mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Compare commits
1 Commits
llama-v3-m
...
precompile
Author | SHA1 | Date | |
---|---|---|---|
5ac3302fac |
28
Cargo.toml
28
Cargo.toml
@ -9,7 +9,6 @@ members = [
|
||||
"candle-transformers",
|
||||
"candle-wasm-examples/*",
|
||||
"candle-wasm-tests",
|
||||
"tensor-tools",
|
||||
]
|
||||
exclude = [
|
||||
"candle-flash-attn",
|
||||
@ -20,7 +19,7 @@ exclude = [
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "0.5.0"
|
||||
version = "0.4.0"
|
||||
edition = "2021"
|
||||
description = "Minimalist ML framework."
|
||||
repository = "https://github.com/huggingface/candle"
|
||||
@ -29,37 +28,36 @@ categories = ["science"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
ab_glyph = "0.2.23"
|
||||
accelerate-src = { version = "0.3.2" }
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.5.0" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.5.0" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.5.0" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.5.0" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.5.0" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.5.0" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.5.0" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.5.0" }
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.4.0" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.4.0" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.4.0" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.4.0" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.4.0" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.4.0" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.4.0" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.4.0" }
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
criterion = { version = "0.5.1", default-features=false }
|
||||
cudarc = { version = "0.10.0", features = ["f16"] }
|
||||
fancy-regex = "0.13.0"
|
||||
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
|
||||
hf-hub = "0.3.0"
|
||||
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
image = { version = "0.25.0", default-features = false, features = ["jpeg", "png"] }
|
||||
imageproc = { version = "0.24.0", default-features = false }
|
||||
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
|
||||
imageproc = { version = "0.23.0", default-features = false }
|
||||
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
||||
libc = { version = "0.2.147" }
|
||||
log = "0.4"
|
||||
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
|
||||
num_cpus = "1.15.0"
|
||||
num-traits = "0.2.15"
|
||||
parquet = { version = "51.0.0" }
|
||||
parquet = { version = "50.0.0" }
|
||||
rand = "0.8.5"
|
||||
rand_distr = "0.4.3"
|
||||
rayon = "1.7.0"
|
||||
rusttype = { version = "0.9", default-features = false }
|
||||
safetensors = "0.4.1"
|
||||
serde = { version = "1.0.171", features = ["derive"] }
|
||||
serde_plain = "1.0.2"
|
||||
|
38
README.md
38
README.md
@ -63,9 +63,6 @@ We also provide a some command line based examples using state of the art models
|
||||
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
|
||||
the SOLAR-10.7B variant.
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google Deepmind.
|
||||
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
|
||||
Griffin based models from Google that mix attention with a RNN like state.
|
||||
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
||||
@ -77,10 +74,9 @@ We also provide a some command line based examples using state of the art models
|
||||
- [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of
|
||||
experts 8x7b general LLM with better performance than a Llama 2 70B model with
|
||||
much faster inference.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/) and
|
||||
[StarCoder2](./candle-examples/examples/starcoder2/): LLM specialized to code generation.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
|
||||
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
|
||||
- [RWKV v5 and v6](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
|
||||
- [RWKV v5](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
|
||||
performance.
|
||||
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
|
||||
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
|
||||
@ -111,12 +107,7 @@ We also provide a some command line based examples using state of the art models
|
||||
|
||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
||||
|
||||
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmantation model.
|
||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
|
||||
model using residual vector quantization.
|
||||
- [MetaVoice](./candle-examples/examples/metavoice/): foundational model for
|
||||
text-to-speech.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
|
||||
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
|
||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||
@ -126,14 +117,10 @@ We also provide a some command line based examples using state of the art models
|
||||
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
|
||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||
generate captions for an image.
|
||||
- [CLIP](./candle-examples/examples/clip/): multi-model vision and language
|
||||
model.
|
||||
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
|
||||
dedicated submodels for hand-writing and printed recognition.
|
||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
||||
model, generates the translated text from the input text.
|
||||
- [Moondream](./candle-examples/examples/moondream/): tiny computer-vision model
|
||||
that can answer real-world questions about images.
|
||||
|
||||
Run them using commands like:
|
||||
```
|
||||
@ -177,11 +164,9 @@ And then head over to
|
||||
- [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and
|
||||
serving local LLMs including an OpenAI compatible API server.
|
||||
- [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle.
|
||||
- [`candle-coursera-ml`](https://github.com/vishpat/candle-coursera-ml): Implementation of ML algorithms from Coursera's [Machine Learning Specialization](https://www.coursera.org/specializations/machine-learning-introduction) course.
|
||||
- [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more.
|
||||
- [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle.
|
||||
- [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem.
|
||||
- [`candle-einops`](https://github.com/tomsanbear/candle-einops): A pure rust implementation of the python [einops](https://github.com/arogozhnikov/einops) library.
|
||||
|
||||
If you have an addition to this list, please submit a pull request.
|
||||
|
||||
@ -202,18 +187,17 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Language Models.
|
||||
- LLaMA v1 and v2 with variants such as SOLAR-10.7B.
|
||||
- Falcon.
|
||||
- StarCoder, StarCoder2.
|
||||
- StarCoder.
|
||||
- Phi 1, 1.5, and 2.
|
||||
- Mamba, Minimal Mamba
|
||||
- Gemma 2b and 7b.
|
||||
- Mistral 7b v0.1.
|
||||
- Mixtral 8x7b v0.1.
|
||||
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
|
||||
- Replit-code-v1.5-3B.
|
||||
- Bert.
|
||||
- Yi-6B and Yi-34B.
|
||||
- Qwen1.5, Qwen1.5 MoE.
|
||||
- RWKV v5 and v6.
|
||||
- Qwen1.5.
|
||||
- RWKV.
|
||||
- Quantized LLMs.
|
||||
- Llama 7b, 13b, 70b, as well as the chat and code variants.
|
||||
- Mistral 7b, and 7b instruct.
|
||||
@ -223,22 +207,18 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Text to text.
|
||||
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
|
||||
- Marian MT (Machine Translation).
|
||||
- Whisper (multi-lingual support).
|
||||
- Text to image.
|
||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
||||
- Wurstchen v2.
|
||||
- Image to text.
|
||||
- BLIP.
|
||||
- TrOCR.
|
||||
- Audio.
|
||||
- Whisper, multi-lingual speech-to-text.
|
||||
- EnCodec, audio compression model.
|
||||
- MetaVoice-1B, text-to-speech model.
|
||||
- Computer Vision Models.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
||||
ConvNeXTv2, MobileOne, EfficientVit (MSRA).
|
||||
ConvNeXTv2.
|
||||
- yolo-v3, yolo-v8.
|
||||
- Segment-Anything Model (SAM).
|
||||
- SegFormer.
|
||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||
- Serverless (on CPU), small and fast deployments.
|
||||
- Quantization support using the llama.cpp quantized types.
|
||||
@ -375,9 +355,9 @@ git submodule update --init
|
||||
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’:
|
||||
```
|
||||
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
|
||||
```
|
||||
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
```
|
||||
|
||||
#### Linking error on windows when running rustdoc or mdbook tests
|
||||
|
@ -5,7 +5,5 @@ criterion_main!(
|
||||
benchmarks::affine::benches,
|
||||
benchmarks::matmul::benches,
|
||||
benchmarks::random::benches,
|
||||
benchmarks::where_cond::benches,
|
||||
benchmarks::conv_transpose2d::benches,
|
||||
benchmarks::qmatmul::benches,
|
||||
benchmarks::where_cond::benches
|
||||
);
|
||||
|
@ -1,59 +0,0 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(
|
||||
x: &Tensor,
|
||||
k: &Tensor,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
) {
|
||||
x.conv_transpose2d(k, padding, output_padding, stride, dilation)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
fn run_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let t = Tensor::arange(0.0f32, 10000.0, device)
|
||||
.unwrap()
|
||||
.reshape((1, 4, 50, 50))
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap();
|
||||
|
||||
let kernel = Tensor::arange(0.0f32, 100.0, device)
|
||||
.unwrap()
|
||||
.reshape((4, 1, 5, 5))
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap();
|
||||
|
||||
let flops = t.dims().iter().product::<usize>() * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&t), black_box(&kernel), 1, 0, 1, 2);
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_benchmark(c, &device, DType::F32, "conv_transpose2d_f32");
|
||||
run_benchmark(c, &device, DType::F16, "conv_transpose2d_f16");
|
||||
run_benchmark(c, &device, DType::BF16, "conv_transpose2d_bf16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -1,7 +1,5 @@
|
||||
pub(crate) mod affine;
|
||||
pub(crate) mod conv_transpose2d;
|
||||
pub(crate) mod matmul;
|
||||
pub(crate) mod qmatmul;
|
||||
pub(crate) mod random;
|
||||
pub(crate) mod where_cond;
|
||||
|
||||
|
@ -1,72 +0,0 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{
|
||||
quantized::{self, GgmlDType, QMatMul},
|
||||
Device, Module, Tensor,
|
||||
};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(matmul: &QMatMul, x: &Tensor) {
|
||||
matmul.forward(&x).unwrap();
|
||||
}
|
||||
|
||||
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
|
||||
let b = 1;
|
||||
let m = 1;
|
||||
let n = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 / (m * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
let rhs = (0..(k * n))
|
||||
.map(|v| v as f32 / (n * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
|
||||
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
|
||||
|
||||
let flops = b * m * n * k;
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
|
||||
group.sample_size(200);
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&matmul), black_box(&lhs));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
for dtype in vec![
|
||||
GgmlDType::F32,
|
||||
GgmlDType::F16,
|
||||
GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0,
|
||||
GgmlDType::Q2K,
|
||||
GgmlDType::Q3K,
|
||||
GgmlDType::Q4K,
|
||||
GgmlDType::Q5K,
|
||||
GgmlDType::Q6K,
|
||||
] {
|
||||
run_bench(c, &device, dtype);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -5,32 +5,25 @@ extern crate accelerate_src;
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Module, Tensor};
|
||||
|
||||
use candle_core::quantized::{QMatMul, QTensor};
|
||||
use candle_core::{Device, Tensor};
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let device = Device::new_cuda(0)?;
|
||||
let q = Tensor::randn(0f32, 1.0, (72, 256), &device)?;
|
||||
let q_cpu = q.to_device(&Device::Cpu)?;
|
||||
let q = QTensor::quantize(&q, candle_core::quantized::GgmlDType::Q8K)?;
|
||||
let q = QMatMul::from_qtensor(q)?;
|
||||
let x = Tensor::randn(0f32, 1.0, (5, 256), &device)?;
|
||||
let res_q_cuda = q.forward(&x)?;
|
||||
println!("{res_q_cuda}");
|
||||
|
||||
let q_cpu = QTensor::quantize(&q_cpu, candle_core::quantized::GgmlDType::Q8K)?;
|
||||
let q_cpu_tensor = q_cpu.dequantize(&Device::Cpu)?;
|
||||
let q_cpu = QMatMul::from_qtensor(q_cpu)?;
|
||||
let x_cpu = x.to_device(&Device::Cpu)?;
|
||||
let res_q_cpu = q_cpu.forward(&x_cpu)?;
|
||||
println!("{res_q_cpu}");
|
||||
|
||||
let res_mm = x_cpu.matmul(&q_cpu_tensor.t()?)?;
|
||||
let diff = (res_mm - res_q_cuda.to_device(&Device::Cpu))?
|
||||
.abs()?
|
||||
.flatten_all()?
|
||||
.max(0)?;
|
||||
let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?;
|
||||
let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?;
|
||||
let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||
println!("{out_t}");
|
||||
let in_t = in_t.to_device(&Device::Cpu)?;
|
||||
let k_t = k_t.to_device(&Device::Cpu)?;
|
||||
let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||
let diff = (out_t.to_device(&Device::Cpu)? - out_t2)?
|
||||
.sqr()?
|
||||
.sum_all()?;
|
||||
println!("{diff}");
|
||||
|
||||
let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?;
|
||||
let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?;
|
||||
let res = t.conv2d(&w, 1, 1, 1, 1)?;
|
||||
println!("{res:?}");
|
||||
Ok(())
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use candle::quantized::{gguf_file, GgmlDType, QTensor};
|
||||
use candle::{Device, Result};
|
||||
use candle_core::quantized::{gguf_file, GgmlDType, QTensor};
|
||||
use candle_core::{Device, Result};
|
||||
use clap::{Parser, Subcommand, ValueEnum};
|
||||
use rayon::prelude::*;
|
||||
|
||||
@ -117,24 +117,6 @@ enum Command {
|
||||
verbose: bool,
|
||||
},
|
||||
|
||||
Print {
|
||||
file: std::path::PathBuf,
|
||||
|
||||
names: Vec<String>,
|
||||
|
||||
/// The file format to use, if unspecified infer from the file extension.
|
||||
#[arg(long, value_enum)]
|
||||
format: Option<Format>,
|
||||
|
||||
/// Print the whole content of each tensor.
|
||||
#[arg(long)]
|
||||
full: bool,
|
||||
|
||||
/// Line width for printing the tensors.
|
||||
#[arg(long)]
|
||||
line_width: Option<usize>,
|
||||
},
|
||||
|
||||
Quantize {
|
||||
/// The input file(s), in safetensors format.
|
||||
in_file: Vec<std::path::PathBuf>,
|
||||
@ -168,105 +150,6 @@ struct Args {
|
||||
command: Command,
|
||||
}
|
||||
|
||||
fn run_print(
|
||||
file: &std::path::PathBuf,
|
||||
names: Vec<String>,
|
||||
format: Option<Format>,
|
||||
full: bool,
|
||||
line_width: Option<usize>,
|
||||
device: &Device,
|
||||
) -> Result<()> {
|
||||
if full {
|
||||
candle::display::set_print_options_full();
|
||||
}
|
||||
if let Some(line_width) = line_width {
|
||||
candle::display::set_line_width(line_width)
|
||||
}
|
||||
let format = match format {
|
||||
Some(format) => format,
|
||||
None => match Format::infer(file) {
|
||||
Some(format) => format,
|
||||
None => {
|
||||
println!(
|
||||
"{file:?}: cannot infer format from file extension, use the --format flag"
|
||||
);
|
||||
return Ok(());
|
||||
}
|
||||
},
|
||||
};
|
||||
match format {
|
||||
Format::Npz => {
|
||||
let tensors = candle::npy::NpzTensors::new(file)?;
|
||||
for name in names.iter() {
|
||||
println!("==== {name} ====");
|
||||
match tensors.get(name)? {
|
||||
Some(tensor) => println!("{tensor}"),
|
||||
None => println!("not found"),
|
||||
}
|
||||
}
|
||||
}
|
||||
Format::Safetensors => {
|
||||
use candle::safetensors::Load;
|
||||
let tensors = unsafe { candle::safetensors::MmapedSafetensors::new(file)? };
|
||||
let tensors: std::collections::HashMap<_, _> = tensors.tensors().into_iter().collect();
|
||||
for name in names.iter() {
|
||||
println!("==== {name} ====");
|
||||
match tensors.get(name) {
|
||||
Some(tensor_view) => {
|
||||
let tensor = tensor_view.load(device)?;
|
||||
println!("{tensor}")
|
||||
}
|
||||
None => println!("not found"),
|
||||
}
|
||||
}
|
||||
}
|
||||
Format::Pth => {
|
||||
let pth_file = candle::pickle::PthTensors::new(file, None)?;
|
||||
for name in names.iter() {
|
||||
println!("==== {name} ====");
|
||||
match pth_file.get(name)? {
|
||||
Some(tensor) => {
|
||||
println!("{tensor}")
|
||||
}
|
||||
None => println!("not found"),
|
||||
}
|
||||
}
|
||||
}
|
||||
Format::Pickle => {
|
||||
candle::bail!("pickle format is not supported for print")
|
||||
}
|
||||
Format::Ggml => {
|
||||
let mut file = std::fs::File::open(file)?;
|
||||
let content = candle::quantized::ggml_file::Content::read(&mut file, device)?;
|
||||
for name in names.iter() {
|
||||
println!("==== {name} ====");
|
||||
match content.tensors.get(name) {
|
||||
Some(tensor) => {
|
||||
let tensor = tensor.dequantize(device)?;
|
||||
println!("{tensor}")
|
||||
}
|
||||
None => println!("not found"),
|
||||
}
|
||||
}
|
||||
}
|
||||
Format::Gguf => {
|
||||
let mut file = std::fs::File::open(file)?;
|
||||
let content = gguf_file::Content::read(&mut file)?;
|
||||
for name in names.iter() {
|
||||
println!("==== {name} ====");
|
||||
match content.tensor(&mut file, name, device) {
|
||||
Ok(tensor) => {
|
||||
let tensor = tensor.dequantize(device)?;
|
||||
println!("{tensor}")
|
||||
}
|
||||
Err(_) => println!("not found"),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn run_ls(
|
||||
file: &std::path::PathBuf,
|
||||
format: Option<Format>,
|
||||
@ -287,7 +170,7 @@ fn run_ls(
|
||||
};
|
||||
match format {
|
||||
Format::Npz => {
|
||||
let tensors = candle::npy::NpzTensors::new(file)?;
|
||||
let tensors = candle_core::npy::NpzTensors::new(file)?;
|
||||
let mut names = tensors.names();
|
||||
names.sort();
|
||||
for name in names {
|
||||
@ -299,12 +182,12 @@ fn run_ls(
|
||||
}
|
||||
}
|
||||
Format::Safetensors => {
|
||||
let tensors = unsafe { candle::safetensors::MmapedSafetensors::new(file)? };
|
||||
let tensors = unsafe { candle_core::safetensors::MmapedSafetensors::new(file)? };
|
||||
let mut tensors = tensors.tensors();
|
||||
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
||||
for (name, view) in tensors.iter() {
|
||||
let dtype = view.dtype();
|
||||
let dtype = match candle::DType::try_from(dtype) {
|
||||
let dtype = match candle_core::DType::try_from(dtype) {
|
||||
Ok(dtype) => format!("{dtype:?}"),
|
||||
Err(_) => format!("{dtype:?}"),
|
||||
};
|
||||
@ -313,7 +196,7 @@ fn run_ls(
|
||||
}
|
||||
}
|
||||
Format::Pth => {
|
||||
let mut tensors = candle::pickle::read_pth_tensor_info(file, verbose, None)?;
|
||||
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose, None)?;
|
||||
tensors.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
for tensor_info in tensors.iter() {
|
||||
println!(
|
||||
@ -330,7 +213,7 @@ fn run_ls(
|
||||
Format::Pickle => {
|
||||
let file = std::fs::File::open(file)?;
|
||||
let mut reader = std::io::BufReader::new(file);
|
||||
let mut stack = candle::pickle::Stack::empty();
|
||||
let mut stack = candle_core::pickle::Stack::empty();
|
||||
stack.read_loop(&mut reader)?;
|
||||
for (i, obj) in stack.stack().iter().enumerate() {
|
||||
println!("{i} {obj:?}");
|
||||
@ -338,7 +221,7 @@ fn run_ls(
|
||||
}
|
||||
Format::Ggml => {
|
||||
let mut file = std::fs::File::open(file)?;
|
||||
let content = candle::quantized::ggml_file::Content::read(&mut file, device)?;
|
||||
let content = candle_core::quantized::ggml_file::Content::read(&mut file, device)?;
|
||||
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
|
||||
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
||||
for (name, qtensor) in tensors.iter() {
|
||||
@ -374,7 +257,7 @@ fn run_quantize_safetensors(
|
||||
let mut out_file = std::fs::File::create(out_file)?;
|
||||
let mut tensors = std::collections::HashMap::new();
|
||||
for in_file in in_files.iter() {
|
||||
let in_tensors = candle::safetensors::load(in_file, &Device::Cpu)?;
|
||||
let in_tensors = candle_core::safetensors::load(in_file, &Device::Cpu)?;
|
||||
tensors.extend(in_tensors)
|
||||
}
|
||||
println!("tensors: {}", tensors.len());
|
||||
@ -416,7 +299,7 @@ fn run_dequantize(
|
||||
let tensor = tensor.dequantize(device)?;
|
||||
tensors.insert(tensor_name.to_string(), tensor);
|
||||
}
|
||||
candle::safetensors::save(&tensors, out_file)?;
|
||||
candle_core::safetensors::save(&tensors, out_file)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -428,11 +311,11 @@ fn run_quantize(
|
||||
device: &Device,
|
||||
) -> Result<()> {
|
||||
if in_files.is_empty() {
|
||||
candle::bail!("no specified input files")
|
||||
candle_core::bail!("no specified input files")
|
||||
}
|
||||
if let Some(extension) = out_file.extension() {
|
||||
if extension == "safetensors" {
|
||||
candle::bail!("the generated file cannot use the safetensors extension")
|
||||
candle_core::bail!("the generated file cannot use the safetensors extension")
|
||||
}
|
||||
}
|
||||
if let Some(extension) = in_files[0].extension() {
|
||||
@ -442,7 +325,7 @@ fn run_quantize(
|
||||
}
|
||||
|
||||
if in_files.len() != 1 {
|
||||
candle::bail!("only a single in-file can be used when quantizing gguf files")
|
||||
candle_core::bail!("only a single in-file can be used when quantizing gguf files")
|
||||
}
|
||||
|
||||
// Open the out file early so as to fail directly on missing directories etc.
|
||||
@ -494,13 +377,6 @@ fn main() -> anyhow::Result<()> {
|
||||
run_ls(file, format.clone(), verbose, &device)?
|
||||
}
|
||||
}
|
||||
Command::Print {
|
||||
file,
|
||||
names,
|
||||
format,
|
||||
full,
|
||||
line_width,
|
||||
} => run_print(&file, names, format, full, line_width, &device)?,
|
||||
Command::Quantize {
|
||||
in_file,
|
||||
out_file,
|
@ -98,19 +98,6 @@ pub trait BackendStorage: Sized {
|
||||
) -> Result<Self>;
|
||||
|
||||
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
// Similar to cudaMemcpy2D, though values are in elements and not in bytes.
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_d1: usize,
|
||||
_d2: usize,
|
||||
_src_stride1: usize,
|
||||
_dst_stride1: usize,
|
||||
_src_offset: usize,
|
||||
_dst_offset: usize,
|
||||
) -> Result<()>;
|
||||
}
|
||||
|
||||
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
@ -127,22 +114,11 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
|
||||
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||
|
||||
/// # Safety
|
||||
/// This function is unsafe as it doesn't initialize the underlying data store.
|
||||
/// The caller should ensure that the data is properly initialized as early as possible
|
||||
/// after this call.
