Compare commits

..

3 Commits

Author SHA1 Message Date
3754b834f4 More prep work for phi. 2024-04-17 10:23:15 +02:00
d79041d94d Rework the MLP bit. 2024-04-17 09:28:50 +02:00
af11b2d461 Prepare for supporting phi-2 properly in the quantized model. 2024-04-17 09:14:38 +02:00
76 changed files with 920 additions and 5508 deletions

View File

@ -20,7 +20,7 @@ exclude = [
resolver = "2"
[workspace.package]
version = "0.5.1"
version = "0.5.0"
edition = "2021"
description = "Minimalist ML framework."
repository = "https://github.com/huggingface/candle"
@ -33,14 +33,14 @@ ab_glyph = "0.2.23"
accelerate-src = { version = "0.3.2" }
anyhow = { version = "1", features = ["backtrace"] }
byteorder = "1.4.3"
candle = { path = "./candle-core", package = "candle-core", version = "0.5.1" }
candle-datasets = { path = "./candle-datasets", version = "0.5.1" }
candle-flash-attn = { path = "./candle-flash-attn", version = "0.5.1" }
candle-kernels = { path = "./candle-kernels", version = "0.5.1" }
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.5.1" }
candle-nn = { path = "./candle-nn", version = "0.5.1" }
candle-onnx = { path = "./candle-onnx", version = "0.5.1" }
candle-transformers = { path = "./candle-transformers", version = "0.5.1" }
candle = { path = "./candle-core", package = "candle-core", version = "0.5.0" }
candle-datasets = { path = "./candle-datasets", version = "0.5.0" }
candle-flash-attn = { path = "./candle-flash-attn", version = "0.5.0" }
candle-kernels = { path = "./candle-kernels", version = "0.5.0" }
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.5.0" }
candle-nn = { path = "./candle-nn", version = "0.5.0" }
candle-onnx = { path = "./candle-onnx", version = "0.5.0" }
candle-transformers = { path = "./candle-transformers", version = "0.5.0" }
clap = { version = "4.2.4", features = ["derive"] }
criterion = { version = "0.5.1", default-features=false }
cudarc = { version = "0.10.0", features = ["f16"] }
@ -65,13 +65,13 @@ serde = { version = "1.0.171", features = ["derive"] }
serde_plain = "1.0.2"
serde_json = "1.0.99"
thiserror = "1"
tokenizers = { version = "0.19.1", default-features = false }
tokenizers = { version = "0.15.0", default-features = false }
tracing = "0.1.37"
tracing-chrome = "0.7.1"
tracing-subscriber = "0.3.7"
wav = "1.0.0"
yoke = { version = "0.7.2", features = ["derive"] }
zip = { version = "1.1.1", default-features = false }
zip = { version = "0.6.6", default-features = false }
metal = { version = "0.27.0", features = ["mps"]}
[profile.release-with-debug]

View File

@ -60,14 +60,13 @@ These online demos run entirely in your browser:
We also provide a some command line based examples using state of the art models:
- [LLaMA v1, v2, and v3](./candle-examples/examples/llama/): general LLM, includes
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
the SOLAR-10.7B variant.
- [Falcon](./candle-examples/examples/falcon/): general LLM.
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google Deepmind.
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
Griffin based models from Google that mix attention with a RNN like state.
- [Phi-1, Phi-1.5, Phi-2, and Phi-3](./candle-examples/examples/phi/): 1.3b,
2.7b, and 3.8b general LLMs with performance on par with 7b models.
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
pre-trained on 1T tokens of English and code datasets. Also supports
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
@ -112,7 +111,7 @@ We also provide a some command line based examples using state of the art models
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmentation model.
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmantation model.
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
model using residual vector quantization.
@ -201,10 +200,10 @@ If you have an addition to this list, please submit a pull request.
- WASM support, run your models in a browser.
- Included models.
- Language Models.
- LLaMA v1, v2, and v3 with variants such as SOLAR-10.7B.
- LLaMA v1 and v2 with variants such as SOLAR-10.7B.
- Falcon.
- StarCoder, StarCoder2.
- Phi 1, 1.5, 2, and 3.
- Phi 1, 1.5, and 2.
- Mamba, Minimal Mamba
- Gemma 2b and 7b.
- Mistral 7b v0.1.
@ -376,9 +375,9 @@ git submodule update --init
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ...:
```
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
```
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
```
#### Linking error on windows when running rustdoc or mdbook tests

View File

@ -81,7 +81,7 @@ let mut tp_shape = view.shape().to_vec();
let size = tp_shape[0];
if size % world_size != 0 {
panic!("The dimension is not divisible by `world_size`");
panic!("The dimension is not divisble by `world_size`");
}
let block_size = size / world_size;
let start = rank * block_size;

View File

@ -8,5 +8,4 @@ criterion_main!(
benchmarks::where_cond::benches,
benchmarks::conv_transpose2d::benches,
benchmarks::qmatmul::benches,
benchmarks::unary::benches
);

View File

@ -3,7 +3,6 @@ pub(crate) mod conv_transpose2d;
pub(crate) mod matmul;
pub(crate) mod qmatmul;
pub(crate) mod random;
pub(crate) mod unary;
pub(crate) mod where_cond;
use candle_core::{Device, Result};

View File

@ -1,49 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor) {
a.sqrt().unwrap();
}
fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let b = 1;
let m = 1024;
let k = 1024;
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, &device)
.unwrap()
.to_dtype(dtype)
.unwrap()
.reshape((b, m, k))
.unwrap();
let flops = b * m * k * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
for dtype in [DType::F32, DType::BF16, DType::F16] {
let name = format!("sqrt_{:?}", dtype);
run_unary_benchmark(c, &device, dtype, &name);
}
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -133,8 +133,6 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
/// after this call.
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage>;
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;

View File

@ -624,7 +624,7 @@ impl Tensor {
Op::Unary(arg, UnaryOp::Silu) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
let sigmoid_arg = (*node / arg)?;
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
}

View File

@ -1,7 +1,6 @@
pub mod erf;
pub mod kernels;
#[allow(unused)]
trait Cpu<const ARR: usize> {
type Unit;
type Array;
@ -19,7 +18,6 @@ trait Cpu<const ARR: usize> {
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
}
#[allow(unused)]
trait CpuF16<const ARR: usize> {
type Unit;
type Array;

View File

@ -26,17 +26,6 @@ pub enum CpuStorage {
F64(Vec<f64>),
}
#[derive(Debug, Clone)]
pub enum CpuStorageRef<'a> {
U8(&'a [u8]),
U32(&'a [u32]),
I64(&'a [i64]),
BF16(&'a [bf16]),
F16(&'a [f16]),
F32(&'a [f32]),
F64(&'a [f64]),
}
#[derive(Debug, Clone)]
pub struct CpuDevice;
@ -2456,10 +2445,6 @@ impl BackendDevice for CpuDevice {
true
}
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
Ok(T::to_cpu_storage(s))
}
fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
Ok(s.clone())
}

View File

@ -1,5 +1,5 @@
use crate::backend::BackendDevice;
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
use crate::{CpuStorage, DType, Layout, Result, Shape};
pub use candle_kernels as kernels;
pub use cudarc;
use cudarc::driver::{CudaFunction, LaunchAsync, LaunchConfig};
@ -334,43 +334,6 @@ impl BackendDevice for CudaDevice {
})
}
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
let slice = match T::cpu_storage_ref(s) {
CpuStorageRef::U8(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::U8(data)
}
CpuStorageRef::U32(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::U32(data)
}
CpuStorageRef::I64(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::I64(data)
}
CpuStorageRef::BF16(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::BF16(data)
}
CpuStorageRef::F16(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F16(data)
}
CpuStorageRef::F32(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F32(data)
}
CpuStorageRef::F64(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
let slice = match storage {
CpuStorage::U8(storage) => {

View File

@ -18,7 +18,7 @@ pub use device::{CudaDevice, DeviceId};
pub use error::{CudaError, WrapErr};
pub use utils::{Map1, Map1Any, Map2, Map2Any, Map2InPlace, S};
pub enum SlicePtrOrNull<T> {
enum SlicePtrOrNull<T> {
Ptr(CudaSlice<T>),
Null,
}
@ -33,7 +33,7 @@ unsafe impl<T: DeviceRepr> DeviceRepr for &SlicePtrOrNull<T> {
}
impl SlicePtrOrNull<usize> {
pub fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
let ds = if l.is_contiguous() {
SlicePtrOrNull::Null
} else {
@ -250,6 +250,44 @@ impl Map1 for Powf {
}
}
struct Sum<'a>(&'a [usize]);
impl<'a> Map1 for Sum<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let src_dims = shape.dims();
let el = shape.elem_count();
let mut dst_el = el;
for &sum_dim in self.0.iter() {
dst_el /= src_dims[sum_dim];
}
let mut sum_dims = self.0.to_vec();
// Sort the sum_dims as they have to be processed from left to right when converting the
// indexes.
sum_dims.sort();
let sum_dims_l: Vec<usize> = sum_dims.iter().map(|&d| src_dims[d]).collect();
let sum_dims_s: Vec<usize> = sum_dims
.iter()
.map(|&d| src_dims[d + 1..].iter().product::<usize>())
.collect();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = dev
.htod_copy([src_dims, layout.stride(), &sum_dims_l, &sum_dims_s].concat())
.w()?;
let src = &src.slice(layout.start_offset()..);
let func = dev.get_or_load_func(&kernel_name::<T>("sum"), kernels::REDUCE)?;
let out = dev.alloc_zeros::<T>(dst_el).w()?;
let params = (el, src_dims.len(), sum_dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct FastReduce<'a>(&'a [usize], ReduceOp);
impl<'a> Map1Any for FastReduce<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
@ -1597,8 +1635,12 @@ impl BackendStorage for CudaStorage {
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(bf16::ONE, bf16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<bf16>(elem_count) }.w()?;
unsafe { gemm_strided_batched_bf16(&self.device.blas, cfg, rhs, lhs, &mut out) }
.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::BF16(out)
}
(CudaStorageSlice::F16(lhs), CudaStorageSlice::F16(rhs)) => {
@ -1606,8 +1648,12 @@ impl BackendStorage for CudaStorage {
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(f16::ONE, f16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
unsafe { gemm_strided_batched_f16(&self.device.blas, cfg, rhs, lhs, &mut out) }
.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::F16(out)
}
(CudaStorageSlice::F32(lhs), CudaStorageSlice::F32(rhs)) => {
@ -1810,146 +1856,3 @@ impl BackendStorage for CudaStorage {
Ok(())
}
}
// Default for the reduced precision setting is false, similar to pytorch.
// https://github.com/pytorch/pytorch/issues/123157
static MM_F16_REDUCED_PRECISION: std::sync::atomic::AtomicBool =
std::sync::atomic::AtomicBool::new(false);
static MM_BF16_REDUCED_PRECISION: std::sync::atomic::AtomicBool =
std::sync::atomic::AtomicBool::new(false);
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn gemm_reduced_precision_f16() -> bool {
MM_F16_REDUCED_PRECISION.load(std::sync::atomic::Ordering::Relaxed)
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn set_gemm_reduced_precision_f16(b: bool) {
MM_F16_REDUCED_PRECISION.store(b, std::sync::atomic::Ordering::Relaxed)
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn gemm_reduced_precision_bf16() -> bool {
MM_BF16_REDUCED_PRECISION.load(std::sync::atomic::Ordering::Relaxed)
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn set_gemm_reduced_precision_bf16(b: bool) {
MM_BF16_REDUCED_PRECISION.store(b, std::sync::atomic::Ordering::Relaxed)
}
unsafe fn gemm_strided_batched_f16(
cublas: &cudarc::cublas::CudaBlas,
cfg: StridedBatchedConfig<f16>,
a: &cudarc::driver::CudaView<f16>,
b: &cudarc::driver::CudaView<f16>,
c: &mut CudaSlice<f16>,
) -> std::result::Result<(), cudarc::cublas::result::CublasError> {
use cudarc::cublas::sys;
use cudarc::driver::DevicePtrMut;
let alpha = cfg.gemm.alpha;
let beta = cfg.gemm.beta;
let alpha_f32: f32 = cfg.gemm.alpha.to_f32();
let beta_f32: f32 = cfg.gemm.beta.to_f32();
let (compute_type, alpha, beta) = if gemm_reduced_precision_f16() {
(
sys::cublasComputeType_t::CUBLAS_COMPUTE_16F,
(&alpha) as *const f16 as *const _,
(&beta) as *const f16 as *const _,
)
} else {
(
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F,
(&alpha_f32) as *const f32 as *const _,
(&beta_f32) as *const f32 as *const _,
)
};
cudarc::cublas::result::gemm_strided_batched_ex(
*cublas.handle(),
cfg.gemm.transa,
cfg.gemm.transb,
cfg.gemm.m,
cfg.gemm.n,
cfg.gemm.k,
alpha,
*a.device_ptr() as *const _,
sys::cudaDataType_t::CUDA_R_16F,
cfg.gemm.lda,
cfg.stride_a,
*b.device_ptr() as *const _,
sys::cudaDataType_t::CUDA_R_16F,
cfg.gemm.ldb,
cfg.stride_b,
beta,
*c.device_ptr_mut() as *mut _,
sys::cudaDataType_t::CUDA_R_16F,
cfg.gemm.ldc,
cfg.stride_c,
cfg.batch_size,
compute_type,
sys::cublasGemmAlgo_t::CUBLAS_GEMM_DEFAULT_TENSOR_OP,
)
}
unsafe fn gemm_strided_batched_bf16(
cublas: &cudarc::cublas::CudaBlas,
cfg: StridedBatchedConfig<bf16>,
a: &cudarc::driver::CudaView<bf16>,
b: &cudarc::driver::CudaView<bf16>,
c: &mut CudaSlice<bf16>,
) -> std::result::Result<(), cudarc::cublas::result::CublasError> {
use cudarc::cublas::sys;
use cudarc::driver::DevicePtrMut;
let alpha_f32: f32 = cfg.gemm.alpha.to_f32();
let beta_f32: f32 = cfg.gemm.beta.to_f32();
let alpha = f16::from_f32(alpha_f32);
let beta = f16::from_f32(beta_f32);
// The type for alpha and beta depends on the computeType.
// https://docs.nvidia.com/cuda/cublas/index.html#cublasgemmstridedbatchedex
let (compute_type, alpha, beta) = if gemm_reduced_precision_bf16() {
(
sys::cublasComputeType_t::CUBLAS_COMPUTE_16F,
(&alpha) as *const f16 as *const _,
(&beta) as *const f16 as *const _,
)
} else {
(
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F,
(&alpha_f32) as *const f32 as *const _,
(&beta_f32) as *const f32 as *const _,
)
};
cudarc::cublas::result::gemm_strided_batched_ex(
*cublas.handle(),
cfg.gemm.transa,
cfg.gemm.transb,
cfg.gemm.m,
cfg.gemm.n,
cfg.gemm.k,
alpha,
*a.device_ptr() as *const _,
sys::cudaDataType_t::CUDA_R_16BF,
cfg.gemm.lda,
cfg.stride_a,
*b.device_ptr() as *const _,
sys::cudaDataType_t::CUDA_R_16BF,
cfg.gemm.ldb,
cfg.stride_b,
beta,
*c.device_ptr_mut() as *mut _,
sys::cudaDataType_t::CUDA_R_16BF,
cfg.gemm.ldc,
cfg.stride_c,
cfg.batch_size,
compute_type,
sys::cublasGemmAlgo_t::CUBLAS_GEMM_DEFAULT_TENSOR_OP,
)
}

View File

@ -306,20 +306,6 @@ impl Device {
}
}
pub(crate) fn storage_from_slice<D: WithDType>(&self, data: &[D]) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(data.to_cpu_storage())),
Device::Cuda(device) => {
let storage = device.storage_from_slice(data)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = device.storage_from_slice(data)?;
Ok(Storage::Metal(storage))
}
}
}
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),

View File

@ -1,7 +1,7 @@
//! Types for elements that can be stored and manipulated using tensors.
#![allow(clippy::redundant_closure_call)]
use crate::backend::BackendStorage;
use crate::{CpuStorage, CpuStorageRef, Error, Result};
use crate::{CpuStorage, Error, Result};
/// The different types of elements allowed in tensors.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
@ -100,14 +100,12 @@ pub trait WithDType:
+ 'static
+ Send
+ Sync
+ std::any::Any
+ crate::cpu::kernels::VecOps
{
const DTYPE: DType;
fn from_f64(v: f64) -> Self;
fn to_f64(self) -> f64;
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_>;
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
@ -131,10 +129,6 @@ macro_rules! with_dtype {
$to_f64(self)
}
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_> {
CpuStorageRef::$dtype(data)
}
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
CpuStorage::$dtype(data)
}

View File

@ -214,10 +214,6 @@ impl crate::backend::BackendDevice for CudaDevice {
Err(Error::NotCompiledWithCudaSupport)
}
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithCudaSupport)
}
@ -238,23 +234,3 @@ impl crate::backend::BackendDevice for CudaDevice {
Ok(())
}
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn gemm_reduced_precision_f16() -> bool {
true
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with f16 GEMMs.
pub fn set_gemm_reduced_precision_f16(_: bool) {}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn gemm_reduced_precision_bf16() -> bool {
true
}
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
/// allowed with bf16 GEMMs.
