + l_in_i * stride + k_i
const size_t b_i = dst_i / dst_s0;
const size_t dst_i2 = dst_i - b_i * dst_s0;
const size_t c_i = dst_i2 / dst_s1;
const size_t dst_i3 = dst_i2 - c_i * dst_s1; // l_in_i * stride + k_i
const size_t src_s0 = c_out * k_size * l_in;
const size_t src_s1 = c_out * k_size;
const size_t src_s2 = k_size;
T d = 0;
for (size_t k_i = 0; k_i < min(dst_i3 + 1, k_size); ++k_i) {
const size_t l_in_i_times_stride = dst_i3 - k_i;
const size_t l_in_i = l_in_i_times_stride / stride;
const size_t src_i = b_i * src_s0 + l_in_i * src_s1 + c_i * src_s2 + k_i;
if (l_in_i * stride == l_in_i_times_stride && l_in_i < l_in) {
d += src[src_i];
}
}
dst[dst_i] = d;
}
template <typename T>
__device__ void im2col1d(
const size_t dst_numel,
@ -569,7 +527,7 @@ extern "C" __global__ void FN_NAME( \
conv2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, dilation, info, src, kernel, dst); \
} \
#define IM2COL1D_OP(TYPENAME, FN_NAME, FN_NAME2) \
#define IM2COL1D_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t dst_numel, \
const size_t l_out, \
@ -583,18 +541,6 @@ extern "C" __global__ void FN_NAME( \
) { \
im2col1d<TYPENAME>(dst_numel, l_out, l_k, stride, padding, dilation, info, src, dst); \
} \
extern "C" __global__ void FN_NAME2( \
const size_t l_in, \
const size_t l_out, \
const size_t c_out, \
const size_t k_size, \
const size_t b_size, \
const size_t stride, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
col2im1d<TYPENAME>(l_in, l_out, c_out, k_size, b_size, stride, src, dst); \
} \
#define IM2COL_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
@ -696,7 +642,7 @@ AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16)
MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
IM2COL_OP(__nv_bfloat16, im2col_bf16)
IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16, col2im1d_bf16)
IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16)
#endif
#if __CUDA_ARCH__ >= 530
@ -708,7 +654,7 @@ AVG_POOL2D_OP(__half, float, avg_pool2d_f16)
MAX_POOL2D_OP(__half, max_pool2d_f16)
UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
IM2COL_OP(__half, im2col_f16)
IM2COL1D_OP(__half, im2col1d_f16, col2im1d_f16)
IM2COL1D_OP(__half, im2col1d_f16)
#endif
CONV1D_OP(float, float, conv1d_f32)
@ -751,7 +697,7 @@ IM2COL_OP(double, im2col_f64)
IM2COL_OP(uint8_t, im2col_u8)
IM2COL_OP(uint32_t, im2col_u32)
IM2COL1D_OP(float, im2col1d_f32, col2im1d_f32)
IM2COL1D_OP(double, im2col1d_f64, col2im1d_f64)
IM2COL1D_OP(uint8_t, im2col1d_u8, col2im1d_u8)
IM2COL1D_OP(uint32_t, im2col1d_u32, col2im1d_u32)
IM2COL1D_OP(float, im2col1d_f32)
IM2COL1D_OP(double, im2col1d_f64)
IM2COL1D_OP(uint8_t, im2col1d_u8)
IM2COL1D_OP(uint32_t, im2col1d_u32)