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||
|
||||
fn set_seed(&self, _: u64) -> Result<()>;
|
||||
|
||||
/// Synchronize should block until all the operations on the device are completed.
|
||||
fn synchronize(&self) -> Result<()>;
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
/// Methods for backpropagation of gradients.
|
||||
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
|
||||
use crate::{Error, Result, Tensor, TensorId};
|
||||
use std::collections::HashMap;
|
||||
@ -112,10 +111,9 @@ impl Tensor {
|
||||
}
|
||||
Op::Unary(_node, UnaryOp::Ceil)
|
||||
| Op::Unary(_node, UnaryOp::Floor)
|
||||
| Op::Unary(_node, UnaryOp::Round)
|
||||
| Op::Unary(_node, UnaryOp::Sign) => nodes,
|
||||
| Op::Unary(_node, UnaryOp::Round) => nodes,
|
||||
Op::Reshape(node)
|
||||
| Op::UpsampleNearest1D { arg: node, .. }
|
||||
| Op::UpsampleNearest1D(node)
|
||||
| Op::UpsampleNearest2D { arg: node, .. }
|
||||
| Op::AvgPool2D { arg: node, .. }
|
||||
| Op::MaxPool2D { arg: node, .. }
|
||||
@ -252,7 +250,6 @@ impl Tensor {
|
||||
out_padding,
|
||||
*stride,
|
||||
*dilation,
|
||||
/* groups */ 1,
|
||||
)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
@ -312,32 +309,9 @@ impl Tensor {
|
||||
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "conv-transpose1d",
|
||||
})?,
|
||||
Op::ConvTranspose2D {
|
||||
arg,
|
||||
kernel,
|
||||
padding,
|
||||
stride,
|
||||
dilation,
|
||||
output_padding: _output_padding,
|
||||
} => {
|
||||
let grad_arg = grad.conv2d(kernel, *padding, *dilation, *stride, 1)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
|
||||
let grad_kernel = grad
|
||||
.transpose(0, 1)?
|
||||
.conv2d(&arg.transpose(0, 1)?, *padding, *stride, *dilation, 1)?
|
||||
.transpose(0, 1)?;
|
||||
let sum_grad = grads.or_insert(kernel)?;
|
||||
let (_, _, k0, k1) = kernel.dims4()?;
|
||||
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
|
||||
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
|
||||
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
|
||||
} else {
|
||||
grad_kernel
|
||||
};
|
||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
||||
}
|
||||
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "conv-transpose2d",
|
||||
})?,
|
||||
Op::AvgPool2D {
|
||||
arg,
|
||||
kernel_size,
|
||||
@ -373,18 +347,9 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
}
|
||||
Op::UpsampleNearest1D { arg, target_size } => {
|
||||
let (_n, c, size) = arg.dims3()?;
|
||||
if target_size % size != 0 {
|
||||
crate::bail!("backward not supported for non integer upscaling factors")
|
||||
}
|
||||
let scale = target_size / size;
|
||||
|
||||
let kernel = Tensor::ones((c, 1, scale), arg.dtype(), arg.device())?;
|
||||
let conv_sum = grad.conv1d(&kernel, 0, scale, 1, c)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = conv_sum;
|
||||
}
|
||||
Op::UpsampleNearest1D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "upsample-nearest1d",
|
||||
})?,
|
||||
Op::UpsampleNearest2D {
|
||||
arg,
|
||||
target_h,
|
||||
@ -489,6 +454,7 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad)?;
|
||||
}
|
||||
Op::Cmp(_args, _) => {}
|
||||
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
|
||||
let node = broadcast_back(arg, node, reduced_dims)?;
|
||||
let grad = broadcast_back(arg, &grad, reduced_dims)?;
|
||||
@ -578,18 +544,20 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&arg_grad)?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Floor)
|
||||
| Op::Unary(_, UnaryOp::Round)
|
||||
| Op::Reduce(_, ReduceOp::ArgMin, _)
|
||||
| Op::Reduce(_, ReduceOp::ArgMax, _)
|
||||
| Op::Unary(_, UnaryOp::Sign)
|
||||
| Op::Cmp(_, _) => {}
|
||||
Op::Reduce(_, ReduceOp::ArgMin, _) => {}
|
||||
Op::Reduce(_, ReduceOp::ArgMax, _) => {}
|
||||
Op::Reshape(arg) => {
|
||||
let arg_grad = grad.reshape(arg.dims())?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&arg_grad)?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Ceil) => Err(Error::BackwardNotSupported { op: "ceil" })?,
|
||||
Op::Unary(_, UnaryOp::Floor) => {
|
||||
Err(Error::BackwardNotSupported { op: "floor" })?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Round) => {
|
||||
Err(Error::BackwardNotSupported { op: "round" })?
|
||||
}
|
||||
Op::Unary(arg, UnaryOp::Gelu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
let cube = arg.powf(3.)?;
|
||||
@ -624,7 +592,7 @@ impl Tensor {
|
||||
Op::Unary(arg, UnaryOp::Silu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
|
||||
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
|
||||
let sigmoid_arg = (*node / arg)?;
|
||||
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
|
||||
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
|
||||
}
|
||||
@ -712,38 +680,30 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// A store for gradients, associating a tensor id to the corresponding gradient tensor, used for back propagation.
|
||||
#[derive(Debug)]
|
||||
pub struct GradStore(HashMap<TensorId, Tensor>);
|
||||
|
||||
impl GradStore {
|
||||
/// Create a new gradient store
|
||||
fn new() -> Self {
|
||||
GradStore(HashMap::new())
|
||||
}
|
||||
|
||||
/// Get the gradient tensor corresponding to the given tensor id
|
||||
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
|
||||
self.0.get(&id)
|
||||
}
|
||||
|
||||
/// Get the gradient tensor associated with the given tensor
|
||||
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
|
||||
self.0.get(&tensor.id())
|
||||
}
|
||||
|
||||
/// Remove the gradient tensor associated with the given tensor, returning it if it exists
|
||||
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
|
||||
self.0.remove(&tensor.id())
|
||||
}
|
||||
|
||||
/// Insert a gradient tensor associated with the given tensor, returning the previous gradient tensor if it existed
|
||||
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
|
||||
self.0.insert(tensor.id(), grad)
|
||||
}
|
||||
|
||||
/// Get the gradient tensor associated with the given tensor, or, if it does not exist,
|
||||
/// insert a tensor of zeroes, with the same shape and type as the given tensors and return it
|
||||
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
|
||||
use std::collections::hash_map::Entry;
|
||||
let grad = match self.0.entry(tensor.id()) {
|
||||
|
@ -187,16 +187,36 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
fn conv_transpose1d_single_group(
|
||||
/// Applies a 1D transposed convolution over the input tensor.
|
||||
pub fn conv_transpose1d(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
params: &ParamsConvTranspose1D,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
) -> Result<Self> {
|
||||
let (b_size, c_in, l_in) = self.dims3()?;
|
||||
let (c_in_k, c_out, k_size) = kernel.dims3()?;
|
||||
if c_in != c_in_k {
|
||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
||||
}
|
||||
let params = ParamsConvTranspose1D {
|
||||
b_size,
|
||||
l_in,
|
||||
k_size,
|
||||
c_out,
|
||||
c_in,
|
||||
padding,
|
||||
output_padding,
|
||||
stride,
|
||||
dilation,
|
||||
};
|
||||
let storage = self.storage().conv_transpose1d(
|
||||
self.layout(),
|
||||
&kernel.storage(),
|
||||
kernel.layout(),
|
||||
params,
|
||||
¶ms,
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
|
||||
arg,
|
||||
@ -210,49 +230,6 @@ impl Tensor {
|
||||
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
|
||||
}
|
||||
|
||||
/// Applies a 1D transposed convolution over the input tensor.
|
||||
pub fn conv_transpose1d(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
) -> Result<Self> {
|
||||
let (c_in_k, c_out, k_size) = kernel.dims3()?;
|
||||
let (b_size, c_in, l_in) = self.dims3()?;
|
||||
if c_in != c_in_k {
|
||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
||||
}
|
||||
if c_in % groups != 0 {
|
||||
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
|
||||
}
|
||||
let params = ParamsConvTranspose1D {
|
||||
b_size,
|
||||
l_in,
|
||||
k_size,
|
||||
c_out,
|
||||
c_in: c_in / groups,
|
||||
padding,
|
||||
output_padding,
|
||||
stride,
|
||||
dilation,
|
||||
};
|
||||
if groups == 1 {
|
||||
self.conv_transpose1d_single_group(kernel, ¶ms)
|
||||
} else {
|
||||
let blocks = self.chunk(groups, 1)?;
|
||||
let kernel = kernel.chunk(groups, 0)?;
|
||||
let blocks = blocks
|
||||
.iter()
|
||||
.zip(&kernel)
|
||||
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, ¶ms))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Tensor::cat(&blocks, 1)
|
||||
}
|
||||
}
|
||||
|
||||
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
|
||||
let storage =
|
||||
self.storage()
|
||||
|
@ -4,13 +4,7 @@ use crate::{DType, Error, IntDType, Layout, Result, Shape, WithDType};
|
||||
use half::{bf16, f16};
|
||||
use rayon::prelude::*;
|
||||
|
||||
mod utils;
|
||||
pub use utils::{
|
||||
binary_map, binary_map_vec, unary_map, unary_map_vec, Map1, Map1Any, Map2, Map2U8,
|
||||
};
|
||||
|
||||
const USE_IM2COL_CONV1D: bool = true;
|
||||
const USE_IM2COL_CONV1D_TR: bool = true;
|
||||
const USE_IM2COL_CONV2D: bool = true;
|
||||
|
||||
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
|
||||
@ -29,6 +23,102 @@ pub enum CpuStorage {
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CpuDevice;
|
||||
|
||||
pub trait Map1 {
|
||||
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
|
||||
match vs {
|
||||
CpuStorage::U8(vs) => Ok(CpuStorage::U8(self.f(vs, layout)?)),
|
||||
CpuStorage::U32(vs) => Ok(CpuStorage::U32(self.f(vs, layout)?)),
|
||||
CpuStorage::I64(vs) => Ok(CpuStorage::I64(self.f(vs, layout)?)),
|
||||
CpuStorage::BF16(vs) => Ok(CpuStorage::BF16(self.f(vs, layout)?)),
|
||||
CpuStorage::F16(vs) => Ok(CpuStorage::F16(self.f(vs, layout)?)),
|
||||
CpuStorage::F32(vs) => Ok(CpuStorage::F32(self.f(vs, layout)?)),
|
||||
CpuStorage::F64(vs) => Ok(CpuStorage::F64(self.f(vs, layout)?)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
|
||||
&self,
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
wrap: W,
|
||||
) -> Result<CpuStorage>;
|
||||
|
||||
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
|
||||
match vs {
|
||||
CpuStorage::U8(vs) => Ok(self.f(vs, layout, CpuStorage::U8)?),
|
||||
CpuStorage::U32(vs) => Ok(self.f(vs, layout, CpuStorage::U32)?),
|
||||
CpuStorage::I64(vs) => Ok(self.f(vs, layout, CpuStorage::I64)?),
|
||||
CpuStorage::BF16(vs) => Ok(self.f(vs, layout, CpuStorage::BF16)?),
|
||||
CpuStorage::F16(vs) => Ok(self.f(vs, layout, CpuStorage::F16)?),
|
||||
CpuStorage::F32(vs) => Ok(self.f(vs, layout, CpuStorage::F32)?),
|
||||
CpuStorage::F64(vs) => Ok(self.f(vs, layout, CpuStorage::F64)?),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type C = CpuStorage;
|
||||
pub trait Map2 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(
|
||||
&self,
|
||||
v1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
v2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<CpuStorage> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2U8 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
|
||||
|
||||
fn map(
|
||||
&self,
|
||||
v1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
v2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<CpuStorage> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Cmp(CmpOp);
|
||||
impl Map2U8 for Cmp {
|
||||
const OP: &'static str = "cmp";
|
||||
@ -275,6 +365,275 @@ impl<'a> Map1 for ReduceSum<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
|
||||
[start_offset..start_offset + len]
|
||||
.iter()
|
||||
.map(|&v| f(v))
|
||||
.collect(),
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let mut result = Vec::with_capacity(layout.shape().elem_count());
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
} else {
|
||||
for index in block_start_index {
|
||||
for offset in 0..block_len {
|
||||
let v = unsafe { vs.get_unchecked(index + offset) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(len);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
|
||||
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(len) };
|
||||
ys
|
||||
}
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let el_count = layout.shape().elem_count();
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
let mut result = Vec::with_capacity(el_count);
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
result
|
||||
} else {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
|
||||
let mut dst_index = 0;
|
||||
for src_index in block_start_index {
|
||||
let vs = &vs[src_index..src_index + block_len];
|
||||
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
|
||||
f_vec(vs, ys);
|
||||
dst_index += block_len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This function maps over two strided index sequences.
|
||||
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.zip(rhs[o_r1..o_r2].iter())
|
||||
.map(|(&l, &r)| f(l, r))
|
||||
.collect(),
|
||||
(Some((o_l1, o_l2)), None) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match rhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.map(|&l| {
|
||||
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(l, *r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
(None, Some((o_r1, o_r2))) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match lhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
rhs[o_r1..o_r2]
|
||||
.iter()
|
||||
.map(|&r| {
|
||||
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(*l, r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to binary_map but with vectorized variants.
|
||||
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<T> {
|
||||
let el_count = lhs_l.shape().elem_count();
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_l1..o_l2).step_by(ob.len) {
|
||||
f_vec(
|
||||
&lhs[src_i..src_i + ob.len],
|
||||
rhs,
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = lhs[o_l1..o_l2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &r) in rhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(*v, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_r1..o_r2).step_by(ob.len) {
|
||||
f_vec(
|
||||
lhs,
|
||||
&rhs[src_i..src_i + ob.len],
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = rhs[o_r1..o_r2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &l) in lhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(l, *v)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
struct Affine(f64, f64);
|
||||
|
||||
impl Map1 for Affine {
|
||||
@ -663,26 +1022,6 @@ impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn copy2d_<T: Copy>(
|
||||
src: &[T],
|
||||
dst: &mut [T],
|
||||
d1: usize,
|
||||
d2: usize,
|
||||
src_stride1: usize,
|
||||
dst_stride1: usize,
|
||||
src_offset: usize,
|
||||
dst_offset: usize,
|
||||
) {
|
||||
for i1 in 0..d1 {
|
||||
let dst_idx = i1 * dst_stride1 + dst_offset;
|
||||
let src_idx = i1 * src_stride1 + src_offset;
|
||||
let dst = &mut dst[dst_idx..dst_idx + d2];
|
||||
let src = &src[src_idx..src_idx + d2];
|
||||
dst.copy_from_slice(src)
|
||||
}
|
||||
}
|
||||
|
||||
fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l: &Layout) {
|
||||
match src_l.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
@ -917,34 +1256,6 @@ impl Map1 for Im2Col {
|
||||
}
|
||||
}
|
||||
|
||||
struct Col2Im1D {
|
||||
stride: usize,
|
||||
}
|
||||
|
||||
impl Map1 for Col2Im1D {
|
||||
fn f<T: WithDType>(&self, col: &[T], l: &Layout) -> Result<Vec<T>> {
|
||||
let (b_size, l_in, c_out, k_size) = l.shape().dims4()?;
|
||||
let stride = self.stride;
|
||||
let l_out = (l_in - 1) * stride + k_size;
|
||||
let mut im = vec![T::zero(); b_size * c_out * l_out];
|
||||
let (dst_s0, dst_s1) = (c_out * l_out, l_out);
|
||||
let (src_s0, src_s1, src_s2) = (c_out * k_size * l_in, c_out * k_size, k_size);
|
||||
for l_in_i in 0..l_in {
|
||||
for k_i in 0..k_size {
|
||||
let l_out_i = l_in_i * stride + k_i;
|
||||
for b_i in 0..b_size {
|
||||
for c_i in 0..c_out {
|
||||
let dst_idx = b_i * dst_s0 + c_i * dst_s1 + l_out_i;
|
||||
let src_idx = b_i * src_s0 + l_in_i * src_s1 + c_i * src_s2 + k_i;
|
||||
im[dst_idx] += col[src_idx]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(im)
|
||||
}
|
||||
}
|
||||
|
||||
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
|
||||
|
||||
impl<'a> Map2 for ConvTranspose1D<'a> {
|
||||
@ -952,7 +1263,6 @@ impl<'a> Map2 for ConvTranspose1D<'a> {
|
||||
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
|
||||
let p = self.0;
|
||||
let inp = &inp[inp_l.start_offset()..];
|
||||
let k = &k[k_l.start_offset()..];
|
||||
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
|
||||
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
|
||||
let l_out = p.l_out();
|
||||
@ -1204,30 +1514,6 @@ impl MatMul {
|
||||
}))
|
||||
.bt()
|
||||
}
|
||||
|
||||
fn ab_skip(&self, lhs_l: &Layout, rhs_l: &Layout) -> Result<(usize, usize)> {
|
||||
let lhs_stride = lhs_l.stride();
|
||||
let rhs_stride = rhs_l.stride();
|
||||
let rank = lhs_stride.len();
|
||||
let (_b, m, n, k) = self.0;
|
||||
let a_skip: usize = match lhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[_, stride] if lhs_l.dims()[0] == 1 => stride,
|
||||
[stride, _] if lhs_l.dims()[1] == 1 => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[_, stride] if rhs_l.dims()[0] == 1 => stride,
|
||||
[stride, _] if rhs_l.dims()[1] == 1 => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
Ok((a_skip, b_skip))
|
||||
}
|
||||
}
|
||||
|
||||
impl Map2 for MatMul {
|
||||
@ -1261,7 +1547,18 @@ impl Map2 for MatMul {
|
||||
let rhs_cs = rhs_stride[rank - 1];
|
||||
let rhs_rs = rhs_stride[rank - 2];
|
||||
|
||||
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
|
||||
let a_skip: usize = match lhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
let c_skip: usize = m * n;
|
||||
|
||||
let dst_shape: Shape = (m, n).into();
|
||||
@ -1321,8 +1618,20 @@ impl Map2 for MatMul {
|
||||
|
||||
let lhs_stride = lhs_l.stride();
|
||||
let rhs_stride = rhs_l.stride();
|
||||
let rank = lhs_stride.len();
|
||||
|
||||
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
|
||||
let a_skip: usize = match lhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
let c_skip: usize = m * n;
|
||||
|
||||
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
|
||||
@ -1330,7 +1639,7 @@ impl Map2 for MatMul {
|
||||
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
|
||||
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
|
||||
|
||||
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
|
||||
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
|
||||
(n as i32, b'N')
|
||||
} else if rhs_m1 == k && rhs_m2 == 1 {
|
||||
(k as i32, b'T')
|
||||
@ -1338,7 +1647,7 @@ impl Map2 for MatMul {
|
||||
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
|
||||
};
|
||||
// The b tensor has dims batching, m, k (lhs)
|
||||
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
|
||||
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
|
||||
(k as i32, b'N')
|
||||
} else if lhs_m1 == m && lhs_m2 == 1 {
|
||||
(m as i32, b'T')
|
||||
@ -1412,8 +1721,20 @@ impl Map2 for MatMul {
|
||||
|
||||
let lhs_stride = lhs_l.stride();
|
||||
let rhs_stride = rhs_l.stride();
|
||||
let rank = lhs_stride.len();
|
||||
|
||||
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
|
||||
let a_skip: usize = match lhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
let c_skip: usize = m * n;
|
||||
|
||||
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
|
||||
@ -1421,7 +1742,7 @@ impl Map2 for MatMul {
|
||||
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
|
||||
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
|
||||
|
||||
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
|
||||
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
|
||||
(n as i32, b'N')
|
||||
} else if rhs_m1 == k && rhs_m2 == 1 {
|
||||
(k as i32, b'T')
|
||||
@ -1429,7 +1750,7 @@ impl Map2 for MatMul {
|
||||
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
|
||||
};
|
||||
// The b tensor has dims batching, m, k (lhs)
|
||||
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
|
||||
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
|
||||
(k as i32, b'N')
|
||||
} else if lhs_m1 == m && lhs_m2 == 1 {
|
||||
(m as i32, b'T')
|
||||
@ -2101,48 +2422,6 @@ impl BackendStorage for CpuStorage {
|
||||
}
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
dst: &mut Self,
|
||||
d1: usize,
|
||||
d2: usize,
|
||||
src_s: usize,
|
||||
dst_s: usize,
|
||||
src_o: usize,
|
||||
dst_o: usize,
|
||||
) -> Result<()> {
|
||||
match (self, dst) {
|
||||
(Self::U8(src), Self::U8(dst)) => copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o),
|
||||
(Self::U32(src), Self::U32(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(Self::I64(src), Self::I64(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(Self::BF16(src), Self::BF16(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(Self::F16(src), Self::F16(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(Self::F32(src), Self::F32(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(Self::F64(src), Self::F64(dst)) => {
|
||||
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
|
||||
}
|
||||
(_, dst) => {
|
||||
return Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: self.dtype(),
|
||||
rhs: dst.dtype(),
|
||||
op: "copy2d",
|
||||
}
|
||||
.bt());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
|
||||
match (self, dst) {
|
||||
(Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
|
||||
@ -2211,10 +2490,7 @@ impl BackendStorage for CpuStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
} else {
|
||||
// Make the kernel contiguous if not already the case.
|
||||
let mut kernel_c = unsafe {
|
||||
self.device()
|
||||
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
|
||||
};
|
||||
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
|
||||
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
|
||||
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
|
||||
.transpose(1, 2)?