pub fn set_gemm_reduced_precision_bf16(_: bool) {}

View File

@ -226,10 +226,6 @@ impl crate::backend::BackendDevice for MetalDevice {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}

View File

@ -219,14 +219,10 @@ impl Error {
Self::Wrapped(Box::new(err)).bt()
}
pub fn msg(err: impl std::error::Error) -> Self {
pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self {
Self::Msg(err.to_string()).bt()
}
pub fn debug(err: impl std::fmt::Debug) -> Self {
Self::Msg(format!("{err:?}")).bt()
}
pub fn bt(self) -> Self {
let backtrace = std::backtrace::Backtrace::capture();
match backtrace.status() {

View File

@ -47,7 +47,7 @@ mod custom_op;
mod device;
pub mod display;
mod dtype;
pub mod dummy_cuda_backend;
mod dummy_cuda_backend;
mod dummy_metal_backend;
pub mod error;
mod indexer;
@ -63,7 +63,6 @@ pub mod quantized;
pub mod safetensors;
pub mod scalar;
pub mod shape;
mod sort;
mod storage;
mod strided_index;
mod tensor;
@ -75,7 +74,7 @@ mod variable;
#[cfg(feature = "cudnn")]
pub use cuda_backend::cudnn;
pub use cpu_backend::{CpuStorage, CpuStorageRef};
pub use cpu_backend::CpuStorage;
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
pub use device::{Device, DeviceLocation, NdArray};
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
@ -89,12 +88,10 @@ pub use tensor::{Tensor, TensorId};
pub use variable::Var;
#[cfg(feature = "cuda")]
pub use cuda_backend as cuda;
pub use cuda_backend::{CudaDevice, CudaStorage};
#[cfg(not(feature = "cuda"))]
pub use dummy_cuda_backend as cuda;
pub use cuda::{CudaDevice, CudaStorage};
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
#[cfg(feature = "metal")]
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};

View File

@ -1,7 +1,7 @@
use crate::backend::{BackendDevice, BackendStorage};
use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose1D, ParamsConvTranspose2D};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
use crate::{CpuStorage, DType, Layout, Result, Shape};
use candle_metal_kernels::{BufferOffset, CallConvTranspose2dCfg, Kernels};
use metal::{Buffer, MTLResourceOptions, NSUInteger};
use std::collections::HashMap;
@ -11,7 +11,7 @@ use std::sync::{Arc, Mutex, RwLock, TryLockError};
mod device;
pub use device::{DeviceId, MetalDevice};
pub fn buffer_o<'a>(buffer: &'a Buffer, l: &Layout, dtype: DType) -> BufferOffset<'a> {
fn buffer_o<'a>(buffer: &'a Buffer, l: &Layout, dtype: DType) -> BufferOffset<'a> {
BufferOffset {
buffer,
offset_in_bytes: l.start_offset() * dtype.size_in_bytes(),
@ -444,238 +444,156 @@ impl BackendStorage for MetalStorage {
let command_buffer = device.command_buffer()?;
command_buffer.set_label(B::KERNEL);
let src = buffer_o(&self.buffer, layout, self.dtype);
if layout.is_contiguous() {
use candle_metal_kernels::unary::contiguous;
match (el_count % 2, dtype, layout.is_contiguous()) {
(0, DType::BF16 | DType::F16, true) => {
use candle_metal_kernels::unary::contiguous_tiled;
let kernel_name = match (B::KERNEL, dtype) {
("uabs", DType::F16) => contiguous_tiled::abs::HALF,
("uabs", DType::F32) => contiguous_tiled::abs::FLOAT,
("uabs", DType::BF16) => contiguous_tiled::abs::BFLOAT,
("uceil", DType::F16) => contiguous_tiled::ceil::HALF,
("uceil", DType::F32) => contiguous_tiled::ceil::FLOAT,
("uceil", DType::BF16) => contiguous_tiled::ceil::BFLOAT,
("ucos", DType::F16) => contiguous_tiled::cos::HALF,
("ucos", DType::F32) => contiguous_tiled::cos::FLOAT,
("ucos", DType::BF16) => contiguous_tiled::cos::BFLOAT,
("uerf", DType::F16) => contiguous_tiled::erf::HALF,
("uerf", DType::F32) => contiguous_tiled::erf::FLOAT,
("uerf", DType::BF16) => contiguous_tiled::erf::BFLOAT,
("uexp", DType::F16) => contiguous_tiled::exp::HALF,
("uexp", DType::F32) => contiguous_tiled::exp::FLOAT,
("uexp", DType::BF16) => contiguous_tiled::exp::BFLOAT,
("ufloor", DType::F16) => contiguous_tiled::floor::HALF,
("ufloor", DType::F32) => contiguous_tiled::floor::FLOAT,
("ufloor", DType::BF16) => contiguous_tiled::floor::BFLOAT,
("ugelu_erf", DType::F16) => contiguous_tiled::gelu_erf::HALF,
("ugelu_erf", DType::F32) => contiguous_tiled::gelu_erf::FLOAT,
("ugelu_erf", DType::BF16) => contiguous_tiled::gelu_erf::BFLOAT,
("ugelu", DType::F16) => contiguous_tiled::gelu::HALF,
("ugelu", DType::F32) => contiguous_tiled::gelu::FLOAT,
("ugelu", DType::BF16) => contiguous_tiled::gelu::BFLOAT,
("ulog", DType::F16) => contiguous_tiled::log::HALF,
("ulog", DType::F32) => contiguous_tiled::log::FLOAT,
("ulog", DType::BF16) => contiguous_tiled::log::BFLOAT,
("uneg", DType::F16) => contiguous_tiled::neg::HALF,
("uneg", DType::F32) => contiguous_tiled::neg::FLOAT,
("uneg", DType::BF16) => contiguous_tiled::neg::BFLOAT,
("urecip", DType::F16) => contiguous_tiled::recip::HALF,
("urecip", DType::F32) => contiguous_tiled::recip::FLOAT,
("urecip", DType::BF16) => contiguous_tiled::recip::BFLOAT,
("urelu", DType::F16) => contiguous_tiled::relu::HALF,
("urelu", DType::F32) => contiguous_tiled::relu::FLOAT,
("urelu", DType::BF16) => contiguous_tiled::relu::BFLOAT,
("uround", DType::F16) => contiguous_tiled::round::HALF,
("uround", DType::F32) => contiguous_tiled::round::FLOAT,
("uround", DType::BF16) => contiguous_tiled::round::BFLOAT,
("usilu", DType::F16) => contiguous_tiled::silu::HALF,
("usilu", DType::F32) => contiguous_tiled::silu::FLOAT,
("usilu", DType::BF16) => contiguous_tiled::silu::BFLOAT,
("usin", DType::F16) => contiguous_tiled::sin::HALF,
("usin", DType::F32) => contiguous_tiled::sin::FLOAT,
("usin", DType::BF16) => contiguous_tiled::sin::BFLOAT,
("usqr", DType::F16) => contiguous_tiled::sqr::HALF,
("usqr", DType::F32) => contiguous_tiled::sqr::FLOAT,
("usqr", DType::BF16) => contiguous_tiled::sqr::BFLOAT,
("usqrt", DType::F16) => contiguous_tiled::sqrt::HALF,
("usqrt", DType::F32) => contiguous_tiled::sqrt::FLOAT,
("usqrt", DType::BF16) => contiguous_tiled::sqrt::BFLOAT,
("utanh", DType::F16) => contiguous_tiled::tanh::HALF,
("utanh", DType::F32) => contiguous_tiled::tanh::FLOAT,
("utanh", DType::BF16) => contiguous_tiled::tanh::BFLOAT,
("usign", DType::F16) => contiguous_tiled::sign::HALF,
("usign", DType::F32) => contiguous_tiled::sign::FLOAT,
("usign", DType::BF16) => contiguous_tiled::sign::BFLOAT,
("usign", DType::I64) => contiguous_tiled::sign::I64,
(name, dtype) => {
crate::bail!(
"Metal contiguous_tiled unary {name} {dtype:?} not implemented"
)
}
};
candle_metal_kernels::call_unary_contiguous_tiled(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
el_count,
src,
&buffer,
)
.map_err(MetalError::from)?;
}
(_, _, true) => {
use candle_metal_kernels::unary::contiguous;
let kernel_name = match (B::KERNEL, dtype) {
("uabs", DType::F16) => contiguous::abs::HALF,
("uabs", DType::F32) => contiguous::abs::FLOAT,
("uabs", DType::BF16) => contiguous::abs::BFLOAT,
("uceil", DType::F16) => contiguous::ceil::HALF,
("uceil", DType::F32) => contiguous::ceil::FLOAT,
("uceil", DType::BF16) => contiguous::ceil::BFLOAT,
("ucos", DType::F16) => contiguous::cos::HALF,
("ucos", DType::F32) => contiguous::cos::FLOAT,
("ucos", DType::BF16) => contiguous::cos::BFLOAT,
("uerf", DType::F16) => contiguous::erf::HALF,
("uerf", DType::F32) => contiguous::erf::FLOAT,
("uerf", DType::BF16) => contiguous::erf::BFLOAT,
("uexp", DType::F16) => contiguous::exp::HALF,
("uexp", DType::F32) => contiguous::exp::FLOAT,
("uexp", DType::BF16) => contiguous::exp::BFLOAT,
("ufloor", DType::F16) => contiguous::floor::HALF,
("ufloor", DType::F32) => contiguous::floor::FLOAT,
("ufloor", DType::BF16) => contiguous::floor::BFLOAT,
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
("ugelu_erf", DType::BF16) => contiguous::gelu_erf::BFLOAT,
("ugelu", DType::F16) => contiguous::gelu::HALF,
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
("ugelu", DType::BF16) => contiguous::gelu::BFLOAT,
("ulog", DType::F16) => contiguous::log::HALF,
("ulog", DType::F32) => contiguous::log::FLOAT,
("ulog", DType::BF16) => contiguous::log::BFLOAT,
("uneg", DType::F16) => contiguous::neg::HALF,
("uneg", DType::F32) => contiguous::neg::FLOAT,
("uneg", DType::BF16) => contiguous::neg::BFLOAT,
("urecip", DType::F16) => contiguous::recip::HALF,
("urecip", DType::F32) => contiguous::recip::FLOAT,
("urecip", DType::BF16) => contiguous::recip::BFLOAT,
("urelu", DType::F16) => contiguous::relu::HALF,
("urelu", DType::F32) => contiguous::relu::FLOAT,
("urelu", DType::BF16) => contiguous::relu::BFLOAT,
("uround", DType::F16) => contiguous::round::HALF,
("uround", DType::F32) => contiguous::round::FLOAT,
("uround", DType::BF16) => contiguous::round::BFLOAT,
("usilu", DType::F16) => contiguous::silu::HALF,
("usilu", DType::F32) => contiguous::silu::FLOAT,
("usilu", DType::BF16) => contiguous::silu::BFLOAT,
("usin", DType::F16) => contiguous::sin::HALF,
("usin", DType::F32) => contiguous::sin::FLOAT,
("usin", DType::BF16) => contiguous::sin::BFLOAT,
("usqr", DType::F16) => contiguous::sqr::HALF,
("usqr", DType::F32) => contiguous::sqr::FLOAT,
("usqr", DType::BF16) => contiguous::sqr::BFLOAT,
("usqrt", DType::F16) => contiguous::sqrt::HALF,
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
("usqrt", DType::BF16) => contiguous::sqrt::BFLOAT,
("utanh", DType::F16) => contiguous::tanh::HALF,
("utanh", DType::F32) => contiguous::tanh::FLOAT,
("utanh", DType::BF16) => contiguous::tanh::BFLOAT,
("usign", DType::F16) => contiguous::sign::HALF,
("usign", DType::F32) => contiguous::sign::FLOAT,
("usign", DType::BF16) => contiguous::sign::BFLOAT,
("usign", DType::I64) => contiguous::sign::I64,
(name, dtype) => {
crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented")
}
};
candle_metal_kernels::call_unary_contiguous(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
el_count,
src,
&buffer,
)
.map_err(MetalError::from)?;
}
(_, _, false) => {
use candle_metal_kernels::unary::strided;
let kernel_name = match (B::KERNEL, dtype) {
("ucos", DType::F32) => strided::cos::FLOAT,
("usin", DType::F32) => strided::sin::FLOAT,
("usqr", DType::F32) => strided::sqr::FLOAT,
("usqrt", DType::F32) => strided::sqrt::FLOAT,
("uneg", DType::F32) => strided::neg::FLOAT,
("uexp", DType::F32) => strided::exp::FLOAT,
("ulog", DType::F32) => strided::log::FLOAT,
("ugelu", DType::F32) => strided::gelu::FLOAT,
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
("uerf", DType::F32) => strided::erf::FLOAT,
("usilu", DType::F32) => strided::silu::FLOAT,
("uabs", DType::F32) => strided::abs::FLOAT,
("uceil", DType::F32) => strided::ceil::FLOAT,
("ufloor", DType::F32) => strided::floor::FLOAT,
("urelu", DType::F32) => strided::relu::FLOAT,
("uround", DType::F32) => strided::round::FLOAT,
("utanh", DType::F32) => strided::tanh::FLOAT,
let kernel_name = match (B::KERNEL, dtype) {
("uabs", DType::F16) => contiguous::abs::HALF,
("uabs", DType::F32) => contiguous::abs::FLOAT,
("uabs", DType::BF16) => contiguous::abs::BFLOAT,
("uceil", DType::F16) => contiguous::ceil::HALF,
("uceil", DType::F32) => contiguous::ceil::FLOAT,
("uceil", DType::BF16) => contiguous::ceil::BFLOAT,
("ucos", DType::F16) => contiguous::cos::HALF,
("ucos", DType::F32) => contiguous::cos::FLOAT,
("ucos", DType::BF16) => contiguous::cos::BFLOAT,
("uerf", DType::F16) => contiguous::erf::HALF,
("uerf", DType::F32) => contiguous::erf::FLOAT,
("uerf", DType::BF16) => contiguous::erf::BFLOAT,
("uexp", DType::F16) => contiguous::exp::HALF,
("uexp", DType::F32) => contiguous::exp::FLOAT,
("uexp", DType::BF16) => contiguous::exp::BFLOAT,
("ufloor", DType::F16) => contiguous::floor::HALF,
("ufloor", DType::F32) => contiguous::floor::FLOAT,
("ufloor", DType::BF16) => contiguous::floor::BFLOAT,
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
("ugelu_erf", DType::BF16) => contiguous::gelu_erf::BFLOAT,
("ugelu", DType::F16) => contiguous::gelu::HALF,
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
("ugelu", DType::BF16) => contiguous::gelu::BFLOAT,
("ulog", DType::F16) => contiguous::log::HALF,
("ulog", DType::F32) => contiguous::log::FLOAT,
("ulog", DType::BF16) => contiguous::log::BFLOAT,
("uneg", DType::F16) => contiguous::neg::HALF,
("uneg", DType::F32) => contiguous::neg::FLOAT,
("uneg", DType::BF16) => contiguous::neg::BFLOAT,
("urecip", DType::F16) => contiguous::recip::HALF,
("urecip", DType::F32) => contiguous::recip::FLOAT,
("urecip", DType::BF16) => contiguous::recip::BFLOAT,
("urelu", DType::F16) => contiguous::relu::HALF,
("urelu", DType::F32) => contiguous::relu::FLOAT,
("urelu", DType::BF16) => contiguous::relu::BFLOAT,
("uround", DType::F16) => contiguous::round::HALF,
("uround", DType::F32) => contiguous::round::FLOAT,
("uround", DType::BF16) => contiguous::round::BFLOAT,
("usilu", DType::F16) => contiguous::silu::HALF,
("usilu", DType::F32) => contiguous::silu::FLOAT,
("usilu", DType::BF16) => contiguous::silu::BFLOAT,
("usin", DType::F16) => contiguous::sin::HALF,
("usin", DType::F32) => contiguous::sin::FLOAT,
("usin", DType::BF16) => contiguous::sin::BFLOAT,
("usqr", DType::F16) => contiguous::sqr::HALF,
("usqr", DType::F32) => contiguous::sqr::FLOAT,
("usqr", DType::BF16) => contiguous::sqr::BFLOAT,
("usqrt", DType::F16) => contiguous::sqrt::HALF,
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
("usqrt", DType::BF16) => contiguous::sqrt::BFLOAT,
("utanh", DType::F16) => contiguous::tanh::HALF,
("utanh", DType::F32) => contiguous::tanh::FLOAT,
("utanh", DType::BF16) => contiguous::tanh::BFLOAT,
("usign", DType::F16) => contiguous::sign::HALF,
("usign", DType::F32) => contiguous::sign::FLOAT,
("usign", DType::BF16) => contiguous::sign::BFLOAT,
("usign", DType::I64) => contiguous::sign::I64,
(name, dtype) => {
crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented")
}
};
candle_metal_kernels::call_unary_contiguous(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
el_count,
src,
&buffer,
)
.map_err(MetalError::from)?;
} else {
use candle_metal_kernels::unary::strided;
let kernel_name = match (B::KERNEL, dtype) {
("ucos", DType::F32) => strided::cos::FLOAT,
("usin", DType::F32) => strided::sin::FLOAT,
("usqr", DType::F32) => strided::sqr::FLOAT,
("usqrt", DType::F32) => strided::sqrt::FLOAT,
("uneg", DType::F32) => strided::neg::FLOAT,
("uexp", DType::F32) => strided::exp::FLOAT,
("ulog", DType::F32) => strided::log::FLOAT,
("ugelu", DType::F32) => strided::gelu::FLOAT,
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
("uerf", DType::F32) => strided::erf::FLOAT,
("usilu", DType::F32) => strided::silu::FLOAT,
("uabs", DType::F32) => strided::abs::FLOAT,
("uceil", DType::F32) => strided::ceil::FLOAT,
("ufloor", DType::F32) => strided::floor::FLOAT,
("urelu", DType::F32) => strided::relu::FLOAT,
("uround", DType::F32) => strided::round::FLOAT,
("utanh", DType::F32) => strided::tanh::FLOAT,
("ucos", DType::F16) => strided::cos::HALF,
("usin", DType::F16) => strided::sin::HALF,
("usqr", DType::F16) => strided::sqr::HALF,
("usqrt", DType::F16) => strided::sqrt::HALF,
("uneg", DType::F16) => strided::neg::HALF,
("uexp", DType::F16) => strided::exp::HALF,
("ulog", DType::F16) => strided::log::HALF,
("ugelu", DType::F16) => strided::gelu::HALF,
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
("uerf", DType::F16) => strided::erf::HALF,
("usilu", DType::F16) => strided::silu::HALF,
("uabs", DType::F16) => strided::abs::HALF,
("uceil", DType::F16) => strided::ceil::HALF,
("ufloor", DType::F16) => strided::floor::HALF,
("urelu", DType::F16) => strided::relu::HALF,
("uround", DType::F16) => strided::round::HALF,
("utanh", DType::F16) => strided::tanh::HALF,
("ucos", DType::F16) => strided::cos::HALF,
("usin", DType::F16) => strided::sin::HALF,
("usqr", DType::F16) => strided::sqr::HALF,
("usqrt", DType::F16) => strided::sqrt::HALF,
("uneg", DType::F16) => strided::neg::HALF,
("uexp", DType::F16) => strided::exp::HALF,
("ulog", DType::F16) => strided::log::HALF,
("ugelu", DType::F16) => strided::gelu::HALF,
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
("uerf", DType::F16) => strided::erf::HALF,
("usilu", DType::F16) => strided::silu::HALF,
("uabs", DType::F16) => strided::abs::HALF,
("uceil", DType::F16) => strided::ceil::HALF,
("ufloor", DType::F16) => strided::floor::HALF,
("urelu", DType::F16) => strided::relu::HALF,
("uround", DType::F16) => strided::round::HALF,
("utanh", DType::F16) => strided::tanh::HALF,
("ucos", DType::BF16) => strided::cos::BFLOAT,
("usin", DType::BF16) => strided::sin::BFLOAT,
("usqr", DType::BF16) => strided::sqr::BFLOAT,
("usqrt", DType::BF16) => strided::sqrt::BFLOAT,
("uneg", DType::BF16) => strided::neg::BFLOAT,
("uexp", DType::BF16) => strided::exp::BFLOAT,
("ulog", DType::BF16) => strided::log::BFLOAT,
("ugelu", DType::BF16) => strided::gelu::BFLOAT,
("ugelu_erf", DType::BF16) => strided::gelu_erf::BFLOAT,
("uerf", DType::BF16) => strided::erf::BFLOAT,
("usilu", DType::BF16) => strided::silu::BFLOAT,
("uabs", DType::BF16) => strided::abs::BFLOAT,
("uceil", DType::BF16) => strided::ceil::BFLOAT,
("ufloor", DType::BF16) => strided::floor::BFLOAT,
("urelu", DType::BF16) => strided::relu::BFLOAT,
("uround", DType::BF16) => strided::round::BFLOAT,
("utanh", DType::BF16) => strided::tanh::BFLOAT,
("ucos", DType::BF16) => strided::cos::BFLOAT,
("usin", DType::BF16) => strided::sin::BFLOAT,
("usqr", DType::BF16) => strided::sqr::BFLOAT,
("usqrt", DType::BF16) => strided::sqrt::BFLOAT,
("uneg", DType::BF16) => strided::neg::BFLOAT,
("uexp", DType::BF16) => strided::exp::BFLOAT,
("ulog", DType::BF16) => strided::log::BFLOAT,
("ugelu", DType::BF16) => strided::gelu::BFLOAT,
("ugelu_erf", DType::BF16) => strided::gelu_erf::BFLOAT,
("uerf", DType::BF16) => strided::erf::BFLOAT,
("usilu", DType::BF16) => strided::silu::BFLOAT,
("uabs", DType::BF16) => strided::abs::BFLOAT,
("uceil", DType::BF16) => strided::ceil::BFLOAT,
("ufloor", DType::BF16) => strided::floor::BFLOAT,
("urelu", DType::BF16) => strided::relu::BFLOAT,
("uround", DType::BF16) => strided::round::BFLOAT,
("utanh", DType::BF16) => strided::tanh::BFLOAT,
(name, dtype) => {
crate::bail!("Metal strided unary {name} {dtype:?} not implemented")
}
};
let dst = BufferOffset::zero_offset(&buffer);
candle_metal_kernels::call_unary_strided(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
layout.dims(),
src,
layout.stride(),
dst,
)
.map_err(MetalError::from)?;
}
(name, dtype) => {
crate::bail!("Metal strided unary {name} {dtype:?} not implemented")
}
};
let dst = BufferOffset::zero_offset(&buffer);
candle_metal_kernels::call_unary_strided(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
layout.dims(),
src,
layout.stride(),
dst,
)
.map_err(MetalError::from)?;
}
Ok(Self::new(buffer, device.clone(), el_count, dtype))
}
@ -1784,19 +1702,6 @@ impl BackendDevice for MetalDevice {
self.storage_from_cpu_storage(&cpu_storage)
}
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
let (count, buffer) = match T::cpu_storage_ref(s) {
CpuStorageRef::U8(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::U32(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::I64(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::BF16(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::F16(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::F32(storage) => (storage.len(), self.new_buffer_with_data(storage)),
CpuStorageRef::F64(storage) => (storage.len(), self.new_buffer_with_data(storage)),
};
Ok(Self::Storage::new(buffer?, self.clone(), count, T::DTYPE))
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
let (count, buffer) = match storage {
CpuStorage::U8(storage) => (storage.len(), self.new_buffer_with_data(storage)),

View File

@ -330,7 +330,7 @@ impl Tensor {
path: P,
) -> Result<()> {
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
let options: zip::write::FileOptions<()> =
let options =
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
for (name, tensor) in ts.iter() {

View File

@ -2,7 +2,6 @@ use super::{GgmlDType, QStorage};
use crate::quantized::k_quants::GgmlType;
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
use crate::{CudaDevice, CudaStorage, Result};
use half::f16;
use cudarc::driver::{CudaSlice, CudaView, DeviceSlice};
@ -60,7 +59,7 @@ fn quantize_q8_1(
Ok(())
}
fn dequantize_f32(
fn dequantize(
data: &CudaSlice<u8>,
dtype: GgmlDType,
elem_count: usize,
@ -70,27 +69,27 @@ fn dequantize_f32(
let nb = (elem_count + 255) / 256;
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f32", false, 32, nb),
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f32", false, 32, nb),
GgmlDType::Q4_0 => ("dequantize_block_q4_0", false, 32, nb),
GgmlDType::Q4_1 => ("dequantize_block_q4_1", false, 32, nb),
GgmlDType::Q5_0 => (
"dequantize_block_q5_0_f32",
"dequantize_block_q5_0",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q5_1 => (
"dequantize_block_q5_1_f32",
"dequantize_block_q5_1",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f32", false, 32, nb),
GgmlDType::Q2K => ("dequantize_block_q2_K_f32", true, 64, nb),
GgmlDType::Q3K => ("dequantize_block_q3_K_f32", true, 64, nb),
GgmlDType::Q4K => ("dequantize_block_q4_K_f32", true, 32, nb),
GgmlDType::Q5K => ("dequantize_block_q5_K_f32", true, 64, nb),
GgmlDType::Q6K => ("dequantize_block_q6_K_f32", true, 64, nb),
GgmlDType::Q8K => ("dequantize_block_q8_K_f32", true, 32, nb),
GgmlDType::Q8_0 => ("dequantize_block_q8_0", false, 32, nb),
GgmlDType::Q2K => ("dequantize_block_q2_K", true, 64, nb),
GgmlDType::Q3K => ("dequantize_block_q3_K", true, 64, nb),
GgmlDType::Q4K => ("dequantize_block_q4_K", true, 32, nb),
GgmlDType::Q5K => ("dequantize_block_q5_K", true, 64, nb),
GgmlDType::Q6K => ("dequantize_block_q6_K", true, 64, nb),
GgmlDType::Q8K => ("dequantize_block_q8_K", true, 32, nb),
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
@ -117,63 +116,6 @@ fn dequantize_f32(
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
fn dequantize_f16(
data: &CudaSlice<u8>,
dtype: GgmlDType,
elem_count: usize,
dev: &CudaDevice,
) -> Result<CudaStorage> {
use cudarc::driver::LaunchAsync;
let nb = (elem_count + 255) / 256;
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f16", false, 32, nb),
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f16", false, 32, nb),
GgmlDType::Q5_0 => (
"dequantize_block_q5_0_f16",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q5_1 => (
"dequantize_block_q5_1_f16",
false,
CUDA_DEQUANTIZE_BLOCK_SIZE,
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
),
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f16", false, 32, nb),
GgmlDType::Q2K => ("dequantize_block_q2_K_f16", true, 64, nb),
GgmlDType::Q3K => ("dequantize_block_q3_K_f16", true, 64, nb),
GgmlDType::Q4K => ("dequantize_block_q4_K_f16", true, 32, nb),
GgmlDType::Q5K => ("dequantize_block_q5_K_f16", true, 64, nb),
GgmlDType::Q6K => ("dequantize_block_q6_K_f16", true, 64, nb),
GgmlDType::Q8K => ("dequantize_block_q8_K_f16", true, 32, nb),
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
};
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f16>(elem_count).w()? };
// See e.g.
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (num_blocks as u32, 1, 1),
block_dim: (block_dim as u32, 1, 1),
shared_mem_bytes: 0,
};
if is_k {
let params = (data, &dst);
unsafe { func.launch(cfg, params) }.w()?;
} else {
let nb32 = match dtype {
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
_ => elem_count / 32,
};
let params = (data, &dst, nb32 as i32);
unsafe { func.launch(cfg, params) }.w()?;
}
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
}
fn dequantize_mul_mat_vec(
data: &CudaSlice<u8>,
y: &CudaView<f32>,
@ -236,8 +178,8 @@ fn mul_mat_vec_via_q8_1(
if y.len() != ncols * b_size {
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
}
if b_size == 0 || b_size > 8 {
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
if b_size == 0 || b_size > 4 {
crate::bail!("only bsize between 1 and 4 are supported, got {b_size}")
}
// Start by quantizing y
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
@ -262,16 +204,14 @@ fn mul_mat_vec_via_q8_1(
let kernel_name = format!("{kernel_name}{b_size}");
let func = dev.get_or_load_func(&kernel_name, candle_kernels::QUANTIZED)?;
let dst = unsafe { dev.alloc::<f32>(nrows * b_size).w()? };
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
let (nblocks, nwarps) = match b_size {
1 => (nrows as u32, 4),
2..=4 => ((nrows as u32 + 1) / 2, 4),
5..=8 => ((nrows as u32 + 1) / 2, 2),
_ => crate::bail!("unexpected bsize {b_size}"),
let nblocks = if b_size == 1 {
nrows as u32
} else {
(nrows as u32 + 1) / 2
};
let cfg = cudarc::driver::LaunchConfig {
grid_dim: (nblocks, 1, 1),
block_dim: (WARP_SIZE as u32, nwarps, 1),
block_dim: (WARP_SIZE as u32, 4, 1),
shared_mem_bytes: 0,
};
@ -399,7 +339,7 @@ impl QCudaStorage {
| GgmlDType::Q8K
);
if fast_kernel {
return dequantize_f32(&self.data, self.dtype, elem_count, self.device());
return dequantize(&self.data, self.dtype, elem_count, self.device());
}
// Run the dequantization on cpu.
@ -427,10 +367,6 @@ impl QCudaStorage {
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
}
pub fn dequantize_f16(&self, elem_count: usize) -> Result<CudaStorage> {
dequantize_f16(&self.data, self.dtype, elem_count, self.device())
}
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
// Run the quantization on cpu.
let src = match &src.slice {
@ -462,7 +398,7 @@ impl QCudaStorage {
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
1
} else {
8
4
};
let use_vec_kernel = match layout.shape().dims() {
[b, m, _k] => b * m <= max_bm,

View File

@ -24,10 +24,6 @@ impl QCudaStorage {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn dequantize_f16(&self, _elem_count: usize) -> Result<CudaStorage> {
Err(Error::NotCompiledWithCudaSupport)
}
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
Err(Error::NotCompiledWithCudaSupport)
}

View File

@ -135,6 +135,7 @@ pub enum ValueType {
// The value is a UTF-8 non-null-terminated string, with length prepended.
String,
// The value is an array of other values, with the length and type prepended.