View File

@ -72,60 +72,27 @@ kernel void FN_NAME_STRIDED( \
output[tid] = static_cast<RIGHT_TYPENAME>(static_cast<IR_TYPENAME>(input[get_strided_index(tid, num_dims, dims, strides)])); \
} \
// u32
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
CAST(cast_u32_f16, cast_u32_f16_strided, uint32_t, half)
#if __METAL_VERSION__ >= 220
CAST(cast_u32_i64, cast_u32_i64_strided, uint32_t, int64_t)
#endif
#if defined(__HAVE_BFLOAT__)
CAST(cast_u32_bf16, cast_u32_bf16_strided, uint32_t, bfloat)
#endif
// u8
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
CAST(cast_u8_f32, cast_u8_f32_strided, uint8_t, float)
CAST(cast_u8_f16, cast_u8_f16_strided, uint8_t, half)
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
#if __METAL_VERSION__ >= 220
CAST(cast_u8_i64, cast_u8_i64_strided, uint8_t, int64_t)
#endif
#if defined(__HAVE_BFLOAT__)
CAST(cast_u8_bf16, cast_u8_bf16_strided, uint8_t, bfloat)
#endif
// f16
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
CAST(cast_f16_u8, cast_f16_u8_strided, half, uint8_t)
CAST(cast_f16_u32, cast_f16_u32_strided, half, uint32_t)
CAST(cast_f16_i64, cast_f16_i64_strided, half, int64_t)
#if defined(__HAVE_BFLOAT__)
CAST_THROUGH(cast_f16_bf16, cast_f16_bf16_strided, half, bfloat, float)
#endif
// i64
CAST(cast_u32_i64, cast_u32_i64_strided, uint32_t, int64_t)
CAST(cast_i64_f32, cast_i64_f32_strided, int64_t, float)
CAST(cast_i64_u8, cast_i64_u8_strided, int64_t, uint8_t)
CAST(cast_i64_u32, cast_i64_u32_strided, int64_t, uint32_t)
CAST(cast_i64_f16, cast_i64_f16_strided, int64_t, half)
#if defined(__HAVE_BFLOAT__)
CAST_THROUGH(cast_i64_bf16, cast_i64_bf16_strided, int64_t, bfloat, float)
#endif
// f32
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
CAST(cast_f32_u32, cast_f32_u32_strided, float, uint32_t)
CAST(cast_f32_u8, cast_f32_u8_strided, float, uint8_t)
CAST(cast_f32_i64, cast_f32_i64_strided, float, int64_t)
#if defined(__HAVE_BFLOAT__)
CAST(cast_f32_bf16, cast_f32_bf16_strided, float, bfloat)
#endif
// bf16
#if defined(__HAVE_BFLOAT__)
CAST(cast_bf16_u32, cast_bf16_u32_strided, bfloat, uint32_t)
CAST(cast_bf16_i64, cast_bf16_i64_strided, bfloat, int64_t)
CAST(cast_bf16_f32, cast_bf16_f32_strided, bfloat, float)
CAST(cast_u8_bf16, cast_u8_bf16_strided, uint8_t, bfloat)
CAST(cast_u32_bf16, cast_u32_bf16_strided, uint32_t, bfloat)
CAST(cast_f32_bf16, cast_f32_bf16_strided, float, bfloat)
CAST_THROUGH(cast_bf16_u8, cast_bf16_u8_strided, bfloat, uint8_t, float)
CAST_THROUGH(cast_bf16_f16, cast_bf16_f16_strided, bfloat, half, float)
CAST_THROUGH(cast_f16_bf16, cast_f16_bf16_strided, half, bfloat, float)
#endif