|
||||
@ -2222,7 +2498,7 @@ impl BackendStorage for CpuStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
};
|
||||
let res_l = Layout::contiguous((b, l_out, params.c_out)).transpose(1, 2)?;
|
||||
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
|
||||
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
|
||||
res.copy_strided_src(&mut res_t, 0, &res_l)?;
|
||||
Ok(res_t)
|
||||
}
|
||||
@ -2234,52 +2510,7 @@ impl BackendStorage for CpuStorage {
|
||||
kernel_l: &Layout,
|
||||
params: &crate::conv::ParamsConvTranspose1D,
|
||||
) -> Result<Self> {
|
||||
let can_use_col2im = kernel_l.is_contiguous()
|
||||
&& params.dilation == 1
|
||||
&& params.padding == 0
|
||||
&& params.output_padding == 0;
|
||||
if USE_IM2COL_CONV1D_TR && can_use_col2im {
|
||||
let (b_size, c_in, l_in) = l.shape().dims3()?;
|
||||
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
|
||||
if !kernel_l.is_contiguous() {
|
||||
crate::bail!(
|
||||
"convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}"
|
||||
)
|
||||
}
|
||||
if c_in != c_in2 {
|
||||
crate::bail!(
|
||||
"convtr1d: shape mismatch on c_in {:?} {:?}",
|
||||
l.shape(),
|
||||
kernel_l.shape()
|
||||
)
|
||||
}
|
||||
let col = {
|
||||
// This merges the last two dimensions of the kernel together.
|
||||
let kernel_l_mm = Layout::new(
|
||||
(b_size, c_in, k_size * c_out).into(),
|
||||
vec![0, k_size * c_out, 1],
|
||||
kernel_l.start_offset(),
|
||||
);
|
||||
self.matmul(
|
||||
kernel,
|
||||
(
|
||||
b_size,
|
||||
/* m */ l_in,
|
||||
/* n */ c_out * k_size,
|
||||
/* k */ c_in,
|
||||
),
|
||||
&l.transpose(1, 2)?,
|
||||
&kernel_l_mm,
|
||||
)?
|
||||
};
|
||||
let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
|
||||
Col2Im1D {
|
||||
stride: params.stride,
|
||||
}
|
||||
.map(&col, &col_l)
|
||||
} else {
|
||||
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
|
||||
}
|
||||
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
|
||||
}
|
||||
|
||||
fn conv2d(
|
||||
@ -2313,10 +2544,7 @@ impl BackendStorage for CpuStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
} else {
|
||||
// Make the kernel contiguous if not already the case.
|
||||
let mut kernel_c = unsafe {
|
||||
self.device()
|
||||
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
|
||||
};
|
||||
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
|
||||
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
|
||||
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
|
||||
.transpose(1, 2)?
|
||||
@ -2326,7 +2554,7 @@ impl BackendStorage for CpuStorage {
|
||||
let res_l = Layout::contiguous((b, h_out, w_out, params.c_out))
|
||||
.transpose(1, 2)?
|
||||
.transpose(1, 3)?;
|
||||
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
|
||||
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
|
||||
res.copy_strided_src(&mut res_t, 0, &res_l)?;
|
||||
Ok(res_t)
|
||||
}
|
||||
@ -2346,7 +2574,7 @@ impl BackendStorage for CpuStorage {
|
||||
Self::U8(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
|
||||
Self::U32(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
|
||||
Self::I64(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select").bt()),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select")),
|
||||
}
|
||||
}
|
||||
|
||||
@ -2355,7 +2583,7 @@ impl BackendStorage for CpuStorage {
|
||||
Self::U8(ids) => Gather { ids, ids_l, dim }.map(self, l),
|
||||
Self::U32(ids) => Gather { ids, ids_l, dim }.map(self, l),
|
||||
Self::I64(ids) => Gather { ids, ids_l, dim }.map(self, l),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather").bt()),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather")),
|
||||
}
|
||||
}
|
||||
|
||||
@ -2372,7 +2600,7 @@ impl BackendStorage for CpuStorage {
|
||||
Self::U8(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
|
||||
Self::U32(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
|
||||
Self::I64(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add").bt()),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add")),
|
||||
}
|
||||
}
|
||||
|
||||
@ -2449,10 +2677,6 @@ impl BackendDevice for CpuDevice {
|
||||
Ok(s.clone())
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, s: CpuStorage) -> Result<Self::Storage> {
|
||||
Ok(s)
|
||||
}
|
||||
|
||||
fn new(_: usize) -> Result<Self> {
|
||||
Ok(Self)
|
||||
}
|
||||
@ -2554,53 +2778,6 @@ impl BackendDevice for CpuDevice {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::uninit_vec)]
|
||||
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
// The code below is highly unsafe but hopefully not directly unsound as we only consider
|
||||
// types that are Copy, not Drop, and for which all bit patterns are proper values.
|
||||
// It's still pretty risky, see the following for more details:
|
||||
// https://github.com/rust-lang/rust-clippy/issues/4483
|
||||
let storage = match dtype {
|
||||
DType::U8 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::U8(v)
|
||||
}
|
||||
DType::U32 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::U32(v)
|
||||
}
|
||||
DType::I64 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::I64(v)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::BF16(v)
|
||||
}
|
||||
DType::F16 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::F16(v)
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::F32(v)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut v = Vec::with_capacity(elem_count);
|
||||
v.set_len(elem_count);
|
||||
CpuStorage::F64(v)
|
||||
}
|
||||
};
|
||||
Ok(storage)
|
||||
}
|
||||
|
||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let storage = match dtype {
|
||||
@ -2628,10 +2805,6 @@ impl BackendDevice for CpuDevice {
|
||||
};
|
||||
Ok(storage)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
@ -1,350 +0,0 @@
|
||||
/// Helper functions to write CPU kernels.
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{Error, Layout, Result, WithDType};
|
||||
|
||||
type C = super::CpuStorage;
|
||||
pub trait Map1 {
|
||||
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
||||
match vs {
|
||||
C::U8(vs) => Ok(C::U8(self.f(vs, layout)?)),
|
||||
C::U32(vs) => Ok(C::U32(self.f(vs, layout)?)),
|
||||
C::I64(vs) => Ok(C::I64(self.f(vs, layout)?)),
|
||||
C::BF16(vs) => Ok(C::BF16(self.f(vs, layout)?)),
|
||||
C::F16(vs) => Ok(C::F16(self.f(vs, layout)?)),
|
||||
C::F32(vs) => Ok(C::F32(self.f(vs, layout)?)),
|
||||
C::F64(vs) => Ok(C::F64(self.f(vs, layout)?)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: WithDType, W: Fn(Vec<T>) -> C>(&self, vs: &[T], layout: &Layout, wrap: W) -> Result<C>;
|
||||
|
||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
||||
match vs {
|
||||
C::U8(vs) => Ok(self.f(vs, layout, C::U8)?),
|
||||
C::U32(vs) => Ok(self.f(vs, layout, C::U32)?),
|
||||
C::I64(vs) => Ok(self.f(vs, layout, C::I64)?),
|
||||
C::BF16(vs) => Ok(self.f(vs, layout, C::BF16)?),
|
||||
C::F16(vs) => Ok(self.f(vs, layout, C::F16)?),
|
||||
C::F32(vs) => Ok(self.f(vs, layout, C::F32)?),
|
||||
C::F64(vs) => Ok(self.f(vs, layout, C::F64)?),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2U8 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
|
||||
|
||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.zip(rhs[o_r1..o_r2].iter())
|
||||
.map(|(&l, &r)| f(l, r))
|
||||
.collect(),
|
||||
(Some((o_l1, o_l2)), None) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match rhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.map(|&l| {
|
||||
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(l, *r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
(None, Some((o_r1, o_r2))) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match lhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
rhs[o_r1..o_r2]
|
||||
.iter()
|
||||
.map(|&r| {
|
||||
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(*l, r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to binary_map but with vectorized variants.
|
||||
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<T> {
|
||||
let el_count = lhs_l.shape().elem_count();
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_l1..o_l2).step_by(ob.len) {
|
||||
f_vec(
|
||||
&lhs[src_i..src_i + ob.len],
|
||||
rhs,
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = lhs[o_l1..o_l2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &r) in rhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(*v, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_r1..o_r2).step_by(ob.len) {
|
||||
f_vec(
|
||||
lhs,
|
||||
&rhs[src_i..src_i + ob.len],
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = rhs[o_r1..o_r2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &l) in lhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(l, *v)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
|
||||
[start_offset..start_offset + len]
|
||||
.iter()
|
||||
.map(|&v| f(v))
|
||||
.collect(),
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let mut result = Vec::with_capacity(layout.shape().elem_count());
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
} else {
|
||||
for index in block_start_index {
|
||||
for offset in 0..block_len {
|
||||
let v = unsafe { vs.get_unchecked(index + offset) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(len);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
|
||||
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(len) };
|
||||
ys
|
||||
}
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let el_count = layout.shape().elem_count();
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
let mut result = Vec::with_capacity(el_count);
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
result
|
||||
} else {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
|
||||
let mut dst_index = 0;
|
||||
for src_index in block_start_index {
|
||||
let vs = &vs[src_index..src_index + block_len];
|
||||
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
|
||||
f_vec(vs, ys);
|
||||
dst_index += block_len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -5,41 +5,395 @@ pub use candle_kernels as kernels;
|
||||
pub use cudarc;
|
||||
use cudarc::cublas::{Gemm, GemmConfig, StridedBatchedConfig};
|
||||
use cudarc::driver::{
|
||||
CudaSlice, DevicePtr, DeviceRepr, DeviceSlice, LaunchAsync, LaunchConfig, ValidAsZeroBits,
|
||||
CudaFunction, CudaSlice, DevicePtr, DeviceRepr, DeviceSlice, LaunchAsync, LaunchConfig,
|
||||
ValidAsZeroBits,
|
||||
};
|
||||
use half::{bf16, f16};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub mod cudnn;
|
||||
mod device;
|
||||
mod error;
|
||||
mod utils;
|
||||
pub use device::{CudaDevice, DeviceId};
|
||||
pub use error::{CudaError, WrapErr};
|
||||
pub use utils::{Map1, Map1Any, Map2, Map2Any, Map2InPlace, S};
|
||||
/// cudarc related errors
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum CudaError {
|
||||
#[error(transparent)]
|
||||
Cuda(#[from] cudarc::driver::DriverError),
|
||||
|
||||
enum SlicePtrOrNull<T> {
|
||||
Ptr(CudaSlice<T>),
|
||||
Null,
|
||||
#[error(transparent)]
|
||||
Compiler(#[from] cudarc::nvrtc::CompileError),
|
||||
|
||||
#[error(transparent)]
|
||||
Cublas(#[from] cudarc::cublas::result::CublasError),
|
||||
|
||||
#[error(transparent)]
|
||||
Curand(#[from] cudarc::curand::result::CurandError),
|
||||
|
||||
#[error("missing kernel '{module_name}'")]
|
||||
MissingKernel { module_name: String },
|
||||
|
||||
#[error("unsupported dtype {dtype:?} for {op}")]
|
||||
UnsupportedDtype { dtype: DType, op: &'static str },
|
||||
|
||||
#[error("internal error '{0}'")]
|
||||
InternalError(&'static str),
|
||||
|
||||
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
|
||||
MatMulNonContiguous {
|
||||
lhs_stride: Vec<usize>,
|
||||
rhs_stride: Vec<usize>,
|
||||
mnk: (usize, usize, usize),
|
||||
},
|
||||
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
UnexpectedDType {
|
||||
msg: &'static str,
|
||||
expected: DType,
|
||||
got: DType,
|
||||
},
|
||||
|
||||
#[error("{cuda} when loading {module_name}")]
|
||||
Load {
|
||||
cuda: cudarc::driver::DriverError,
|
||||
module_name: String,
|
||||
},
|
||||
}
|
||||
|
||||
unsafe impl<T: DeviceRepr> DeviceRepr for &SlicePtrOrNull<T> {
|
||||
fn as_kernel_param(&self) -> *mut std::ffi::c_void {
|
||||
match self {
|
||||
SlicePtrOrNull::Ptr(slice) => slice.as_kernel_param(),
|
||||
SlicePtrOrNull::Null => 0usize.as_kernel_param(),
|
||||
}
|
||||
impl From<CudaError> for crate::Error {
|
||||
fn from(val: CudaError) -> Self {
|
||||
crate::Error::Cuda(Box::new(val)).bt()
|
||||
}
|
||||
}
|
||||
|
||||
impl SlicePtrOrNull<usize> {
|
||||
fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
|
||||
let ds = if l.is_contiguous() {
|
||||
SlicePtrOrNull::Null
|
||||
} else {
|
||||
SlicePtrOrNull::Ptr(dev.htod_copy([l.dims(), l.stride()].concat()).w()?)
|
||||
/// Unique identifier for cuda devices.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub struct DeviceId(usize);
|
||||
|
||||
impl DeviceId {
|
||||
fn new() -> Self {
|
||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
||||
use std::sync::atomic;
|
||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
||||
}
|
||||
}
|
||||
|
||||
struct CudaRng(cudarc::curand::CudaRng);
|
||||
unsafe impl Send for CudaRng {}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct CudaDevice {
|
||||
id: DeviceId,
|
||||
device: Arc<cudarc::driver::CudaDevice>,
|
||||
blas: Arc<cudarc::cublas::CudaBlas>,
|
||||
curand: Arc<Mutex<CudaRng>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for CudaDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "CudaDevice({:?})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for CudaDevice {
|
||||
type Target = Arc<cudarc::driver::CudaDevice>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.device
|
||||
}
|
||||
}
|
||||
|
||||
pub trait WrapErr<O> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error>;
|
||||
}
|
||||
|
||||
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error> {
|
||||
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())))
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
pub fn cuda_device(&self) -> Arc<cudarc::driver::CudaDevice> {
|
||||
self.device.clone()
|
||||
}
|
||||
|
||||
pub fn id(&self) -> DeviceId {
|
||||
self.id
|
||||
}
|
||||
|
||||
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u8>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_u8", kernels::FILL)?;
|
||||
let params = (&data, v as u8, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u32>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_u32", kernels::FILL)?;
|
||||
let params = (&data, v as u32, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<i64>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_i64", kernels::FILL)?;
|
||||
let params = (&data, v as i64, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<bf16>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_bf16", kernels::FILL)?;
|
||||
let params = (&data, bf16::from_f64(v), elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f16>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f16", kernels::FILL)?;
|
||||
let params = (&data, f16::from_f64(v), elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f32", kernels::FILL)?;
|
||||
let params = (&data, v as f32, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f64", kernels::FILL)?;
|
||||
let params = (&data, v, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(ds)
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_or_load_func(&self, module_name: &str, ptx: &'static str) -> Result<CudaFunction> {
|
||||
if !self.has_func(module_name, module_name) {
|
||||
// Leaking the string here is a bit sad but we need a &'static str and this is only
|
||||
// done once per kernel name.
|
||||
let static_module_name = Box::leak(module_name.to_string().into_boxed_str());
|
||||
self.load_ptx(ptx.into(), module_name, &[static_module_name])
|
||||
.map_err(|cuda| CudaError::Load {
|
||||
cuda,
|
||||
module_name: module_name.to_string(),
|
||||
})
|
||||
.w()?;
|
||||
}
|
||||
self.get_func(module_name, module_name)
|
||||
// Clippy recommends this `ok_or` rather than `ok_or_else` so hopefully the compiler is
|
||||
// able to only build the error value if needed.
|
||||
.ok_or(CudaError::MissingKernel {
|
||||
module_name: module_name.to_string(),
|
||||
})
|
||||
.w()
|
||||
}
|
||||
}
|
||||
|
||||
impl BackendDevice for CudaDevice {
|
||||
type Storage = CudaStorage;
|
||||
|
||||
fn new(ordinal: usize) -> Result<Self> {
|
||||
let device = cudarc::driver::CudaDevice::new(ordinal).w()?;
|
||||
let blas = cudarc::cublas::CudaBlas::new(device.clone()).w()?;
|
||||
let curand = cudarc::curand::CudaRng::new(299792458, device.clone()).w()?;
|
||||
Ok(Self {
|
||||
id: DeviceId::new(),
|
||||
device,
|
||||
blas: Arc::new(blas),
|
||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
||||
})
|
||||
}
|
||||
|
||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
// We do not call set_seed but instead create a new curand object. This ensures that the
|
||||
// state will be identical and the same random numbers will be generated.
|
||||
let mut curand = self.curand.lock().unwrap();
|
||||
curand.0 = cudarc::curand::CudaRng::new(seed, self.device.clone()).w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
crate::DeviceLocation::Cuda {
|
||||
gpu_id: self.device.ordinal(),
|
||||
}
|
||||
}
|
||||
|
||||
fn same_device(&self, rhs: &Self) -> bool {
|
||||
self.id == rhs.id
|
||||
}
|
||||
|
||||
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
let data = self.alloc_zeros::<u8>(elem_count).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
let data = self.alloc_zeros::<u32>(elem_count).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
let data = self.alloc_zeros::<i64>(elem_count).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let data = self.alloc_zeros::<bf16>(elem_count).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
let data = self.alloc_zeros::<f16>(elem_count).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
let data = self.alloc_zeros::<f32>(elem_count).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let data = self.alloc_zeros::<f64>(elem_count).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
let slice = match dtype {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_uniform",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
let slice = if lo == 0. && up == 1.0 {
|
||||
slice
|
||||
} else {
|
||||
let layout = Layout::contiguous(shape);
|
||||
Affine(up - lo, lo).map(&slice, self, &layout)?
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
// curand can only generate an odd number of values.
|
||||
// https://github.com/huggingface/candle/issues/734
|
||||
let elem_count_round = if elem_count % 2 == 1 {
|
||||
elem_count + 1
|
||||
} else {
|
||||
elem_count
|
||||
};
|
||||
let slice = match dtype {
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_normal",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count_round) }.w()?;
|
||||
curand
|
||||
.0
|
||||
.fill_with_normal(&mut data, mean as f32, std as f32)
|
||||
.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count_round) }.w()?;
|
||||
curand.0.fill_with_normal(&mut data, mean, std).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
self.const_impl(1., shape, dtype)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorage::U32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorage::I64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorage::BF16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorage::F16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorage::F32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorage::F64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@ -53,6 +407,133 @@ pub enum CudaStorageSlice {
|
||||
F32(CudaSlice<f32>),
|
||||
F64(CudaSlice<f64>),
|
||||
}
|
||||
type S = CudaStorageSlice;
|
||||
|
||||
pub trait Map1 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => S::U8(self.f(s, d, l)?),
|
||||
S::U32(s) => S::U32(self.f(s, d, l)?),
|
||||
S::I64(s) => S::I64(self.f(s, d, l)?),
|
||||
S::BF16(s) => S::BF16(self.f(s, d, l)?),
|
||||
S::F16(s) => S::F16(self.f(s, d, l)?),
|
||||
S::F32(s) => S::F32(self.f(s, d, l)?),
|
||||
S::F64(s) => S::F64(self.f(s, d, l)?),
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2InPlace {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
dst: &mut CudaSlice<T>,
|
||||
dst_shape: &Shape,
|
||||
src: &CudaSlice<T>,
|
||||
src_l: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()>;
|
||||
|
||||
fn map(
|
||||
&self,
|
||||
dst: &mut S,
|
||||
dst_s: &Shape,
|
||||
src: &S,
|
||||
src_l: &Layout,
|
||||
d: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
match (dst, src) {
|
||||
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
wrap: W,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => self.f(s, d, l, S::U8)?,
|
||||
S::U32(s) => self.f(s, d, l, S::U32)?,
|
||||
S::I64(s) => self.f(s, d, l, S::I64)?,
|
||||
S::BF16(s) => self.f(s, d, l, S::BF16)?,
|
||||
S::F16(s) => self.f(s, d, l, S::F16)?,
|
||||
S::F32(s) => self.f(s, d, l, S::F32)?,
|
||||
S::F64(s) => self.f(s, d, l, S::F64)?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
struct Clone;
|
||||
impl Map1 for Clone {
|
||||
@ -83,7 +564,7 @@ impl Map1 for Affine {
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el as u32);
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("affine"), kernels::AFFINE)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
@ -115,7 +596,7 @@ impl Map1 for Elu {
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el as u32);
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("uelu"), kernels::UNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
@ -238,7 +719,7 @@ impl Map1 for Powf {
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el as u32);
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("upowf"), kernels::UNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
@ -371,7 +852,7 @@ impl<U: UnaryOpT> Map1 for U {
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el_count as u32);
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>(U::KERNEL), kernels::UNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
@ -921,14 +1402,9 @@ impl<U: crate::op::BinaryOpT> Map2 for U {
|
||||
let dims = shape.dims();
|
||||
let elem_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
||||
let dims_and_strides = if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
|
||||
SlicePtrOrNull::Null
|
||||
} else {
|
||||
SlicePtrOrNull::Ptr(
|
||||
dev.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
|
||||
.w()?,
|
||||
)
|
||||
};
|
||||
let dims_and_strides = dev
|
||||
.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
|
||||
.w()?;
|
||||
let lhs = &lhs.slice(lhs_l.start_offset()..);
|
||||
let rhs = &rhs.slice(rhs_l.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>(U::KERNEL), kernels::BINARY)?;
|
||||
@ -955,14 +1431,9 @@ impl Map2Any for Cmp {
|
||||
let dims = shape.dims();
|
||||
let elem_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
||||
let dims_and_strides = if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
|
||||
SlicePtrOrNull::Null
|
||||
} else {
|
||||
SlicePtrOrNull::Ptr(
|
||||
dev.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
|
||||
.w()?,
|
||||
)
|
||||
};
|
||||
let dims_and_strides = dev
|
||||
.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
|
||||
.w()?;
|
||||
let lhs = &lhs.slice(lhs_l.start_offset()..);
|
||||
let rhs = &rhs.slice(rhs_l.start_offset()..);
|
||||
let name = match self.0 {
|
||||
@ -1070,30 +1541,26 @@ fn gemm_config<T>(
|
||||
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
|
||||
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
|
||||
// The a tensor has dims batching, k, n (rhs)
|
||||
// We also allow for the case where the stride on the minor dimension is not as expected but
|
||||
// there is a single element.
|
||||
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
|
||||
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
|
||||
(n as i32, cublasOperation_t::CUBLAS_OP_N)
|
||||
} else if (rhs_m1 == k || n == 1) && (rhs_m2 == 1 || k == 1) {
|
||||
} else if rhs_m1 == k && rhs_m2 == 1 {
|
||||
(k as i32, cublasOperation_t::CUBLAS_OP_T)
|
||||
} else {
|
||||
Err(CudaError::MatMulNonContiguous {
|
||||
lhs_stride: lhs_l.clone(),
|
||||
rhs_stride: rhs_l.clone(),
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?
|
||||
};
|
||||
// The b tensor has dims batching, m, k (lhs)
|
||||
// We also allow for the case where the stride on the minor dimension is not as expected but
|
||||
// there is a single element.