///
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
Array,
}

View File

@ -152,9 +152,9 @@ impl QMetalStorage {
// We always use a single batch dimension and stack all the tensors in the batch on the
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
// properly.
let m = match dst_shape.len() {
3 => dst_shape[0] * dst_shape[1],
2 => dst_shape[0],
let (b, m) = match dst_shape.len() {
3 => (1, dst_shape[0] * dst_shape[1]),
2 => (1, dst_shape[0]),
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
};
let last_k = dst_shape.pop().unwrap();
@ -166,23 +166,18 @@ impl QMetalStorage {
let device = storage.device().clone();
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
let command_buffer = device.command_buffer()?;
// In some cases it would be better to use the mm variant, though it has its drawbacks
// around memory alignemnt.
for batch_id in 0..m {
candle_metal_kernels::call_quantized_matmul_mv_t(
device.device(),
&command_buffer,
device.kernels(),
self.dtype.into(),
(1, 1, n, k),
storage.buffer(),
(layout.start_offset() + batch_id * k) * storage.dtype().size_in_bytes(),
&self.buffer,
batch_id * n * DType::F32.size_in_bytes(),
&dst,
)
.map_err(MetalError::from)?;
}
candle_metal_kernels::call_quantized_matmul_t(
device.device(),
&command_buffer,
device.kernels(),
self.dtype.into(),
(b, m, n, k),
storage.buffer(),
layout.start_offset() * storage.dtype().size_in_bytes(),
&self.buffer,
&dst,
)
.map_err(MetalError::from)?;
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
Ok((dst_storage, dst_shape))
}

View File

@ -1,4 +1,4 @@
use crate::{CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
use crate::{CpuStorage, Device, Result, Shape, Storage, Tensor};
use k_quants::*;
use std::borrow::Cow;
@ -360,24 +360,9 @@ impl QTensor {
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
let storage = self.storage.dequantize(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
}
pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
// In the CUDA case, we have a specialized kernel as this can be useful for volta
// architectures. https://github.com/huggingface/candle/issues/2136
match &self.storage {
QStorage::Cuda(s) => {
let s = s.dequantize_f16(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
.to_device(device)
}
_ => {
let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
Ok(s)
}
}
let is_variable = false;
crate::tensor::from_storage(storage, self.shape.clone(), none, is_variable)
.to_device(device)
}
pub fn storage_size_in_bytes(&self) -> usize {
@ -393,7 +378,6 @@ impl QTensor {
pub enum QMatMul {
QTensor(std::sync::Arc<QTensor>),
Tensor(Tensor),
TensorF16(Tensor),
}
thread_local! {
@ -407,17 +391,6 @@ thread_local! {
}
}
thread_local! {
static DEQUANTIZE_ALL_F16: bool = {
match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
Ok(s) => {
!s.is_empty() && s != "0"
},
Err(_) => false,
}
}
}
impl QMatMul {
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
let dequantize = match qtensor.dtype() {
@ -427,9 +400,6 @@ impl QMatMul {
let t = if dequantize {
let tensor = qtensor.dequantize(&qtensor.device())?;
Self::Tensor(tensor)
} else if DEQUANTIZE_ALL_F16.with(|b| *b) {
let tensor = qtensor.dequantize_f16(&qtensor.device())?;
Self::TensorF16(tensor)
} else {
Self::QTensor(qtensor)
};
@ -439,25 +409,6 @@ impl QMatMul {
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
Self::from_arc(std::sync::Arc::new(qtensor))
}
pub fn dequantize_f16(&self) -> Result<Tensor> {
match self {
Self::QTensor(t) => t.dequantize_f16(&t.device()),
Self::Tensor(t) => t.to_dtype(DType::F16),
Self::TensorF16(t) => Ok(t.clone()),
}
}
pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
let w = self.dequantize_f16()?;
let in_dtype = xs.dtype();
let w = match *xs.dims() {
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
_ => w.t()?,
};
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
}
}
impl crate::CustomOp1 for QTensor {
@ -535,15 +486,6 @@ impl crate::Module for QMatMul {
};
xs.matmul(&w)
}
Self::TensorF16(w) => {
let in_dtype = xs.dtype();
let w = match *xs.dims() {
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
_ => w.t()?,
};
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
}
}
}
}

View File

@ -1,239 +0,0 @@
use crate::{Result, Tensor};
use rayon::prelude::*;
#[derive(Debug, Clone, Copy)]
struct ArgSort {
asc: bool,
last_dim: usize,
}
impl ArgSort {
fn asort<T: crate::WithDType>(&self, vs: &[T], layout: &crate::Layout) -> Vec<u32> {
#[allow(clippy::uninit_vec)]
// Safety: indexes are set later in the parallelized section.
let mut sort_indexes = unsafe {
let el_count = layout.shape().elem_count();
let mut v = Vec::with_capacity(el_count);
v.set_len(el_count);
v
};
if self.asc {
sort_indexes
.par_chunks_exact_mut(self.last_dim)
.zip(vs.par_chunks_exact(self.last_dim))
.for_each(|(indexes, vs)| {
indexes
.iter_mut()
.enumerate()
.for_each(|(i, v)| *v = i as u32);
indexes.sort_by(|&i, &j| {
vs[i as usize]
.partial_cmp(&vs[j as usize])
.unwrap_or(std::cmp::Ordering::Greater)
})
});
} else {
sort_indexes
.par_chunks_exact_mut(self.last_dim)
.zip(vs.par_chunks_exact(self.last_dim))
.for_each(|(indexes, vs)| {
indexes
.iter_mut()
.enumerate()
.for_each(|(i, v)| *v = i as u32);
indexes.sort_by(|&j, &i| {
vs[i as usize]
.partial_cmp(&vs[j as usize])
.unwrap_or(std::cmp::Ordering::Greater)
})
});
}
sort_indexes
}
}
impl crate::CustomOp1 for ArgSort {
fn name(&self) -> &'static str {
"argsort"
}
fn cpu_fwd(
&self,
storage: &crate::CpuStorage,
layout: &crate::Layout,
) -> Result<(crate::CpuStorage, crate::Shape)> {
let sort_indexes = match storage {
crate::CpuStorage::U8(vs) => self.asort(vs, layout),
crate::CpuStorage::U32(vs) => self.asort(vs, layout),
crate::CpuStorage::I64(vs) => self.asort(vs, layout),
crate::CpuStorage::BF16(vs) => self.asort(vs, layout),
crate::CpuStorage::F16(vs) => self.asort(vs, layout),
crate::CpuStorage::F32(vs) => self.asort(vs, layout),
crate::CpuStorage::F64(vs) => self.asort(vs, layout),
};
let sort_indexes = crate::CpuStorage::U32(sort_indexes);
Ok((sort_indexes, layout.shape().into()))
}
#[cfg(feature = "cuda")]
fn cuda_fwd(
&self,
storage: &crate::CudaStorage,
layout: &crate::Layout,
) -> Result<(crate::CudaStorage, crate::Shape)> {
use crate::cuda_backend::cudarc::driver::{
CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, ValidAsZeroBits,
};
use crate::cuda_backend::{kernel_name, kernels, CudaStorageSlice as S, Map1Any, WrapErr};
use crate::{CudaDevice, WithDType};
impl Map1Any for ArgSort {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &crate::Layout,
_wrap: W,
) -> Result<S> {
let slice = match layout.contiguous_offsets() {
None => crate::bail!("input has to be contiguous"),
Some((o1, o2)) => src.slice(o1..o2),
};
let elem_count = layout.shape().elem_count();
let dst = unsafe { dev.alloc::<u32>(elem_count) }.w()?;
let func = if self.asc {
dev.get_or_load_func(&kernel_name::<T>("asort_asc"), kernels::SORT)?
} else {
dev.get_or_load_func(&kernel_name::<T>("asort_desc"), kernels::SORT)?
};
let ncols = self.last_dim;
let nrows = elem_count / ncols;
let ncols_pad = next_power_of_2(ncols);
let params = (&slice, &dst, ncols as i32, ncols_pad as i32);
let cfg = LaunchConfig {
grid_dim: (1, nrows as u32, 1),
block_dim: (ncols_pad as u32, 1, 1),
shared_mem_bytes: (ncols_pad * std::mem::size_of::<u32>()) as u32,
};
unsafe { func.launch(cfg, params) }.w()?;
Ok(S::U32(dst))
}
}
use crate::backend::BackendStorage;
let dev = storage.device();
let slice = self.map(&storage.slice, dev, layout)?;
let dst = crate::cuda_backend::CudaStorage {
slice,
device: dev.clone(),
};
Ok((dst, layout.shape().clone()))
}
#[cfg(feature = "metal")]
fn metal_fwd(
&self,
storage: &crate::MetalStorage,
layout: &crate::Layout,
) -> Result<(crate::MetalStorage, crate::Shape)> {
use crate::backend::BackendStorage;
use crate::DType;
let name = {
if self.asc {
match storage.dtype() {
DType::BF16 => "asort_asc_bf16",
DType::F16 => "asort_asc_f16",
DType::F32 => "asort_asc_f32",
DType::F64 => "asort_asc_f64",
DType::U8 => "asort_asc_u8",
DType::U32 => "asort_asc_u32",
DType::I64 => "asort_asc_i64",
}
} else {
match storage.dtype() {
DType::BF16 => "asort_desc_bf16",
DType::F16 => "asort_desc_f16",
DType::F32 => "asort_desc_f32",
DType::F64 => "asort_desc_f64",
DType::U8 => "asort_desc_u8",
DType::U32 => "asort_desc_u32",
DType::I64 => "asort_desc_i64",
}
}
};
let device = storage.device();
let kernels = device.kernels();
let command_buffer = device.command_buffer()?;
let el = layout.shape().elem_count();
let ncols = self.last_dim;
let nrows = el / ncols;
let src = crate::metal_backend::buffer_o(storage.buffer(), layout, storage.dtype());
let dst = device.new_buffer(el, DType::U32, "asort")?;
let mut ncols_pad = 1;
while ncols_pad < ncols {
ncols_pad *= 2;
}
candle_metal_kernels::call_arg_sort(
device.metal_device(),
&command_buffer,
kernels,
name,
nrows,
ncols,
ncols_pad,
src,
&dst,
)
.map_err(crate::Error::wrap)?;
let dst = crate::MetalStorage::new(dst, device.clone(), el, DType::U32);
Ok((dst, layout.shape().clone()))
}
}
#[allow(unused)]
fn next_power_of_2(x: usize) -> usize {
let mut n = 1;
while n < x {
n *= 2
}
n
}
impl Tensor {
/// Returns the indices that sort the tensor along the last dimension.
///
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
/// descending order. The sort is unstable so there is no guarantees on the final order when it
/// comes to ties.
pub fn arg_sort_last_dim(&self, asc: bool) -> Result<Tensor> {
if !self.is_contiguous() {
return Err(crate::Error::RequiresContiguous {
op: "arg_sort_last_dim",
});
}
let last_dim = match self.dims().last() {
None => crate::bail!("empty last-dim in arg-sort"),
Some(last_dim) => *last_dim,
};
// No need for a backward pass for arg sort.
self.apply_op1_no_bwd(&ArgSort { asc, last_dim })
}
/// Sorts the tensor along the last dimension, returns the sorted tensor together with the
/// sorted indexes.
///
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
/// descending order. The sort is unstable so there is no guarantees on the final order when it
/// comes to ties.
pub fn sort_last_dim(&self, asc: bool) -> Result<(Tensor, Tensor)> {
if !self.is_contiguous() {
return Err(crate::Error::RequiresContiguous {
op: "sort_last_dim",
});
}
let asort = self.arg_sort_last_dim(asc)?;
let sorted = self.gather(&asort, crate::D::Minus1)?;
Ok((sorted, asort))
}
}

View File

@ -456,15 +456,7 @@ impl Tensor {
shape: S,
device: &Device,
) -> Result<Self> {
let shape = shape.into();
let n: usize = shape.elem_count();
let buffer_size: usize = array.len();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage_from_slice(array)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, false))
Self::new_impl(array, shape.into(), device, false)
}
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {

View File

@ -34,14 +34,9 @@ impl Var {
Ok(Self(inner))
}
// Convert a tensor to a variable, if the tensor is already a variable then it is returned as is.
pub fn from_tensor(t: &Tensor) -> Result<Self> {
if t.is_variable() {
Ok(Self(t.clone()))
} else {
let inner = t.make_var()?;
Ok(Self(inner))
}
let inner = t.make_var()?;
Ok(Self(inner))
}
pub fn rand_f64<S: Into<Shape>>(

View File

@ -3,7 +3,7 @@ use candle_core::{
quantized::{self, GgmlDType},
test_device,
test_utils::to_vec2_round,
DType, Device, IndexOp, Module, Result, Tensor,
Device, IndexOp, Module, Result, Tensor,
};
use quantized::{k_quants, GgmlType};
use rand::prelude::*;
@ -193,25 +193,17 @@ fn qmm_batch(dev: &Device) -> Result<()> {
let mm3 = rhs.forward(&lhs3)?;
assert_eq!(mm3.shape().dims(), [6, 6]);
let diff3 = (mm3.i(2..4)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff3, 0.0);
let diff3 = (mm3.i(4..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff3, 0.0);
let lhs4 = Tensor::cat(&[&lhs3, &lhs3], 0)?;
let mm4 = rhs.forward(&lhs4)?;
assert_eq!(mm4.shape().dims(), [12, 6]);
let diff4 = (mm4.i(..6)? - &mm3)?.abs()?.sum_all()?.to_vec0::<f32>()?;
if dev.is_cuda() {
// We use a different kernel for sizes from 1 to 8 on cuda which explains
// the difference here.
assert!(0. < diff4 && diff4 < 1e-4)
assert!(diff3 < 1e-4)
} else {
assert_eq!(diff4, 0.0)
assert_eq!(diff3, 0.0)
};
let diff3 = (mm3.i(4..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
if dev.is_cuda() {
assert!(diff3 < 1e-4)
} else {
assert_eq!(diff3, 0.0)
};
let diff4 = (mm4.i(6..)? - &mm4.i(..6)?)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff4, 0.0);
Ok(())
}
@ -225,13 +217,6 @@ fn quantize_q4_0(device: &Device) -> Result<()> {
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
assert_eq!(
dst.to_vec1::<f32>()?,
&[
@ -258,13 +243,6 @@ fn quantize_q4_1(device: &Device) -> Result<()> {
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
&[
@ -291,13 +269,6 @@ fn quantize_q5_0(device: &Device) -> Result<()> {
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
&[
@ -324,13 +295,6 @@ fn quantize_q5_1(device: &Device) -> Result<()> {
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
&[
@ -415,13 +379,6 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?);
if error > max_error {
bail!(
@ -439,13 +396,6 @@ fn quantize_q2k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -465,13 +415,6 @@ fn quantize_q2k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
@ -486,13 +429,6 @@ fn quantize_q3k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -512,13 +448,6 @@ fn quantize_q3k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
@ -533,13 +462,6 @@ fn quantize_q4k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -559,13 +481,6 @@ fn quantize_q4k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
@ -580,13 +495,6 @@ fn quantize_q5k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -606,13 +514,6 @@ fn quantize_q5k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
@ -627,13 +528,6 @@ fn quantize_q6k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -653,13 +547,6 @@ fn quantize_q6k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
@ -674,13 +561,6 @@ fn quantize_q8k(device: &Device) -> Result<()> {
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let dst_f16 = quant.dequantize_f16(device)?;
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
@ -700,13 +580,6 @@ fn quantize_q8k(device: &Device) -> Result<()> {
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let dst_big_f16 = quant_big.dequantize_f16(device)?;
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
.to_dtype(DType::F32)?
.abs()?
.sum_all()?
.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;

View File

@ -96,40 +96,6 @@ fn clamp(device: &Device) -> Result<()> {
Ok(())
}
fn asort(device: &Device) -> Result<()> {
let data = &[[3f32, 1., 4., 1.1, 5.], [2.1, 1., 7., 8., 2.]];
let tensor = Tensor::new(data, device)?;
let indexes = tensor.arg_sort_last_dim(true)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
);
let indexes = tensor.arg_sort_last_dim(false)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
);
let (sorted, indexes) = tensor.sort_last_dim(true)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
);
assert_eq!(
sorted.to_vec2::<f32>()?,
[[1.0, 1.1, 3.0, 4.0, 5.0], [1.0, 2.0, 2.1, 7.0, 8.0]]
);
let (sorted, indexes) = tensor.sort_last_dim(false)?;
assert_eq!(
indexes.to_vec2::<u32>()?,
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
);
assert_eq!(
sorted.to_vec2::<f32>()?,
[[5.0, 4.0, 3.0, 1.1, 1.0], [8.0, 7.0, 2.1, 2.0, 1.0]]
);
Ok(())
}
fn unary_op(device: &Device) -> Result<()> {
let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]];
let tensor = Tensor::new(data, device)?;
@ -1185,7 +1151,6 @@ test_device!(
);
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
test_device!(asort, asort_cpu, asort_gpu, asort_metal);
test_device!(var, var_cpu, var_gpu, var_metal);
test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal);

View File

@ -17,7 +17,7 @@ use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use std::io::Write;
@ -31,8 +31,6 @@ const DEFAULT_PROMPT: &str = "My favorite theorem is ";
enum Which {
V1,
V2,
V3,
V3Instruct,
#[value(name = "solar-10.7b")]
Solar10_7B,
#[value(name = "tiny-llama-1.1b-chat")]
@ -47,23 +45,19 @@ struct Args {
cpu: bool,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 10000)]
#[arg(long, default_value_t = 10000)]
sample_len: usize,
/// Disable the key-value cache.
@ -89,18 +83,18 @@ struct Args {
revision: Option<String>,
/// The model size to use.
#[arg(long, default_value = "v3")]
#[arg(long, default_value = "v2")]
which: Which,
#[arg(long)]
use_flash_attn: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
#[arg(long, default_value_t = 1.0)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 128)]
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
@ -126,13 +120,11 @@ fn main() -> Result<()> {
Some(dtype) => bail!("Unsupported dtype {dtype}"),
None => DType::F16,
};
let (llama, tokenizer_filename, mut cache, config) = {
let (llama, tokenizer_filename, mut cache) = {
let api = Api::new()?;
let model_id = args.model_id.unwrap_or_else(|| match args.which {
Which::V1 => "Narsil/amall-7b".to_string(),
Which::V2 => "meta-llama/Llama-2-7b-hf".to_string(),
Which::V3 => "meta-llama/Meta-Llama-3-8B".to_string(),
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct".to_string(),
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0".to_string(),
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0".to_string(),
});
@ -146,7 +138,7 @@ fn main() -> Result<()> {
let config = config.into_config(args.use_flash_attn);
let filenames = match args.which {
Which::V1 | Which::V2 | Which::V3 | Which::V3Instruct | Which::Solar10_7B => {
Which::V1 | Which::V2 | Which::Solar10_7B => {
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
}
Which::TinyLlama1_1BChat => vec![api.get("model.safetensors")?],
@ -154,12 +146,10 @@ fn main() -> Result<()> {
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
(Llama::load(vb, &config)?, tokenizer_filename, cache, config)
(Llama::load(vb, &config)?, tokenizer_filename, cache)
};
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let eos_token_id = config
.eos_token_id
.or_else(|| tokenizer.token_to_id(EOS_TOKEN));
let eos_token_id = tokenizer.token_to_id(EOS_TOKEN);
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
let mut tokens = tokenizer
.encode(prompt, true)
@ -170,22 +160,8 @@ fn main() -> Result<()> {
println!("starting the inference loop");
print!("{prompt}");
let mut logits_processor = {
let temperature = args.temperature;
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (args.top_k, args.top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(args.seed, sampling)
};
let mut start_gen = std::time::Instant::now();
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature, args.top_p);
let start_gen = std::time::Instant::now();
let mut index_pos = 0;
let mut token_generated = 0;
for index in 0..args.sample_len {
@ -194,9 +170,6 @@ fn main() -> Result<()> {
} else {
(tokens.len(), 0)
};
if index == 1 {
start_gen = std::time::Instant::now()
}
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
let logits = llama.forward(&input, context_index, &mut cache)?;
@ -232,7 +205,7 @@ fn main() -> Result<()> {
println!(
"\n\n{} tokens generated ({} token/s)\n",
token_generated,
(token_generated - 1) as f64 / dt.as_secs_f64(),
token_generated as f64 / dt.as_secs_f64(),
);
Ok(())
}

View File

@ -10,7 +10,7 @@
extern crate intel_mkl_src;
use anyhow::{bail, Error as E, Result};
use clap::{Parser, ValueEnum};
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_transformers::generation::LogitsProcessor;
@ -24,15 +24,57 @@ mod model;
use model::{Config, Llama};
const MAX_SEQ_LEN: usize = 4096;
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
const DEFAULT_PROMPT: &str = r"
EDWARD:
I wonder how our princely father 'scaped,
Or whether he be 'scaped away or no
From Clifford's and Northumberland's pursuit:
Had he been ta'en, we should have heard the news;
Had he been slain, we should have heard the news;
Or had he 'scaped, methinks we should have heard
The happy tidings of his good escape.
How fares my brother? why is he so sad?
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
V2_7b,
V2_70b,
V3_8b,
V3_70b,
}
RICHARD:
I cannot joy, until I be resolved
Where our right valiant father is become.
I saw him in the battle range about;
And watch'd him how he singled Clifford forth.
Methought he bore him in the thickest troop
As doth a lion in a herd of neat;
Or as a bear, encompass'd round with dogs,
Who having pinch'd a few and made them cry,
The rest stand all aloof, and bark at him.
So fared our father with his enemies;
So fled his enemies my warlike father:
Methinks, 'tis prize enough to be his son.
See how the morning opes her golden gates,
And takes her farewell of the glorious sun!
How well resembles it the prime of youth,
Trimm'd like a younker prancing to his love!
EDWARD:
Dazzle mine eyes, or do I see three suns?
RICHARD:
Three glorious suns, each one a perfect sun;
Not separated with the racking clouds,
But sever'd in a pale clear-shining sky.
See, see! they join, embrace, and seem to kiss,
As if they vow'd some league inviolable:
Now are they but one lamp, one light, one sun.
In this the heaven figures some event.
EDWARD:
'Tis wondrous strange, the like yet never heard of.
I think it cites us, brother, to the field,
That we, the sons of brave Plantagenet,
Each one already blazing by our meeds,
Should notwithstanding join our lights together
And over-shine the earth as this the world.
Whate'er it bodes, henceforward will I bear
Upon my target three fair-shining suns.
";
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
@ -44,8 +86,8 @@ struct Args {
rank: Option<usize>,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
@ -75,12 +117,6 @@ struct Args {
#[arg(long)]
dtype: Option<String>,
#[arg(long, default_value = "v3-8b")]
which: Which,
#[arg(long, default_value = "nccl_id.txt")]
comm_file: String,
}
fn main() -> Result<()> {
@ -93,27 +129,14 @@ fn main() -> Result<()> {
Some("bf16") => DType::BF16,
Some("f32") => DType::F32,
Some(dtype) => bail!("Unsupported dtype {dtype}"),
None => match args.which {
Which::V2_7b | Which::V2_70b => DType::F16,
Which::V3_8b | Which::V3_70b => DType::BF16,
},
None => DType::F16,
};
let comm_file = std::path::PathBuf::from(&args.comm_file);
if comm_file.exists() {
bail!("comm file {comm_file:?} already exists, please remove it first")
}
let api = Api::new()?;
let model_id = match args.model_id {
Some(model) => model,
None => match args.which {
Which::V2_7b => "meta-llama/Llama-2-7b-hf".to_string(),
Which::V2_70b => "meta-llama/Llama-2-70b-hf".to_string(),
Which::V3_8b => "meta-llama/Meta-Llama-3-8B".to_string(),
Which::V3_70b => "meta-llama/Meta-Llama-3-70B".to_string(),
},
};
let model_id = args
.model_id
.unwrap_or_else(|| "meta-llama/Llama-2-7b-hf".to_string());
println!("loading the model weights from {model_id}");
let revision = args.revision.unwrap_or("main".to_string());
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
@ -122,40 +145,39 @@ fn main() -> Result<()> {
let tokenizer_filename = api.get("tokenizer.json")?;
let filenames = candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?;
let rank = match args.rank {
None => {
println!("creating {} child processes", args.num_shards);
let children: Vec<_> = (0..args.num_shards)
.map(|rank| {
let mut args: std::collections::VecDeque<_> = std::env::args().collect();
args.push_back("--rank".to_string());
args.push_back(format!("{rank}"));
let name = args.pop_front().unwrap();
std::process::Command::new(name).args(args).spawn().unwrap()
})
.collect();
for mut child in children {
child.wait()?;
}
return Ok(());
if args.rank.is_none() {
let children: Vec<_> = (0..args.num_shards)
.map(|rank| {
let mut args: std::collections::VecDeque<_> = std::env::args().collect();
args.push_back("--rank".to_string());
args.push_back(format!("{rank}"));
let name = args.pop_front().unwrap();
std::process::Command::new(name).args(args).spawn().unwrap()
})
.collect();
for mut child in children {
child.wait().unwrap();
}
Some(rank) => rank,
};
return Ok(());
}
let i = args.rank.unwrap();
let num_shards = args.num_shards;
let rank = i;
// Primitive IPC
let id = if rank == 0 {
let id = Id::new().unwrap();
let tmp_file = comm_file.with_extension(".comm.tgz");
std::fs::File::create(&tmp_file)?