View File

@ -292,7 +292,7 @@ fn binary_ops_bf16() {
binary_op!(max, |x: bf16, y| x.max(y));
}
fn run_cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
@ -319,189 +319,107 @@ fn run_cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
}
#[test]
fn cast_f32() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn cast_u32_f32() {
let v = vec![1u32, 2, 3];
let results = cast(&v, "cast_u32_f32");
let expected: Vec<_> = v.iter().map(|&v| v as f32).collect();
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
// f32 -> f16
let results: Vec<half::f16> = run_cast(&v_f32, "cast_f32_f16");
assert_eq!(results, v_f16);
let v = vec![1.0f32, 2.0, 3.0];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results, vec![1.0f32, 2.0, 3.0]);
// f32 -> bf16
let results: Vec<bf16> = run_cast(&v_f32, "cast_f32_bf16");
assert_eq!(results, v_bf16);
// f32 -> u32
let results: Vec<u32> = run_cast(&v_f32, "cast_f32_u32");
assert_eq!(results, v_u32);
// f32 -> u8
let results: Vec<u8> = run_cast(&v_f32, "cast_f32_u8");
assert_eq!(results, v_u8);
// f32 -> i64
let results: Vec<i64> = run_cast(&v_f32, "cast_f32_i64");
assert_eq!(results, v_i64);
let v = vec![1.0f32; 10_000];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results.len(), 10_000);
assert_eq!(&results[..10], vec![1.0f32; 10]);
assert_eq!(results, vec![1.0f32; 10_000]);
}
#[test]
fn cast_f16() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn it_cast_bf16_u32() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
// f16 -> f32
let results: Vec<f32> = run_cast(&v_f16, "cast_f16_f32");
assert_eq!(results, v_f32);
let output: Vec<u32> = cast(&input, "cast_bf16_u32");
let expected: Vec<u32> = (1..=3).map(|v| v as u32).collect();
// f16 -> bf16
let results: Vec<bf16> = run_cast(&v_f16, "cast_f16_bf16");
assert_eq!(results, v_bf16);
// f16 -> u32
let results: Vec<u32> = run_cast(&v_f16, "cast_f16_u32");
assert_eq!(results, v_u32);
// f16 -> u8
let results: Vec<u8> = run_cast(&v_f16, "cast_f16_u8");
assert_eq!(results, v_u8);
// f16 -> i64
let results: Vec<i64> = run_cast(&v_f16, "cast_f16_i64");
assert_eq!(results, v_i64);
assert_eq!(output, expected);
}
#[test]
fn cast_bf16() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn it_cast_bf16_f32() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
// bf16 -> f32
let results: Vec<f32> = run_cast(&v_bf16, "cast_bf16_f32");
assert_eq!(results, v_f32);
let output: Vec<f32> = cast(&input, "cast_bf16_f32");
let expected: Vec<f32> = (1..=3).map(|v| v as f32).collect();
// bf16 -> f16
let results: Vec<f16> = run_cast(&v_bf16, "cast_bf16_f16");
assert_eq!(results, v_f16);
// bf16 -> u32
let results: Vec<u32> = run_cast(&v_bf16, "cast_bf16_u32");
assert_eq!(results, v_u32);
// bf16 -> u8
let results: Vec<u8> = run_cast(&v_bf16, "cast_bf16_u8");
assert_eq!(results, v_u8);
// bf16 -> i64
let results: Vec<i64> = run_cast(&v_bf16, "cast_bf16_i64");
assert_eq!(results, v_i64);
assert_eq!(output, expected);
}
#[test]
fn cast_u32() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn it_cast_u8_bf16() {
let input: Vec<u8> = (1..=3).map(|v| v as u8).collect();
// u32 -> f32
let results: Vec<f32> = run_cast(&v_u32, "cast_u32_f32");
assert_eq!(results, v_f32);
let output: Vec<bf16> = cast(&input, "cast_u8_bf16");
let expected: Vec<bf16> = input
.iter()