|
||||
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
|
||||
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
|
||||
(k as i32, cublasOperation_t::CUBLAS_OP_N)
|
||||
} else if (lhs_m1 == m || k == 1) && (lhs_m2 == 1 || m == 1) {
|
||||
} else if lhs_m1 == m && lhs_m2 == 1 {
|
||||
(m as i32, cublasOperation_t::CUBLAS_OP_T)
|
||||
} else {
|
||||
Err(CudaError::MatMulNonContiguous {
|
||||
lhs_stride: lhs_l.clone(),
|
||||
rhs_stride: rhs_l.clone(),
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?
|
||||
};
|
||||
@ -1114,25 +1581,21 @@ fn gemm_config<T>(
|
||||
|
||||
let stride_b: usize = match lhs_stride[..lhs_stride.len() - 2] {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[_, stride] if lhs_l.dims()[0] == 1 => stride,
|
||||
[stride, _] if lhs_l.dims()[1] == 1 => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(CudaError::MatMulNonContiguous {
|
||||
lhs_stride: lhs_l.clone(),
|
||||
rhs_stride: rhs_l.clone(),
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?,
|
||||
};
|
||||
let stride_a: usize = match rhs_stride[..rhs_stride.len() - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[_, stride] if rhs_l.dims()[0] == 1 => stride,
|
||||
[stride, _] if rhs_l.dims()[1] == 1 => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(CudaError::MatMulNonContiguous {
|
||||
lhs_stride: lhs_l.clone(),
|
||||
rhs_stride: rhs_l.clone(),
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?,
|
||||
};
|
||||
@ -1177,7 +1640,7 @@ impl BackendStorage for CudaStorage {
|
||||
let el = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el as u32);
|
||||
let dev = self.device();
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
|
||||
let start_o = layout.start_offset();
|
||||
// This returns an i64 rather than a &i64, this is useful to get around some temporary
|
||||
// lifetime issue and is safe as long as self.slice does not go out of scope before inp
|
||||
@ -1381,10 +1844,7 @@ impl BackendStorage for CudaStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
} else {
|
||||
// Make the kernel contiguous if not already the case.
|
||||
let mut kernel_c = unsafe {
|
||||
self.device()
|
||||
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
|
||||
};
|
||||
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
|
||||
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
|
||||
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
|
||||
.transpose(1, 2)?
|
||||
@ -1392,7 +1852,7 @@ impl BackendStorage for CudaStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
};
|
||||
let res_l = Layout::contiguous((b, l_out, n)).transpose(1, 2)?;
|
||||
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
|
||||
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
|
||||
res.copy_strided_src(&mut res_t, 0, &res_l)?;
|
||||
Ok(res_t)
|
||||
}
|
||||
@ -1449,10 +1909,7 @@ impl BackendStorage for CudaStorage {
|
||||
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
|
||||
} else {
|
||||
// Make the kernel contiguous if not already the case.
|
||||
let mut kernel_c = unsafe {
|
||||
self.device()
|
||||
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
|
||||
};
|
||||
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
|
||||
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
|
||||
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
|
||||
.transpose(1, 2)?
|
||||
@ -1462,7 +1919,7 @@ impl BackendStorage for CudaStorage {
|
||||
let res_l = Layout::contiguous((b, h_out, w_out, n))
|
||||
.transpose(1, 2)?
|
||||
.transpose(1, 3)?;
|
||||
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
|
||||
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
|
||||
res.copy_strided_src(&mut res_t, 0, &res_l)?;
|
||||
Ok(res_t)
|
||||
}
|
||||
@ -1599,7 +2056,7 @@ impl BackendStorage for CudaStorage {
|
||||
dim: usize,
|
||||
) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
let mut acc = unsafe { device.alloc_uninit(l.shape(), self.dtype())? };
|
||||
let mut acc = device.zeros_impl(l.shape(), self.dtype())?;
|
||||
self.copy_strided_src(&mut acc, 0, l)?;
|
||||
ScatterAdd(ids, ids_l, dim).map(&mut acc.slice, l.shape(), &src.slice, src_l, &device)?;
|
||||
Ok(acc)
|
||||
@ -1614,7 +2071,7 @@ impl BackendStorage for CudaStorage {
|
||||
dim: usize,
|
||||
) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
let mut acc = unsafe { device.alloc_uninit(l.shape(), self.dtype())? };
|
||||
let mut acc = device.zeros_impl(l.shape(), self.dtype())?;
|
||||
self.copy_strided_src(&mut acc, 0, l)?;
|
||||
IndexAdd(ids, ids_l, dim).map(&mut acc.slice, l.shape(), &src.slice, src_l, &device)?;
|
||||
Ok(acc)
|
||||
@ -1688,72 +2145,6 @@ impl BackendStorage for CudaStorage {
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
dst: &mut Self,
|
||||
d1: usize,
|
||||
d2: usize,
|
||||
src_s: usize,
|
||||
dst_s: usize,
|
||||
src_o: usize,
|
||||
dst_o: usize,
|
||||
) -> Result<()> {
|
||||
let dev = &self.device;
|
||||
let d1 = d1 as u32;
|
||||
let d2 = d2 as u32;
|
||||
// Nothing to copy so we exit early to avoid launching a kernel and some potential invalid
|
||||
// argument with a null pointer.
|
||||
if d1 == 0 || d2 == 0 {
|
||||
return Ok(());
|
||||
}
|
||||
let dst_s = dst_s as u32;
|
||||
let src_s = src_s as u32;
|
||||
let (src, dst, kname) = match (&self.slice, &mut dst.slice) {
|
||||
(S::U8(s), S::U8(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_u8",
|
||||
),
|
||||
(S::U32(s), S::U32(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_u32",
|
||||
),
|
||||
(S::I64(s), S::I64(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_i64",
|
||||
),
|
||||
(S::BF16(s), S::BF16(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_bf16",
|
||||
),
|
||||
(S::F16(s), S::F16(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_f16",
|
||||
),
|
||||
(S::F32(s), S::F32(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_f32",
|
||||
),
|
||||
(S::F64(s), S::F64(d)) => (
|
||||
*s.slice(src_o..).device_ptr(),
|
||||
*d.slice(dst_o..).device_ptr(),
|
||||
"copy2d_f64",
|
||||
),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in copy2d"))?,
|
||||
};
|
||||
let func = dev.get_or_load_func(kname, kernels::FILL)?;
|
||||
let cfg = LaunchConfig::for_num_elems(d1 * d2);
|
||||
let params = (src, dst, d1, d2, src_s, dst_s);
|
||||
// SAFETY: ffi.
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
|
||||
let src_shape = src_l.shape();
|
||||
let dims = src_shape.dims();
|
||||
@ -1763,7 +2154,7 @@ impl BackendStorage for CudaStorage {
|
||||
}
|
||||
let cfg = LaunchConfig::for_num_elems(el_count as u32);
|
||||
let dev = &self.device;
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, src_l)?;
|
||||
let ds = dev.htod_copy([dims, src_l.stride()].concat()).w()?;
|
||||
match (&self.slice, &mut dst.slice) {
|
||||
(CudaStorageSlice::BF16(src), CudaStorageSlice::BF16(dst)) => {
|
||||
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
|
@ -1,415 +0,0 @@
|
||||
use crate::backend::BackendDevice;
|
||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||
pub use candle_kernels as kernels;
|
||||
pub use cudarc;
|
||||
use cudarc::driver::{CudaFunction, LaunchAsync, LaunchConfig};
|
||||
use half::{bf16, f16};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr};
|
||||
|
||||
/// Unique identifier for cuda devices.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub struct DeviceId(usize);
|
||||
|
||||
impl DeviceId {
|
||||
fn new() -> Self {
|
||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
||||
use std::sync::atomic;
|
||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
||||
}
|
||||
}
|
||||
|
||||
struct CudaRng(cudarc::curand::CudaRng);
|
||||
unsafe impl Send for CudaRng {}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct CudaDevice {
|
||||
id: DeviceId,
|
||||
device: Arc<cudarc::driver::CudaDevice>,
|
||||
pub(crate) blas: Arc<cudarc::cublas::CudaBlas>,
|
||||
curand: Arc<Mutex<CudaRng>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for CudaDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "CudaDevice({:?})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for CudaDevice {
|
||||
type Target = Arc<cudarc::driver::CudaDevice>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.device
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
pub fn cuda_device(&self) -> Arc<cudarc::driver::CudaDevice> {
|
||||
self.device.clone()
|
||||
}
|
||||
|
||||
pub fn id(&self) -> DeviceId {
|
||||
self.id
|
||||
}
|
||||
|
||||
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u8>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_u8", kernels::FILL)?;
|
||||
let params = (&data, v as u8, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u32>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_u32", kernels::FILL)?;
|
||||
let params = (&data, v as u32, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<i64>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_i64", kernels::FILL)?;
|
||||
let params = (&data, v as i64, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<bf16>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_bf16", kernels::FILL)?;
|
||||
let params = (&data, bf16::from_f64(v), elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f16>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f16", kernels::FILL)?;
|
||||
let params = (&data, f16::from_f64(v), elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f32", kernels::FILL)?;
|
||||
let params = (&data, v as f32, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
|
||||
let func = self.get_or_load_func("fill_f64", kernels::FILL)?;
|
||||
let params = (&data, v, elem_count);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_or_load_func(&self, module_name: &str, ptx: &'static str) -> Result<CudaFunction> {
|
||||
if !self.has_func(module_name, module_name) {
|
||||
// Leaking the string here is a bit sad but we need a &'static str and this is only
|
||||
// done once per kernel name.
|
||||
let static_module_name = Box::leak(module_name.to_string().into_boxed_str());
|
||||
self.load_ptx(ptx.into(), module_name, &[static_module_name])
|
||||
.map_err(|cuda| CudaError::Load {
|
||||
cuda,
|
||||
module_name: module_name.to_string(),
|
||||
})
|
||||
.w()?;
|
||||
}
|
||||
self.get_func(module_name, module_name)
|
||||
// Clippy recommends this `ok_or` rather than `ok_or_else` so hopefully the compiler is
|
||||
// able to only build the error value if needed.
|
||||
.ok_or(CudaError::MissingKernel {
|
||||
module_name: module_name.to_string(),
|
||||
})
|
||||
.w()
|
||||
}
|
||||
}
|
||||
|
||||
impl BackendDevice for CudaDevice {
|
||||
type Storage = CudaStorage;
|
||||
|
||||
fn new(ordinal: usize) -> Result<Self> {
|
||||
let device = cudarc::driver::CudaDevice::new(ordinal).w()?;
|
||||
let blas = cudarc::cublas::CudaBlas::new(device.clone()).w()?;
|
||||
let curand = cudarc::curand::CudaRng::new(299792458, device.clone()).w()?;
|
||||
Ok(Self {
|
||||
id: DeviceId::new(),
|
||||
device,
|
||||
blas: Arc::new(blas),
|
||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
||||
})
|
||||
}
|
||||
|
||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
// We do not call set_seed but instead create a new curand object. This ensures that the
|
||||
// state will be identical and the same random numbers will be generated.
|
||||
let mut curand = self.curand.lock().unwrap();
|
||||
curand.0 = cudarc::curand::CudaRng::new(seed, self.device.clone()).w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
crate::DeviceLocation::Cuda {
|
||||
gpu_id: self.device.ordinal(),
|
||||
}
|
||||
}
|
||||
|
||||
fn same_device(&self, rhs: &Self) -> bool {
|
||||
self.id == rhs.id
|
||||
}
|
||||
|
||||
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
let data = self.alloc_zeros::<u8>(elem_count).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
let data = self.alloc_zeros::<u32>(elem_count).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
let data = self.alloc_zeros::<i64>(elem_count).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let data = self.alloc_zeros::<bf16>(elem_count).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
let data = self.alloc_zeros::<f16>(elem_count).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
let data = self.alloc_zeros::<f32>(elem_count).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let data = self.alloc_zeros::<f64>(elem_count).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
let slice = match dtype {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_uniform",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
let slice = if lo == 0. && up == 1.0 {
|
||||
slice
|
||||
} else {
|
||||
use super::utils::Map1;
|
||||
let layout = Layout::contiguous(shape);
|
||||
super::Affine(up - lo, lo).map(&slice, self, &layout)?
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
// curand can only generate an odd number of values.
|
||||
// https://github.com/huggingface/candle/issues/734
|
||||
let elem_count_round = if elem_count % 2 == 1 {
|
||||
elem_count + 1
|
||||
} else {
|
||||
elem_count
|
||||
};
|
||||
let slice = match dtype {
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_normal",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count_round) }.w()?;
|
||||
curand
|
||||
.0
|
||||
.fill_with_normal(&mut data, mean as f32, std as f32)
|
||||
.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count_round) }.w()?;
|
||||
curand.0.fill_with_normal(&mut data, mean, std).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
self.const_impl(1., shape, dtype)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
let data = self.alloc::<u8>(elem_count).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
let data = self.alloc::<u32>(elem_count).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
let data = self.alloc::<i64>(elem_count).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let data = self.alloc::<bf16>(elem_count).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
let data = self.alloc::<f16>(elem_count).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
let data = self.alloc::<f32>(elem_count).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let data = self.alloc::<f64>(elem_count).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorage::U32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorage::I64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorage::BF16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorage::F16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorage::F32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorage::F64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorage::U32(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorage::I64(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorage::BF16(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorage::F16(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorage::F32(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorage::F64(storage) => {
|
||||
let data = self.htod_copy(storage).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
self.device.synchronize().map_err(crate::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -1,62 +0,0 @@
|
||||
use crate::{DType, Layout};
|
||||
|
||||
/// cudarc related errors
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum CudaError {
|
||||
#[error(transparent)]
|
||||
Cuda(#[from] cudarc::driver::DriverError),
|
||||
|
||||
#[error(transparent)]
|
||||
Compiler(#[from] cudarc::nvrtc::CompileError),
|
||||
|
||||
#[error(transparent)]
|
||||
Cublas(#[from] cudarc::cublas::result::CublasError),
|
||||
|
||||
#[error(transparent)]
|
||||
Curand(#[from] cudarc::curand::result::CurandError),
|
||||
|
||||
#[error("missing kernel '{module_name}'")]
|
||||
MissingKernel { module_name: String },
|
||||
|
||||
#[error("unsupported dtype {dtype:?} for {op}")]
|
||||
UnsupportedDtype { dtype: DType, op: &'static str },
|
||||
|
||||
#[error("internal error '{0}'")]
|
||||
InternalError(&'static str),
|
||||
|
||||
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
|
||||
MatMulNonContiguous {
|
||||
lhs_stride: Layout,
|
||||
rhs_stride: Layout,
|
||||
mnk: (usize, usize, usize),
|
||||
},
|
||||
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
UnexpectedDType {
|
||||
msg: &'static str,
|
||||
expected: DType,
|
||||
got: DType,
|
||||
},
|
||||
|
||||
#[error("{cuda} when loading {module_name}")]
|
||||
Load {
|
||||
cuda: cudarc::driver::DriverError,
|
||||
module_name: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl From<CudaError> for crate::Error {
|
||||
fn from(val: CudaError) -> Self {
|
||||
crate::Error::Cuda(Box::new(val)).bt()
|
||||
}
|
||||
}
|
||||
|
||||
pub trait WrapErr<O> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error>;
|
||||
}
|
||||
|
||||
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error> {
|
||||
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())).bt())
|
||||
}
|
||||
}
|
@ -1,134 +0,0 @@
|
||||
/// Helper functions to plug cuda kernels in candle.
|
||||
use crate::{Layout, Result, Shape, WithDType};
|
||||
pub use cudarc;
|
||||
use cudarc::driver::{CudaSlice, DeviceRepr, ValidAsZeroBits};
|
||||
|
||||
use super::{CudaDevice, CudaError, WrapErr};
|
||||
|
||||
pub type S = super::CudaStorageSlice;
|
||||
|
||||
pub trait Map1 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => S::U8(self.f(s, d, l)?),
|
||||
S::U32(s) => S::U32(self.f(s, d, l)?),
|
||||
S::I64(s) => S::I64(self.f(s, d, l)?),
|
||||
S::BF16(s) => S::BF16(self.f(s, d, l)?),
|
||||
S::F16(s) => S::F16(self.f(s, d, l)?),
|
||||
S::F32(s) => S::F32(self.f(s, d, l)?),
|
||||
S::F64(s) => S::F64(self.f(s, d, l)?),
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2InPlace {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
dst: &mut CudaSlice<T>,
|
||||
dst_shape: &Shape,
|
||||
src: &CudaSlice<T>,
|
||||
src_l: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()>;
|
||||
|
||||
fn map(
|
||||
&self,
|
||||
dst: &mut S,
|
||||
dst_s: &Shape,
|
||||
src: &S,
|
||||
src_l: &Layout,
|
||||
d: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
match (dst, src) {
|
||||
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
wrap: W,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => self.f(s, d, l, S::U8)?,
|
||||
S::U32(s) => self.f(s, d, l, S::U32)?,
|
||||
S::I64(s) => self.f(s, d, l, S::I64)?,
|
||||
S::BF16(s) => self.f(s, d, l, S::BF16)?,
|
||||
S::F16(s) => self.f(s, d, l, S::F16)?,
|
||||
S::F32(s) => self.f(s, d, l, S::F32)?,
|
||||
S::F64(s) => self.f(s, d, l, S::F64)?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
@ -1,377 +0,0 @@
|
||||
use crate::op::{BackpropOp, Op};
|
||||
use crate::tensor::from_storage;
|
||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
||||
use std::sync::Arc;
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
pub trait CustomOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||
/// The function should return the gradient of the argument.
|
||||
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_arg3: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Applies a unary custom op without backward support
|
||||
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op without backward support
|
||||
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) =
|
||||
self.storage()
|
||||
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op without backward support
|
||||
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a unary custom op.
|
||||
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
|
||||
let (storage, shape) = self
|
||||
.storage()
|
||||
.apply_op1(self.layout(), c.as_ref().as_ref())?;
|
||||
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
|
||||
self.apply_op1_arc(Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op.
|
||||
pub fn apply_op2_arc(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op2(
|
||||
self.layout(),
|
||||
&rhs.storage(),
|
||||
rhs.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
|
||||
self.apply_op2_arc(r, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op.
|
||||
pub fn apply_op3_arc(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
|
||||
Op::CustomOp3(t1, t2, t3, c.clone())
|
||||
});
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: C,
|
||||
) -> Result<Self> {
|
||||
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
|
||||
}
|
||||
}
|
||||
|
||||
// In place ops.
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
/// These ops work in place and as such back-prop is unsupported.
|
||||
pub trait InplaceOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &mut CpuStorage, layout: &Layout) -> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &mut CudaStorage, _layout: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(&self, _storage: &mut MetalStorage, _layout: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub trait InplaceOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, s1: &mut CpuStorage, l1: &Layout, s2: &CpuStorage, l2: &Layout)
|
||||
-> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _: &mut CudaStorage, _: &Layout, _: &CudaStorage, _: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &mut MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub trait InplaceOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &mut CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &mut CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &mut MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Applies a unary custom op in place.
|
||||
pub fn inplace_op1<C: InplaceOp1>(&self, c: &C) -> Result<()> {
|
||||
self.storage_mut().inplace_op1(self.layout(), c)
|
||||
}
|
||||
|
||||
/// Applies a unary custom op in place (for the first tensor).
|
||||
pub fn inplace_op2<C: InplaceOp2>(&self, rhs: &Self, c: &C) -> Result<()> {
|
||||
self.storage_mut()
|
||||
.inplace_op2(self.layout(), &rhs.storage(), rhs.layout(), c)
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op in place (for the first tensor).
|
||||
pub fn inplace_op3<C: InplaceOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<()> {
|
||||
self.storage_mut().inplace_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)
|
||||
}
|
||||
}
|
@ -289,34 +289,17 @@ impl Device {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => {
|
||||
let storage = CpuDevice.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Cpu(storage))
|
||||
}
|
||||
Device::Cuda(device) => {
|
||||
let storage = device.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
|
||||
Device::Cuda(device) => {
|
||||
let storage = array.to_cpu_storage();
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = array.to_cpu_storage();
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
@ -327,22 +310,14 @@ impl Device {
|
||||
Device::Cpu => Ok(Storage::Cpu(S::to_cpu_storage_owned(data))),
|
||||
Device::Cuda(device) => {
|
||||
let storage = S::to_cpu_storage_owned(data);
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = S::to_cpu_storage_owned(data);
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn synchronize(&self) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu => Ok(()),
|
||||
Self::Cuda(d) => d.synchronize(),
|
||||
Self::Metal(d) => d.synchronize(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -65,13 +65,12 @@ impl std::fmt::Debug for Tensor {
|
||||
}
|
||||
|
||||
/// Options for Tensor pretty printing
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct PrinterOptions {
|
||||
pub precision: usize,
|
||||
pub threshold: usize,
|
||||
pub edge_items: usize,
|
||||
pub line_width: usize,
|
||||
pub sci_mode: Option<bool>,
|
||||
precision: usize,
|
||||
threshold: usize,
|
||||
edge_items: usize,
|
||||
line_width: usize,
|
||||
sci_mode: Option<bool>,
|
||||
}
|
||||
|
||||
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
||||
@ -90,10 +89,6 @@ impl PrinterOptions {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
|
||||
&PRINT_OPTS
|
||||
}
|
||||
|
||||
pub fn set_print_options(options: PrinterOptions) {
|
||||
*PRINT_OPTS.lock().unwrap() = options
|
||||
}
|
||||
@ -122,26 +117,6 @@ pub fn set_print_options_full() {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_line_width(line_width: usize) {
|
||||
PRINT_OPTS.lock().unwrap().line_width = line_width
|
||||
}
|
||||
|
||||
pub fn set_precision(precision: usize) {
|
||||
PRINT_OPTS.lock().unwrap().precision = precision
|
||||
}
|
||||
|
||||
pub fn set_edge_items(edge_items: usize) {
|
||||
PRINT_OPTS.lock().unwrap().edge_items = edge_items
|
||||
}
|
||||
|
||||
pub fn set_threshold(threshold: usize) {
|
||||
PRINT_OPTS.lock().unwrap().threshold = threshold
|
||||
}
|
||||
|
||||
pub fn set_sci_mode(sci_mode: Option<bool>) {
|
||||
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
|
||||
}
|
||||
|
||||
struct FmtSize {
|
||||
current_size: usize,
|
||||
}
|
||||
|
@ -23,15 +23,7 @@ pub enum DType {
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct DTypeParseError(String);
|
||||
|
||||
impl std::fmt::Display for DTypeParseError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "cannot parse '{}' as a dtype", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::error::Error for DTypeParseError {}
|
||||
pub struct DTypeParseError;
|
||||
|
||||
impl std::str::FromStr for DType {
|
||||
type Err = DTypeParseError;
|
||||
@ -44,7 +36,7 @@ impl std::str::FromStr for DType {
|
||||
"f16" => Ok(Self::F16),
|
||||
"f32" => Ok(Self::F32),
|
||||
"f64" => Ok(Self::F64),
|
||||
_ => Err(DTypeParseError(s.to_string())),
|
||||
_ => Err(DTypeParseError),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -154,19 +154,6 @@ impl crate::backend::BackendStorage for CudaStorage {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
) -> Result<()> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
@ -210,18 +197,10 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
@ -229,8 +208,4 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -166,19 +166,6 @@ impl crate::backend::BackendStorage for MetalStorage {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
@ -222,18 +209,10 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
@ -241,8 +220,4 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -70,7 +70,7 @@ impl Layout {
|
||||
self.shape.is_fortran_contiguous(&self.stride)
|
||||
}
|
||||
|
||||
pub fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||
pub(crate) fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||
let dims = self.shape().dims();
|
||||
if dim >= dims.len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
@ -99,7 +99,7 @@ impl Layout {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
||||
pub(crate) fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
||||
let rank = self.shape.rank();
|
||||
if rank <= dim1 || rank <= dim2 {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
@ -120,7 +120,7 @@ impl Layout {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
||||
pub(crate) fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
||||
let is_permutation =
|
||||
idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
|
||||
if !is_permutation {
|
||||
|
@ -14,7 +14,7 @@
|
||||
//!