.write_all(&id.internal().iter().map(|&i| i as u8).collect::<Vec<_>>())?;
std::fs::rename(&tmp_file, &comm_file)?;
std::fs::File::create("nccl_id.txt.tmp")?
.write_all(&id.internal().iter().map(|&i| i as u8).collect::<Vec<_>>())
.unwrap();
std::fs::rename("nccl_id.txt.tmp", "nccl_id.txt")?;
id
} else {
while !comm_file.exists() {
let path = std::path::PathBuf::from("nccl_id.txt");
while !path.exists() {
std::thread::sleep(std::time::Duration::from_secs(1));
}
let data = std::fs::read(&comm_file)?;
let data = std::fs::read("nccl_id.txt")?;
let internal: [i8; 128] = data
.into_iter()
.map(|i| i as i8)
@ -165,17 +187,14 @@ fn main() -> Result<()> {
let id: Id = Id::uninit(internal);
id
};
let device = CudaDevice::new(rank)?;
let comm = match Comm::from_rank(device, rank, num_shards, id) {
Ok(comm) => Rc::new(comm),
Err(err) => anyhow::bail!("nccl error {:?}", err.0),
};
let device = CudaDevice::new(i)?;
let comm = Rc::new(Comm::from_rank(device, i, num_shards, id).unwrap());
if rank == 0 {
std::fs::remove_file(comm_file)?;
std::fs::remove_file("nccl_id.txt")?;
}
println!("Rank {rank:?} spawned");
let device = Device::new_cuda(rank)?;
let device = Device::new_cuda(i)?;
let cache = model::Cache::new(dtype, &config, &device)?;
println!("building the model");
@ -191,24 +210,14 @@ fn main() -> Result<()> {
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
println!("starting the inference loop");
let temperature = if args.temperature <= 0. {
None
} else {
Some(args.temperature)
};
let mut logits_processor = LogitsProcessor::new(args.seed, temperature, args.top_p);
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature, args.top_p);
let mut new_tokens = vec![];
let mut start_gen = std::time::Instant::now();
let start_gen = std::time::Instant::now();
let mut index_pos = 0;
for index in 0..args.sample_len {
// Only start timing at the second token as processing the first token waits for all the
// weights to be loaded in an async way.
if index == 1 {
start_gen = std::time::Instant::now()
};
let start_gen = std::time::Instant::now();
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
@ -219,23 +228,25 @@ fn main() -> Result<()> {
let next_token = logits_processor.sample(&logits)?;
tokens.push(next_token);
new_tokens.push(next_token);
if Some(next_token) == config.eos_token_id {
break;
}
if rank == 0 {
if let Some(t) = tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
println!("> {:?}", start_gen.elapsed());
println!(
"{} token: {} '{}'",
index + 1,
next_token,
tokenizer.decode(&[next_token], true).map_err(E::msg)?
);
}
}
println!();
let dt = start_gen.elapsed();
if rank == 0 {
let dt = start_gen.elapsed();
println!(
"\n\n{} tokens generated ({} token/s)\n",
"{} tokens generated ({} token/s)\n----\n{}\n----",
args.sample_len,
(args.sample_len - 1) as f64 / dt.as_secs_f64(),
args.sample_len as f64 / dt.as_secs_f64(),
tokenizer
.decode(new_tokens.as_slice(), true)
.map_err(E::msg)?
);
}
Ok(())

View File

@ -1,14 +1,15 @@
use candle::backend::BackendStorage;
use candle::{CpuStorage, CustomOp1, DType, Device, IndexOp, Layout, Result, Shape, Tensor, D};
use candle_nn::var_builder::ShardedVarBuilder as VarBuilder;
use candle_nn::{Embedding, Linear, Module, RmsNorm};
use cudarc::nccl::safe::{Comm, ReduceOp};
use half::f16;
use serde::Deserialize;
use std::rc::Rc;
use std::sync::{Arc, Mutex};
use super::MAX_SEQ_LEN;
pub type Config = candle_transformers::models::llama::LlamaConfig;
use candle_nn::var_builder::ShardedVarBuilder as VarBuilder;
struct TensorParallelColumnLinear {
linear: Linear,
@ -25,7 +26,7 @@ impl TensorParallelColumnLinear {
struct TensorParallelRowLinear {
linear: Linear,
all_reduce: AllReduce,
comm: Rc<Comm>,
}
struct AllReduce {
@ -35,6 +36,8 @@ struct AllReduce {
/// This is actually not safe: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/threadsafety.html
/// But for this example purposes, this will work
unsafe impl Sync for AllReduce {}
/// This is actually not safe: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/threadsafety.html
/// But for this example purposes, this will work
unsafe impl Send for AllReduce {}
impl CustomOp1 for AllReduce {
@ -43,7 +46,7 @@ impl CustomOp1 for AllReduce {
}
fn cpu_fwd(&self, _s: &CpuStorage, _l: &Layout) -> Result<(CpuStorage, Shape)> {
candle::bail!("AllReduce is never used on cpu")
todo!("implement allreduce for cpu is not necessary for single node");
}
#[cfg(feature = "cuda")]
@ -53,49 +56,31 @@ impl CustomOp1 for AllReduce {
l: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
use candle::cuda_backend::WrapErr;
use cudarc::driver::DeviceSlice;
use half::{bf16, f16};
let elem_count = l.shape().elem_count();
let dev = s.device().clone();
let dst = match s.dtype() {
DType::BF16 => {
let s = s.as_cuda_slice::<bf16>()?;
let s = match l.contiguous_offsets() {
Some((0, l)) if l == s.len() => s,
Some(_) | None => candle::bail!("input has to be contiguous"),
};
let mut dst = unsafe { dev.alloc::<bf16>(elem_count) }.w()?;
self.comm
.all_reduce(s, &mut dst, &ReduceOp::Sum)
.map_err(candle::Error::debug)?;
candle::CudaStorage::wrap_cuda_slice(dst, dev)
}
DType::F16 => {
let s = s.as_cuda_slice::<f16>()?;
let s = match l.contiguous_offsets() {
Some((0, l)) if l == s.len() => s,
Some(_) | None => candle::bail!("input has to be contiguous"),
};
let mut dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
self.comm
.all_reduce(s, &mut dst, &ReduceOp::Sum)
.map_err(candle::Error::debug)?;
candle::CudaStorage::wrap_cuda_slice(dst, dev)
}
dtype => candle::bail!("unsupported dtype {dtype:?}"),
};
let s = s.as_cuda_slice::<f16>()?;
// let s = match l.contiguous_offsets() {
// None => Err(Error::Wrapped("input has to be contiguous".into()))?,
// Some((o1, o2)) => s.slice(o1..o2),
// };
let mut dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
self.comm.all_reduce(s, &mut dst, &ReduceOp::Sum).unwrap();
let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev);
Ok((dst, l.shape().clone()))
}
}
fn all_reduce_sum(x: &Tensor, comm: &Rc<Comm>) -> Result<Tensor> {
x.apply_op1(AllReduce { comm: comm.clone() })
}
impl TensorParallelRowLinear {
fn new(linear: Linear, comm: Rc<Comm>) -> Self {
let all_reduce = AllReduce { comm };
Self { linear, all_reduce }
Self { linear, comm }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
self.linear.forward(x)?.apply_op1_no_bwd(&self.all_reduce)
let x = self.linear.forward(x)?;
all_reduce_sum(&x, &self.comm)
}
}
@ -136,6 +121,23 @@ impl TensorParallelRowLinear {
}
}
#[derive(Deserialize)]
pub struct Config {
pub hidden_size: usize,
pub intermediate_size: usize,
pub vocab_size: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub num_key_value_heads: usize,
pub rms_norm_eps: f64,
#[serde(default = "default_rope")]
pub rope_theta: f32,
}
fn default_rope() -> f32 {
10_000.0
}
#[derive(Clone)]
pub struct Cache {
#[allow(clippy::type_complexity)]
@ -159,6 +161,7 @@ impl Cache {
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
// This is different from the paper, see:
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
let cos = idx_theta.cos()?.to_dtype(dtype)?;
let sin = idx_theta.sin()?.to_dtype(dtype)?;
Ok(Self {
@ -194,10 +197,16 @@ struct CausalSelfAttention {
impl CausalSelfAttention {
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, _, seq_len, _hidden_size) = x.shape().dims4()?;
let (b_sz, _, seq_len, hidden_size) = x.shape().dims4()?;
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
candle_nn::rotary_emb::rope(x, &cos, &sin)
let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
Ok(rope)
}
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
@ -223,16 +232,13 @@ impl CausalSelfAttention {
let q = q
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
.transpose(1, 2)?;
let mut v = v
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
.transpose(1, 2)?;
let q = self.apply_rotary_emb(&q, index_pos)?;
let mut k = self.apply_rotary_emb(&k, index_pos)?;
@ -263,14 +269,25 @@ impl CausalSelfAttention {
let v = v.transpose(1, 2)?;
let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
let y = candle_flash_attn::flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?
.reshape((b_sz, seq_len, hidden_size))?;
.transpose(1, 2)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
let y = self.o_proj.forward(&y)?;
Ok(y)
}
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
let n_rep = self.num_attention_heads / self.num_key_value_heads;
candle_transformers::utils::repeat_kv(x, n_rep)
if n_rep == 1 {
Ok(x)
} else {
let (b_sz, n_kv_head, seq_len, head_dim) = x.shape().dims4()?;
let x = x
.unsqueeze(2)?
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
.reshape((b_sz, n_kv_head, n_rep, seq_len, head_dim))?;
Ok(x)
}
}
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
@ -284,7 +301,7 @@ impl CausalSelfAttention {
qkv_proj,
o_proj,
num_attention_heads: cfg.num_attention_heads / comm.world_size(),
num_key_value_heads: cfg.num_key_value_heads() / comm.world_size(),
num_key_value_heads: cfg.num_key_value_heads / comm.world_size(),
head_dim: cfg.hidden_size / cfg.num_attention_heads,
cache: cache.clone(),
})
@ -298,6 +315,18 @@ struct Mlp {
}
impl Mlp {
fn new(
c_fc1: TensorParallelColumnLinear,
c_fc2: TensorParallelColumnLinear,
c_proj: TensorParallelRowLinear,
) -> Self {
Self {
c_fc1,
c_fc2,
c_proj,
}
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
self.c_proj.forward(&x)
@ -307,11 +336,7 @@ impl Mlp {
let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?;
let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?;
let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm)?;
Ok(Self {
c_fc1,
c_fc2,
c_proj,
})
Ok(Self::new(c_fc1, c_fc2, c_proj))
}
}
@ -402,8 +427,10 @@ impl Llama {
cfg,
comm.clone(),
)
.unwrap()
})
.collect::<Result<Vec<_>>>()?;
.collect();
Ok(Self::new(wte, blocks, norm, lm_head))
}
}

View File

@ -1,36 +0,0 @@
# candle-olmo: Open Language Models designed to enable the science of language models
OLMo is a series of Open Language Models designed to enable the science of language models.
- **Project Page:** https://allenai.org/olmo
- **Paper:** [Link](https://arxiv.org/abs/2402.00838)
- **Technical blog post:** https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
- **W&B Logs:** https://wandb.ai/ai2-llm/OLMo-1B/reports/OLMo-1B--Vmlldzo2NzY1Njk1
<!-- - **Press release:** TODO -->
## Running the example
```bash
$ cargo run --example olmo --release -- --prompt "It is only with the heart that one can see rightly"
avx: true, neon: false, simd128: false, f16c: true
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
retrieved the files in 354.977µs
loaded the model in 19.87779666s
It is only with the heart that one can see rightly; what is essential is invisible to the eye.
```
Various model sizes are available via the `--model` argument.
```bash
$ cargo run --example olmo --release -- --model 1.7-7b --prompt 'It is only with the heart that one can see rightly'
avx: true, neon: false, simd128: false, f16c: true
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
retrieved the files in 1.226087ms
loaded the model in 171.274578609s
It is only with the heart that one can see rightly; what is essential is invisible to the eye.”
~ Antoine de Saint-Exupery, The Little Prince
I am a big fan of this quote. It reminds me that I need to be open and aware of my surroundings in order to truly appreciate them.
```

View File

@ -1,284 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::olmo::{Config, Model as OLMo};
use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
enum Model {
OLMo(OLMo),
}
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, false)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <|endoftext|> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = match &mut self.model {
Model::OLMo(m) => m.forward(&input, start_pos)?,
};
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
enum Which {
#[value(name = "1b")]
W1b,
#[value(name = "7b")]
W7b,
#[value(name = "7b-twin-2t")]
W7bTwin2T,
#[value(name = "1.7-7b")]
V1_7W7b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 1000)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long, default_value = "1b")]
model: Which,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => match args.model {
Which::W1b => "allenai/OLMo-1B-hf".to_string(),
Which::W7b => "allenai/OLMo-7B-hf".to_string(),
Which::W7bTwin2T => "allenai/OLMo-7B-Twin-2T-hf".to_string(),
Which::V1_7W7b => "allenai/OLMo-1.7-7B-hf".to_string(),
},
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => match args.model {
Which::W1b => {
vec![repo.get("model.safetensors")?]
}
_ => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
},
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = {
let config_filename = repo.get("config.json")?;
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
config
};
let device = candle_examples::device(args.cpu)?;
let model = {
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = OLMo::new(&config, vb)?;
Model::OLMo(model)
};
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -1,9 +1,8 @@
# candle-phi: 1.3b and 2.7b LLM with state of the art performance for <10b models.
[Phi-1.5](https://huggingface.co/microsoft/phi-1_5),
[Phi-2](https://huggingface.co/microsoft/phi-2), and
[Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) are language models using
only 1.3, 2.7, and 3.8 billion parameters but with state of the art performance compared to
[Phi-1.5](https://huggingface.co/microsoft/phi-1_5) and
[Phi-2](https://huggingface.co/microsoft/phi-2) are language models using
only 1.3 and 2.7 billion parameters but with state of the art performance compared to
models with up to 10 billion parameters.
The candle implementation provides both the standard version as well as a

View File

@ -7,13 +7,11 @@ extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
use candle_transformers::models::phi3::{Config as Phi3Config, Model as Phi3};
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
use candle::{DType, Device, IndexOp, Tensor};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
@ -22,14 +20,13 @@ use tokenizers::Tokenizer;
enum Model {
MixFormer(MixFormer),
Phi(Phi),
Phi3(Phi3),
Quantized(QMixFormer),
}
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
@ -52,7 +49,7 @@ impl TextGeneration {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
@ -64,11 +61,7 @@ impl TextGeneration {
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?;
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the phi model.")
}
@ -80,14 +73,13 @@ impl TextGeneration {
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
Some(token) => token,
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => anyhow::bail!("cannot find the endoftext token"),
};
print!("{prompt}");
std::io::stdout().flush()?;
let start_gen = std::time::Instant::now();
let mut pos = 0;
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
@ -96,7 +88,6 @@ impl TextGeneration {
Model::MixFormer(m) => m.forward(&input)?,
Model::Phi(m) => m.forward(&input)?,
Model::Quantized(m) => m.forward(&input)?,
Model::Phi3(m) => m.forward(&input, pos)?.i((.., 0, ..))?,
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
@ -116,11 +107,9 @@ impl TextGeneration {
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
pos += context_size;
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
@ -139,8 +128,6 @@ enum WhichModel {
V1_5,
#[value(name = "2")]
V2,
#[value(name = "3")]
V3,
#[value(name = "2-old")]
V2Old,
PuffinPhiV2,
@ -209,10 +196,6 @@ struct Args {
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
/// The dtype to be used for running the model, e.g. f32, bf16, or f16.
#[arg(long)]
dtype: Option<String>,
}
fn main() -> Result<()> {
@ -253,7 +236,6 @@ fn main() -> Result<()> {
WhichModel::V1 => "microsoft/phi-1".to_string(),
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(),
WhichModel::V3 => "microsoft/Phi-3-mini-4k-instruct".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"lmz/candle-quantized-phi".to_string()
}
@ -271,10 +253,9 @@ fn main() -> Result<()> {
WhichModel::V1 => "refs/pr/8".to_string(),
WhichModel::V1_5 => "refs/pr/73".to_string(),
WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
WhichModel::V2
| WhichModel::V3
| WhichModel::PuffinPhiV2
| WhichModel::PhiHermes => "main".to_string(),
WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"main".to_string()
}
}
}
}
@ -283,11 +264,9 @@ fn main() -> Result<()> {
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => match args.model {
WhichModel::V1
| WhichModel::V1_5
| WhichModel::V2
| WhichModel::V2Old
| WhichModel::V3 => repo.get("tokenizer.json")?,
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2Old => {
repo.get("tokenizer.json")?
}
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
repo.get("tokenizer-puffin-phi-v2.json")?
}
@ -303,19 +282,14 @@ fn main() -> Result<()> {
WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?],
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
WhichModel::V3 => anyhow::bail!(
"use the quantized or quantized-phi examples for quantized phi-v3"
),
}
} else {
match args.model {
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
WhichModel::V2 | WhichModel::V2Old | WhichModel::V3 => {
candle_examples::hub_load_safetensors(
&repo,
"model.safetensors.index.json",
)?
}
WhichModel::V2 | WhichModel::V2Old => candle_examples::hub_load_safetensors(
&repo,
"model.safetensors.index.json",
)?,
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2.safetensors")?],
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B.safetensors")?],
}
@ -332,9 +306,6 @@ fn main() -> Result<()> {
WhichModel::V2 | WhichModel::V2Old => Config::v2(),
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
WhichModel::V3 => {
panic!("use the quantized or quantized-phi examples for quantized phi-v3")
}
};
let device = candle_examples::device(args.cpu)?;
let model = if args.quantized {
@ -349,17 +320,7 @@ fn main() -> Result<()> {
};
Model::Quantized(model)
} else {
let dtype = match args.dtype {
Some(dtype) => std::str::FromStr::from_str(&dtype)?,
None => {
if args.model == WhichModel::V3 && device.is_cuda() {
DType::BF16
} else {
DType::F32
}
}
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
match args.model {
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => {
let config_filename = repo.get("config.json")?;
@ -368,13 +329,6 @@ fn main() -> Result<()> {
let phi = Phi::new(&config, vb)?;
Model::Phi(phi)
}
WhichModel::V3 => {
let config_filename = repo.get("config.json")?;
let config = std::fs::read_to_string(config_filename)?;
let config: Phi3Config = serde_json::from_str(&config)?;
let phi3 = Phi3::new(&config, vb)?;
Model::Phi3(phi3)
}
WhichModel::V2Old => {
let config = config();
Model::MixFormer(MixFormer::new_v2(&config, vb)?)
@ -467,10 +421,6 @@ fn mmlu<P: AsRef<std::path::Path>>(
m.clear_kv_cache();
m.forward(&input)?
}
Model::Phi3(m) => {
m.clear_kv_cache();
m.forward(&input, 0)?
}
Model::Quantized(m) => {
m.clear_kv_cache();
m.forward(&input)?

View File

@ -1,317 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use std::io::Write;
use tokenizers::Tokenizer;
use candle::quantized::gguf_file;
use candle::Tensor;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_transformers::models::quantized_llama::ModelWeights as Phi3b;
use candle_transformers::models::quantized_phi::ModelWeights as Phi2;
use candle_transformers::models::quantized_phi3::ModelWeights as Phi3;
const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
#[value(name = "phi-2")]
Phi2,
#[value(name = "phi-3")]
Phi3,
/// Alternative implementation of phi-3, based on llama.
#[value(name = "phi-3b")]
Phi3b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
#[arg(long)]
model: Option<String>,
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
/// is preserved.
#[arg(long)]
prompt: Option<String>,
/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 1000)]
sample_len: usize,
/// The tokenizer config in json format.
#[arg(long)]
tokenizer: Option<String>,
/// The temperature used to generate samples, use 0 for greedy sampling.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Process prompt elements separately.
#[arg(long)]
split_prompt: bool,
/// Run on CPU rather than GPU even if a GPU is available.
#[arg(long)]
cpu: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
/// The model size to use.
#[arg(long, default_value = "phi-3b")]
which: Which,
}
impl Args {
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
let tokenizer_path = match &self.tokenizer {
Some(config) => std::path::PathBuf::from(config),
None => {
let api = hf_hub::api::sync::Api::new()?;
let repo = match self.which {
Which::Phi2 => "microsoft/phi-2",
Which::Phi3 | Which::Phi3b => "microsoft/Phi-3-mini-4k-instruct",
};
let api = api.model(repo.to_string());
api.get("tokenizer.json")?
}
};
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
}
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let model_path = match &self.model {
Some(config) => std::path::PathBuf::from(config),
None => {
let (repo, filename, revision) = match self.which {
Which::Phi2 => ("TheBloke/phi-2-GGUF", "phi-2.Q4_K_M.gguf", "main"),
Which::Phi3 => (
"microsoft/Phi-3-mini-4k-instruct-gguf",
"Phi-3-mini-4k-instruct-q4.gguf",
"main",
),
Which::Phi3b => (
"microsoft/Phi-3-mini-4k-instruct-gguf",
"Phi-3-mini-4k-instruct-q4.gguf",
"5eef2ce24766d31909c0b269fe90c817a8f263fb",
),
};
let api = hf_hub::api::sync::Api::new()?;
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
revision.to_string(),
))
.get(filename)?
}
};
Ok(model_path)
}
}
fn format_size(size_in_bytes: usize) -> String {
if size_in_bytes < 1_000 {
format!("{}B", size_in_bytes)
} else if size_in_bytes < 1_000_000 {
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
} else if size_in_bytes < 1_000_000_000 {
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
} else {
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
}
}
enum Model {
Phi2(Phi2),
Phi3(Phi3),
Phi3b(Phi3b),
}
impl Model {
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
match self {
Self::Phi2(m) => m.forward(xs, pos),
Self::Phi3(m) => m.forward(xs, pos),
Self::Phi3b(m) => m.forward(xs, pos),
}
}
}
fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let model_path = args.model()?;
let mut file = std::fs::File::open(&model_path)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let mut model = {
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
let mut total_size_in_bytes = 0;
for (_, tensor) in model.tensor_infos.iter() {
let elem_count = tensor.shape.elem_count();
total_size_in_bytes +=
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
}
println!(
"loaded {:?} tensors ({}) in {:.2}s",
model.tensor_infos.len(),
&format_size(total_size_in_bytes),
start.elapsed().as_secs_f32(),
);
match args.which {
Which::Phi2 => Model::Phi2(Phi2::from_gguf(model, &mut file, &device)?),
Which::Phi3 => Model::Phi3(Phi3::from_gguf(model, &mut file, &device)?),
Which::Phi3b => Model::Phi3b(Phi3b::from_gguf(model, &mut file, &device)?),
}
};
println!("model built");
let tokenizer = args.tokenizer()?;
let mut tos = TokenOutputStream::new(tokenizer);
let prompt_str = args.prompt.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
print!("{}", &prompt_str);
let tokens = tos
.tokenizer()
.encode(prompt_str, true)
.map_err(anyhow::Error::msg)?;
let tokens = tokens.get_ids();
let to_sample = args.sample_len.saturating_sub(1);
let mut all_tokens = vec![];
let mut logits_processor = {
let temperature = args.temperature;
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (args.top_k, args.top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(args.seed, sampling)
};
let start_prompt_processing = std::time::Instant::now();
let mut next_token = if !args.split_prompt {
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
let logits = model.forward(&input, 0)?;
let logits = logits.squeeze(0)?;
logits_processor.sample(&logits)?
} else {
let mut next_token = 0;
for (pos, token) in tokens.iter().enumerate() {
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, pos)?;
let logits = logits.squeeze(0)?;
next_token = logits_processor.sample(&logits)?
}
next_token
};
let prompt_dt = start_prompt_processing.elapsed();
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
let eos_token = *tos
.tokenizer()
.get_vocab(true)
.get("<|endoftext|>")
.unwrap();
let start_post_prompt = std::time::Instant::now();
let mut sampled = 0;
for index in 0..to_sample {
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, tokens.len() + index)?;
let logits = logits.squeeze(0)?;
let logits = if args.repeat_penalty == 1. {
logits
} else {
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
args.repeat_penalty,
&all_tokens[start_at..],
)?