.map(|v| bf16::from_f32(*v as f32))
.collect::<Vec<_>>();
// u32 -> f16
let results: Vec<f16> = run_cast(&v_u32, "cast_u32_f16");
assert_eq!(results, v_f16);
// u32 -> bf16
let results: Vec<bf16> = run_cast(&v_u32, "cast_u32_bf16");
assert_eq!(results, v_bf16);
// u32 -> u8
let results: Vec<u8> = run_cast(&v_u32, "cast_u32_u8");
assert_eq!(results, v_u8);
// u32 -> i64
let results: Vec<i64> = run_cast(&v_u32, "cast_u32_i64");
assert_eq!(results, v_i64);
assert_eq!(output, expected);
}
#[test]
fn cast_u8() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn it_cast_u32_bf16() {
let input: Vec<u32> = (1..=3).map(|v| v as u32).collect();
// u8 -> f32
let results: Vec<f32> = run_cast(&v_u8, "cast_u8_f32");
assert_eq!(results, v_f32);
let output: Vec<bf16> = cast(&input, "cast_u32_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect();
// u8 -> f16
let results: Vec<f16> = run_cast(&v_u8, "cast_u8_f16");
assert_eq!(results, v_f16);
// u8 -> bf16
let results: Vec<bf16> = run_cast(&v_u8, "cast_u8_bf16");
assert_eq!(results, v_bf16);
// u8 -> u32
let results: Vec<u32> = run_cast(&v_u8, "cast_u8_u32");
assert_eq!(results, v_u32);
// u8 -> i64
let results: Vec<i64> = run_cast(&v_u8, "cast_u8_i64");
assert_eq!(results, v_i64);
assert_eq!(output, expected);
}
#[test]
fn cast_i64() {
let v_f64 = vec![1.0f64, 2.0, 3.0];
let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect();
let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect();
let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect();
let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect();
let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect();
let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect();
fn it_cast_f32_bf16() {
let input: Vec<f32> = (1..=3).map(|v| v as f32).collect();
// i64 -> f32
let results: Vec<f32> = run_cast(&v_i64, "cast_i64_f32");
assert_eq!(results, v_f32);
let output: Vec<bf16> = cast(&input, "cast_f32_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(*v as f32)).collect();
// i64 -> f16
let results: Vec<f16> = run_cast(&v_i64, "cast_i64_f16");
assert_eq!(results, v_f16);
assert_eq!(output, expected);
}
// i64 -> bf16
let results: Vec<bf16> = run_cast(&v_i64, "cast_i64_bf16");
assert_eq!(results, v_bf16);
#[test]
fn it_cast_bf16_u8() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
// i64 -> u32
let results: Vec<u32> = run_cast(&v_i64, "cast_i64_u32");
assert_eq!(results, v_u32);
let output: Vec<u8> = cast(&input, "cast_bf16_u8");
let expected: Vec<u8> = input.iter().map(|v| v.to_f32() as u8).collect();
// i64 -> u8
let results: Vec<u8> = run_cast(&v_i64, "cast_i64_u8");
assert_eq!(results, v_u8);
assert_eq!(output, expected);
}
#[test]
fn it_cast_bf16_f16() {
let input: Vec<bf16> = (1..=3).map(|v| bf16::from_f32(v as f32)).collect();
let output: Vec<f16> = cast(&input, "cast_bf16_f16");
let expected: Vec<f16> = input.iter().map(|v| f16::from_f32(v.to_f32())).collect();
assert_eq!(output, expected);
}
#[test]
fn it_cast_f16_bf16() {
let input: Vec<f16> = (1..=3).map(|v| f16::from_f32(v as f32)).collect();
let output: Vec<bf16> = cast(&input, "cast_f16_bf16");
let expected: Vec<bf16> = input.iter().map(|v| bf16::from_f32(v.to_f32())).collect();
assert_eq!(output, expected);
}
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {

View File

@ -23,6 +23,7 @@ pub mod mistral;
pub mod mixformer;
pub mod mixtral;
pub mod mobileone;
pub mod moondream;
pub mod mpt;
pub mod persimmon;
pub mod phi;

View File

@ -0,0 +1,174 @@
#![allow(unused)]
use crate::models::phi;
use candle::{Module, Result, Tensor};
use candle_nn::{linear_b, Linear, VarBuilder};
// https://github.com/vikhyat/moondream/blob/main/moondream/configuration_moondream.py
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
phi_config: phi::Config,
vision_config: VisionConfig,
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct VisionConfig {
image_embedding_dim: usize,
model_dim: usize,
hidden_dim: usize,
act: candle_nn::Activation,
}
impl VisionConfig {
pub fn v2() -> Self {
Self {
image_embedding_dim: 1152,
model_dim: 2048,
hidden_dim: 2048 * 4,
act: candle_nn::Activation::Silu,
}
}
}
impl Config {
pub fn v2() -> Self {
let phi_config = phi::Config {
vocab_size: 51200,
hidden_size: 2048,
intermediate_size: 8192,
num_hidden_layers: 24,
num_attention_heads: 32,
num_key_value_heads: None,
hidden_act: candle_nn::Activation::NewGelu,
max_position_embeddings: 2048,
tie_word_embeddings: false,
layer_norm_eps: 1e-5,
rope_theta: 10_000.,
partial_rotary_factor: 0.5,
qk_layernorm: false,
};
let vision_config = VisionConfig::v2();
Self {
phi_config,
vision_config,
}
}
}
#[derive(Debug, Clone)]
struct LinearPatchEmbedding {
linear: Linear,
}
#[derive(Debug, Clone)]
struct Encoder {}
impl Encoder {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
todo!()
}
}
impl Module for Encoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
todo!()
}
}
#[derive(Debug, Clone)]
struct Mlp {
fc1: Linear,
act: candle_nn::Activation,
fc2: Linear,
}
impl Mlp {
fn new(
in_f: usize,
hidden_f: usize,
out_f: usize,
act: candle_nn::Activation,
vb: VarBuilder,
) -> Result<Self> {
let fc1 = linear_b(in_f, hidden_f, true, vb.pp("fc1"))?;
let fc2 = linear_b(hidden_f, out_f, true, vb.pp("fc2"))?;
Ok(Self { fc1, act, fc2 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
}
}
#[derive(Debug, Clone)]
struct VisionProjection {
mlp: Mlp,
}
impl VisionProjection {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let mlp = Mlp::new(
cfg.image_embedding_dim,
cfg.hidden_dim,
cfg.model_dim,
cfg.act,
vb.pp("mlp"),
)?;
Ok(Self { mlp })
}
}
impl Module for VisionProjection {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.mlp)
}
}
#[derive(Debug, Clone)]
struct VisionEncoder {
encoder: Encoder,
projection: VisionProjection,
}
impl VisionEncoder {
pub fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let encoder = Encoder::new(cfg, vb.pp("vision.trunk"))?;
let projection = VisionProjection::new(cfg, vb.pp("projection"))?;
Ok(Self {
encoder,
projection,
})
}
}
impl Module for VisionEncoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, c, hp1, wp2) = xs.dims4()?;
let (p1, p2) = (14, 14);
let h = hp1 / p1;
let w = wp2 / p2;
let xs = xs
.reshape((b, c, h, p1, h, p2))?
.permute((0, 2, 4, 1, 3, 5))?
.reshape((b, h * w, c * p1 * p2))?;
xs.apply(&self.encoder)?.apply(&self.projection)
}
}
#[derive(Debug, Clone)]
pub struct Model {
text_model: phi::Model,
vision_encoder: VisionEncoder,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let text_model = phi::Model::new(&cfg.phi_config, vb.pp("text_model"))?;
let vision_encoder = VisionEncoder::new(&cfg.vision_config, vb.pp("vision_encoder"))?;
Ok(Self {
text_model,
vision_encoder,
})
}
}

View File

@ -106,7 +106,7 @@ impl Module for MLP {
}
}
#[derive(Clone)]
#[derive(Clone, Debug)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
@ -265,7 +265,7 @@ impl Attention {
}
}
#[derive(Clone)]
#[derive(Clone, Debug)]
struct DecoderLayer {
self_attn: Attention,
mlp: MLP,
@ -304,7 +304,7 @@ impl DecoderLayer {
}
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct Model {
embed_tokens: Embedding,
layers: Vec<DecoderLayer>,