|
||||
//! ## Features
|
||||
//!
|
||||
//! - Simple syntax (looks and feels like PyTorch)
|
||||
//! - Simple syntax (looks and like PyTorch)
|
||||
//! - CPU and Cuda backends (and M1 support)
|
||||
//! - Enable serverless (CPU) small and fast deployments
|
||||
//! - Model training
|
||||
@ -37,13 +37,14 @@
|
||||
mod accelerate;
|
||||
pub mod backend;
|
||||
pub mod backprop;
|
||||
pub mod conv;
|
||||
mod conv;
|
||||
mod convert;
|
||||
pub mod cpu;
|
||||
pub mod cpu_backend;
|
||||
#[cfg(feature = "cuda")]
|
||||
pub mod cuda_backend;
|
||||
mod custom_op;
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub mod cudnn;
|
||||
mod device;
|
||||
pub mod display;
|
||||
mod dtype;
|
||||
@ -57,7 +58,7 @@ pub mod metal_backend;
|
||||
#[cfg(feature = "mkl")]
|
||||
mod mkl;
|
||||
pub mod npy;
|
||||
pub mod op;
|
||||
mod op;
|
||||
pub mod pickle;
|
||||
pub mod quantized;
|
||||
pub mod safetensors;
|
||||
@ -66,21 +67,17 @@ pub mod shape;
|
||||
mod storage;
|
||||
mod strided_index;
|
||||
mod tensor;
|
||||
mod tensor_cat;
|
||||
pub mod test_utils;
|
||||
pub mod utils;
|
||||
mod variable;
|
||||
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub use cuda_backend::cudnn;
|
||||
|
||||
pub use cpu_backend::CpuStorage;
|
||||
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
|
||||
pub use device::{Device, DeviceLocation, NdArray};
|
||||
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
|
||||
pub use dtype::{DType, FloatDType, IntDType, WithDType};
|
||||
pub use error::{Error, Result};
|
||||
pub use indexer::IndexOp;
|
||||
pub use layout::Layout;
|
||||
pub use op::{CustomOp1, CustomOp2, CustomOp3};
|
||||
pub use shape::{Shape, D};
|
||||
pub use storage::Storage;
|
||||
pub use strided_index::{StridedBlocks, StridedIndex};
|
||||
@ -132,15 +129,6 @@ impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
|
||||
}
|
||||
}
|
||||
|
||||
impl<M: Module> Module for Option<&M> {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
match self {
|
||||
None => Ok(xs.clone()),
|
||||
Some(m) => m.forward(xs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A trait defining a module with forward method using a single tensor argument and a flag to
|
||||
// separate the training and evaluation behaviors.
|
||||
pub trait ModuleT {
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,287 +0,0 @@
|
||||
use crate::{DType, Result};
|
||||
use candle_metal_kernels::Kernels;
|
||||
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
|
||||
use std::collections::HashMap;
|
||||
use std::ffi::c_void;
|
||||
use std::path::Path;
|
||||
use std::sync::{Arc, Mutex, RwLock, RwLockWriteGuard};
|
||||
|
||||
use super::MetalError;
|
||||
|
||||
/// Unique identifier for cuda devices.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub struct DeviceId(usize);
|
||||
|
||||
impl DeviceId {
|
||||
pub(crate) fn new() -> Self {
|
||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
||||
use std::sync::atomic;
|
||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
||||
}
|
||||
}
|
||||
|
||||
type BufferMap = HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>;
|
||||
type AllocatedBuffers = Arc<RwLock<BufferMap>>;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MetalDevice {
|
||||
/// Unique identifier, the registryID is not sufficient as it identifies the GPU rather than
|
||||
/// the device itself.
|
||||
pub(crate) id: DeviceId,
|
||||
|
||||
/// Raw metal device: <https://developer.apple.com/documentation/metal/mtldevice?language=objc>
|
||||
pub(crate) device: metal::Device,
|
||||
|
||||
/// Single command queue for the entire device.
|
||||
pub(crate) command_queue: CommandQueue,
|
||||
/// One command buffer at a time.
|
||||
/// The scheduler works by allowing multiple
|
||||
/// [ComputeCommandEncoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc)
|
||||
/// on a single command buffer. Using a single command buffer would be fastest on the GPU but
|
||||
/// prevents overlapping of CPU and GPU commands (because command buffer needs to be committed
|
||||
/// to start to work).
|
||||
/// Despite what the documentation says, command buffers are NOT ordered. They are ordered
|
||||
/// for their START time, but there's no guarantee that command buffer1 will finish before
|
||||
/// command buffer2 starts (or there are metal bugs there)
|
||||
pub(crate) command_buffer: Arc<RwLock<CommandBuffer>>,
|
||||
/// Keeps track of the current amount of compute command encoders on the current
|
||||
/// command buffer
|
||||
/// Arc, RwLock because of the interior mutability.
|
||||
pub(crate) command_buffer_index: Arc<RwLock<usize>>,
|
||||
/// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc)
|
||||
pub(crate) compute_per_buffer: usize,
|
||||
/// Simple keeper struct to keep track of the already compiled kernels so we can reuse them.
|
||||
/// Heavily used by [`candle_metal_kernels`]
|
||||
pub(crate) kernels: Arc<Kernels>,
|
||||
/// Simple allocator struct.
|
||||
/// The buffers are stored in size buckets since ML tends to use similar shapes over and over.
|
||||
/// We store the buffers in [`Arc`] because it's much faster than Obj-c internal ref counting
|
||||
/// (could be linked to FFI communication overhead).
|
||||
///
|
||||
/// Whenever a buffer has a strong_count==1, we can reuse it, it means it was dropped in the
|
||||
/// graph calculation, and only we the allocator kept a reference to it, therefore it's free
|
||||
/// to be reused. However, in order for this to work, we need to guarantee the order of
|
||||
/// operation, so that this buffer is not being used by another kernel at the same time.
|
||||
/// Arc is the CPU reference count, it doesn't mean anything on the GPU side of things.
|
||||
///
|
||||
/// Whenever we actually allocate a new buffer, we make a full sweep to clean up unused buffers
|
||||
/// (strong_count = 1).
|
||||
pub(crate) buffers: AllocatedBuffers,
|
||||
/// Seed for random number generation.
|
||||
pub(crate) seed: Arc<Mutex<Buffer>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for MetalDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "MetalDevice({:?})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for MetalDevice {
|
||||
type Target = metal::DeviceRef;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.device
|
||||
}
|
||||
}
|
||||
|
||||
impl MetalDevice {
|
||||
pub fn id(&self) -> DeviceId {
|
||||
self.id
|
||||
}
|
||||
|
||||
pub fn metal_device(&self) -> &metal::Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn command_queue(&self) -> &CommandQueue {
|
||||
&self.command_queue
|
||||
}
|
||||
|
||||
pub fn command_buffer(&self) -> Result<CommandBuffer> {
|
||||
let mut command_buffer_lock = self.command_buffer.try_write().map_err(MetalError::from)?;
|
||||
let mut command_buffer = command_buffer_lock.to_owned();
|
||||
let mut index = self
|
||||
.command_buffer_index
|
||||
.try_write()
|
||||
.map_err(MetalError::from)?;
|
||||
if *index > self.compute_per_buffer {
|
||||
command_buffer.commit();
|
||||
command_buffer = self.command_queue.new_command_buffer().to_owned();
|
||||
*command_buffer_lock = command_buffer.clone();
|
||||
*index = 0;
|
||||
|
||||
self.drop_unused_buffers()?;
|
||||
}
|
||||
*index += 1;
|
||||
Ok(command_buffer)
|
||||
}
|
||||
|
||||
pub fn wait_until_completed(&self) -> Result<()> {
|
||||
let mut command_buffer = self.command_buffer.try_write().map_err(MetalError::from)?;
|
||||
match command_buffer.status() {
|
||||
metal::MTLCommandBufferStatus::Committed
|
||||
| metal::MTLCommandBufferStatus::Scheduled
|
||||
| metal::MTLCommandBufferStatus::Completed => {
|
||||
panic!("Already committed");
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
*command_buffer = self.command_queue.new_command_buffer().to_owned();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn kernels(&self) -> &Kernels {
|
||||
&self.kernels
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &metal::Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
/// Creates a new buffer (not necessarily zeroed).
|
||||
/// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
/// This means the buffer data cannot be read on the CPU directly.
|
||||
///
|
||||
/// [`name`] is only used to keep track of the resource origin in case of bugs
|
||||
pub fn new_buffer(
|
||||
&self,
|
||||
element_count: usize,
|
||||
dtype: DType,
|
||||
name: &str,
|
||||
) -> Result<Arc<Buffer>> {
|
||||
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
|
||||
self.allocate_buffer(size, MTLResourceOptions::StorageModePrivate, name)
|
||||
}
|
||||
|
||||
/// Creates a new buffer (not necessarily zeroed).
|
||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
/// This means the buffer can be read on the CPU but will require manual
|
||||
/// synchronization when the CPU memory is modified
|
||||
/// Used as a bridge to gather data back from the GPU
|
||||
pub fn new_buffer_managed(&self, size: NSUInteger) -> Result<Arc<Buffer>> {
|
||||
self.allocate_buffer(size, MTLResourceOptions::StorageModeManaged, "managed")
|
||||
}
|
||||
|
||||
/// Creates a new buffer from data.
|
||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
///
|
||||
/// Does not require synchronization, as [newBufferWithBytes](https://developer.apple.com/documentation/metal/mtldevice/1433429-newbufferwithbytes)
|
||||
/// allocates the buffer and copies over the existing data before returning the MTLBuffer.
|
||||
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Result<Arc<Buffer>> {
|
||||
let size = core::mem::size_of_val(data) as NSUInteger;
|
||||
let new_buffer = self.device.new_buffer_with_data(
|
||||
data.as_ptr() as *const c_void,
|
||||
size,
|
||||
MTLResourceOptions::StorageModeManaged,
|
||||
);
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
let subbuffers = buffers
|
||||
.entry((size, MTLResourceOptions::StorageModeManaged))
|
||||
.or_insert(vec![]);
|
||||
|
||||
let new_buffer = Arc::new(new_buffer);
|
||||
subbuffers.push(new_buffer.clone());
|
||||
Ok(new_buffer)
|
||||
}
|
||||
|
||||
pub fn allocate_zeros(&self, size_in_bytes: usize) -> Result<Arc<Buffer>> {
|
||||
let buffer = self.allocate_buffer(
|
||||
size_in_bytes as NSUInteger,
|
||||
MTLResourceOptions::StorageModePrivate,
|
||||
"allocate_zeros",
|
||||
)?;
|
||||
let command_buffer = self.command_buffer()?;
|
||||
command_buffer.set_label("zeros");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
blit.fill_buffer(
|
||||
&buffer,
|
||||
metal::NSRange {
|
||||
location: 0,
|
||||
length: buffer.length(),
|
||||
},
|
||||
0,
|
||||
);
|
||||
blit.end_encoding();
|
||||
Ok(buffer)
|
||||
}
|
||||
|
||||
fn find_available_buffer(
|
||||
&self,
|
||||
size: NSUInteger,
|
||||
option: MTLResourceOptions,
|
||||
buffers: &RwLockWriteGuard<BufferMap>,
|
||||
) -> Option<Arc<Buffer>> {
|
||||
let mut best_buffer: Option<&Arc<Buffer>> = None;
|
||||
let mut best_buffer_size: NSUInteger = NSUInteger::MAX;
|
||||
for ((buffer_size, buffer_option), subbuffers) in buffers.iter() {
|
||||
if buffer_size >= &size && buffer_size < &best_buffer_size && buffer_option == &option {
|
||||
for sub in subbuffers {
|
||||
if Arc::strong_count(sub) == 1 {
|
||||
best_buffer = Some(sub);
|
||||
best_buffer_size = *buffer_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
best_buffer.cloned()
|
||||
}
|
||||
|
||||
fn drop_unused_buffers(&self) -> Result<()> {
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
for subbuffers in buffers.values_mut() {
|
||||
let newbuffers = subbuffers
|
||||
.iter()
|
||||
.filter(|s| Arc::strong_count(*s) > 1)
|
||||
.map(Arc::clone)
|
||||
.collect();
|
||||
*subbuffers = newbuffers;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// The critical allocator algorithm
|
||||
fn allocate_buffer(
|
||||
&self,
|
||||
size: NSUInteger,
|
||||
option: MTLResourceOptions,
|
||||
_name: &str,
|
||||
) -> Result<Arc<Buffer>> {
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
if let Some(b) = self.find_available_buffer(size, option, &buffers) {
|
||||
// Cloning also ensures we increment the strong count
|
||||
return Ok(b.clone());
|
||||
}
|
||||
|
||||
let size = buf_size(size);
|
||||
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
|
||||
|
||||
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
|
||||
let new_buffer = Arc::new(new_buffer);
|
||||
subbuffers.push(new_buffer.clone());
|
||||
|
||||
Ok(new_buffer)
|
||||
}
|
||||
|
||||
/// Create a metal GPU capture trace on [`path`].
|
||||
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
|
||||
let capture = metal::CaptureManager::shared();
|
||||
let descriptor = metal::CaptureDescriptor::new();
|
||||
descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
||||
descriptor.set_capture_device(self);
|
||||
descriptor.set_output_url(path);
|
||||
|
||||
capture
|
||||
.start_capture(&descriptor)
|
||||
.map_err(MetalError::from)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn buf_size(size: NSUInteger) -> NSUInteger {
|
||||
size.saturating_sub(1).next_power_of_two() as NSUInteger
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::Tensor;
|
||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
||||
use half::{bf16, f16};
|
||||
use num_traits::float::Float;
|
||||
|
||||
@ -66,7 +66,6 @@ pub enum UnaryOp {
|
||||
Floor,
|
||||
Ceil,
|
||||
Round,
|
||||
Sign,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
@ -133,10 +132,7 @@ pub enum Op {
|
||||
stride: (usize, usize),
|
||||
},
|
||||
|
||||
UpsampleNearest1D {
|
||||
arg: Tensor,
|
||||
target_size: usize,
|
||||
},
|
||||
UpsampleNearest1D(Tensor),
|
||||
UpsampleNearest2D {
|
||||
arg: Tensor,
|
||||
target_h: usize,
|
||||
@ -162,23 +158,168 @@ pub enum Op {
|
||||
Permute(Tensor, Vec<usize>),
|
||||
Elu(Tensor, f64),
|
||||
Powf(Tensor, f64),
|
||||
CustomOp1(
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp1 + Send + Sync>>,
|
||||
),
|
||||
CustomOp1(Tensor, std::sync::Arc<Box<dyn CustomOp1 + Send + Sync>>),
|
||||
CustomOp2(
|
||||
Tensor,
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp2 + Send + Sync>>,
|
||||
std::sync::Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
),
|
||||
CustomOp3(
|
||||
Tensor,
|
||||
Tensor,
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp3 + Send + Sync>>,
|
||||
std::sync::Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
),
|
||||
}
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
pub trait CustomOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||
/// The function should return the gradient of the argument.
|
||||
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_arg3: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait UnaryOpT {
|
||||
const NAME: &'static str;
|
||||
const KERNEL: &'static str;
|
||||
@ -255,7 +396,6 @@ pub(crate) struct Tanh;
|
||||
pub(crate) struct Floor;
|
||||
pub(crate) struct Ceil;
|
||||
pub(crate) struct Round;
|
||||
pub(crate) struct Sign;
|
||||
|
||||
macro_rules! bin_op {
|
||||
($op:ident, $name: literal, $e: expr, $f32_vec: ident, $f64_vec: ident) => {
|
||||
@ -459,13 +599,6 @@ unary_op!(Recip, "recip", v, v.recip());
|
||||
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
|
||||
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
|
||||
|
||||
// Hardcode the value for sqrt(2/pi)
|
||||
// https://github.com/huggingface/candle/issues/1982
|
||||
#[allow(clippy::excessive_precision)]
|
||||
const SQRT_TWO_OVER_PI_F32: f32 = 0.79788456080286535587989211986876373;
|
||||
#[allow(clippy::excessive_precision)]
|
||||
const SQRT_TWO_OVER_PI_F64: f64 = 0.79788456080286535587989211986876373;
|
||||
|
||||
/// Tanh based approximation of the `gelu` operation
|
||||
/// GeluErf is the more precise one.
|
||||
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
|
||||
@ -478,7 +611,7 @@ impl UnaryOpT for Gelu {
|
||||
* v
|
||||
* (bf16::ONE
|
||||
+ bf16::tanh(
|
||||
bf16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
||||
(bf16::from_f32_const(2.0) / bf16::PI).sqrt()
|
||||
* v
|
||||
* (bf16::ONE + bf16::from_f32_const(0.044715) * v * v),
|
||||
))
|
||||
@ -489,18 +622,22 @@ impl UnaryOpT for Gelu {
|
||||
* v
|
||||
* (f16::ONE
|
||||
+ f16::tanh(
|
||||
f16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
||||
(f16::from_f32_const(2.0) / f16::PI).sqrt()
|
||||
* v
|
||||
* (f16::ONE + f16::from_f32_const(0.044715) * v * v),
|
||||
))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
0.5 * v * (1.0 + f32::tanh(SQRT_TWO_OVER_PI_F32 * v * (1.0 + 0.044715 * v * v)))
|
||||
0.5 * v
|
||||
* (1.0
|
||||
+ f32::tanh((2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
0.5 * v * (1.0 + f64::tanh(SQRT_TWO_OVER_PI_F64 * v * (1.0 + 0.044715 * v * v)))
|
||||
0.5 * v
|
||||
* (1.0
|
||||
+ f64::tanh((2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(_: u8) -> u8 {
|
||||
@ -927,37 +1064,3 @@ impl std::ops::Deref for BackpropOp {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Sign {
|
||||
const NAME: &'static str = "sign";
|
||||
const KERNEL: &'static str = "usign";
|
||||
const V: Self = Sign;
|
||||
#[inline(always)]
|
||||
fn bf16(v: bf16) -> bf16 {
|
||||
bf16::from((v > bf16::ZERO) as i8) - bf16::from((v < bf16::ZERO) as i8)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f16(v: f16) -> f16 {
|
||||
f16::from((v > f16::ZERO) as i8) - f16::from((v < f16::ZERO) as i8)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
f32::from(v > 0.) - f32::from(v < 0.)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
f64::from(v > 0.) - f64::from(v < 0.)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(v: u8) -> u8 {
|
||||
u8::min(1, v)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u32(v: u32) -> u32 {
|
||||
u32::min(1, v)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn i64(v: i64) -> i64 {
|
||||
(v > 0) as i64 - (v < 0) as i64
|
||||
}
|
||||
}
|
||||
|
@ -42,7 +42,7 @@ pub enum OpCode {
|
||||
Stop = b'.',
|
||||
NewObj = 0x81,
|
||||
EmptyList = b']',
|
||||
BinFloat = b'G',
|
||||
BinFloat = b'g',
|
||||
Append = b'a',
|
||||
Appends = b'e',
|
||||
}
|
||||
@ -462,10 +462,7 @@ impl Stack {
|
||||
self.push(Object::Int(arg))
|
||||
}
|
||||
OpCode::BinFloat => {
|
||||
// Somehow floats are encoded using BigEndian whereas int types use LittleEndian.