};
next_token = logits_processor.sample(&logits)?;
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
sampled += 1;
if next_token == eos_token {
break;
};
}
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
let dt = start_post_prompt.elapsed();
println!(
"\n\n{:4} prompt tokens processed: {:.2} token/s",
tokens.len(),
tokens.len() as f64 / prompt_dt.as_secs_f64(),
);
println!(
"{sampled:4} tokens generated: {:.2} token/s",
sampled as f64 / dt.as_secs_f64(),
);
Ok(())
}

View File

@ -67,10 +67,8 @@ enum Which {
Mixtral,
#[value(name = "mixtral-instruct")]
MixtralInstruct,
#[value(name = "llama3-8b")]
L8b,
#[value(name = "phi3")]
Phi3,
#[value(name = "phi-2")]
Phi2,
}
impl Which {
@ -87,8 +85,7 @@ impl Which {
| Self::L34bCode
| Self::Leo7b
| Self::Leo13b
| Self::L8b
| Self::Phi3 => false,
| Self::Phi2 => false,
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
// same way. Starling is a fine tuned version of OpenChat.
Self::OpenChat35
@ -122,9 +119,8 @@ impl Which {
| Self::Mistral7bInstruct
| Self::Mistral7bInstructV02
| Self::OpenChat35
| Self::Starling7bAlpha
| Self::L8b
| Self::Phi3 => false,
| Self::Phi2
| Self::Starling7bAlpha => false,
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
}
}
@ -147,10 +143,9 @@ impl Which {
| Self::Mistral7b
| Self::Mistral7bInstruct
| Self::Mistral7bInstructV02
| Self::Phi2
| Self::Zephyr7bAlpha
| Self::Zephyr7bBeta
| Self::L8b
| Self::Phi3 => false,
| Self::Zephyr7bBeta => false,
Self::OpenChat35 | Self::Starling7bAlpha => true,
}
}
@ -177,8 +172,7 @@ impl Which {
| Self::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
Self::OpenChat35 => "openchat/openchat_3.5",
Self::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
Self::L8b => "meta-llama/Meta-Llama-3-8B",
Self::Phi3 => "microsoft/Phi-3-mini-4k-instruct",
Self::Phi2 => "microsoft/phi-2",
}
}
}
@ -334,28 +328,11 @@ impl Args {
"TheBloke/Starling-LM-7B-alpha-GGUF",
"starling-lm-7b-alpha.Q4_K_M.gguf",
),
// TODO: swap to TheBloke model when available
Which::L8b => (
"QuantFactory/Meta-Llama-3-8B-GGUF",
"Meta-Llama-3-8B.Q4_K_S.gguf",
),
Which::Phi3 => (
"microsoft/Phi-3-mini-4k-instruct-gguf",
"Phi-3-mini-4k-instruct-q4.gguf",
),
};
let revision = if self.which == Which::Phi3 {
"5eef2ce24766d31909c0b269fe90c817a8f263fb"
} else {
"main"
Which::Phi2 => ("TheBloke/phi-2-GGUF", "phi-2.Q4_K_M.gguf"),
};
let api = hf_hub::api::sync::Api::new()?;
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
revision.to_string(),
))
.get(filename)?
let api = api.model(repo.to_string());
api.get(filename)?
}
};
Ok(model_path)
@ -383,9 +360,6 @@ fn main() -> anyhow::Result<()> {
#[cfg(feature = "cuda")]
candle::quantized::cuda::set_force_dmmv(args.force_dmmv);
candle::cuda::set_gemm_reduced_precision_f16(true);
candle::cuda::set_gemm_reduced_precision_bf16(true);
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
@ -454,8 +428,7 @@ fn main() -> anyhow::Result<()> {
| Which::L34bCode
| Which::Leo7b
| Which::Leo13b
| Which::L8b
| Which::Phi3 => 1,
| Which::Phi2 => 1,
Which::Mixtral
| Which::MixtralInstruct
| Which::Mistral7b
@ -572,14 +545,11 @@ fn main() -> anyhow::Result<()> {
std::io::stdout().flush()?;
}
let eos_token = match args.which {
Which::L8b => "<|end_of_text|>",
_ => match args.which.is_open_chat() {
true => "<|end_of_turn|>",
false => "</s>",
},
let eos_token = if args.which.is_open_chat() {
"<|end_of_turn|>"
} else {
"</s>"
};
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
let start_post_prompt = std::time::Instant::now();
let mut sampled = 0;

View File

@ -13,7 +13,7 @@ struct Block {
impl Block {
fn get(&self, key: &str) -> Result<&str> {
match self.parameters.get(key) {
match self.parameters.get(&key.to_string()) {
None => candle::bail!("cannot find {} in {}", key, self.block_type),
Some(value) => Ok(value),
}
@ -28,7 +28,7 @@ pub struct Darknet {
impl Darknet {
fn get(&self, key: &str) -> Result<&str> {
match self.parameters.get(key) {
match self.parameters.get(&key.to_string()) {
None => candle::bail!("cannot find {} in net parameters", key),
Some(value) => Ok(value),
}

View File

@ -448,9 +448,9 @@ pub fn reduce_stereo_in_place(left: Windows100ms<&mut [Power]>, right: Windows10
/// Perform gating and averaging for a BS.1770-4 integrated loudness measurement.
///
/// The integrated loudness measurement is not just the average power over the
/// entire signal. BS.1770-4 defines two stages of gating that exclude
/// entire signal. BS.1770-4 defines defines two stages of gating that exclude
/// parts of the signal, to ensure that silent parts do not contribute to the
/// loudness measurement. This function performs that gating, and returns the
/// loudness measurment. This function performs that gating, and returns the
/// average power over the windows that were not excluded.
///
/// The result of this function is the integrated loudness measurement.

View File

@ -1,6 +1,6 @@
[package]
name = "candle-flash-attn"
version = "0.5.1"
version = "0.5.0"
edition = "2021"
description = "Flash attention layer for the candle ML framework."
@ -11,7 +11,7 @@ license = "MIT OR Apache-2.0"
readme = "README.md"
[dependencies]
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.5.1" }
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.5.0" }
half = { version = "2.3.1", features = ["num-traits"] }
[build-dependencies]

View File

@ -1,6 +1,6 @@
[package]
name = "candle-kernels"
version = "0.5.1"
version = "0.5.0"
edition = "2021"
description = "CUDA kernels for Candle"

View File

@ -6,6 +6,5 @@ pub const FILL: &str = include_str!(concat!(env!("OUT_DIR"), "/fill.ptx"));
pub const INDEXING: &str = include_str!(concat!(env!("OUT_DIR"), "/indexing.ptx"));
pub const QUANTIZED: &str = include_str!(concat!(env!("OUT_DIR"), "/quantized.ptx"));
pub const REDUCE: &str = include_str!(concat!(env!("OUT_DIR"), "/reduce.ptx"));
pub const SORT: &str = include_str!(concat!(env!("OUT_DIR"), "/sort.ptx"));
pub const TERNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/ternary.ptx"));
pub const UNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/unary.ptx"));

View File

@ -765,21 +765,20 @@ static __device__ void dequantize_block(const void * __restrict__ vx, dst_t * __
y[iybs + iqs + y_offset] = v.y;
}
template<typename dst_t>
static __device__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
extern "C" __global__ void dequantize_block_q4_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int64_t i = blockIdx.x;
const int i = blockIdx.x;
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int64_t ib = 8*i + ir;
const int ib = 8*i + ir;
if (ib >= nb32) {
return;
}
dst_t * y = yy + 256*i + 32*ir + 4*il;
float * y = yy + 256*i + 32*ir + 4*il;
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
const float d = __half2float(x->d);
@ -793,21 +792,20 @@ static __device__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t
}
}
template<typename dst_t>
static __device__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
extern "C" __global__ void dequantize_block_q4_1(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int64_t i = blockIdx.x;
const int i = blockIdx.x;
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int64_t ib = 8*i + ir;
const int ib = 8*i + ir;
if (ib >= nb32) {
return;
}
dst_t * y = yy + 256*i + 32*ir + 4*il;
float * y = yy + 256*i + 32*ir + 4*il;
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
const float2 d = __half22float2(x->dm);
@ -822,8 +820,7 @@ static __device__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t
//================================== k-quants
template<typename dst_t>
static __device__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
const int i = blockIdx.x;
const block_q2_K * x = (const block_q2_K *) vx;
@ -835,7 +832,7 @@ static __device__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
const int is = 8*n + l/16;
const uint8_t q = x[i].qs[32*n + l];
dst_t * y = yy + i*QK_K + 128*n;
float * y = yy + i*QK_K + 128*n;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
@ -847,7 +844,7 @@ static __device__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
dst_t * y = yy + i*QK_K + 16*is + il;
float * y = yy + i*QK_K + 16*is + il;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
@ -856,8 +853,7 @@ static __device__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
}
template<typename dst_t>
static __device__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
const int i = blockIdx.x;
const block_q3_K * x = (const block_q3_K *) vx;
@ -881,7 +877,7 @@ static __device__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
float d_all = x[i].d;
float dl = d_all * (us - 32);
dst_t * y = yy + i*QK_K + 128*n + 32*j;
float * y = yy + i*QK_K + 128*n + 32*j;
const uint8_t * q = x[i].qs + 32*n;
const uint8_t * hm = x[i].hmask;
@ -893,7 +889,7 @@ static __device__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
const int im = il/8; // 0...1
const int in = il%8; // 0...7
dst_t * y = yy + i*QK_K + 16*is + il;
float * y = yy + i*QK_K + 16*is + il;
const uint8_t q = x[i].qs[il] >> (2*is);
const uint8_t h = x[i].hmask[in] >> (2*is + im);
@ -921,8 +917,7 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t
}
#endif
template<typename dst_t>
static __device__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q4_K * x = (const block_q4_K *) vx;
const int i = blockIdx.x;
@ -935,7 +930,7 @@ static __device__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
const int is = 2*il;
const int n = 4;
dst_t * y = yy + i*QK_K + 64*il + n*ir;
float * y = yy + i*QK_K + 64*il + n*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
@ -954,7 +949,7 @@ static __device__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
#else
const int tid = threadIdx.x;
const uint8_t * q = x[i].qs;
dst_t * y = yy + i*QK_K;
float * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
@ -962,8 +957,7 @@ static __device__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
#endif
}
template<typename dst_t>
static __device__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q5_K * x = (const block_q5_K *) vx;
const int i = blockIdx.x;
@ -975,7 +969,7 @@ static __device__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
const int ir = tid%16; // ir is in 0...15
const int is = 2*il; // is is in 0...6
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
float * y = yy + i*QK_K + 64*il + 2*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
@ -1003,26 +997,25 @@ static __device__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
const int is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
dst_t * y = yy + i*QK_K + tid;
float * y = yy + i*QK_K + tid;
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}
template<typename dst_t>
static __device__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q6_K * x = (const block_q6_K *) vx;
const int64_t i = blockIdx.x;
const int i = blockIdx.x;
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int64_t tid = threadIdx.x;
const int64_t ip = tid/32; // ip is 0 or 1
const int64_t il = tid - 32*ip; // 0...32
const int64_t is = 8*ip + il/16;
const int tid = threadIdx.x;
const int ip = tid/32; // ip is 0 or 1
const int il = tid - 32*ip; // 0...32
const int is = 8*ip + il/16;
dst_t * y = yy + i*QK_K + 128*ip + il;
float * y = yy + i*QK_K + 128*ip + il;
const float d = x[i].d;
@ -1037,11 +1030,11 @@ static __device__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
#else
// assume 32 threads
const int64_t tid = threadIdx.x;
const int64_t ip = tid/16; // 0 or 1
const int64_t il = tid - 16*ip; // 0...15
const int tid = threadIdx.x;
const int ip = tid/16; // 0 or 1
const int il = tid - 16*ip; // 0...15
dst_t * y = yy + i*QK_K + 16*ip + il;
float * y = yy + i*QK_K + 16*ip + il;
const float d = x[i].d;
@ -1054,8 +1047,7 @@ static __device__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
#endif
}
template<typename dst_t>
static __device__ void dequantize_block_q8_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
extern "C" __global__ void dequantize_block_q8_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int i = blockIdx.x;
// assume 32 threads
@ -1067,7 +1059,7 @@ static __device__ void dequantize_block_q8_0(const void * __restrict__ vx, dst_t
return;
}
dst_t * y = yy + 256*i + 32*ir + 8*il;
float * y = yy + 256*i + 32*ir + 8*il;
const block_q8_0 * x = (const block_q8_0 *)vx + ib;
const float d = __half2float(x->d);
@ -1079,8 +1071,7 @@ static __device__ void dequantize_block_q8_0(const void * __restrict__ vx, dst_t
}
}
template<typename dst_t>
static __device__ void dequantize_block_q8_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
extern "C" __global__ void dequantize_block_q8_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q8_K * x = (const block_q8_K *) vx;
const int i = blockIdx.x;
@ -1092,7 +1083,7 @@ static __device__ void dequantize_block_q8_K(const void * __restrict__ vx, dst_t
const int ir = tid%8;
const int n = 8;
dst_t * y = yy + i*QK_K + 64*il + n*ir;
float * y = yy + i*QK_K + 64*il + n*ir;
const int8_t * q = x[i].qs + 64*il + n*ir;
@ -1107,43 +1098,14 @@ static __device__ void dequantize_block_q8_K(const void * __restrict__ vx, dst_t
#endif
}
template<typename dst_t>
static __device__ void dequantize_block_q5_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
extern "C" __global__ void dequantize_block_q5_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
return dequantize_block<QK5_0, QR5_0, dequantize_q5_0>(vx, yy, nb32);
}
template<typename dst_t>
static __device__ void dequantize_block_q5_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
extern "C" __global__ void dequantize_block_q5_1(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
return dequantize_block<QK5_1, QR5_1, dequantize_q5_1>(vx, yy, nb32);
}
#define DEQUANTIZE_K(QNAME) \
extern "C" __global__ void dequantize_block_##QNAME##_f32(const void * __restrict__ vx, float * __restrict__ y) { \
dequantize_block_##QNAME(vx, y); \
} \
extern "C" __global__ void dequantize_block_##QNAME##_f16(const void * __restrict__ vx, half * __restrict__ y) { \
dequantize_block_##QNAME(vx, y); \
} \
#define DEQUANTIZE(QNAME) \
extern "C" __global__ void dequantize_block_##QNAME##_f32(const void * __restrict__ vx, float * __restrict__ y, const int k) { \
dequantize_block_##QNAME(vx, y, k); \
} \
extern "C" __global__ void dequantize_block_##QNAME##_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) { \
dequantize_block_##QNAME(vx, y, k); \
} \
DEQUANTIZE_K(q2_K)
DEQUANTIZE_K(q3_K)
DEQUANTIZE_K(q4_K)
DEQUANTIZE_K(q5_K)
DEQUANTIZE_K(q6_K)
DEQUANTIZE_K(q8_K)
DEQUANTIZE(q4_0)
DEQUANTIZE(q4_1)
DEQUANTIZE(q5_0)
DEQUANTIZE(q5_1)
DEQUANTIZE(q8_0)
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __device__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
@ -3010,330 +2972,6 @@ extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda4(
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 5
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 6
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 7
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 8
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
const int ix = blockDim.x*blockIdx.x + threadIdx.x;

View File

@ -1,88 +0,0 @@
// Adapted from https://github.com/ggerganov/llama.cpp/blob/master/ggml-cuda/argsort.cu
#define SORT_ORDER_ASC 1
#define SORT_ORDER_DESC 0
#include "cuda_utils.cuh"
#include<stdint.h>
template<typename T>
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
T tmp = a;
a = b;
b = tmp;
}
template<int order, typename T>
static __device__ void k_argsort(const T * x, uint32_t * dst, const int ncols, int ncols_pad) {
// bitonic sort
int col = threadIdx.x;
int row = blockIdx.y;
if (col >= ncols_pad) {
return;
}
const T * x_row = x + row * ncols;
extern __shared__ int dst_row[];
// initialize indices
dst_row[col] = col;
__syncthreads();
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols && (order == SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols && (order == SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
}
}
}
__syncthreads();
}
}
// copy the result to dst without the padding
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
}
}
#define ASORT_OP(TYPENAME, RUST_NAME) \
extern "C" __global__ void asort_asc_##RUST_NAME( \
const TYPENAME * x, uint32_t * dst, const int ncols, int ncols_pad \
) { \
k_argsort<SORT_ORDER_ASC>(x, dst, ncols, ncols_pad); \
} \
extern "C" __global__ void asort_desc_##RUST_NAME( \
const TYPENAME * x, uint32_t * dst, const int ncols, int ncols_pad \
) { \
k_argsort<SORT_ORDER_DESC>(x, dst, ncols, ncols_pad); \
} \
#if __CUDA_ARCH__ >= 800
ASORT_OP(__nv_bfloat16, bf16)
#endif
#if __CUDA_ARCH__ >= 530
ASORT_OP(__half, f16)
#endif
ASORT_OP(float, f32)
ASORT_OP(double, f64)
ASORT_OP(uint8_t, u8)
ASORT_OP(uint32_t, u32)
ASORT_OP(int64_t, i64)

View File

@ -60,11 +60,6 @@ __device__ __forceinline__ T silu_fwd(T x) {
return x / (static_cast<T>(1) + expg(-x));
}
template<typename T>
__device__ __forceinline__ T sigmoid_fwd(T x) {
return recipg(static_cast<T>(1) + expg(-x));
}
#define UNARY_OP1(TYPENAME, FN_NAME, FUNC) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
@ -121,7 +116,6 @@ UNARY_OP1(__nv_bfloat16, uelu_bf16, elu_fwd(x, param))
UNARY_OP(__nv_bfloat16, usilu_bf16, silu_fwd(x))
UNARY_OP1(__nv_bfloat16, upowf_bf16, powg(x, param))
UNARY_OP(__nv_bfloat16, usign_bf16, sign_(x))
UNARY_OP(__nv_bfloat16, usigmoid_bf16, sigmoid_fwd(x))
#endif
#if __CUDA_ARCH__ >= 530
@ -148,7 +142,6 @@ UNARY_OP1(__half, uelu_f16, elu_fwd(x, param))
UNARY_OP(__half, usilu_f16, silu_fwd(x))
UNARY_OP1(__half, upowf_f16, powg(x, param))
UNARY_OP(__half, usign_f16, sign_(x))
UNARY_OP(__half, usigmoid_f16, sigmoid_fwd(x))
#endif
UNARY_OP(uint8_t, ucopy_u8, x)
@ -200,5 +193,3 @@ UNARY_OP1(float, upowf_f32, powg(x, param))
UNARY_OP1(double, upowf_f64, powg(x, param))
UNARY_OP(float, usign_f32, sign_(x))
UNARY_OP(double, usign_f64, sign_(x))
UNARY_OP(float, usigmoid_f32, sigmoid_fwd(x))
UNARY_OP(double, usigmoid_f64, sigmoid_fwd(x))

View File

@ -1,6 +1,6 @@
[package]
name = "candle-metal-kernels"
version = "0.5.1"
version = "0.5.0"
edition = "2021"
description = "Metal kernels for Candle"

View File

@ -21,7 +21,6 @@ const REDUCE: &str = include_str!("reduce.metal");
const RANDOM: &str = include_str!("random.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
const QUANTIZED: &str = include_str!("quantized.metal");
const SORT: &str = include_str!("sort.metal");
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Source {
@ -36,7 +35,6 @@ pub enum Source {
Conv,
Random,
Quantized,
Sort,
}
pub mod copy2d {
@ -76,30 +74,6 @@ macro_rules! ops{
}
}
pub mod contiguous_tiled {
pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32_tiled"));
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16_tiled"));
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16_tiled"));
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64_tiled"));
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32_tiled"));
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8_tiled"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_f32_tiled");
pub const HALF: Kernel = Kernel("copy_f16_tiled");
pub const BFLOAT: Kernel = Kernel("copy_bf16_tiled");
pub const I64: Kernel = Kernel("copy_i64_tiled");
pub const U32: Kernel = Kernel("copy_u32_tiled");
pub const U8: Kernel = Kernel("copy_u8_tiled");
}
}
pub mod strided {
pub struct Kernel(pub &'static str);
$(
@ -129,7 +103,7 @@ macro_rules! ops{
pub mod unary {
ops!(
cos, sin, exp, sqr, sqrt, neg, log, gelu, abs, ceil, floor, relu, round, erf, gelu_erf,
tanh, recip, silu, sign, sigmoid
tanh, recip, silu, sign
);
}
pub mod binary {
@ -199,7 +173,6 @@ impl Kernels {
Source::Conv => CONV,
Source::Random => RANDOM,
Source::Quantized => QUANTIZED,
Source::Sort => SORT,
Source::Mfa => panic!("Invalid lib"),
}
}
@ -294,6 +267,30 @@ impl Kernels {
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: unary::contiguous::Kernel,
length: usize,
input: BufferOffset,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, &input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_copy2d(
device: &Device,
@ -337,58 +334,6 @@ pub fn call_copy2d(
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_contiguous_tiled(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: unary::contiguous_tiled::Kernel,
length: usize,
input: BufferOffset,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
let tile_size = 2;
let tiles = (length + tile_size - 1) / tile_size;
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, &input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, tiles);
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: unary::contiguous::Kernel,
length: usize,
input: BufferOffset,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, &input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_strided(
device: &Device,
@ -402,13 +347,16 @@ pub fn call_unary_strided(
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let length: usize = shape.iter().product();
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(encoder, (length, num_dims, shape, strides, &input, &output));
let width: usize = shape.iter().product();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output.buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
@ -462,10 +410,10 @@ pub fn call_binary_strided(
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
let width: usize = shape.iter().product();
let length: usize = shape.iter().product();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
@ -479,12 +427,14 @@ pub fn call_binary_strided(
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(left_input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(right_input.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
@ -1749,7 +1699,7 @@ pub enum GgmlDType {
}
#[allow(clippy::too_many_arguments)]
pub fn call_quantized_matmul_mv_t(
pub fn call_quantized_matmul_t(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
@ -1758,8 +1708,7 @@ pub fn call_quantized_matmul_mv_t(
lhs: &Buffer,
lhs_offset: usize,
rhs: &Buffer,
dst_offset: usize,
dst: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
// Everything is in reverse
let ne00 = k as i64;
@ -1799,9 +1748,8 @@ pub fn call_quantized_matmul_mv_t(
}
GgmlDType::Q2K => {
// Fixing a bug in Metal for GGML
// https://github.com/ggerganov/llama.cpp/blob/b8109bc0139f15a5b321909f47510b89dca47ffc/ggml-metal.m#L1576
let nth0 = 2;
let nth1 = 32;
let nth0 = 4;
let nth1 = 8;
let align = 4;
(nth0, nth1, align)
}
@ -1873,7 +1821,7 @@ pub fn call_quantized_matmul_mv_t(
(
rhs,
(lhs, lhs_offset),
(dst, dst_offset),
output,
ne00,
ne01,
ne02,
@ -1892,9 +1840,10 @@ pub fn call_quantized_matmul_mv_t(
r3
)
);
encoder.set_threadgroup_memory_length(0, 8192);
encoder.use_resource(lhs, metal::MTLResourceUsage::Read);
encoder.use_resource(rhs, metal::MTLResourceUsage::Read);
encoder.use_resource(dst, metal::MTLResourceUsage::Write);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_groups_count, threads_per_threadgroup);
encoder.end_encoding();
@ -2051,42 +2000,5 @@ pub fn call_conv_transpose2d(
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_arg_sort(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
nrows: usize,
ncols: usize,
ncols_pad: usize,
src: BufferOffset,
dst: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Sort, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (&src, dst, ncols as i64, ncols_pad as i64));
let thread_group_count = MTLSize {
width: 1,
height: nrows as u64,
depth: 1,
};
let thread_group_size = MTLSize {
width: ncols_pad as u64,
height: 1,
depth: 1,
};
encoder.use_resource(src.buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(dst, metal::MTLResourceUsage::Write);
encoder.set_threadgroup_memory_length(0, (ncols_pad * 4).max(16) as u64);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[cfg(test)]
mod tests;

View File

@ -1,4 +1,3 @@
// Imported from https://github.com/ggerganov/llama.cpp/blob/master/ggml-metal.metal
#include <metal_stdlib>
using namespace metal;

View File

@ -1,97 +0,0 @@
// Imported from https://github.com/ggerganov/llama.cpp/blob/master/ggml-metal.metal
#include <metal_stdlib>
using namespace metal;
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
#define SORT_ASC 1
#define SORT_DESC 0
template<int order, typename T>
METAL_FUNC void argsort(
device const T * x,
device uint32_t * dst,
constant int64_t & ncols,
constant int64_t & ncols_pad,
threadgroup uint32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]) {
int col = tpitg[0];
int row = tgpig[1];
if (col >= ncols_pad) return;
device const T * x_row = x + row * ncols;
threadgroup uint32_t * dst_row = shared_values;
// initialize indices
dst_row[col] = col;
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols && (order == SORT_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols && (order == SORT_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
// copy the result to dst without the padding
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
}
}
#define ARGSORT(T, RUST_T) \
kernel void asort_asc_##RUST_T( \
device const T * x, \
device uint32_t * dst, \
constant int64_t & ncols, \
constant int64_t & ncols_pad, \
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
uint3 tgpig[[threadgroup_position_in_grid]], \
uint3 tpitg[[thread_position_in_threadgroup]] \
) { \
argsort<SORT_ASC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
} \
kernel void asort_desc_##RUST_T( \
device const T * x, \
device uint32_t * dst, \
constant int64_t & ncols, \
constant int64_t & ncols_pad, \
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
uint3 tgpig[[threadgroup_position_in_grid]], \
uint3 tpitg[[thread_position_in_threadgroup]] \
) { \
argsort<SORT_DESC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
} \
ARGSORT(float, f32)
ARGSORT(half, f16)
ARGSORT(uint8_t, u8)
ARGSORT(uint32_t, u32)
#if __METAL_VERSION__ >= 220
ARGSORT(int64_t, i64)
#endif
#if defined(__HAVE_BFLOAT__)
ARGSORT(bfloat, bf16)
#endif

View File

@ -67,11 +67,6 @@ template <typename T> METAL_FUNC T relu(T in){
template <typename T> METAL_FUNC T silu(T in){
return in / (static_cast<T>(1) + exp(-in));
}
template <typename T> METAL_FUNC T sigmoid(T in) {
return recip(static_cast<T>(1) + exp(-in));
}
#define TILE_SIZE 2
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
@ -84,8 +79,8 @@ kernel void FN_NAME( \
return; \
} \
output[tid] = TYPENAME(FN(float(input[tid]))); \
} \
kernel void FN_NAME##_##strided( \
}\
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
@ -98,17 +93,6 @@ kernel void FN_NAME##_##strided( \
return; \
} \
output[tid] = TYPENAME(FN(float(input[get_strided_index(tid, num_dims, dims, strides)]))); \
} \
kernel void FN_NAME##_##tiled( \
constant size_t &dim, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
) { \
for (uint i = 0; i < TILE_SIZE; i++) { \
const uint idx = tid * TILE_SIZE + i; \
output[idx] = TYPENAME(FN(float(input[idx]))); \
} \
}
#define UNARY_OP(NAME) \
@ -158,7 +142,6 @@ UNARY_OP(tanh)
UNARY_OP(recip)
UNARY_OP(relu)
UNARY_OP(sign)
UNARY_OP(sigmoid)
UNARY(id, float, copy_f32, copy_f32_strided)
UNARY(id, half, copy_f16, copy_f16_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
@ -189,7 +172,6 @@ BFLOAT_UNARY_OP(tanh)
BFLOAT_UNARY_OP(recip)
BFLOAT_UNARY_OP(relu)
BFLOAT_UNARY_OP(sign)
BFLOAT_UNARY_OP(sigmoid)
UNARY(id, bfloat, copy_bf16, copy_bf16_strided)

View File

@ -28,7 +28,7 @@
//! ```
//!
//! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450
use candle::{DType, Module, Result, Tensor, D};
use candle::{DType, Result, Tensor, D};
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct LayerNormConfig {
@ -105,7 +105,7 @@ impl LayerNorm {
}
}
impl Module for LayerNorm {
impl crate::Module for LayerNorm {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x_dtype = x.dtype();
let internal_dtype = match x_dtype {
@ -162,20 +162,11 @@ impl RmsNorm {
pub fn into_inner(self) -> LayerNorm {
self.0
}
/// Faster variant of the forward kernel, this can only be used on contiguous tensors though.
pub fn forward_diff(&self, xs: &Tensor) -> Result<Tensor> {
self.0.forward(xs)
}
}
impl Module for RmsNorm {
impl crate::Module for RmsNorm {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
if xs.is_contiguous() {
crate::ops::rms_norm(xs, &self.0.weight, self.0.eps as f32)
} else {
self.0.forward(xs)
}
self.0.forward(xs)
}
}

View File

@ -43,193 +43,9 @@ pub fn swiglu(xs: &Tensor) -> Result<Tensor> {
&xs[0].silu()? * &xs[1]
}
struct Sigmoid;
impl candle::CustomOp1 for Sigmoid {
fn name(&self) -> &'static str {
"sigmoid"
}
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
use candle::backend::BackendStorage;
fn fwd<T: num_traits::Float>(v: T) -> T {
(v.neg().exp() + T::one()).recip()
}
// FIXME: using `candle::map_dtype` causes compilation errors.
let storage = match storage {
CpuStorage::BF16(slice) => {
CpuStorage::BF16(candle::cpu_backend::unary_map(slice, layout, fwd))
}
CpuStorage::F16(slice) => {
CpuStorage::F16(candle::cpu_backend::unary_map(slice, layout, fwd))
}
CpuStorage::F32(slice) => {
CpuStorage::F32(candle::cpu_backend::unary_map(slice, layout, fwd))
}
CpuStorage::F64(slice) => {
CpuStorage::F64(candle::cpu_backend::unary_map(slice, layout, fwd))
}
_ => Err(candle::Error::UnsupportedDTypeForOp(
storage.dtype(),
self.name(),
))?,
};
Ok((storage, layout.shape().clone()))
}
#[cfg(feature = "cuda")]
fn cuda_fwd(
&self,
storage: &candle::CudaStorage,
layout: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
use candle::backend::BackendStorage;
use candle::cuda_backend::cudarc::driver::{
CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, ValidAsZeroBits,
};
use candle::cuda_backend::SlicePtrOrNull;
use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr};
use candle::{CudaDevice, WithDType};
struct S;
impl Map1 for S {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let el_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el_count as u32);
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let src = &src.slice(layout.start_offset()..);
let func = dev.get_or_load_func(&kernel_name::<T>("usigmoid"), kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el_count) }.w()?;
let params = (el_count, dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
let dev = storage.device();
let slice = S.map(&storage.slice, dev, layout)?;
let dst = candle::CudaStorage {
slice,
device: dev.clone(),
};
Ok((dst, layout.shape().clone()))
}
#[cfg(feature = "metal")]
fn metal_fwd(
&self,
storage: &candle::MetalStorage,
layout: &Layout,
) -> Result<(candle::MetalStorage, Shape)> {
use candle::backend::BackendStorage;
use candle::MetalError;
let device = storage.device();
let dtype = storage.dtype();
let shape = layout.shape();
let el_count = shape.elem_count();
let buffer = device.new_buffer(el_count, dtype, "sigmoid")?;
let command_buffer = device.command_buffer()?;
command_buffer.set_label("sigmoid");
let src = candle_metal_kernels::BufferOffset {
buffer: storage.buffer(),
offset_in_bytes: layout.start_offset() * storage.dtype().size_in_bytes(),
};
match (el_count % 2, dtype, layout.is_contiguous()) {
(0, DType::BF16 | DType::F16, true) => {
use candle_metal_kernels::unary::contiguous_tiled;
let kernel_name = match dtype {
DType::F16 => contiguous_tiled::sigmoid::HALF,
DType::F32 => contiguous_tiled::sigmoid::FLOAT,
DType::BF16 => contiguous_tiled::sigmoid::BFLOAT,
dtype => {
candle::bail!(
"Metal contiguous_tiled unary sigmoid {dtype:?} not implemented"
)
}
};
candle_metal_kernels::call_unary_contiguous_tiled(
device.metal_device(),
&command_buffer,
device.kernels(),
kernel_name,
el_count,
src,
&buffer,
)
.map_err(MetalError::from)?;
}
(_, _, true) => {
use candle_metal_kernels::unary::contiguous;
let kernel_name = match dtype {
DType::F16 => contiguous::sigmoid::HALF,
DType::F32 => contiguous::sigmoid::FLOAT,
DType::BF16 => contiguous::sigmoid::BFLOAT,
dtype => {
candle::bail!("Metal contiguous unary sigmoid {dtype:?} not implemented")
}
};
candle_metal_kernels::call_unary_contiguous(
device.metal_device(),
&command_buffer,
device.kernels(),
kernel_name,
el_count,
src,
&buffer,
)
.map_err(MetalError::from)?;
}
(_, _, false) => {
use candle_metal_kernels::unary::strided;
let kernel_name = match dtype {
DType::F16 => strided::sigmoid::HALF,
DType::F32 => strided::sigmoid::FLOAT,
DType::BF16 => strided::sigmoid::BFLOAT,
dtype => {
candle::bail!("Metal strided unary sigmoid {dtype:?} not implemented")
}
};
let dst = candle_metal_kernels::BufferOffset::zero_offset(&buffer);
candle_metal_kernels::call_unary_strided(
device.metal_device(),
&command_buffer,
device.kernels(),
kernel_name,
layout.dims(),
src,
layout.stride(),
dst,
)
.map_err(MetalError::from)?;
}
}
let new_storage = candle::MetalStorage::new(buffer, device.clone(), el_count, dtype);
Ok((new_storage, layout.shape().clone()))
}
fn bwd(&self, _arg: &Tensor, res: &Tensor, grad_res: &Tensor) -> Result<Option<Tensor>> {
// d/dx sigmoid(x) = (1 - sigmoid(x)) * sigmoid(x)
let d_dx_sigmoid = res.ones_like()?.sub(res)?.mul(res)?;
Ok(Some(grad_res.mul(&d_dx_sigmoid)?))
}
}
pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
xs.apply_op1(Sigmoid)
// TODO: Should we have a specialized op for this?
(xs.neg()?.exp()? + 1.0)?.recip()
}
pub fn hard_sigmoid(xs: &Tensor) -> Result<Tensor> {
@ -254,7 +70,7 @@ pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> {
let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?;
let scale = 1.0 / (1.0 - drop_p as f64);
let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?;
let mask = (rand.ge(&drop_p)?.to_dtype(xs.dtype())? * scale)?;
let mask = (rand.ge(&drop_p)? * scale)?.to_dtype(xs.dtype())?;
xs * mask
}

View File

@ -264,7 +264,7 @@ impl SimpleBackend for VarMap {
}
}
pub struct SafeTensorWithRouting<'a> {
struct SafeTensorWithRouting<'a> {
routing: HashMap<String, usize>,
safetensors: Vec<SafeTensors<'a>>,
}

View File

@ -6,7 +6,7 @@ extern crate accelerate_src;
use anyhow::Result;
use candle::{test_utils, DType, Device, Tensor};
use candle_nn::{batch_norm, BatchNorm, BatchNormConfig, VarBuilder, VarMap};
use candle_nn::BatchNorm;
/* The test below has been generated using the following PyTorch code:
import torch
@ -20,7 +20,7 @@ print(m.running_mean)
print(m.running_var)
*/
#[test]
fn batch_norm_test() -> Result<()> {
fn batch_norm() -> Result<()> {
let running_mean = Tensor::zeros(5, DType::F32, &Device::Cpu)?;
let running_var = Tensor::ones(5, DType::F32, &Device::Cpu)?;
let bn = BatchNorm::new_no_bias(5, running_mean.clone(), running_var.clone(), 1e-8)?;
@ -84,45 +84,3 @@ fn batch_norm_test() -> Result<()> {
);
Ok(())
}
// This test makes sure that we can train a batch norm layer using a VarMap.
#[test]
fn train_batch_norm() -> Result<()> {
let vm = VarMap::new();
let vb = VarBuilder::from_varmap(&vm, DType::F32, &Device::Cpu);
let bn = batch_norm(1, BatchNormConfig::default(), vb)?;
// Get a copy of the original mean to ensure it is being updated.
let original_mean = bn.running_mean().detach().copy()?;
let var_map_mean = {
vm.data()
.lock()
.unwrap()
.get("running_mean")
.unwrap()
.clone()
};
// Ensure the var map mean is the same as the running mean.
assert_eq!(
test_utils::to_vec1_round(bn.running_mean(), 4)?,
test_utils::to_vec1_round(var_map_mean.as_tensor(), 4)?,
);
// Train with a something guaranteed to be different from the running mean.
let mean_plus_one = {
let one = original_mean.ones_like()?;
original_mean.add(&one)?.reshape((1, 1))?
};
bn.forward_train(&mean_plus_one)?;
// Assert that the running mean has been updated.
assert_ne!(
test_utils::to_vec1_round(bn.running_mean(), 4)?,
test_utils::to_vec1_round(&original_mean, 4)?,
);
// Assert that the var map mean has been updated.
assert_eq!(
test_utils::to_vec1_round(bn.running_mean(), 4)?,
test_utils::to_vec1_round(var_map_mean.as_tensor(), 4)?,
);
Ok(())
}

View File

@ -170,19 +170,8 @@ fn rope_thd(device: &Device) -> Result<()> {
Ok(())
}
fn sigmoid(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
let s1 = candle_nn::ops::sigmoid(&tensor)?;
let s2 = (1. / (1. + tensor.neg()?.exp()?)?)?;
let diff = (s1 - s2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
Ok(())
}
test_device!(ropei, ropei_cpu, ropei_gpu, ropei_metal);
test_device!(rope, rope_cpu, rope_gpu, rope_metal);
test_device!(rope_thd, rope_thd_cpu, rope_thd_gpu, rope_thd_metal);
test_device!(softmax, softmax_cpu, softmax_gpu, softmax_metal);
test_device!(rms_norm, rms_norm_cpu, rms_norm_gpu, rms_norm_metal);
test_device!(sigmoid, sigmoid_cpu, sigmoid_gpu, sigmoid_metal);

View File

@ -1,6 +1,6 @@
[package]
name = "candle-onnx"
version = "0.5.1"
version = "0.5.0"
edition = "2021"
description = "ONNX support for Candle"
@ -10,8 +10,8 @@ categories = ["science"]
license = "MIT OR Apache-2.0"
[dependencies]
candle = { path = "../candle-core", package = "candle-core", version = "0.5.1" }
candle-nn = { path = "../candle-nn", version = "0.5.1" }
candle = { path = "../candle-core", package = "candle-core", version = "0.5.0" }
candle-nn = { path = "../candle-nn", version = "0.5.0" }
prost = "0.12.1"
[build-dependencies]

View File

@ -23,11 +23,6 @@ trait Attr {
fn get(attr: &onnx::AttributeProto) -> Result<&Self>;
}
trait AttrOwned: Sized {
const TYPE: AttributeType;
fn get(attr: &onnx::AttributeProto) -> Result<Self>;
}
impl Attr for i64 {
const TYPE: AttributeType = AttributeType::Int;
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
@ -56,50 +51,6 @@ impl Attr for str {
}
}
impl AttrOwned for Tensor {
const TYPE: AttributeType = AttributeType::Tensor;
fn get(attr: &onnx::AttributeProto) -> Result<Self> {
let tensor_proto = match &attr.t {
Some(value) => value,
None => bail!(
"attribute {} was of type TENSOR, but no tensor was found",
attr.name
),
};
let data_type = match DataType::try_from(tensor_proto.data_type) {
Ok(value) => value,
Err(_) => bail!(
"attribute {} of type TENSOR was an invalid data_type number {}",
attr.name,
tensor_proto.data_type
),
};
let dtype = match dtype(data_type) {
Some(value) => value,
None => bail!(
"attribute {} of type TENSOR has an unsupported data_type {}",
attr.name,
data_type.as_str_name()
),
};
let mut dims = Vec::with_capacity(tensor_proto.dims.len());
for dim in &tensor_proto.dims {
if dim < &0 {
bail!(
"attribute {} of type TENSOR has a negative dimension, which is unsupported",
attr.name
)
}
dims.push(*dim as usize)
}
Tensor::from_raw_buffer(&tensor_proto.raw_data, dtype, &dims, &Device::Cpu)
}
}
fn get_attr_<'a>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a onnx::AttributeProto> {
match node.attribute.iter().find(|attr| attr.name == name) {
None => {
@ -147,24 +98,6 @@ fn get_attr_opt<'a, T: Attr + ?Sized>(
}
}
fn get_attr_opt_owned<T: AttrOwned>(node: &onnx::NodeProto, name: &str) -> Result<Option<T>> {
match node.attribute.iter().find(|attr| attr.name == name) {
None => Ok(None),
Some(attr) => {
if attr.r#type() != T::TYPE {
bail!(
"unsupported type {:?} for '{name}' attribute in '{}' for {}",
attr.r#type,
node.op_type,
node.name
)
}
let val = T::get(attr)?;
Ok(Some(val))
}
}
}
pub fn get_tensor(t: &onnx::TensorProto, name: &str) -> Result<Tensor> {
let dims: Vec<usize> = t.dims.iter().map(|&x| x as usize).collect();
match DataType::try_from(t.data_type) {
@ -327,11 +260,6 @@ pub fn simple_eval(
let output = input0.broadcast_pow(input1)?;
values.insert(node.output[0].clone(), output);
}
"Exp" => {
let xs = get(&node.input[0])?;
let output = xs.exp()?;
values.insert(node.output[0].clone(), output);
}
"Equal" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
@ -530,17 +458,14 @@ pub fn simple_eval(
}
values.insert(node.output[0].clone(), xs);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#ConstantOfShape
"ConstantOfShape" => {
let input = get(&node.input[0])?;
let value = get_attr_opt_owned::<Tensor>(node, "value")?.unwrap_or(Tensor::zeros(
(),
DType::F32,
&Device::Cpu,
)?);
let xs = Tensor::ones(input.shape(), value.dtype(), input.device())?
.broadcast_mul(&value)?;
let dims = get(&node.input[0])?;
let shape = dims
.to_vec1::<i64>()?
.into_iter()
.map(|v| v as usize)
.collect::<Vec<_>>();
let xs = Tensor::zeros(shape, DType::F32, dims.device())?;
values.insert(node.output[0].clone(), xs);
}
"Unsqueeze" => {
@ -627,82 +552,6 @@ pub fn simple_eval(
let dims = Tensor::from_vec(dims, xs.rank(), xs.device())?;
values.insert(node.output[0].clone(), dims);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sqrt
"Sqrt" => {
let xs = get(&node.input[0])?;
let output = xs.sqrt()?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Range
"Range" => {
let start = get(&node.input[0])?;
let limit = get(&node.input[1])?;
let delta = get(&node.input[2])?;
macro_rules! arange_step {
($t: ty) => {
Tensor::arange_step(
start.to_vec0::<$t>()?,
limit.to_vec0::<$t>()?,
delta.to_vec0::<$t>()?,
&Device::Cpu,
)?
};
}
let output = match start.dtype() {
DType::U8 => arange_step!(u8),
DType::U32 => arange_step!(u32),
DType::I64 => arange_step!(i64),
DType::BF16 => arange_step!(f32),
DType::F16 => arange_step!(f32),
DType::F32 => arange_step!(f32),
DType::F64 => arange_step!(f64),
};
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Greater
"Greater" => {
let a = get(&node.input[0])?;
let b = get(&node.input[1])?;
let output = a.broadcast_gt(b)?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Less
"Less" => {
let a = get(&node.input[0])?;
let b = get(&node.input[1])?;
let output = a.broadcast_lt(b)?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Log
"Log" => {
let a = get(&node.input[0])?;
let output = a.log()?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Min
"Min" => {
let mut output = get(&node.input[0])?.clone();
for input in node.input.iter() {
let input = get(input)?;
output = output.broadcast_minimum(input)?
}
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Where
"Where" => {
let cond = get(&node.input[0])?;
let a = get(&node.input[1])?;
let b = get(&node.input[2])?;
let output = cond.where_cond(a, b)?;
values.insert(node.output[0].clone(), output);
}
"Conv" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv
let dilations = get_attr_opt::<[i64]>(node, "dilations")?;
@ -971,46 +820,6 @@ pub fn simple_eval(
};
values.insert(node.output[0].clone(), output);
}
"RandomUniform" => {
let dt: i64 = get_attr_opt(node, "dtype")?.copied().unwrap_or(1); // 1 is float
// type by
// default
let dtype = match DataType::try_from(dt as i32) {
Ok(dt) => match dtype(dt) {
Some(DType::U8 | DType::U32 | DType::I64) => {
bail!(
"unsupported 'dtype' value {dt:?}, only floats are allowed, for RandomUnifrom {}",
node.name
)
}
Some(dt) => dt,
None => {
bail!(
"unsupported 'dtype' value {dt:?} for RandomUnifrom {}",
node.name
)
}
},
Err(_) => {
bail!(
"unsupported 'dtype' value {dt:?} for RandomUniform {}",
node.name
)
}
};
let low: f32 = get_attr_opt(node, "low")?.copied().unwrap_or(0.0);
let high: f32 = get_attr_opt(node, "high")?.copied().unwrap_or(1.0);
let seed: Option<f32> = get_attr_opt(node, "seed")?.copied();
if seed.is_some() {
bail!("seed for RandomUniform is currently not supported")
};
let shape: Vec<usize> = get_attr::<[i64]>(node, "shape")?
.iter()
.map(|x| *x as usize)
.collect();
let output = Tensor::rand(low, high, shape, &Device::Cpu)?.to_dtype(dtype)?;
values.insert(node.output[0].clone(), output);
}
op_type => bail!("unsupported op_type {op_type} for op {node:?}"),
}
}

View File

@ -4,16 +4,12 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{DType, Device, NdArray, Result, Tensor};
use candle_onnx::onnx;
use candle_onnx::onnx::attribute_proto::AttributeType;
use candle_onnx::onnx::tensor_proto::DataType;
use candle::{Device, NdArray, Result, Tensor};
use candle_onnx::onnx::{AttributeProto, GraphProto, ModelProto, NodeProto, ValueInfoProto};
use std::collections::HashMap;
const INPUT_X: &str = "x";
const INPUT_Y: &str = "y";
const INPUT_A: &str = "a";
const OUTPUT_Z: &str = "z";
fn create_model_proto_with_graph(graph: Option<GraphProto>) -> ModelProto {
@ -231,52 +227,6 @@ fn test_div_operation() -> Result<()> {
Ok(())
}
// "Exp"
#[test]
fn test_exp_operation() -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Exp".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let x = Tensor::from_vec(vec![-1.0f32, 0.0f32, 1.0f32, 2.0f32], &[2, 2], &Device::Cpu)?;
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), x);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let results = z.to_vec2::<f32>()?;
assert_eq!(results[0][0], 0.36787944f32);
assert_eq!(results[0][1], 1.0f32);
assert_eq!(results[1], vec![std::f32::consts::E, 7.38905609f32]);
Ok(())
}
// "Equal"
#[test]
fn test_equal_operation() -> Result<()> {
@ -870,137 +820,7 @@ fn test_flatten_operation() -> Result<()> {
// #[test]
// "ConstantOfShape"
#[test]
fn test_constant_of_shape() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-31
test(&[4i64, 3, 2], Some(1.), &[1., 1., 1.])?;
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-31
test(&[0.], Some(0i64), &[0i64])?;
// "value" defaults to 0 f32
test(&[1i64, 2, 3, 4], None as Option<i64>, &[0., 0., 0., 0.])?;
fn test(
input: impl NdArray,
value: Option<impl NdArray>,
expected: impl NdArray,
) -> Result<()> {
let mut attribute = vec![];
if let Some(value) = value {
let tensor = Tensor::new(value, &Device::Cpu)?;
let (value, data_type) = match tensor.dtype() {
DType::U8 => (
tensor.to_vec0::<u8>()?.to_le_bytes().to_vec(),
DataType::Uint8,
),
DType::U32 => (
tensor.to_vec0::<u32>()?.to_le_bytes().to_vec(),
DataType::Uint32,
),
DType::I64 => (
tensor.to_vec0::<i64>()?.to_le_bytes().to_vec(),
DataType::Int64,
),
DType::F32 => (
tensor.to_vec0::<f32>()?.to_le_bytes().to_vec(),
DataType::Float,
),
DType::F64 => (
tensor.to_vec0::<f64>()?.to_le_bytes().to_vec(),
DataType::Double,
),
_ => panic!("unsupported DType in test"),
};
let tensor = onnx::TensorProto {
data_type: data_type.into(),
dims: tensor.dims().iter().map(|v| *v as i64).collect(),
raw_data: value,
segment: None,
float_data: vec![],
int32_data: vec![],
string_data: vec![],
int64_data: vec![],
name: "".to_string(),
doc_string: "".to_string(),
external_data: vec![],
data_location: 0,
double_data: vec![],
uint64_data: vec![],
};
attribute.push(AttributeProto {
name: "value".to_string(),
ref_attr_name: "value".to_string(),
i: 0,
doc_string: "value".to_string(),
r#type: AttributeType::Tensor.into(),
f: 0.0,
s: vec![],
t: Some(tensor),
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
})
}
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "ConstantOfShape".to_string(),
domain: "".to_string(),
attribute,
input: vec![INPUT_X.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(input, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval
.get(OUTPUT_Z)
.expect("Output 'z' not found")
.to_dtype(DType::F64)?;
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// #[test]
// "Unsqueeze"
// #[test]
@ -1819,596 +1639,3 @@ fn test_reduce_mean() -> Result<()> {
Ok(())
}
// "Sqrt"
#[test]
fn test_sqrt() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-155
test(&[1., 4., 9.], &[1., 2., 3.])?;
fn test(data: impl NdArray, expected: impl NdArray) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Sqrt".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let expected = Tensor::new(expected, &Device::Cpu)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "RandomUniform"
#[test]
fn test_random_uniform() -> Result<()> {
test(vec![3, 2, 1, 4], None, None)?;
test(vec![2, 2, 2, 2], Some(-10.0), None)?;
test(vec![2, 2, 2, 2], None, Some(10.0))?;
test(vec![1, 2, 3, 4], Some(-10.0), Some(10.0))?;
fn test(shape: Vec<i64>, low: Option<f32>, high: Option<f32>) -> Result<()> {
let att_low = AttributeProto {
name: "low".to_string(),
ref_attr_name: "low".to_string(),
i: 0,
doc_string: "low".to_string(),
r#type: 1, // FLOAT
f: low.unwrap_or(0.0),
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let att_high = AttributeProto {
name: "high".to_string(),
ref_attr_name: "high".to_string(),
i: 0,
doc_string: "high".to_string(),
r#type: 1, // FLOAT
f: high.unwrap_or(1.0),
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let att_shape = AttributeProto {
name: "shape".to_string(),
ref_attr_name: "shape".to_string(),
i: 0,
doc_string: "shape".to_string(),
r#type: 7, // INTS
f: 0.0,
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: shape,
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let att_dtype = AttributeProto {
name: "dtype".to_string(),
ref_attr_name: "dtype".to_string(),
i: 11, // DOUBLE
doc_string: "dtype".to_string(),
r#type: 2, // INT
f: 0.0,
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let attrs = {
let mut mut_attrs = vec![att_shape, att_dtype];
if low.is_some() {
mut_attrs.push(att_low);
}
if high.is_some() {
mut_attrs.push(att_high);
}
mut_attrs
};
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "RandomUniform".to_string(),
domain: "".to_string(),
attribute: attrs,
input: vec![],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let eval = candle_onnx::simple_eval(&manual_graph, HashMap::new())?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let min = z
.flatten_all()?