|
||||
// https://github.com/python/cpython/blob/0c80da4c14d904a367968955544dd6ae58c8101c/Lib/pickletools.py#L855
|
||||
// https://github.com/pytorch/pytorch/blob/372d078f361e726bb4ac0884ac334b04c58179ef/torch/_weights_only_unpickler.py#L243
|
||||
let arg = r.read_f64::<byteorder::BigEndian>()?;
|
||||
let arg = r.read_f64::<LittleEndian>()?;
|
||||
self.push(Object::Float(arg))
|
||||
}
|
||||
OpCode::BinUnicode => {
|
||||
|
@ -1,618 +0,0 @@
|
||||
use super::{GgmlDType, QStorage};
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
|
||||
use crate::{CudaDevice, CudaStorage, Result};
|
||||
|
||||
use cudarc::driver::{CudaSlice, CudaView, DeviceSlice};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QCudaStorage {
|
||||
data: CudaSlice<u8>,
|
||||
dtype: GgmlDType,
|
||||
device: CudaDevice,
|
||||
}
|
||||
|
||||
static FORCE_DMMV: std::sync::atomic::AtomicBool = std::sync::atomic::AtomicBool::new(false);
|
||||
|
||||
pub fn set_force_dmmv(f: bool) {
|
||||
FORCE_DMMV.store(f, std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
pub const WARP_SIZE: usize = 32;
|
||||
pub const MMQ_X_Q4_0_AMPERE: usize = 4;
|
||||
pub const MMQ_Y_Q4_0_AMPERE: usize = 32;
|
||||
pub const NWARPS_Q4_0_AMPERE: usize = 4;
|
||||
pub const GGML_CUDA_MMV_X: usize = 32;
|
||||
pub const GGML_CUDA_MMV_Y: usize = 1;
|
||||
pub const CUDA_QUANTIZE_BLOCK_SIZE: usize = 256;
|
||||
pub const CUDA_DEQUANTIZE_BLOCK_SIZE: usize = 256;
|
||||
pub const MATRIX_ROW_PADDING: usize = 512;
|
||||
|
||||
fn ceil_div(p: usize, q: usize) -> usize {
|
||||
(p + q - 1) / q
|
||||
}
|
||||
|
||||
fn pad(p: usize, q: usize) -> usize {
|
||||
ceil_div(p, q) * q
|
||||
}
|
||||
|
||||
fn quantize_q8_1(
|
||||
src: &CudaView<f32>,
|
||||
dst: &mut CudaSlice<u8>,
|
||||
elem_count: usize,
|
||||
ky: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let kx = elem_count;
|
||||
let kx_padded = pad(kx, MATRIX_ROW_PADDING);
|
||||
let num_blocks = ceil_div(kx_padded, CUDA_QUANTIZE_BLOCK_SIZE);
|
||||
let func = dev.get_or_load_func("quantize_q8_1", candle_kernels::QUANTIZED)?;
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, ky as u32, 1),
|
||||
block_dim: (CUDA_QUANTIZE_BLOCK_SIZE as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
let params = (src, dst, kx as i32, kx_padded as i32);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn dequantize(
|
||||
data: &CudaSlice<u8>,
|
||||
dtype: GgmlDType,
|
||||
elem_count: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let nb = (elem_count + 255) / 256;
|
||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1", false, 32, nb),
|
||||
GgmlDType::Q5_0 => (
|
||||
"dequantize_block_q5_0",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q5_1 => (
|
||||
"dequantize_block_q5_1",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K", true, 32, nb),
|
||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(elem_count).w()? };
|
||||
// See e.g.
|
||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, 1, 1),
|
||||
block_dim: (block_dim as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
if is_k {
|
||||
let params = (data, &dst);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
} else {
|
||||
let nb32 = match dtype {
|
||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
||||
_ => elem_count / 32,
|
||||
};
|
||||
let params = (data, &dst, nb32 as i32);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
}
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn dequantize_mul_mat_vec(
|
||||
data: &CudaSlice<u8>,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
ncols: usize,
|
||||
nrows: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let data_elems = data.len() / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < ncols * nrows {
|
||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
||||
}
|
||||
if y.len() != ncols {
|
||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
||||
}
|
||||
let kernel_name = match dtype {
|
||||
GgmlDType::Q4_0 => "dequantize_mul_mat_vec_q4_0_cuda",
|
||||
GgmlDType::Q4_1 => "dequantize_mul_mat_vec_q4_1_cuda",
|
||||
GgmlDType::Q5_0 => "dequantize_mul_mat_vec_q5_0_cuda",
|
||||
GgmlDType::Q5_1 => "dequantize_mul_mat_vec_q5_1_cuda",
|
||||
GgmlDType::Q8_0 => "dequantize_mul_mat_vec_q8_0_cuda",
|
||||
GgmlDType::Q2K => "dequantize_mul_mat_vec_q2_k",
|
||||
GgmlDType::Q3K => "dequantize_mul_mat_vec_q3_k",
|
||||
GgmlDType::Q4K => "dequantize_mul_mat_vec_q4_k",
|
||||
GgmlDType::Q5K => "dequantize_mul_mat_vec_q5_k",
|
||||
GgmlDType::Q6K => "dequantize_mul_mat_vec_q6_k",
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows).w()? };
|
||||
let block_num_y = ceil_div(nrows, GGML_CUDA_MMV_Y);
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (block_num_y as u32, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, GGML_CUDA_MMV_Y as u32, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let params = (data, y, &dst, ncols as i32, nrows as i32);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn mul_mat_vec_via_q8_1(
|
||||
data: &CudaSlice<u8>,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
ncols: usize,
|
||||
nrows: usize,
|
||||
b_size: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let data_elems = data.len() / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < ncols * nrows {
|
||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
||||
}
|
||||
if y.len() != ncols * b_size {
|
||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
||||
}
|
||||
if b_size == 0 || b_size > 8 {
|
||||
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
|
||||
}
|
||||
// Start by quantizing y
|
||||
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
b_size * ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
quantize_q8_1(y, &mut y_q8_1, ncols, b_size, dev)?;
|
||||
|
||||
let kernel_name = match dtype {
|
||||
GgmlDType::Q4_0 => "mul_mat_vec_q4_0_q8_1_cuda",
|
||||
GgmlDType::Q4_1 => "mul_mat_vec_q4_1_q8_1_cuda",
|
||||
GgmlDType::Q5_0 => "mul_mat_vec_q5_0_q8_1_cuda",
|
||||
GgmlDType::Q5_1 => "mul_mat_vec_q5_1_q8_1_cuda",
|
||||
GgmlDType::Q8_0 => "mul_mat_vec_q8_0_q8_1_cuda",
|
||||
GgmlDType::Q2K => "mul_mat_vec_q2_K_q8_1_cuda",
|
||||
GgmlDType::Q3K => "mul_mat_vec_q3_K_q8_1_cuda",
|
||||
GgmlDType::Q4K => "mul_mat_vec_q4_K_q8_1_cuda",
|
||||
GgmlDType::Q5K => "mul_mat_vec_q5_K_q8_1_cuda",
|
||||
GgmlDType::Q6K => "mul_mat_vec_q6_K_q8_1_cuda",
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let kernel_name = format!("{kernel_name}{b_size}");
|
||||
let func = dev.get_or_load_func(&kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows * b_size).w()? };
|
||||
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
|
||||
let (nblocks, nwarps) = match b_size {
|
||||
1 => (nrows as u32, 4),
|
||||
2..=4 => ((nrows as u32 + 1) / 2, 4),
|
||||
5..=8 => ((nrows as u32 + 1) / 2, 2),
|
||||
_ => crate::bail!("unexpected bsize {b_size}"),
|
||||
};
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (nblocks, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, nwarps, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let params = (
|
||||
data,
|
||||
&y_q8_1,
|
||||
&dst,
|
||||
/* ncols_x */ ncols as i32,
|
||||
/* nrows_x */ nrows as i32,
|
||||
/* nrows_y */ ncols_padded as i32,
|
||||
/* nrows_dst */ nrows as i32,
|
||||
);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn mul_mat_via_q8_1(
|
||||
data: &CudaSlice<u8>,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
x_rows: usize,
|
||||
x_cols: usize,
|
||||
y_rows: usize,
|
||||
y_cols: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let data_elems = data.len() / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < x_rows * x_cols {
|
||||
crate::bail!("unexpected lhs size {}, {x_rows} {x_cols}", data_elems)
|
||||
}
|
||||
if y.len() != y_rows * y_cols {
|
||||
crate::bail!("unexpected y size {}, {y_rows} {y_cols}", y.len())
|
||||
}
|
||||
if x_cols != y_rows {
|
||||
crate::bail!("unexpected x/y size {x_rows} {x_cols} {y_rows} {y_cols}")
|
||||
}
|
||||
let k = x_cols;
|
||||
// Start by quantizing y
|
||||
let k_padded = pad(k, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
k_padded * y_rows * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
quantize_q8_1(y, &mut y_q8_1, k, y_cols, dev)?;
|
||||
|
||||
let (kernel_name, mmq_x, mmq_y) = match dtype {
|
||||
GgmlDType::Q4_0 => ("mul_mat_q4_0", 64, 128),
|
||||
GgmlDType::Q4_1 => ("mul_mat_q4_1", 64, 128),
|
||||
GgmlDType::Q5_0 => ("mul_mat_q5_0", 128, 64),
|
||||
GgmlDType::Q5_1 => ("mul_mat_q5_1", 128, 64),
|
||||
GgmlDType::Q8_0 => ("mul_mat_q8_0", 128, 64),
|
||||
GgmlDType::Q2K => ("mul_mat_q2_K", 64, 128),
|
||||
GgmlDType::Q3K => ("mul_mat_q3_K", 128, 128),
|
||||
GgmlDType::Q4K => ("mul_mat_q4_K", 64, 128),
|
||||
GgmlDType::Q5K => ("mul_mat_q5_K", 64, 128),
|
||||
GgmlDType::Q6K => ("mul_mat_q6_K", 64, 64),
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(x_rows * y_cols).w()? };
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (
|
||||
ceil_div(x_rows, mmq_y) as u32,
|
||||
ceil_div(y_cols, mmq_x) as u32,
|
||||
1,
|
||||
),
|
||||
block_dim: (WARP_SIZE as u32, 4, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let params = (
|
||||
/* vx */ data,
|
||||
/* vy */ &y_q8_1,
|
||||
/* dst */ &dst,
|
||||
/* ncols_x */ x_cols as i32,
|
||||
/* nrows_x */ x_rows as i32,
|
||||
/* ncols_y */ y_cols as i32,
|
||||
/* nrows_y */ k_padded as i32,
|
||||
/* nrows_dst */ x_rows as i32,
|
||||
);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> {
|
||||
let size_in_bytes = ceil_div(el_count, dtype.block_size()) * dtype.type_size();
|
||||
let data = device.alloc_zeros::<u8>(size_in_bytes).w()?;
|
||||
Ok(QCudaStorage {
|
||||
data,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &CudaDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, elem_count: usize) -> Result<CudaStorage> {
|
||||
fn deq<T: GgmlType>(buffer: &[u8], n: usize, dst: &mut [f32]) -> Result<()> {
|
||||
let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const T, n) };
|
||||
let vec = slice.to_vec();
|
||||
T::to_float(&vec, dst)
|
||||
}
|
||||
|
||||
let fast_kernel = matches!(
|
||||
self.dtype,
|
||||
GgmlDType::Q4_0
|
||||
| GgmlDType::Q4_1
|
||||
| GgmlDType::Q5_0
|
||||
| GgmlDType::Q5_1
|
||||
| GgmlDType::Q8_0
|
||||
| GgmlDType::Q2K
|
||||
| GgmlDType::Q3K
|
||||
| GgmlDType::Q4K
|
||||
| GgmlDType::Q5K
|
||||
| GgmlDType::Q6K
|
||||
| GgmlDType::Q8K
|
||||
);
|
||||
if fast_kernel {
|
||||
return dequantize(&self.data, self.dtype, elem_count, self.device());
|
||||
}
|
||||
// Run the dequantization on cpu.
|
||||
|
||||
let buffer = self.device.dtoh_sync_copy(&self.data).w()?;
|
||||
let mut out = vec![0.0; elem_count];
|
||||
let block_len = elem_count / self.dtype.block_size();
|
||||
match self.dtype {
|
||||
GgmlDType::F32 => deq::<f32>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::F16 => deq::<half::f16>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4_0 => deq::<crate::quantized::BlockQ4_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4_1 => deq::<crate::quantized::BlockQ4_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5_0 => deq::<crate::quantized::BlockQ5_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5_1 => deq::<crate::quantized::BlockQ5_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8_0 => deq::<crate::quantized::BlockQ8_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8_1 => deq::<crate::quantized::BlockQ8_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q2K => deq::<crate::quantized::BlockQ2K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q3K => deq::<crate::quantized::BlockQ3K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4K => deq::<crate::quantized::BlockQ4K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5K => deq::<crate::quantized::BlockQ5K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q6K => deq::<crate::quantized::BlockQ6K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8K => deq::<crate::quantized::BlockQ8K>(&buffer, block_len, &mut out)?,
|
||||
}
|
||||
|
||||
self.device
|
||||
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
|
||||
// Run the quantization on cpu.
|
||||
let src = match &src.slice {
|
||||
crate::cuda_backend::CudaStorageSlice::F32(data) => {
|
||||
self.device.dtoh_sync_copy(data).w()?
|
||||
}
|
||||
_ => crate::bail!("only f32 can be quantized"),
|
||||
};
|
||||
let src_len = src.len();
|
||||
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
|
||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?;
|
||||
qcpu_storage.quantize(&src)?;
|
||||
let data = qcpu_storage.data()?;
|
||||
let data = self.device.htod_sync_copy(data.as_ref()).w()?;
|
||||
self.data = data;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
storage: &CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
1
|
||||
} else {
|
||||
8
|
||||
};
|
||||
let use_vec_kernel = match layout.shape().dims() {
|
||||
[b, m, _k] => b * m <= max_bm,
|
||||
[b, _k] => *b <= max_bm,
|
||||
_ => false,
|
||||
};
|
||||
if use_vec_kernel {
|
||||
self.dequantize_matmul_vec(self_shape, storage, layout)
|
||||
} else {
|
||||
self.dequantize_matmul(self_shape, storage, layout)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
fn dequantize_matmul_vec(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
rhs: &CudaStorage,
|
||||
rhs_l: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
let (nrows, ncols) = self_shape.dims2()?;
|
||||
let rhs = rhs.as_cuda_slice::<f32>()?;
|
||||
let rhs = match rhs_l.contiguous_offsets() {
|
||||
Some((o1, o2)) => rhs.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?,
|
||||
};
|
||||
let (b_size, k) = match rhs_l.shape().dims() {
|
||||
[b, m, k] => (b * m, *k),
|
||||
[b, k] => (*b, *k),
|
||||
_ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()),
|
||||
};
|
||||
if ncols != k {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape())
|
||||
}
|
||||
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
dequantize_mul_mat_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
|
||||
} else {
|
||||
mul_mat_vec_via_q8_1(
|
||||
&self.data,
|
||||
&rhs,
|
||||
self.dtype,
|
||||
ncols,
|
||||
nrows,
|
||||
b_size,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = rhs_l.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(nrows);
|
||||
Ok((out, out_shape.into()))
|
||||
}
|
||||
|
||||
fn dequantize_matmul(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
storage: &CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
use crate::backend::BackendStorage;
|
||||
let (n, k) = self_shape.dims2()?;
|
||||
let (b, m, k2) = match layout.shape().dims() {
|
||||
&[b, m, k2] => (b, m, k2),
|
||||
&[m, k2] => (1, m, k2),
|
||||
s => crate::bail!("unexpected shape for input {s:?}"),
|
||||
};
|
||||
if k2 != k {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape())
|
||||
}
|
||||
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
let data_f32 = self.dequantize(n * k)?;
|
||||
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
|
||||
storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?
|
||||
} else {
|
||||
let storage = storage.as_cuda_slice::<f32>()?;
|
||||
let storage = match layout.contiguous_offsets() {
|
||||
Some((o1, o2)) => storage.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous {
|
||||
op: "quantized-matmul",
|
||||
}
|
||||
.bt())?,
|
||||
};
|
||||
mul_mat_via_q8_1(
|
||||
&self.data,
|
||||
&storage,
|
||||
self.dtype,
|
||||
/* x_rows */ n,
|
||||
/* x_cols */ k,
|
||||
/* y_rows */ k,
|
||||
/* y_cols */ b * m,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = layout.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(n);
|
||||
Ok((out, out_shape.into()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
device: &CudaDevice,
|
||||
data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
let data = unsafe {
|
||||
std::slice::from_raw_parts(data.as_ptr() as *const u8, core::mem::size_of_val(data))
|
||||
};
|
||||
let data = device.htod_sync_copy(data).w()?;
|
||||
Ok(QStorage::Cuda(QCudaStorage {
|
||||
data,
|
||||
device: device.clone(),
|
||||
dtype: T::DTYPE,
|
||||
}))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn cuda_quantize_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let el = 256;
|
||||
let el_padded = pad(el, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
el_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
let vs: Vec<f32> = (0..el).map(|v| v as f32).collect();
|
||||
let y = dev.htod_sync_copy(&vs).w()?;
|
||||
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, 1, &dev)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cuda_mmv_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let ncols = 256;
|
||||
let vs: Vec<f32> = (0..ncols).map(|v| v as f32).collect();
|
||||
let y = dev.htod_sync_copy(&vs).w()?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_vec_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* ncols */ ncols,
|
||||
/* nrows */ 1,
|
||||
/* b_size */ 1,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.dtoh_sync_copy(&vs.slice(..)).unwrap();
|
||||
assert_eq!(vs.len(), 1);
|
||||
// for n = 255, n.(n+1).(2n+1) / 6 = 5559680
|
||||
// Q8 means 1/256 precision.
|
||||
assert_eq!(vs[0], 5561664.5);
|
||||
|
||||
let cuda_storage = dequantize_mul_mat_vec(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* ncols */ ncols,
|
||||
/* nrows */ 1,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.dtoh_sync_copy(&vs.slice(..)).unwrap();
|
||||
assert_eq!(vs.len(), 1);
|
||||
assert_eq!(vs[0], 5561851.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cuda_mm_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let ncols = 256;
|
||||
let vs: Vec<f32> = (0..ncols * 4).map(|v| v as f32 / 4.).collect();
|
||||
let y = dev.htod_sync_copy(&vs).w()?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols * 4, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* x_rows */ 4,
|
||||
/* x_cols */ ncols,
|
||||
/* y_rows */ ncols,
|
||||
/* y_cols */ 4,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.dtoh_sync_copy(&vs.slice(..)).unwrap();
|
||||
|
||||
/*
|
||||
x = torch.tensor([float(v) for v in range(1024)]).reshape(4, 256)
|
||||
x @ x.t() / 16
|
||||
tensor([[ 347480.0000, 869720.0000, 1391960.0000, 1914200.0000],
|
||||
[ 869720.0000, 2440536.0000, 4011352.0000, 5582166.5000],
|
||||
[ 1391960.0000, 4011352.0000, 6630742.0000, 9250132.0000],
|
||||
[ 1914200.0000, 5582166.5000, 9250132.0000, 12918099.0000]])
|
||||
*/
|
||||
assert_eq!(vs.len(), 16);
|
||||
assert_eq!(vs[0], 347604.0);
|
||||
assert_eq!(vs[1], 888153.06);
|
||||
assert_eq!(vs[4], 869780.7);
|
||||
assert_eq!(vs[5], 2483145.0);
|
||||
assert_eq!(vs[11], 9407368.0);
|
||||
assert_eq!(vs[14], 9470856.0);
|
||||
assert_eq!(vs[15], 13138824.0);
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
#![allow(unused)]
|
||||
use super::GgmlDType;
|
||||
use crate::{CudaDevice, CudaStorage, Error, Result};
|
||||
|
||||
pub struct QCudaStorage {
|
||||
dtype: GgmlDType,
|
||||
device: CudaDevice,
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
pub fn zeros(_: &CudaDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &CudaDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, _elem_count: usize) -> Result<CudaStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
_self_shape: &crate::Shape,
|
||||
_storage: &CudaStorage,
|
||||
_layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
_device: &CudaDevice,
|
||||
_data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
@ -41,10 +41,3 @@ impl QMetalStorage {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
_device: &MetalDevice,
|
||||
_data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
@ -1,5 +1,7 @@
|
||||
//! Support for the GGML file format.
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
use super::metal::load_quantized_metal;
|
||||
use super::{k_quants, GgmlDType, QStorage};
|
||||
use crate::{Device, Result};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
@ -128,8 +130,13 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
|
||||
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
||||
let data: QStorage = match device {
|
||||
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
|
||||
Device::Metal(metal) => super::metal::load_quantized(metal, data)?,
|
||||
Device::Cuda(cuda) => super::cuda::load_quantized(cuda, data)?,
|
||||
#[cfg(feature = "metal")]
|
||||
Device::Metal(metal) => load_quantized_metal(metal, data)?,
|
||||
#[cfg(not(feature = "metal"))]
|
||||
Device::Metal(_metal) => {
|
||||
crate::bail!("Metal backend requires `metal` feature")
|
||||
}
|
||||
device => unimplemented!("Implement quantized tensor for device {device:?}"),
|
||||
};
|
||||
super::QTensor::new(data, dims)
|
||||
}
|
||||
|
@ -34,8 +34,6 @@ impl QMetalStorage {
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
|
||||
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
|
||||
let command_buffer = self.device.command_buffer()?;
|
||||
command_buffer.set_label("to_cpu");
|
||||
@ -45,73 +43,87 @@ impl QMetalStorage {
|
||||
blit.end_encoding();
|
||||
self.device.wait_until_completed()?;
|
||||
let mut out = vec![0.0; elem_count];
|
||||
let block_len = elem_count / self.dtype.block_size();
|
||||
match self.dtype {
|
||||
GgmlDType::F32 => {
|
||||
let vec: Vec<f32> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<f32> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
f32::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::F16 => {
|
||||
let vec: Vec<half::f16> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<half::f16> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
half::f16::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, elem_count);
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q2K => {
|
||||
let vec: Vec<crate::quantized::BlockQ2K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ2K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q3K => {
|
||||
let vec: Vec<crate::quantized::BlockQ3K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ3K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4K => {
|
||||
let vec: Vec<crate::quantized::BlockQ4K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ4K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5K => {
|
||||
let vec: Vec<crate::quantized::BlockQ5K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ5K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q6K => {
|
||||
let vec: Vec<crate::quantized::BlockQ6K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ6K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8K => {
|
||||
let vec: Vec<crate::quantized::BlockQ8K> = read_to_vec(&buffer, block_len);
|
||||
let vec: Vec<crate::quantized::BlockQ8K> =
|
||||
read_to_vec(&buffer, elem_count / self.dtype.block_size());
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
}
|
||||
|
||||
let buffer = self.device.new_buffer_with_data(&out)?;
|
||||
Ok(MetalStorage::new(
|
||||
buffer,
|
||||
self.device.clone(),
|
||||
elem_count,
|
||||
DType::F32,
|
||||
))
|
||||
Ok(MetalStorage::new(buffer, self.device.clone(), DType::F32))
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
|
||||
@ -149,11 +161,8 @@ impl QMetalStorage {
|
||||
let (n, k) = self_shape.dims2()?;
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
|
||||
// We always use a single batch dimension and stack all the tensors in the batch on the
|
||||
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
|
||||
// properly.
|
||||
let (b, m) = match dst_shape.len() {
|
||||
3 => (1, dst_shape[0] * dst_shape[1]),
|
||||
3 => (dst_shape[0], dst_shape[1]),
|
||||
2 => (1, dst_shape[0]),
|
||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
||||
};
|
||||
@ -178,12 +187,12 @@ impl QMetalStorage {
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, DType::F32);
|
||||
Ok((dst_storage, dst_shape))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
pub fn load_quantized_metal<T: super::GgmlType + Send + Sync + 'static>(
|
||||
device: &MetalDevice,
|
||||
data: &[T],
|
||||
) -> Result<QStorage> {
|
||||
|
@ -4,7 +4,6 @@ use std::borrow::Cow;
|
||||
|
||||
#[cfg(target_feature = "avx")]
|
||||
pub mod avx;
|
||||
mod dummy_cuda;
|
||||
mod dummy_metal;
|
||||
pub mod ggml_file;
|
||||
pub mod gguf_file;
|
||||
@ -15,13 +14,6 @@ pub mod metal;
|
||||
mod metal {
|
||||
pub use super::dummy_metal::*;
|
||||
}
|
||||
#[cfg(feature = "cuda")]
|
||||
pub mod cuda;
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
mod cuda {
|
||||
pub use super::dummy_cuda::*;
|
||||
}
|
||||
|
||||
#[cfg(target_feature = "neon")]
|
||||
pub mod neon;
|
||||
#[cfg(target_feature = "simd128")]
|
||||
@ -47,9 +39,8 @@ impl Device {
|
||||
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
|
||||
Ok(QStorage::Metal(storage))
|
||||
}
|
||||
Device::Cuda(cuda) => {
|
||||
let storage = cuda::QCudaStorage::zeros(cuda, elem_count, dtype)?;
|
||||
Ok(QStorage::Cuda(storage))
|
||||
Device::Cuda(_cuda) => {
|
||||
crate::bail!("Cuda ggml quantization not supported");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -58,7 +49,6 @@ impl Device {
|
||||
pub enum QStorage {
|
||||
Cpu(Box<dyn QuantizedType>),
|
||||
Metal(metal::QMetalStorage),
|
||||
Cuda(cuda::QCudaStorage),
|
||||
}
|
||||
|
||||
impl QStorage {
|
||||
@ -66,7 +56,6 @@ impl QStorage {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.block_size(),
|
||||
QStorage::Metal(storage) => storage.dtype().block_size(),
|
||||
QStorage::Cuda(storage) => storage.dtype().block_size(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -74,7 +63,6 @@ impl QStorage {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.dtype(),
|
||||
QStorage::Metal(storage) => storage.dtype(),
|
||||
QStorage::Cuda(storage) => storage.dtype(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -82,7 +70,6 @@ impl QStorage {
|
||||
match self {
|
||||
QStorage::Cpu(_storage) => Device::Cpu,
|
||||
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
|
||||
QStorage::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
||||
}
|
||||
}
|
||||
|
||||
@ -90,7 +77,6 @@ impl QStorage {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
|
||||
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
|
||||
QStorage::Cuda(storage) => storage.storage_size_in_bytes(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -100,7 +86,6 @@ impl QStorage {
|
||||
storage.from_float(src.as_slice::<f32>()?)?;
|
||||
}
|
||||
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
|
||||
(QStorage::Cuda(storage), Storage::Cuda(src)) => storage.quantize(src)?,
|
||||
_ => crate::bail!("Invalid dequantize storage locations do not match"),
|
||||
}
|
||||
Ok(())
|
||||
@ -110,7 +95,6 @@ impl QStorage {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
|
||||
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
|
||||
QStorage::Cuda(storage) => Ok(Storage::Cuda(storage.dequantize(elem_count)?)),
|
||||
}
|
||||
}
|
||||
|
||||
@ -122,7 +106,7 @@ impl QStorage {
|
||||
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
||||
Ok(Cow::from(data))
|
||||
}
|
||||
QStorage::Metal(_) | QStorage::Cuda(_) => {
|
||||
QStorage::Metal(_storage) => {
|
||||
crate::bail!("not implemented");
|
||||
}
|
||||
}
|
||||
@ -398,7 +382,7 @@ impl QMatMul {
|
||||
_ => DEQUANTIZE_ALL.with(|b| *b),
|
||||
};
|
||||
let t = if dequantize {
|
||||
let tensor = qtensor.dequantize(&qtensor.device())?;
|
||||
let tensor = qtensor.dequantize(&Device::Cpu)?;
|
||||
Self::Tensor(tensor)
|
||||
} else {
|
||||
Self::QTensor(qtensor)
|
||||
@ -440,7 +424,7 @@ impl crate::CustomOp1 for QTensor {
|
||||
#[allow(clippy::infallible_destructuring_match)]
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Cpu(storage) => storage,
|
||||
QStorage::Metal(_) | QStorage::Cuda(_) => crate::bail!("Invalid storage"),
|
||||
QStorage::Metal(_) => crate::bail!("Invalid storage"),
|
||||
};
|
||||
let slice = storage.as_slice::<f32>()?;
|
||||
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||
@ -460,18 +444,6 @@ impl crate::CustomOp1 for QTensor {
|
||||
};
|
||||
self_storage.fwd(&self.shape, storage, layout)
|
||||
}
|
||||
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
storage: &crate::CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CudaStorage, Shape)> {
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Cuda(cuda) => cuda,
|
||||
_ => unreachable!("Cannot call cuda matmul on non cuda QTensor"),
|
||||
};
|
||||
self_storage.fwd(&self.shape, storage, layout)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::Module for QMatMul {
|
||||
|
@ -171,7 +171,7 @@ impl Shape {
|
||||
}
|
||||
let mut acc = 1;
|
||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
|
||||
if dim > 1 && stride != acc {
|
||||
if stride != acc {
|
||||
return false;
|
||||
}
|
||||
acc *= dim;
|
||||
@ -186,7 +186,7 @@ impl Shape {
|
||||
}
|
||||
let mut acc = 1;
|
||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
|
||||
if dim > 1 && stride != acc {
|
||||
if stride != acc {
|
||||
return false;
|
||||
}
|
||||
acc *= dim;
|
||||
|
@ -1,7 +1,6 @@
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::op::{self, CmpOp, ReduceOp};
|
||||
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
|
||||
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
|
||||
use crate::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
|
||||
|
||||
// We do not want to implement Clone on Storage as cloning may fail because of
|
||||
// out of memory. Instead try_clone should be used.
|
||||
@ -44,19 +43,9 @@ impl Storage {
|
||||
}
|
||||
|
||||
pub(crate) fn same_device(&self, rhs: &Self, op: &'static str) -> Result<()> {
|
||||
let lhs_device = self.device();
|
||||
let rhs_device = rhs.device();
|
||||
let lhs = lhs_device.location();
|
||||
let rhs = rhs_device.location();
|
||||
let same_device = if self.device().is_metal() {
|
||||
// On metal, we require the device to be exactly the same rather than
|
||||
// having the same location. In cuda this is not necessary as all CudaDevice on the
|
||||
// same GPU will use the same cuda stream.
|
||||
lhs_device.same_device(&rhs_device)
|
||||
} else {
|
||||
lhs == rhs
|
||||
};
|
||||
if !same_device {
|
||||
let lhs = self.device().location();
|
||||
let rhs = rhs.device().location();
|
||||
if lhs != rhs {
|
||||
Err(Error::DeviceMismatchBinaryOp { lhs, rhs, op }.bt())
|
||||
} else {
|
||||
Ok(())
|
||||
@ -263,51 +252,6 @@ impl Storage {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op1(&mut self, l: &Layout, c: &dyn InplaceOp1) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu(storage) => c.cpu_fwd(storage, l),
|
||||
Self::Cuda(storage) => c.cuda_fwd(storage, l),
|
||||
Self::Metal(storage) => c.metal_fwd(storage, l),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op2(
|
||||
&mut self,
|
||||
l1: &Layout,
|
||||
t2: &Self,
|
||||
l2: &Layout,
|
||||
c: &dyn InplaceOp2,
|
||||
) -> Result<()> {
|
||||
self.same_device(t2, c.name())?;
|
||||
match (self, t2) {
|
||||
(Self::Cpu(s1), Self::Cpu(s2)) => c.cpu_fwd(s1, l1, s2, l2),
|
||||
(Self::Cuda(s1), Self::Cuda(s2)) => c.cuda_fwd(s1, l1, s2, l2),
|
||||
(Self::Metal(s1), Self::Metal(s2)) => c.metal_fwd(s1, l1, s2, l2),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op3(
|
||||
&mut self,
|
||||
l1: &Layout,
|
||||
t2: &Self,
|
||||
l2: &Layout,
|
||||
t3: &Self,
|
||||
l3: &Layout,
|
||||
c: &dyn InplaceOp3,
|
||||
) -> Result<()> {
|
||||
self.same_device(t2, c.name())?;
|
||||
self.same_device(t3, c.name())?;
|
||||
match (self, t2, t3) {
|
||||
(Self::Cpu(s1), Self::Cpu(s2), Self::Cpu(s3)) => c.cpu_fwd(s1, l1, s2, l2, s3, l3),
|
||||
(Self::Cuda(s1), Self::Cuda(s2), Self::Cuda(s3)) => c.cuda_fwd(s1, l1, s2, l2, s3, l3),
|
||||
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
|
||||
c.metal_fwd(s1, l1, s2, l2, s3, l3)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn unary_impl<B: op::UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
|
||||
match self {
|
||||
Storage::Cpu(storage) => {
|
||||
@ -408,10 +352,6 @@ impl Storage {
|
||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Cuda(s))
|
||||
}
|
||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Metal(s))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -757,32 +697,4 @@ impl Storage {
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub(crate) fn copy2d(
|
||||
&self,
|
||||
dst: &mut Self,
|
||||
d1: usize,
|
||||
d2: usize,
|
||||
src_s: usize,
|
||||
dst_s: usize,
|
||||
src_o: usize,
|
||||
dst_o: usize,
|
||||
) -> Result<()> {
|
||||
match (self, dst) {
|
||||
(Self::Cpu(src), Self::Cpu(dst)) => src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o),
|
||||
(Self::Cuda(src), Self::Cuda(dst)) => {
|
||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
||||
}
|
||||
(Self::Metal(src), Self::Metal(dst)) => {
|
||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
op: "copy2d",
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,9 @@
|
||||
//! Tensors are N-dimensional matrixes of elements using a single data type.
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::backend::{BackendDevice, BackendStorage};
|
||||
use crate::op::{BackpropOp, BinaryOp, CmpOp, Op, ReduceOp, UnaryOp};
|
||||
use crate::op::{
|
||||
BackpropOp, BinaryOp, CmpOp, CustomOp1, CustomOp2, CustomOp3, Op, ReduceOp, UnaryOp,
|
||||
};
|
||||
use crate::scalar::TensorOrScalar;
|
||||
use crate::shape::{Dim, Dims};
|
||||
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
|
||||
@ -79,9 +81,6 @@ macro_rules! unary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self) -> Result<Self> {
|
||||
let shape = self.shape();
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self
|
||||
.storage()
|
||||
.unary_impl::<crate::op::$op_name>(self.layout())?;
|
||||
@ -95,9 +94,6 @@ macro_rules! binary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
|
||||
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -120,9 +116,6 @@ macro_rules! binary_op_scalar {
|
||||
.broadcast_as(self.shape())?,
|
||||
};
|
||||
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -519,7 +512,6 @@ impl Tensor {
|
||||
unary_op!(ceil, Ceil);
|
||||
unary_op!(floor, Floor);
|
||||
unary_op!(round, Round);
|
||||
unary_op!(sign, Sign);
|
||||
|
||||
/// Round element of the input tensor to the nearest integer.
|
||||
///
|
||||
@ -655,9 +647,6 @@ impl Tensor {
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().affine(self.layout(), mul, add)?;
|
||||
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -665,9 +654,6 @@ impl Tensor {
|
||||
|
||||
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
|
||||
pub fn elu(&self, alpha: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().elu(self.layout(), alpha)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -675,15 +661,12 @@ impl Tensor {
|
||||
|
||||
/// Raise the tensor to some float exponent `e`.
|
||||
pub fn powf(&self, e: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().powf(self.layout(), e)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
}
|
||||
|
||||
pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
|
||||
fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
|
||||
if dim >= self.dims().len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: self.shape().clone(),
|
||||
@ -1032,7 +1015,7 @@ impl Tensor {
|
||||
/// tensor also has three dimensions, `(batch, channels, target_size)`.
|
||||
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
|
||||
let (n, c, _l) = self.dims3()?;
|
||||
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest1D { arg, target_size });
|
||||
let op = BackpropOp::new1(self, Op::UpsampleNearest1D);
|
||||
let storage = self
|
||||
.storage()
|
||||
.upsample_nearest1d(self.layout(), target_size)?;
|
||||
@ -1172,9 +1155,6 @@ impl Tensor {
|
||||
let n = b_dims[dim - 1];
|
||||
|
||||
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
|
||||
if c_shape.elem_count() == 0 || k == 0 {
|
||||
return Tensor::zeros(c_shape, self.dtype(), self.device());
|
||||
}
|
||||
let batching: usize = a_dims[..dim - 2].iter().product();
|
||||
let batching_b: usize = b_dims[..dim - 2].iter().product();
|
||||
if k != k2 || batching != batching_b {
|
||||
@ -1371,7 +1351,7 @@ impl Tensor {
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
let mut storage = unsafe { self.device().alloc_uninit(self.shape(), self.dtype())? };
|
||||
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let offset = start * src.dims()[1..].iter().product::<usize>();
|
||||
@ -2021,7 +2001,7 @@ impl Tensor {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
let shape = self.shape();
|
||||
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
|
||||
let mut storage = self.device().zeros(shape, self.dtype())?;
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let op = BackpropOp::new1(self, Op::Copy);
|
||||
@ -2029,21 +2009,11 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a tensor that is in row major order. This always makes a copy.
|
||||
pub fn force_contiguous(&self) -> Result<Tensor> {
|
||||
let shape = self.shape();
|
||||
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let op = BackpropOp::new1(self, Op::Copy);
|
||||
Ok(from_storage(storage, shape.clone(), op, false))
|
||||
}
|
||||
|
||||
/// Create a variable based on the values currently stored in a tensor. The storage is always
|
||||
/// copied.
|
||||
pub(crate) fn make_var(&self) -> Result<Tensor> {
|
||||
let shape = self.shape().clone();
|
||||
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
|
||||
let mut storage = self.device().zeros(&shape, self.dtype())?;
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), true))
|
||||
@ -2096,7 +2066,7 @@ impl Tensor {
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
} else {
|
||||
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
|
||||
let mut storage = self.device().zeros(&shape, self.dtype())?;
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
@ -2123,19 +2093,8 @@ impl Tensor {
|
||||
let dim = dim.to_index(self.shape(), "squeeze")?;
|
||||
if dims[dim] == 1 {
|
||||
let mut dims = dims.to_vec();
|
||||
let mut strides = self.stride().to_vec();
|
||||
dims.remove(dim);
|
||||
strides.remove(dim);
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
storage: self.storage.clone(),
|
||||
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
|
||||
op: BackpropOp::new1(self, Op::Reshape),
|
||||
is_variable: false,
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
self.reshape(dims)
|
||||
} else {
|
||||
Ok(self.clone())
|
||||
}
|
||||
@ -2156,24 +2115,10 @@ impl Tensor {
|
||||
/// ```
|
||||
pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> {
|
||||
let mut dims = self.dims().to_vec();
|
||||
let mut strides = self.stride().to_vec();
|
||||
let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?;
|
||||
// Cannot panic because to_index_plus_one already checks dimensions
|
||||
dims.insert(dim, 1);
|
||||
// Any stride would work here, but we pick one so as to maximize the probability to remain
|
||||
// C contiguous.
|
||||
let stride = if dim < strides.len() { strides[dim] } else { 1 };
|
||||
strides.insert(dim, stride);
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
storage: self.storage.clone(),
|
||||
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
|
||||
op: BackpropOp::new1(self, Op::Reshape),
|
||||
is_variable: false,
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
self.reshape(dims)
|
||||
}
|
||||
|
||||
/// Stacks two or more tensors along a particular dimension.
|
||||
@ -2204,6 +2149,152 @@ impl Tensor {
|
||||
Self::cat(&args, dim)
|
||||
}
|
||||
|
||||
/// Concatenates two or more tensors along a particular dimension.
|
||||
///
|
||||
/// All tensors must of the same rank, and the output will have
|
||||
/// the same rank
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, DType, Device};
|
||||
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 0)?;
|
||||
/// assert_eq!(c.shape().dims(), &[4, 3]);
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 1)?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 6]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let dim = dim.to_index(arg0.shape(), "cat")?;
|
||||
for arg in args {
|
||||
arg.as_ref().check_dim(dim, "cat")?;
|
||||
}
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg0.rank() != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: arg0.rank(),
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
if dim == 0 {
|
||||
Self::cat0(args)
|
||||
} else {
|
||||
// TODO: Avoid these transpositions and have an implementation that works
|
||||
// for dim != 0...
|
||||
let args: Vec<Tensor> = args
|
||||
.iter()
|
||||
.map(|a| a.as_ref().transpose(0, dim))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let cat = Self::cat0(&args)?;
|
||||
cat.transpose(0, dim)
|
||||
}
|
||||
}
|
||||
|
||||
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[0] = 0;
|
||||
let mut offsets = vec![0usize];
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == 0 {
|
||||
cat_dims[0] += v2;
|
||||
}
|
||||
if dim_idx != 0 && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
let next_offset = offsets.last().unwrap() + arg.elem_count();
|
||||
offsets.push(next_offset);
|
||||
}
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = BackpropOp::new(args, |args| Op::Cat(args, 0));
|
||||
let mut storage = device.zeros(&shape, dtype)?;
|
||||
for (arg, &offset) in args.iter().zip(offsets.iter()) {
|
||||
let arg = arg.as_ref();
|
||||
arg.storage()
|
||||
.copy_strided_src(&mut storage, offset, arg.layout())?;
|
||||
}
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
|
||||
/// input tensor values and `right` elements after.
|
||||
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
|
||||
@ -2286,10 +2377,6 @@ impl Tensor {
|
||||
self.storage.read().unwrap()
|
||||
}
|
||||
|
||||
pub(crate) fn storage_mut(&self) -> std::sync::RwLockWriteGuard<'_, Storage> {
|
||||
self.storage.write().unwrap()
|
||||
}
|
||||
|
||||
// If we extend the visibility of this function to be usable outside of this crate, we should
|
||||
// make it unsafe.
|
||||
pub(crate) fn storage_mut_and_layout(
|
||||
@ -2311,6 +2398,96 @@ impl Tensor {
|
||||
std::ptr::eq(lhs, rhs)
|
||||
}
|
||||
|
||||
/// Applies a unary custom op without backward support
|
||||
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op without backward support
|
||||
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) =
|
||||
self.storage()
|
||||
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op without backward support
|
||||
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a unary custom op.
|
||||
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
|
||||
let (storage, shape) = self
|
||||
.storage()
|
||||
.apply_op1(self.layout(), c.as_ref().as_ref())?;
|
||||
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
|
||||
self.apply_op1_arc(Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op.
|
||||
pub fn apply_op2_arc(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op2(
|
||||
self.layout(),
|
||||
&rhs.storage(),
|
||||
rhs.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
|
||||
self.apply_op2_arc(r, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op.
|
||||
pub fn apply_op3_arc(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
|
||||
Op::CustomOp3(t1, t2, t3, c.clone())
|
||||
});
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: C,
|
||||
) -> Result<Self> {
|
||||
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Normalize a 'relative' axis value: positive values are kept, negative
|
||||
/// values means counting the dimensions from the back.
|
||||
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
|
||||
|
@ -1,238 +0,0 @@
|
||||
use crate::{shape::Dim, Error, Result, Shape, Tensor};
|
||||
|
||||
impl Tensor {
|
||||
/// Concatenates two or more tensors along a particular dimension.
|
||||
///
|
||||
/// All tensors must of the same rank, and the output will have
|
||||
/// the same rank
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, DType, Device};
|
||||
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 0)?;
|
||||
/// assert_eq!(c.shape().dims(), &[4, 3]);
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 1)?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 6]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let dim = dim.to_index(arg0.shape(), "cat")?;
|
||||
for arg in args {
|
||||
arg.as_ref().check_dim(dim, "cat")?;
|
||||
}
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg0.rank() != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: arg0.rank(),
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
let all_contiguous = args.iter().all(|v| v.as_ref().is_contiguous());
|
||||
if all_contiguous {
|
||||
Self::cat_contiguous(args, dim)
|
||||
} else if dim == 0 {
|
||||
Self::cat0(args)
|
||||
} else {
|
||||
let args: Vec<Tensor> = args
|
||||
.iter()
|
||||
.map(|a| a.as_ref().transpose(0, dim))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let cat = Self::cat0(&args)?;
|
||||
cat.transpose(0, dim)
|
||||
}
|
||||
}
|
||||
|
||||
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[0] = 0;
|
||||
let mut offsets = vec![0usize];
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == 0 {
|
||||
cat_dims[0] += v2;
|
||||
}
|
||||
if dim_idx != 0 && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
let next_offset = offsets.last().unwrap() + arg.elem_count();
|
||||
offsets.push(next_offset);
|
||||
}
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, 0));
|
||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
||||
for (arg, &offset) in args.iter().zip(offsets.iter()) {
|
||||
let arg = arg.as_ref();
|
||||
arg.storage()
|
||||
.copy_strided_src(&mut storage, offset, arg.layout())?;
|
||||
}
|
||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
fn cat_contiguous<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[dim] = 0;
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == dim {
|
||||
cat_dims[dim] += v2;
|
||||
}
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
let cat_target_dim_len = cat_dims[dim];
|
||||
let block_size: usize = cat_dims.iter().skip(1 + dim).product();
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, dim));
|
||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
||||
let mut dst_o = 0;
|
||||
for arg in args.iter() {
|
||||
let arg = arg.as_ref();
|
||||
let arg_dims = arg.shape().dims();
|
||||
let d1: usize = arg_dims.iter().take(dim).product();
|
||||
let d2 = block_size * arg_dims[dim];
|
||||
let dst_s = block_size * cat_target_dim_len;
|
||||
let src_o = arg.layout().start_offset();
|
||||
arg.storage().copy2d(
|
||||
&mut storage,
|
||||
d1,
|
||||
d2,
|
||||
/* src_s */ d2,
|
||||
dst_s,
|
||||
src_o,
|
||||
dst_o,
|
||||
)?;
|
||||
dst_o += d2;
|
||||
}
|
||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
||||
}
|
||||
}
|
@ -18,9 +18,6 @@ w_t = w.transpose(0, 1)
|
||||
res = torch.nn.functional.conv_transpose1d(t, w_t)
|
||||
print(res.shape)
|
||||
print(res)
|
||||
res = torch.nn.functional.conv_transpose1d(t, w_t, groups=2)
|
||||
print(res.shape)
|
||||
print(res)
|
||||
*/
|
||||
fn conv1d(dev: &Device) -> Result<()> {
|
||||
let t = Tensor::new(
|
||||
@ -53,31 +50,15 @@ fn conv1d(dev: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
||||
);
|
||||
|
||||
let w = w.transpose(0, 1)?;
|
||||
// The CPU kernels applied in the contiguous and non contiguous cases are different.