.to_vec1()?
.into_iter()
.reduce(f64::min)
.unwrap();
let max = z
.flatten_all()?
.to_vec1()?
.into_iter()
.reduce(f64::max)
.unwrap();
assert!(min >= low.unwrap_or(0.0).into());
assert!(max <= high.unwrap_or(1.0).into());
assert_ne!(min, max);
Ok(())
}
Ok(())
}
// "Range"
#[test]
fn test_range() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-113
test(1., 5., 2., &[1., 3.])?;
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-113
test(10i64, 6i64, -3i64, &[10i64, 7i64])?;
fn test(
start: impl NdArray,
limit: impl NdArray,
delta: impl NdArray,
expected: impl NdArray,
) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Range".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![
INPUT_X.to_string(),
INPUT_Y.to_string(),
INPUT_A.to_string(),
],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(start, &Device::Cpu)?);
inputs.insert(INPUT_Y.to_string(), Tensor::new(limit, &Device::Cpu)?);
inputs.insert(INPUT_A.to_string(), Tensor::new(delta, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval
.get(OUTPUT_Z)
.expect("Output 'z' not found")
.to_dtype(DType::F64)?;
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "Greater"
#[test]
fn test_greater() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-63
test(&[1., 2., 3.], &[3., 2., 1.], &[0u8, 0, 1])?;
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-63
test(&[1., 2., 3.], 2., &[0u8, 0, 1])?;
fn test(a: impl NdArray, b: impl NdArray, expected: impl NdArray) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Greater".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval
.get(OUTPUT_Z)
.expect("Output 'z' not found")
.to_dtype(DType::F64)?;
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "Less"
#[test]
fn test_less() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-81
test(&[1., 2., 3.], &[3., 2., 1.], &[1u8, 0, 0])?;
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-81
test(&[1., 2., 3.], 2., &[1u8, 0, 0])?;
fn test(a: impl NdArray, b: impl NdArray, expected: impl NdArray) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Less".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval
.get(OUTPUT_Z)
.expect("Output 'z' not found")
.to_dtype(DType::F64)?;
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "Log"
#[test]
fn test_log() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-82
test(&[1., 10.], &[0., std::f64::consts::LN_10])?;
fn test(data: impl NdArray, expected: impl NdArray) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Log".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let expected = Tensor::new(expected, &Device::Cpu)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "Min"
#[test]
fn test_min() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-94
test(&[3., 2., 1.], &[1., 4., 4.], &[2., 5., 0.], &[1., 2., 0.])?;
fn test(
a: impl NdArray,
b: impl NdArray,
c: impl NdArray,
expected: impl NdArray,
) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Min".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![
INPUT_X.to_string(),
INPUT_Y.to_string(),
INPUT_A.to_string(),
],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
inputs.insert(INPUT_A.to_string(), Tensor::new(c, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let expected = Tensor::new(expected, &Device::Cpu)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}
// "Where"
#[test]
fn test_where() -> Result<()> {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-173
test(
&[[1u8, 0], [1, 1]],
&[[1i64, 2], [3, 4]],
&[[9i64, 8], [7, 6]],
&[[1i64, 8], [3, 4]],
)?;
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-173
test(
&[[1u8, 0], [1, 1]],
&[[1., 2.], [3., 4.]],
&[[9., 8.], [7., 6.]],
&[[1., 8.], [3., 4.]],
)?;
fn test(
condition: impl NdArray,
x: impl NdArray,
y: impl NdArray,
expected: impl NdArray,
) -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "Where".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![
INPUT_X.to_string(),
INPUT_Y.to_string(),
INPUT_A.to_string(),
],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(condition, &Device::Cpu)?);
inputs.insert(INPUT_Y.to_string(), Tensor::new(x, &Device::Cpu)?);
inputs.insert(INPUT_A.to_string(), Tensor::new(y, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval
.get(OUTPUT_Z)
.expect("Output 'z' not found")
.to_dtype(DType::F64)?;
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
match expected.dims().len() {
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}

View File

@ -1,4 +1,4 @@
use candle::{DType, Error, IndexOp, Result, Tensor, D};
use candle::{DType, Error, Result, Tensor};
use rand::{distributions::Distribution, SeedableRng};
#[derive(Clone, PartialEq, Debug)]
@ -73,15 +73,17 @@ impl LogitsProcessor {
}
// top-k sampling samples from the k tokens with the largest probabilities.
fn sample_topk(&mut self, logits: &Tensor, top_k: usize, temperature: f64) -> Result<u32> {
let arg_sort = logits.arg_sort_last_dim(false)?;
let top_k_indices = arg_sort.narrow(candle::D::Minus1, 0, top_k)?;
let top_k_logits = logits.gather(&top_k_indices, D::Minus1)?;
let top_k_logits = (&top_k_logits / temperature)?;
let top_k_prs = candle_nn::ops::softmax_last_dim(&top_k_logits)?;
let top_k_prs = top_k_prs.to_vec1()?;
let index = self.sample_multinomial(&top_k_prs)?;
Ok(top_k_indices.i(index as usize)?.to_vec0::<u32>()?)
fn sample_topk(&mut self, prs: &mut Vec<f32>, top_k: usize) -> Result<u32> {
if top_k >= prs.len() {
self.sample_multinomial(prs)
} else {
let mut argsort_indices = (0..prs.len()).collect::<Vec<_>>();
let (indices, _, _) =
argsort_indices.select_nth_unstable_by(top_k, |&i, &j| prs[j].total_cmp(&prs[i]));
let prs = indices.iter().map(|&i| prs[i]).collect::<Vec<_>>();
let index = self.sample_multinomial(&prs)?;
Ok(indices[index as usize] as u32)
}
}
// top-k sampling samples from the k tokens with the largest probabilities.
@ -135,12 +137,8 @@ impl LogitsProcessor {
}
}
Sampling::TopK { k, temperature } => {
if *k >= logits.dim(D::Minus1)? {
let prs = prs(*temperature)?;
self.sample_multinomial(&prs)?
} else {
self.sample_topk(&logits, *k, *temperature)?
}
let mut prs = prs(*temperature)?;
self.sample_topk(&mut prs, *k)?
}
Sampling::TopKThenTopP { k, p, temperature } => {
let mut prs = prs(*temperature)?;

View File

@ -227,9 +227,8 @@ impl Attention {
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);

View File

@ -16,14 +16,6 @@ pub struct LlamaConfig {
pub rms_norm_eps: f64,
#[serde(default = "default_rope")]
pub rope_theta: f32,
pub bos_token_id: Option<u32>,
pub eos_token_id: Option<u32>,
}
impl LlamaConfig {
pub fn num_key_value_heads(&self) -> usize {
self.num_key_value_heads.unwrap_or(self.num_attention_heads)
}
}
fn default_rope() -> f32 {
@ -38,12 +30,10 @@ impl LlamaConfig {
vocab_size: self.vocab_size,
num_hidden_layers: self.num_hidden_layers,
num_attention_heads: self.num_attention_heads,
num_key_value_heads: self.num_key_value_heads(),
num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
rms_norm_eps: self.rms_norm_eps,
rope_theta: self.rope_theta,
use_flash_attn,
bos_token_id: self.bos_token_id,
eos_token_id: self.eos_token_id,
}
}
}
@ -59,8 +49,6 @@ pub struct Config {
pub use_flash_attn: bool,
pub rms_norm_eps: f64,
pub rope_theta: f32,
pub bos_token_id: Option<u32>,
pub eos_token_id: Option<u32>,
}
impl Config {
@ -75,8 +63,6 @@ impl Config {
use_flash_attn,
rms_norm_eps: 1e-6,
rope_theta: 10_000.0,
bos_token_id: None,
eos_token_id: None,
}
}
@ -91,8 +77,6 @@ impl Config {
use_flash_attn,
rms_norm_eps: 1e-5,
rope_theta: 10_000.0,
bos_token_id: None,
eos_token_id: None,
}
}
}
@ -122,6 +106,7 @@ impl Cache {
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
// This is different from the paper, see:
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
let cos = idx_theta.cos()?.to_dtype(dtype)?;
let sin = idx_theta.sin()?.to_dtype(dtype)?;
Ok(Self {
@ -181,10 +166,16 @@ fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Ten
impl CausalSelfAttention {
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize, cache: &Cache) -> Result<Tensor> {
let _enter = self.span_rot.enter();
let (_b_sz, _, seq_len, _hidden_size) = x.dims4()?;
let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
let cos = cache.cos.narrow(0, index_pos, seq_len)?;
let sin = cache.sin.narrow(0, index_pos, seq_len)?;
candle_nn::rotary_emb::rope(x, &cos, &sin)
let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
Ok(rope)
}
fn forward(
@ -202,12 +193,10 @@ impl CausalSelfAttention {
let q = q
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
.transpose(1, 2)?;
let mut v = v
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
.transpose(1, 2)?;

View File

@ -26,10 +26,8 @@ pub mod mixtral;
pub mod mobileone;
pub mod moondream;
pub mod mpt;
pub mod olmo;
pub mod persimmon;
pub mod phi;
pub mod phi3;
pub mod quantized_blip;
pub mod quantized_blip_text;
pub mod quantized_llama;
@ -39,8 +37,6 @@ pub mod quantized_mistral;
pub mod quantized_mixformer;
pub mod quantized_moondream;
pub mod quantized_mpt;
pub mod quantized_phi;
pub mod quantized_phi3;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;

View File

@ -302,7 +302,6 @@ impl Module for VisionEncoder {
}
}
#[derive(Debug, Clone)]
pub struct Model {
pub text_model: PhiModel,
pub vision_encoder: VisionEncoder,

View File

@ -1,337 +0,0 @@
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{linear_b, linear_no_bias, Activation, LayerNorm, Linear, VarBuilder};
use std::sync::Arc;
#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
pub vocab_size: usize,
pub hidden_size: usize,
pub intermediate_size: usize,
pub attention_bias: bool,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub num_key_value_heads: usize,
pub hidden_act: candle_nn::Activation,
pub max_position_embeddings: usize,
pub rope_theta: f64,
pub tie_word_embeddings: bool,
pub clip_qkv: Option<f64>,
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.hidden_size / cfg.num_attention_heads;
let max_seq_len = cfg.max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
seqlen_offset: usize,
) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
gate_proj: Linear,
up_proj: Linear,
down_proj: Linear,
act_fn: Activation,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let intermediate_sz = cfg.intermediate_size;
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn: cfg.hidden_act,
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
let rhs = xs.apply(&self.up_proj)?;
(lhs * rhs)?.apply(&self.down_proj)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
hidden_size: usize,
rotary_emb: Arc<RotaryEmbedding>,
qkv_clip: Option<f64>,
kv_cache: Option<(Tensor, Tensor)>,
}
impl Attention {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads;
let num_kv_groups = num_heads / num_kv_heads;
let head_dim = hidden_sz / num_heads;
let b = cfg.attention_bias;
let qkv_clip = cfg.clip_qkv;
let q_proj = linear_b(hidden_sz, num_heads * head_dim, b, vb.pp("q_proj"))?;
let k_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("k_proj"))?;
let v_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("v_proj"))?;
let o_proj = linear_b(num_heads * head_dim, hidden_sz, b, vb.pp("o_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
num_heads,
num_kv_heads,
num_kv_groups,
head_dim,
hidden_size: hidden_sz,
rotary_emb,
qkv_clip,
kv_cache: None,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (b_sz, q_len, _) = xs.dims3()?;
let query_states = self.q_proj.forward(xs)?;
let key_states = self.k_proj.forward(xs)?;
let value_states = self.v_proj.forward(xs)?;
let (query_states, key_states, value_states) = match &self.qkv_clip {
None => (query_states, key_states, value_states),
Some(qkv_clip) => {
let query_states = Tensor::clamp(&query_states, -qkv_clip, *qkv_clip)?;
let key_states = Tensor::clamp(&key_states, -qkv_clip, *qkv_clip)?;
let value_states = Tensor::clamp(&value_states, -qkv_clip, *qkv_clip)?;
(query_states, key_states, value_states)
}
};
let query_states = query_states
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let key_states = key_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let value_states = value_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let (query_states, key_states) =
self.rotary_emb
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.hidden_size))?
.apply(&self.o_proj)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
mlp: MLP,
input_layernorm: LayerNorm,
post_attention_layernorm: LayerNorm,
}
impl DecoderLayer {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?;
let input_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5);
let post_attention_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5);
Ok(Self {
self_attn,
mlp,
input_layernorm,
post_attention_layernorm,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let residual = xs;
let xs = self.input_layernorm.forward(xs)?;
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
residual + xs
}
fn clear_kv_cache(&mut self) {
self.self_attn.clear_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct Model {
embed_tokens: candle_nn::Embedding,
layers: Vec<DecoderLayer>,
norm: LayerNorm,
lm_head: Linear,
device: Device,
dtype: DType,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?;
let norm = LayerNorm::new_no_bias(ln_weight, 1e-5);
let lm_head = if cfg.tie_word_embeddings {
Linear::new(embed_tokens.embeddings().clone(), None)
} else {
linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?
};
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
fn prepare_decoder_attention_mask(
&self,
b_size: usize,
tgt_len: usize,
seqlen_offset: usize,
) -> Result<Tensor> {
// Sliding window mask?
let mask: Vec<_> = (0..tgt_len)
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
let mask = if seqlen_offset > 0 {
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), self.dtype, &self.device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
.to_dtype(self.dtype)
}
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (b_size, seq_len) = input_ids.dims2()?;
let attention_mask = if seq_len <= 1 {
None
} else {
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
Some(mask)
};
let mut xs = self.embed_tokens.forward(input_ids)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
}
}
}

View File

@ -72,7 +72,7 @@ impl RotaryEmbedding {
let (xs1, xs2) = (&xs12[0], &xs12[1]);
let c = self.cos.narrow(0, seqlen_offset, seq_len)?;
let s = self.sin.narrow(0, seqlen_offset, seq_len)?;
let rotate_half = Tensor::cat(&[&xs2.neg()?, xs1], D::Minus1)?;
let rotate_half = Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)?;
let xs_rot = (xs_rot.broadcast_mul(&c)? + rotate_half.broadcast_mul(&s)?)?;
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
}

View File

@ -1,329 +0,0 @@
// This implementation is based on:
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
use crate::models::with_tracing::{linear_no_bias as linear, Linear, RmsNorm};
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
use std::sync::Arc;
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json
#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
pub vocab_size: usize,
pub hidden_act: candle_nn::Activation,
pub hidden_size: usize,
pub intermediate_size: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub num_key_value_heads: usize,
pub rms_norm_eps: f64,
pub rope_theta: f64,
pub bos_token_id: Option<u32>,
pub eos_token_id: Option<u32>,
pub rope_scaling: Option<String>,
pub max_position_embeddings: usize,
}
impl Config {
pub fn head_dim(&self) -> usize {
self.hidden_size / self.num_attention_heads
}
}
#[derive(Debug, Clone)]
pub struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
pub fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.head_dim();
let max_seq_len = cfg.max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
pub fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
seqlen_offset: usize,
) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
struct Attention {
qkv_proj: Linear,
o_proj: Linear,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
}
impl Attention {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads;
let head_dim = cfg.head_dim();
let op_size = num_heads * head_dim + 2 * num_kv_heads * head_dim;
let qkv_proj = linear(cfg.hidden_size, op_size, vb.pp("qkv_proj"))?;
let o_proj = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("o_proj"))?;
Ok(Self {
qkv_proj,
o_proj,
rotary_emb,
kv_cache: None,
num_heads,
num_kv_heads,
num_kv_groups: num_heads / num_kv_heads,
head_dim,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (b_sz, q_len, _) = xs.dims3()?;
let qkv = self.qkv_proj.forward(xs)?;
let query_pos = self.num_heads * self.head_dim;
let query_states = qkv.narrow(D::Minus1, 0, query_pos)?;
let key_states = qkv.narrow(D::Minus1, query_pos, self.num_kv_heads * self.head_dim)?;
let value_states = qkv.narrow(
D::Minus1,
query_pos + self.num_kv_heads * self.head_dim,
self.num_kv_heads * self.head_dim,
)?;
let query_states = query_states
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let key_states = key_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let value_states = value_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let (query_states, key_states) =
self.rotary_emb
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, ()))?
.apply(&self.o_proj)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct Mlp {
gate_up_proj: Linear,
down_proj: Linear,
act_fn: candle_nn::Activation,
i_size: usize,
}
impl Mlp {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_size = cfg.hidden_size;
let i_size = cfg.intermediate_size;
let gate_up_proj = linear(hidden_size, 2 * i_size, vb.pp("gate_up_proj"))?;
let down_proj = linear(i_size, hidden_size, vb.pp("down_proj"))?;
Ok(Self {
gate_up_proj,
down_proj,
act_fn: cfg.hidden_act,
i_size,
})
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let up_states = xs.apply(&self.gate_up_proj)?;
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
let up_states = (up_states * gate.apply(&self.act_fn))?;
up_states.apply(&self.down_proj)
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
mlp: Mlp,
input_layernorm: RmsNorm,
post_attention_layernorm: RmsNorm,
}
impl DecoderLayer {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
let input_layernorm =
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
let post_attention_layernorm = RmsNorm::new(
cfg.hidden_size,
cfg.rms_norm_eps,
vb.pp("post_attention_layernorm"),
)?;
Ok(Self {
self_attn,
mlp,
input_layernorm,
post_attention_layernorm,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let residual = xs;
let xs = self.input_layernorm.forward(xs)?;
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
residual + xs
}
fn clear_kv_cache(&mut self) {
self.self_attn.clear_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct Model {
embed_tokens: candle_nn::Embedding,
layers: Vec<DecoderLayer>,
norm: RmsNorm,
lm_head: Linear,
device: Device,
dtype: DType,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
fn prepare_decoder_attention_mask(
&self,
b_size: usize,
tgt_len: usize,
seqlen_offset: usize,
) -> Result<Tensor> {
let mask: Vec<_> = (0..tgt_len)
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
let mask = if seqlen_offset > 0 {
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
.to_dtype(self.dtype)
}
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (b_size, seq_len) = input_ids.dims2()?;
let attention_mask = if seq_len <= 1 {
None
} else {
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
Some(mask)
};
let mut xs = self.embed_tokens.forward(input_ids)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
}
}
}

View File

@ -1,6 +1,5 @@
use std::collections::HashMap;
use crate::quantized_nn::RmsNorm;
use candle::quantized::QTensor;
use candle::quantized::{ggml_file, gguf_file};
use candle::{DType, Device, IndexOp, Result, Tensor};
@ -29,13 +28,13 @@ impl QMatMul {
}
#[derive(Debug, Clone)]
struct Mlp {
struct MlpSilu {
feed_forward_w1: QMatMul,
feed_forward_w2: QMatMul,
feed_forward_w3: QMatMul,
}
impl Module for Mlp {
impl Module for MlpSilu {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let w1 = self.feed_forward_w1.forward(xs)?;
let w3 = self.feed_forward_w3.forward(xs)?;
@ -45,16 +44,31 @@ impl Module for Mlp {
}
#[derive(Debug, Clone)]
enum MlpOrMoe {
Mlp(Mlp),
struct MlpSimple {
fc1: QMatMul,
fc2: QMatMul,
act: candle_nn::Activation,
}
impl Module for MlpSimple {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?.apply(&self.act)?;
self.fc2.forward(&xs)
}
}
#[derive(Debug, Clone)]
enum Mlp {
Silu(MlpSilu),
Simple(MlpSimple),
MoE {
n_expert_used: usize,
feed_forward_gate_inp: QMatMul,
experts: Vec<Mlp>,
experts: Vec<MlpSilu>,
},
}
impl Module for MlpOrMoe {
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Self::MoE {
@ -119,20 +133,48 @@ impl Module for MlpOrMoe {
let ys = ys.reshape((b_size, seq_len, hidden_dim))?;
Ok(ys)
}
Self::Mlp(mlp) => mlp.forward(xs),
Self::Silu(mlp) => mlp.forward(xs),
Self::Simple(mlp) => mlp.forward(xs),
}
}
}
#[derive(Debug, Clone)]
enum Norm {
Rms(crate::quantized_nn::RmsNorm),
Layer(candle_nn::LayerNorm),
}
impl Module for Norm {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Self::Rms(m) => m.forward(xs),
Self::Layer(m) => m.forward(xs),
}
}
}
fn rms_norm(q: QTensor, eps: f64) -> Result<Norm> {
let rms = crate::quantized_nn::RmsNorm::from_qtensor(q, eps)?;
Ok(Norm::Rms(rms))
}
fn layer_norm(w: QTensor, b: QTensor, eps: f64) -> Result<Norm> {
let w = w.dequantize(&w.device())?;
let b = b.dequantize(&b.device())?;
let ln = candle_nn::LayerNorm::new(w, b, eps);
Ok(Norm::Layer(ln))
}
#[derive(Debug, Clone)]
struct LayerWeights {
attention_wq: QMatMul,
attention_wk: QMatMul,
attention_wv: QMatMul,
attention_wo: QMatMul,
attention_norm: RmsNorm,
mlp_or_moe: MlpOrMoe,
ffn_norm: RmsNorm,
attention_norm: Norm,
mlp: Mlp,
ffn_norm: Norm,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
@ -230,7 +272,7 @@ impl LayerWeights {
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
norm: RmsNorm,
norm: Norm,
output: QMatMul,
masks: HashMap<usize, Tensor>,
span: tracing::Span,
@ -256,6 +298,99 @@ fn precomput_freqs_cis(
Ok((cos, sin))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Architecture {
Llama,
Phi2,
}
#[derive(Debug, Clone)]
struct MetadataConfig {
n_expert: usize,
n_expert_used: usize,
head_count: usize,
head_count_kv: usize,
block_count: usize,
embedding_length: usize,
rope_dim: usize,
rms_norm_eps: f64,
rope_freq_base: f32,
architecture: Architecture,
}
impl MetadataConfig {
fn from_gguf(ct: &gguf_file::Content) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
let architecture = match md_get("general.architecture")
.and_then(|v| v.to_string())
.map(|v| v.as_str())
{
Ok("phi2") => Architecture::Phi2,
Err(_) | Ok(_) => Architecture::Llama,
};
let config = match architecture {
Architecture::Phi2 => {
let head_count = md_get("phi2.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("phi2.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("phi2.block_count")?.to_u32()? as usize;
let embedding_length = md_get("phi2.embedding_length")?.to_u32()? as usize;
let rope_dim = md_get("phi2.rope.dimension_count")?.to_u32()? as usize;
let rms_norm_eps = md_get("phi2.attention.layer_norm_epsilon")?.to_f32()? as f64;
Self {
n_expert: 1,
n_expert_used: 1,
head_count,
head_count_kv,
block_count,
embedding_length,
rope_freq_base: 10_000.,
rope_dim,
rms_norm_eps,
architecture,
}
}
Architecture::Llama => {
let n_expert = md_get("llama.expert_count")
.and_then(|v| v.to_u32())
.unwrap_or(0) as usize;
let n_expert_used = md_get("llama.expert_used_count")
.and_then(|v| v.to_u32())
.unwrap_or(0) as usize;
let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("llama.block_count")?.to_u32()? as usize;
let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
// Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
let rms_norm_eps =
md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let rope_freq_base = md_get("llama.rope.freq_base")
.and_then(|m| m.to_f32())
.unwrap_or(10000f32);
Self {
n_expert,
n_expert_used,
head_count,
head_count_kv,
block_count,
embedding_length,
rope_freq_base,
rope_dim,
rms_norm_eps,
architecture,
}
}
};
Ok(config)
}
}
impl ModelWeights {
pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
@ -263,7 +398,7 @@ impl ModelWeights {
let neg_inf = Tensor::new(f32::NEG_INFINITY, &ct.device)?;
let tok_embeddings = ct.remove("tok_embeddings.weight")?;
let tok_embeddings = tok_embeddings.dequantize(&ct.device)?;
let norm = RmsNorm::from_qtensor(ct.remove("norm.weight")?, 1e-5)?;
let norm = rms_norm(ct.remove("norm.weight")?, 1e-5)?;
let output = ct.remove("output.weight")?;
let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
for layer_idx in 0..ct.hparams.n_layer {
@ -272,11 +407,11 @@ impl ModelWeights {
let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
let mlp_or_moe = {
let mlp = {
let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
MlpOrMoe::Mlp(Mlp {
Mlp::Silu(MlpSilu {
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
@ -292,9 +427,9 @@ impl ModelWeights {
attention_wk: QMatMul::from_qtensor(attention_wk)?,
attention_wv: QMatMul::from_qtensor(attention_wv)?,
attention_wo: QMatMul::from_qtensor(attention_wo)?,
attention_norm: RmsNorm::from_qtensor(attention_norm, 1e-5)?,
mlp_or_moe,
ffn_norm: RmsNorm::from_qtensor(ffn_norm, 1e-5)?,
attention_norm: rms_norm(attention_norm, 1e-5)?,
mlp,
ffn_norm: rms_norm(ffn_norm, 1e-5)?,
n_head: ct.hparams.n_head as usize,
n_kv_head: ct.hparams.n_head as usize / gqa,
head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
@ -325,78 +460,71 @@ impl ModelWeights {
reader: &mut R,
device: &Device,
) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
let cfg = MetadataConfig::from_gguf(&ct)?;
// Parameter extraction from metadata.
let n_expert = md_get("llama.expert_count")
.and_then(|v| v.to_u32())
.unwrap_or(0) as usize;
let n_expert_used = md_get("llama.expert_used_count")
.and_then(|v| v.to_u32())
.unwrap_or(0) as usize;
let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("llama.block_count")?.to_u32()? as usize;
let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
// Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let rope_freq_base = md_get("llama.rope.freq_base")
.and_then(|m| m.to_f32())
.unwrap_or(10000f32);
let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base, device)?;
let (cos, sin) = precomput_freqs_cis(cfg.rope_dim, cfg.rope_freq_base, device)?;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let norm = RmsNorm::from_qtensor(
let norm = rms_norm(
ct.tensor(reader, "output_norm.weight", device)?,
rms_norm_eps,
cfg.rms_norm_eps,
)?;
let output = ct.tensor(reader, "output.weight", device)?;
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let mut layers = Vec::with_capacity(cfg.block_count);
for layer_idx in 0..cfg.block_count {
let prefix = format!("blk.{layer_idx}");
let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?;
let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?;
let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?;
let attention_wo =
ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?;
let mlp_or_moe = if n_expert <= 1 {
let feed_forward_w1 =
ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?;
let feed_forward_w2 =
ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
let feed_forward_w3 =
ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
MlpOrMoe::Mlp(Mlp {
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
})
let mlp = if cfg.n_expert <= 1 {
match cfg.architecture {
Architecture::Llama => {
let feed_forward_w1 =
ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?;
let feed_forward_w2 =
ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
let feed_forward_w3 =
ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
Mlp::Silu(MlpSilu {
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
})
}
Architecture::Phi2 => {
let fc1 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
let fc2 =
ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
Mlp::Simple(MlpSimple {
fc1: QMatMul::from_qtensor(fc1)?,
fc2: QMatMul::from_qtensor(fc2)?,
act: candle_nn::Activation::NewGelu,
})
}
}
} else {
let feed_forward_gate_inp =
ct.tensor(reader, &format!("{prefix}.ffn_gate_inp.weight"), device)?;
let mut experts = Vec::with_capacity(n_expert);
for i in 0..n_expert {
let mut experts = Vec::with_capacity(cfg.n_expert);
for i in 0..cfg.n_expert {
let feed_forward_w1 =
ct.tensor(reader, &format!("{prefix}.ffn_gate.{i}.weight"), device)?;
let feed_forward_w2 =
ct.tensor(reader, &format!("{prefix}.ffn_down.{i}.weight"), device)?;
let feed_forward_w3 =
ct.tensor(reader, &format!("{prefix}.ffn_up.{i}.weight"), device)?;
experts.push(Mlp {
experts.push(MlpSilu {
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
})
}
MlpOrMoe::MoE {
n_expert_used,
Mlp::MoE {
n_expert_used: cfg.n_expert_used,
feed_forward_gate_inp: QMatMul::from_qtensor(feed_forward_gate_inp)?,
experts,
}
@ -412,12 +540,12 @@ impl ModelWeights {
attention_wk: QMatMul::from_qtensor(attention_wk)?,
attention_wv: QMatMul::from_qtensor(attention_wv)?,
attention_wo: QMatMul::from_qtensor(attention_wo)?,
attention_norm: RmsNorm::from_qtensor(attention_norm, rms_norm_eps)?,
mlp_or_moe,
ffn_norm: RmsNorm::from_qtensor(ffn_norm, rms_norm_eps)?,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: embedding_length / head_count,
attention_norm: rms_norm(attention_norm, cfg.rms_norm_eps)?,
mlp,
ffn_norm: rms_norm(ffn_norm, cfg.rms_norm_eps)?,
n_head: cfg.head_count,
n_kv_head: cfg.head_count_kv,
head_dim: cfg.embedding_length / cfg.head_count,
cos: cos.clone(),
sin: sin.clone(),
neg_inf: neg_inf.clone(),
@ -430,7 +558,7 @@ impl ModelWeights {
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
tok_embeddings: Embedding::new(tok_embeddings, cfg.embedding_length),
layers,
norm,
output: QMatMul::from_qtensor(output)?,
@ -473,7 +601,7 @@ impl ModelWeights {
let _enter = layer.span_mlp.enter();
let residual = &x;
let x = layer.ffn_norm.forward(&x)?;
let x = layer.mlp_or_moe.forward(&x)?;
let x = layer.mlp.forward(&x)?;
let x = (x + residual)?;
layer_in = x
}

View File

@ -1,288 +0,0 @@
use std::collections::HashMap;
use candle::quantized::gguf_file;
use candle::quantized::QTensor;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Embedding, LayerNorm};
pub const MAX_SEQ_LEN: usize = 4096;
#[derive(Debug, Clone)]
struct QLinear {
inner: candle::quantized::QMatMul,
bias: Tensor,
span: tracing::Span,
}
impl QLinear {
fn new<R: std::io::Read + std::io::Seek>(
ct: &gguf_file::Content,
r: &mut R,
name: &str,
device: &Device,
) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
let w = ct.tensor(r, &format!("{name}.weight"), device)?;
let b = ct.tensor(r, &format!("{name}.bias"), device)?;
let inner = candle::quantized::QMatMul::from_qtensor(w)?;
let bias = b.dequantize(device)?;
Ok(Self { inner, bias, span })
}
}
impl Module for QLinear {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)?.broadcast_add(&self.bias)
}
}
#[derive(Debug, Clone)]
struct Mlp {
ffn_up: QLinear,
ffn_down: QLinear,
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.ffn_up)?.gelu()?.apply(&self.ffn_down)
}
}
#[derive(Debug, Clone)]
struct LayerWeights {
attn_qkv: QLinear,
attn_output: QLinear,
attn_norm: LayerNorm,
mlp: Mlp,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
cos: Tensor,
sin: Tensor,
rope_dim: usize,
neg_inf: Tensor,
kv_cache: Option<(Tensor, Tensor)>,
span_attn: tracing::Span,
span_rot: tracing::Span,
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
let shape = mask.shape();
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
Ok(m)
}
impl LayerWeights {
fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
let _enter = self.span_rot.enter();
let (_b_sz, _n_head, seq_len, _n_embd) = xs.dims4()?;
let xs_rot = xs.i((.., .., .., ..self.rope_dim))?;
let xs_pass = xs.i((.., .., .., self.rope_dim..))?;
let cos = self.cos.narrow(0, index_pos, seq_len)?;
let sin = self.sin.narrow(0, index_pos, seq_len)?;
let xs_rot = candle_nn::rotary_emb::rope(&xs_rot.contiguous()?, &cos, &sin)?;
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
}
fn forward_attn(
&mut self,
x: &Tensor,
mask: Option<&Tensor>,
index_pos: usize,
) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b_sz, seq_len, n_embd) = x.dims3()?;
let qkv =
self.attn_qkv
.forward(x)?
.reshape((b_sz, seq_len, 3, self.n_head, self.head_dim))?;
let q = qkv.i((.., .., 0))?.transpose(1, 2)?;
let k = qkv.i((.., .., 1))?.transpose(1, 2)?;
let v = qkv.i((.., .., 2))?.transpose(1, 2)?;
// This call to contiguous ensures that the fast kernel can be called below. It's
// actually a no-op except when processing the initial prompt so has no significant
// impact on performance.
let v = v.contiguous()?;
let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
let k = self.apply_rotary_emb(&k, index_pos)?;
let (k, v) = match &self.kv_cache {
None => (k.contiguous()?, v.contiguous()?),
Some((k_cache, v_cache)) => {
if index_pos == 0 {
(k.contiguous()?, v.contiguous()?)
} else {
let k = Tensor::cat(&[k_cache, &k], 2)?;
let v = Tensor::cat(&[v_cache, &v], 2)?;
(k.contiguous()?, v.contiguous()?)
}
}
};
self.kv_cache = Some((k.clone(), v.clone()));
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
let att = match mask {
None => att,
Some(mask) => {
let mask = mask.broadcast_as(att.shape())?;
masked_fill(&att, &mask, &self.neg_inf)?
}
};
let att = candle_nn::ops::softmax_last_dim(&att)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = self.attn_output.forward(&y)?;
Ok(y)
}
}
#[derive(Debug, Clone)]
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
output_norm: LayerNorm,
output: QLinear,
masks: HashMap<usize, Tensor>,
span: tracing::Span,
span_output: tracing::Span,
}
fn precomput_freqs_cis(
head_dim: usize,
freq_base: f32,
device: &Device,
) -> Result<(Tensor, Tensor)> {
let theta: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok((cos, sin))
}
fn layer_norm(w: QTensor, b: QTensor, eps: f64) -> Result<LayerNorm> {
let w = w.dequantize(&w.device())?;
let b = b.dequantize(&b.device())?;
let ln = LayerNorm::new(w, b, eps);
Ok(ln)
}
impl ModelWeights {
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
// Parameter extraction from metadata.
let head_count = md_get("phi2.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("phi2.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("phi2.block_count")?.to_u32()? as usize;
let embedding_length = md_get("phi2.embedding_length")?.to_u32()? as usize;
let rope_dim = md_get("phi2.rope.dimension_count")?.to_u32()? as usize;
let ln_eps = md_get("phi2.attention.layer_norm_epsilon")?.to_f32()? as f64;
let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device)?;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let output_norm = layer_norm(
ct.tensor(reader, "output_norm.weight", device)?,
ct.tensor(reader, "output_norm.bias", device)?,
ln_eps,
)?;
let output = QLinear::new(&ct, reader, "output", device)?;
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");
let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
let mlp = Mlp { ffn_up, ffn_down };
let attn_norm = layer_norm(
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
ct.tensor(reader, &format!("{prefix}.attn_norm.bias"), device)?,
ln_eps,
)?;
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
layers.push(LayerWeights {
attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
attn_norm,
mlp,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: embedding_length / head_count,
cos: cos.clone(),
sin: sin.clone(),
rope_dim,
neg_inf: neg_inf.clone(),
kv_cache: None,
span_attn,
span_rot,
})
}
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
layers,
output_norm,
output,
masks: HashMap::new(),
span,
span_output,
})
}
fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
if let Some(mask) = self.masks.get(&t) {
Ok(mask.clone())
} else {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), device)?;
self.masks.insert(t, mask.clone());
Ok(mask)
}
}
pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, seq_len) = xs.dims2()?;
let mask = if seq_len == 1 {
None
} else {
Some(self.mask(seq_len, xs.device())?)
};
let _enter = self.span.enter();
let mut xs = self.tok_embeddings.forward(xs)?;
for layer in self.layers.iter_mut() {
let residual = &xs;
let xs_norm = xs.apply(&layer.attn_norm)?;
let attn_outputs = layer.forward_attn(&xs_norm, mask.as_ref(), index_pos)?;
let feed_forward_hidden_states = layer.mlp.forward(&xs_norm)?;
xs = (attn_outputs + feed_forward_hidden_states + residual)?
}
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
let _enter = self.span_output.enter();
self.output.forward(&xs)
}
}

View File

@ -1,301 +0,0 @@
use std::collections::HashMap;
use candle::quantized::gguf_file;
use candle::quantized::QTensor;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Embedding, RmsNorm};
pub const MAX_SEQ_LEN: usize = 4096;
#[derive(Debug, Clone)]
struct QLinear {
inner: candle::quantized::QMatMul,
span: tracing::Span,
}
impl QLinear {
fn new<R: std::io::Read + std::io::Seek>(
ct: &gguf_file::Content,
r: &mut R,
name: &str,
device: &Device,
) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
let w = ct.tensor(r, &format!("{name}.weight"), device)?;
let inner = candle::quantized::QMatMul::from_qtensor(w)?;
Ok(Self { inner, span })
}
}
impl Module for QLinear {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
#[derive(Debug, Clone)]
struct Mlp {
ffn_up: QLinear,
ffn_down: QLinear,
i_size: usize,
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let up_states = xs.apply(&self.ffn_up)?;
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
let up_states = (up_states * gate.silu()?)?;
up_states.apply(&self.ffn_down)
}
}
fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> {
let w = w.dequantize(&w.device())?;
let rms = RmsNorm::new(w, eps);
Ok(rms)
}
#[derive(Debug, Clone)]
struct LayerWeights {
attn_qkv: QLinear,
attn_output: QLinear,
attn_norm: RmsNorm,
ffn_norm: RmsNorm,
mlp: Mlp,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
cos: Tensor,
sin: Tensor,
neg_inf: Tensor,
kv_cache: Option<(Tensor, Tensor)>,
span_attn: tracing::Span,
span_rot: tracing::Span,
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
let shape = mask.shape();
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
Ok(m)
}
impl LayerWeights {
fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
let _enter = self.span_rot.enter();
let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?;
let cos = self.cos.narrow(0, index_pos, seq_len)?;
let sin = self.sin.narrow(0, index_pos, seq_len)?;
candle_nn::rotary_emb::rope(&xs.contiguous()?, &cos, &sin)
}
fn forward_attn(
&mut self,
x: &Tensor,
mask: Option<&Tensor>,
index_pos: usize,
) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b_sz, seq_len, n_embd) = x.dims3()?;
let qkv = self.attn_qkv.forward(x)?;
let query_pos = self.n_head * self.head_dim;
let q = qkv.narrow(D::Minus1, 0, query_pos)?;
let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?;
let v = qkv.narrow(
D::Minus1,
query_pos + self.n_kv_head * self.head_dim,
self.n_kv_head * self.head_dim,
)?;
let q = q
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;
let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
let k = self.apply_rotary_emb(&k, index_pos)?;
let (k, v) = match &self.kv_cache {
None => (k.contiguous()?, v.contiguous()?),
Some((k_cache, v_cache)) => {
if index_pos == 0 {
(k.contiguous()?, v.contiguous()?)
} else {
let k = Tensor::cat(&[k_cache, &k], 2)?;
let v = Tensor::cat(&[v_cache, &v], 2)?;
(k.contiguous()?, v.contiguous()?)
}
}
};
self.kv_cache = Some((k.clone(), v.clone()));
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
let att = match mask {
None => att,
Some(mask) => {
let mask = mask.broadcast_as(att.shape())?;
masked_fill(&att, &mask, &self.neg_inf)?
}
};
let att = candle_nn::ops::softmax_last_dim(&att)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = self.attn_output.forward(&y)?;
Ok(y)
}
}
#[derive(Debug, Clone)]
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
output_norm: RmsNorm,
output: QLinear,
masks: HashMap<usize, Tensor>,
span: tracing::Span,
span_output: tracing::Span,
}
fn precomput_freqs_cis(
head_dim: usize,
freq_base: f32,
device: &Device,
) -> Result<(Tensor, Tensor)> {
let theta: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok((cos, sin))
}
impl ModelWeights {
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
// Parameter extraction from metadata.
let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("phi3.block_count")?.to_u32()? as usize;
let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize;
let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize;
let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize;
let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device)?;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?;
let output = QLinear::new(&ct, reader, "output", device)?;
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");
let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
let mlp = Mlp {
ffn_up,
ffn_down,
i_size,
};
let attn_norm = rms_norm(
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
rms_eps,
)?;
let ffn_norm = rms_norm(
ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
rms_eps,
)?;
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
layers.push(LayerWeights {
attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
attn_norm,
ffn_norm,
mlp,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: embedding_length / head_count,
cos: cos.clone(),
sin: sin.clone(),
neg_inf: neg_inf.clone(),
kv_cache: None,
span_attn,
span_rot,
})
}
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
layers,
output_norm,
output,
masks: HashMap::new(),
span,
span_output,
})
}
fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
if let Some(mask) = self.masks.get(&t) {
Ok(mask.clone())
} else {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), device)?;
self.masks.insert(t, mask.clone());
Ok(mask)
}
}
pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, seq_len) = xs.dims2()?;
let mask = if seq_len == 1 {
None
} else {
Some(self.mask(seq_len, xs.device())?)
};
let _enter = self.span.enter();
let mut xs = self.tok_embeddings.forward(xs)?;
for layer in self.layers.iter_mut() {
let residual = &xs;
let ys = xs.apply(&layer.attn_norm)?;
let ys = layer.forward_attn(&ys, mask.as_ref(), index_pos)?;
let ys = (ys + residual)?;
let residual = &ys;
let ys = ys.apply(&layer.ffn_norm)?;
let ys = layer.mlp.forward(&ys)?;
xs = (ys + residual)?
}
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
let _enter = self.span_output.enter();
self.output.forward(&xs)
}
}

View File

@ -27,6 +27,13 @@ struct RotaryEmbedding {
cos: Tensor,
}
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
let last_dim = xs.dim(D::Minus1)?;
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
}
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.hidden_size / cfg.num_attention_heads;
@ -41,6 +48,7 @@ impl RotaryEmbedding {
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
@ -56,8 +64,10 @@ impl RotaryEmbedding {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
Ok((q_embed, k_embed))
}
}

View File

@ -33,6 +33,13 @@ struct RotaryEmbedding {
cos: Tensor,
}
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
let last_dim = xs.dim(D::Minus1)?;
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
}
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.hidden_size / cfg.num_attention_heads;
@ -47,6 +54,7 @@ impl RotaryEmbedding {
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
@ -62,8 +70,10 @@ impl RotaryEmbedding {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
Ok((q_embed, k_embed))
}
}
@ -249,28 +259,30 @@ impl Module for SparseMoeBlock {
// In order to extract topk, we extract the data from the tensor and manipulate it
// directly. Maybe we will want to use some custom ops instead at some point.
let experts_per_tok = routing_weights
.arg_sort_last_dim(false)?
.narrow(D::Minus1, 0, self.num_experts_per_tok)?
.contiguous()?;
let routing_weights = routing_weights.gather(&experts_per_tok, D::Minus1)?;
let routing_weights = routing_weights.to_dtype(DType::F32)?.to_vec2::<f32>()?;
// routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
// top_x contains the row indexes to evaluate for each expert.
let routing_weights = routing_weights.to_dtype(DType::F32)?.to_vec2::<f32>()?;
let experts_per_tok = experts_per_tok.to_vec2::<u32>()?;
let mut top_x = vec![vec![]; self.experts.len()];
let mut selected_experts = vec![vec![]; self.experts.len()];
for (row_idx, (rw, expert_idxs)) in routing_weights
.iter()
.zip(experts_per_tok.iter())
.enumerate()
{
let sum_rw = rw.iter().sum::<f32>();
for (&rw, &expert_idx) in rw.iter().zip(expert_idxs.iter()) {
top_x[expert_idx as usize].push(row_idx as u32);
let rw = if self.norm_topk_prob { rw / sum_rw } else { rw };
selected_experts[expert_idx as usize].push(rw)
for (row_idx, rw) in routing_weights.iter().enumerate() {
let mut dst = (0..rw.len() as u32).collect::<Vec<u32>>();
dst.sort_by(|&i, &j| rw[j as usize].total_cmp(&rw[i as usize]));
let mut sum_routing_weights = 0f32;
for &expert_idx in dst.iter().take(self.num_experts_per_tok) {
let expert_idx = expert_idx as usize;
let routing_weight = rw[expert_idx];
sum_routing_weights += routing_weight;
top_x[expert_idx].push(row_idx as u32);
}
for &expert_idx in dst.iter().take(self.num_experts_per_tok) {
let expert_idx = expert_idx as usize;
let routing_weight = if self.norm_topk_prob {
rw[expert_idx] / sum_routing_weights
} else {
rw[expert_idx]
};
selected_experts[expert_idx].push(routing_weight)
}
}

View File

@ -180,11 +180,6 @@ impl RmsNorm {
let inner = candle_nn::rms_norm(size, eps, vb)?;
Ok(Self { inner, span })
}
pub fn forward_diff(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward_diff(x)
}
}
impl Module for RmsNorm {

View File

@ -1,5 +1,26 @@
pub const WITH_TIMER: bool = true;
struct Timer {
label: &'static str,
}
// impl Timer {
// fn new(label: &'static str) -> Self {
// if WITH_TIMER {
// web_sys::console::time_with_label(label);
// }
// Self { label }
// }
// }
impl Drop for Timer {
fn drop(&mut self) {
if WITH_TIMER {
web_sys::console::time_end_with_label(self.label)
}
}
}
mod app;
mod audio;
pub mod languages;

View File

@ -55,7 +55,7 @@ fn quantized_matmul_neg() -> Result<()> {
Ok(())
}
/// Creates a vector similarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
const GGML_TEST_SIZE: usize = 32 * 128;
(0..GGML_TEST_SIZE)