|
||||
for w in [w.clone(), w.contiguous()?] {
|
||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
|
||||
4.7076, -5.9745, -0.8276, 1.621
|
||||
],
|
||||
);
|
||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 2)?;
|
||||
assert_eq!(res.dims(), [1, 4, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res.squeeze(0)?, 4)?,
|
||||
[
|
||||
[-1.5596, -1.8099, 2.0407, 4.8764, -0.1743, -0.735, -0.7819],
|
||||
[0.7816, 3.8152, -0.5926, 2.2515, -5.1844, -0.3157, 1.4721],
|
||||
[1.6295, 0.52, 6.2611, 0.7109, 2.6315, -1.8793, 0.7113],
|
||||
[1.0949, 1.0166, 1.7464, 2.4561, -0.79, -0.5119, 0.1488]
|
||||
]
|
||||
);
|
||||
}
|
||||
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
|
||||
4.7076, -5.9745, -0.8276, 1.621
|
||||
],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -135,7 +116,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
],
|
||||
dev,
|
||||
)?;
|
||||
@ -163,9 +144,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
||||
]
|
||||
);
|
||||
|
||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
|
||||
assert_eq!(res.dims(), [1, 2, 7, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&res.i(0)?, 4)?,
|
||||
@ -190,7 +169,6 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
// Dilations.
|
||||
let res = t.conv2d(&w, 0, 1, 2, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 1, 1]);
|
||||
@ -229,7 +207,6 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -276,13 +253,13 @@ fn conv2d_small(dev: &Device) -> Result<()> {
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1640,
|
||||
-0.0111, -0.1742, 0.0, 0.0, 0.0, 0.0, 2.6437, -2.0268, 1.1823, 0.0, 0.0, 0.0, 0.0,
|
||||
3.2855, -1.0324, 0.2539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1640, -0.0111, -0.1742, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 2.6437, -2.0268, 1.1823, 0.0000, 0.0000, 0.0000, 0.0000, 3.2855,
|
||||
-1.0324, 0.2539, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
|
||||
]
|
||||
);
|
||||
|
||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 1, 3, 3]);
|
||||
assert_eq!(
|
||||
@ -384,7 +361,6 @@ print(w.grad.shape)
|
||||
print(w.grad[0])
|
||||
*/
|
||||
fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
// conv-transposes are not implemented for metal
|
||||
use candle_core::Var;
|
||||
let t = Var::from_slice(
|
||||
&[
|
||||
@ -397,7 +373,7 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
],
|
||||
(1, 4, 5, 5),
|
||||
dev,
|
||||
@ -582,154 +558,6 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
]
|
||||
);
|
||||
|
||||
// Conv Transpose 2d Test
|
||||
//tested against following python
|
||||
|
||||
// import torch
|
||||
// torch.manual_seed(4242)
|
||||
// padding = 4
|
||||
// outpadding = 2
|
||||
// dilation = 3
|
||||
// stride = 3
|
||||
// input = torch.randn((1, 4, 7, 5), requires_grad=True)
|
||||
// kernel = torch.randn((4, 2, 3, 5), requires_grad=True)
|
||||
// print("input", input.flatten())
|
||||
// print("kernel", kernel.flatten())
|
||||
// res = torch.nn.functional.conv_transpose2d(
|
||||
// input,
|
||||
// kernel,
|
||||
// stride=stride,
|
||||
// padding=padding,
|
||||
// dilation=dilation,
|
||||
// output_padding=outpadding,
|
||||
// )
|
||||
// res.retain_grad()
|
||||
// print(res.shape)
|
||||
// loss = (res**2).sum()
|
||||
// print(loss)
|
||||
// loss.backward()
|
||||
// print(input.grad.shape)
|
||||
// print("input grad", torch.round(input.grad, decimals=1))
|
||||
// print(kernel.grad.shape)
|
||||
// print("kernel grad", torch.round(kernel.grad.flatten(), decimals=1))
|
||||
|
||||
let padding = 4;
|
||||
let outpadding = 2;
|
||||
let dilation = 3;
|
||||
let stride = 3;
|
||||
|
||||
let t = Var::from_slice(
|
||||
&[
|
||||
0.4056_f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997,
|
||||
3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843,
|
||||
0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013,
|
||||
-0.6836, 0.2477, 1.3127, -0.2260, 0.2622, -1.2974, -0.8140, -0.8404, -0.3490, 0.0130,
|
||||
1.3123, 1.7569, -0.3956, -1.8255, 0.1727, -0.3538, 2.6941, 1.0529, 0.4219, -0.2071,
|
||||
1.1586, 0.4717, 0.3865, -0.5690, -0.5010, -0.1310, 0.7796, 0.6630, -0.2021, 2.6090,
|
||||
0.2049, 0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323,
|
||||
-1.3712, 0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742,
|
||||
0.3790, -0.4431, -0.4720, -0.7890, 0.2620, 0.5411, -1.1715, -2.4997, 2.3249, -0.8912,
|
||||
-0.4733, -0.5701, -2.8888, -1.4112, -0.5471, -0.9234, -1.1660, 0.4189, -0.7465,
|
||||
-0.6473, 0.1402, 0.7875, 0.5377, -0.6779, -0.8088, -0.4864, -0.2312, 0.9279, 0.1264,
|
||||
1.5480, 0.8265, -0.1025, 0.5138, -0.2512, 0.1576, 1.2705, 0.3641, -0.9325, 0.6451,
|
||||
-0.8537, 0.2378, 0.1794, 0.2752, -0.3687, -1.1149, -0.1410, -0.5829, -0.0892, 1.4258,
|
||||
-2.2789, 0.5270, 0.1825, 1.7007, -0.5263, -0.2954, 0.4440, 0.5537, 0.3492, 0.6186,
|
||||
1.6475, 0.2219,
|
||||
],
|
||||
(1, 4, 7, 5),
|
||||
dev,
|
||||
)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let w = Var::from_slice(
|
||||
&[
|
||||
-1.1744_f32, 0.3266, 2.5893, 1.0142, 0.1763, 0.7752, 0.6604, 0.2029, -0.2145, 0.7234,
|
||||
-0.3441, -1.5400, -0.6333, 0.6613, 0.2083, 0.6230, -1.7002, 0.3393, 0.4049, 1.0762,
|
||||
0.2723, 1.4181, 0.0029, -0.2122, 1.7668, 1.4168, 0.3320, -0.2719, 0.7932, -0.7204,
|
||||
0.4447, 0.1211, 0.5908, 1.0089, -0.1646, 1.8033, -0.6286, 0.2016, -0.3370, 1.2555,
|
||||
0.8009, -0.6488, -0.4652, -1.5685, 1.5860, 0.5583, 0.4623, 0.6026, 0.8828, 2.4990,
|
||||
0.6811, -0.3369, 1.3320, 1.7669, -1.1067, 1.2958, -0.9415, -0.9655, -0.4462, 0.7181,
|
||||
0.5181, -1.1658, -1.8467, -0.7763, 1.2769, 0.8651, 0.9890, 1.5092, 0.7207, -0.8481,
|
||||
0.7417, 0.3375, -1.2685, 1.4572, 1.0915, 0.1093, -0.8550, -0.5831, -0.6309, -0.2509,
|
||||
0.5220, -0.0914, 0.7900, 0.1096, 0.3258, 0.2723, -1.0942, -0.3393, -0.1653, 0.5732,
|
||||
-0.8014, 1.8194, -1.9023, 0.2127, 1.8636, -0.8979, 0.1927, -0.2778, 0.3105, 0.0071,
|
||||
-1.1823, 0.2476, -0.7178, -1.3821, 1.0769, -0.4376, -0.9967, -0.1227, 1.6197, -1.0604,
|
||||
0.1372, 0.8141, -0.6163, 0.7304, -0.8285, 2.0636, -0.7176, 0.2495, -0.2581, -0.4478,
|
||||
],
|
||||
(4, 2, 3, 5),
|
||||
dev,
|
||||
)?;
|
||||
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
|
||||
let loss = res.sqr()?.sum_all()?;
|
||||
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 2904.0);
|
||||
let grads = loss.backward()?;
|
||||
|
||||
let grad_t = grads.get(&t).unwrap();
|
||||
let grad_w = grads.get(&w).unwrap();
|
||||
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
|
||||
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
|
||||
[
|
||||
// torch gets 89.1
|
||||
-89.0, -135.3, 136.7, 102.0, -53.4, 117.9, 118.6, -43.9, -218.0, -58.5, -114.3, -150.0,
|
||||
-15.6, 172.1, 66.3, -64.3, -27.9, -19.8, 31.7, 62.1, 5.5, 92.6, 28.2, -29.6, 55.9,
|
||||
52.7, -72.7, -119.8, 53.8, -25.5, 128.8, 19.3, 68.0, 190.9, -64.1, -86.2, -111.2,
|
||||
106.6, -67.7, 37.8, 115.9, 50.4, -77.7, -54.9, 22.3, -4.6, 89.8, 61.7, 122.4, 192.6,
|
||||
-27.8, -104.6, 57.0, 166.4, 27.1, 6.1, 18.7, -93.2, 31.5, 168.2, -3.7, -99.5, -55.5,
|
||||
-10.8, 17.5, 20.8, 16.9, 43.8, 42.0, -89.2, 18.8, -9.6, -84.1, 212.6, 19.7, -50.0,
|
||||
-52.0, -40.0, -166.6, -73.2, -10.8, -73.3, 31.5, -23.4, -79.3, -27.0, -84.4, -42.9,
|
||||
-20.3, 51.8, -16.7, 76.3, -120.5, -65.8, 96.5, -10.7, -45.9, -88.1, 65.4, -7.0, -1.5,
|
||||
92.8, -25.1, -114.2, -5.8, -14.8, -51.2, -20.7, 54.2, -79.8, 47.7, -29.2, -8.8, 53.5,
|
||||
-28.4, 85.0, -18.3, 107.0, 28.3, -71.8
|
||||
]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
|
||||
[
|
||||
[
|
||||
[32.3, -41.6, -24.0, 14.1, 17.6],
|
||||
[-11.8, 72.5, 87.6, 46.4, 61.5],
|
||||
[115.0, 108.5, -48.6, -63.4, -50.0],
|
||||
[51.3, 5.4, 31.3, 91.1, -30.9],
|
||||
[52.7, 92.8, -68.0, -47.0, 83.0],
|
||||
// pytorch gets -107.1
|
||||
[-10.2, -107.0, -5.4, 213.1, -31.4],
|
||||
[-2.4, 65.1, 9.2, -146.2, -24.2]
|
||||
],
|
||||
[
|
||||
[-72.6, -63.9, -61.9, 45.3, 33.0],
|
||||
[79.3, -0.5, -26.2, 78.2, 42.7],
|
||||
[90.9, 141.6, 40.1, -62.7, 37.0],
|
||||
[32.8, 198.2, -0.8, -31.1, 27.3],
|
||||
// torch gets 48.0
|
||||
[34.5, 34.9, -47.9, 127.6, -12.3],
|
||||
[-61.4, -3.2, -2.9, -10.9, -16.6],
|
||||
[74.6, 60.1, -68.9, 34.5, -50.4]
|
||||
],
|
||||
[
|
||||
[37.5, -56.9, -43.6, -13.5, -9.9],
|
||||
[40.0, 97.3, 28.6, 14.2, -30.1],
|
||||
[-22.3, -126.3, -68.8, -8.2, 26.1],
|
||||
[-32.9, 37.3, 108.5, -54.8, 29.6],
|
||||
[34.9, -176.9, -125.0, -28.3, -13.9],
|
||||
[-54.9, 142.6, 62.1, -80.4, -65.6],
|
||||
[7.4, -91.1, -67.6, 35.0, 39.7]
|
||||
],
|
||||
[
|
||||
[-57.2, -40.9, -10.1, 32.6, 29.4],
|
||||
[18.7, -18.0, 29.5, -1.2, 59.2],
|
||||
[-14.0, -74.4, 19.8, -117.0, 58.2],
|
||||
[-21.8, 163.5, -71.1, -99.0, 80.9],
|
||||
[-58.9, -10.9, 93.8, -139.6, 98.0],
|
||||
// torch gets 54.5
|
||||
[-54.4, 135.3, 6.0, -79.1, 134.6],
|
||||
[27.5, -76.0, 43.4, -2.8, -7.8]
|
||||
]
|
||||
]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -112,34 +112,3 @@ fn custom_op1_with_backward() -> Result<()> {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl candle_core::InplaceOp1 for Elu {
|
||||
fn name(&self) -> &'static str {
|
||||
"elu"
|
||||
}
|
||||
|
||||
fn cpu_fwd(&self, s: &mut CpuStorage, _l: &Layout) -> Result<()> {
|
||||
let alpha = self.alpha;
|
||||
match s {
|
||||
CpuStorage::BF16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F32(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F64(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
_ => candle_core::bail!("unsupported dtype for inplace elu"),
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn inplace_op1() -> Result<()> {
|
||||
let cpu = &Device::Cpu;
|
||||
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
|
||||
let t = (t - 5.)?;
|
||||
t.inplace_op1(&Elu { alpha: 1. })?;
|
||||
assert_eq!(
|
||||
to_vec1_round(&t, 4)?,
|
||||
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
#![allow(clippy::approx_constant)]
|
||||
use anyhow::{Context, Result};
|
||||
use candle_core::{test_device, test_utils, Device, Shape, Tensor, Var};
|
||||
|
||||
@ -97,24 +96,24 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
||||
y.to_vec1::<f32>()?,
|
||||
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(grad_x, 4)?,
|
||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
||||
grad_x.to_vec1::<f32>()?,
|
||||
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||
);
|
||||
let y = x.exp()?.sqr()?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 3)?,
|
||||
[403.429, 7.389, 2980.958, 1.35]
|
||||
y.to_vec1::<f32>()?,
|
||||
[403.4288, 7.3890557, 2980.9578, 1.3498588]
|
||||
);
|
||||
// exp(x)^2 = exp(2*x)
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(grad_x, 2)?,
|
||||
[806.86, 14.78, 5961.92, 2.7]
|
||||
grad_x.to_vec1::<f32>()?,
|
||||
[806.8576, 14.778111, 5961.9155, 2.6997175]
|
||||
);
|
||||
let y = x.sin()?;
|
||||
let grads = y.backward()?;
|
||||
@ -262,7 +261,6 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let y = elu_x.elu(2.)?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(&elu_x).context("no grad for x")?;
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[-1.2642, 0.0000, -1.7293, 3.0000]
|
||||
@ -285,38 +283,19 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
[1.0881, 0.9277, 1.0527, 0.5747],
|
||||
);
|
||||
|
||||
if device.is_cpu() {
|
||||
let x = Var::new(&[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]], device)?;
|
||||
let y = x.interpolate1d(12)?.reshape(36)?;
|
||||
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16.,
|
||||
17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
|
||||
33., 34., 35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
||||
let grads = loss.backward()?;
|
||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(grad_x, 4)?,
|
||||
[[[10_f32, 26., 42.], [58., 74., 90.], [106., 122., 138.]]]
|
||||
);
|
||||
}
|
||||
|
||||
// manually checked: see comments
|
||||
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
|
||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
||||
35., 36.,
|
||||
1_f32, 02., 03., 04., 05., 06.,
|
||||
07., 08., 09., 10., 11., 12.,
|
||||
13., 14., 15., 16., 17., 18.,
|
||||
19., 20., 21., 22., 23., 24.,
|
||||
25., 26., 27., 28., 29., 30.,
|
||||
31., 32., 33., 34., 35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
@ -347,11 +326,15 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let x = Var::new(&[[[[1f32, 2.], [4., 5.]]]], device)?;
|
||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
||||
35., 36.,
|
||||
1_f32, 02., 03., 04., 05., 06.,
|
||||
07., 08., 09., 10., 11., 12.,
|
||||
13., 14., 15., 16., 17., 18.,
|
||||
19., 20., 21., 22., 23., 24.,
|
||||
25., 26., 27., 28., 29., 30.,
|
||||
31., 32., 33., 34., 35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
@ -88,7 +88,7 @@ fn strided_blocks() -> Result<()> {
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
let tensor = tensor.i((.., 1))?.contiguous()?;
|
||||
let tensor = tensor.i((.., 1))?;
|
||||
match tensor.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
assert_eq!(start_offset, 0);
|
||||
@ -100,20 +100,6 @@ fn strided_blocks() -> Result<()> {
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
let tensor = tensor.i((.., 1))?;
|
||||
match tensor.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { .. } => {
|
||||
panic!("unexpected block structure")
|
||||
}
|
||||
candle::StridedBlocks::MultipleBlocks {
|
||||
block_len,
|
||||
block_start_index,
|
||||
} => {
|
||||
assert_eq!(block_len, 4);
|
||||
assert_eq!(block_start_index.collect::<Vec<_>>(), &[4, 16])
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
match tensor.t()?.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { .. } => {
|
||||
panic!("unexpected block structure")
|
||||
|
@ -1,106 +0,0 @@
|
||||
use candle_core::{test_device, DType, Device, IndexOp, Result, Tensor};
|
||||
|
||||
fn matmul(device: &Device) -> Result<()> {
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let a = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
|
||||
let data = vec![1.0f32, 2.0];
|
||||
let a = Tensor::from_slice(&data, (2, 1), device)?;
|
||||
let data = vec![3.0f32, 4.0];
|
||||
let b = Tensor::from_slice(&data, (1, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
|
||||
|
||||
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 3), device)?;
|
||||
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (3, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
|
||||
|
||||
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
|
||||
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
|
||||
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec3::<f32>()?, &expected);
|
||||
|
||||
// Also perform the matmul on contiguous transposed versions.
|
||||
let a_tt = a.t()?.contiguous()?.t()?;
|
||||
assert!(!a_tt.is_contiguous());
|
||||
assert_eq!(a.dims(), a_tt.dims());
|
||||
assert_eq!(a_tt.stride(), &[6, 1, 2]);
|
||||
|
||||
let b_tt = b.t()?.contiguous()?.t()?;
|
||||
assert!(!b_tt.is_contiguous());
|
||||
assert_eq!(b.dims(), b_tt.dims());
|
||||
assert_eq!(b_tt.stride(), &[6, 1, 3]);
|
||||
|
||||
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn broadcast_matmul(device: &Device) -> Result<()> {
|
||||
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
|
||||
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
|
||||
let out = lhs.broadcast_matmul(&rhs)?;
|
||||
assert_eq!(out.dims(), &[3, 6, 4, 2]);
|
||||
for idx1 in 0..3 {
|
||||
for idx2 in 0..6 {
|
||||
let out = out.i((idx1, idx2))?;
|
||||
let lhs = lhs.i((idx1, 0))?;
|
||||
let rhs = rhs.i(idx2)?;
|
||||
let out2 = lhs.matmul(&rhs);
|
||||
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
|
||||
// With cuda, we see errors of up to ~1e-12.
|
||||
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/candle/issues/1948
|
||||
fn squeeze_mm(device: &Device) -> Result<()> {
|
||||
let seq_len = 8_usize;
|
||||
let a = Tensor::zeros((1, seq_len, 16), DType::F32, device)?;
|
||||
let x = a.i((.., seq_len - 1, ..))?;
|
||||
let w = Tensor::zeros((32, 16), DType::F32, device)?.t()?;
|
||||
let x = x.matmul(&w)?;
|
||||
assert_eq!(x.dims(), &[1, 32]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/candle/issues/1992
|
||||
fn mm_layout(device: &Device) -> Result<()> {
|
||||
let a = Tensor::arange(0f32, 16f32, device)?.reshape((1, 1, 4, 4))?;
|
||||
let b = Tensor::arange(0f32, 8f32, device)?.reshape((1, 1, 4, 2))?;
|
||||
let mm1 = a.matmul(&b)?;
|
||||
// Forces the layout to be:
|
||||
// shape: [1, 1, 4, 2], stride: [8, 2, 2, 1], start_offset: 0
|
||||
// This is still a contiguous matrix but matmul checks are only the two last dimensions have
|
||||
// non 1 sizes but matmul check may be reluctant to handle it.
|
||||
let b = b.transpose(1, 2)?.force_contiguous()?.transpose(1, 2)?;
|
||||
let mm2 = a.matmul(&b)?;
|
||||
let diff = (mm1 - mm2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
|
||||
test_device!(
|
||||
broadcast_matmul,
|
||||
broadcast_matmul_cpu,
|
||||
broadcast_matmul_gpu,
|
||||
broadcast_matmul_metal
|
||||
);
|
||||
test_device!(squeeze_mm, squeeze_mm_cpu, squeeze_mm_gpu, squeeze_mm_metal);
|
||||
test_device!(mm_layout, mm_layout_cpu, mm_layout_gpu, mm_layout_metal);
|
@ -43,9 +43,6 @@ res = torch.nn.functional.avg_pool2d(t, 2)
|
||||
print(res)
|
||||
*/
|
||||
fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
|
||||
if dev.is_metal() {
|
||||
return Ok(());
|
||||
}
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616,
|
||||
|
@ -3,7 +3,7 @@ use candle_core::{
|
||||
quantized::{self, GgmlDType},
|
||||
test_device,
|
||||
test_utils::to_vec2_round,
|
||||
Device, IndexOp, Module, Result, Tensor,
|
||||
Device, Module, Result, Tensor,
|
||||
};
|
||||
use quantized::{k_quants, GgmlType};
|
||||
use rand::prelude::*;
|
||||
@ -47,14 +47,18 @@ fn test_matmul(
|
||||
}
|
||||
|
||||
fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs_s = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -63,7 +67,7 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
]
|
||||
);
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
mm.to_vec2::<f32>()?,
|
||||
&[
|
||||
@ -75,7 +79,7 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&lhs)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
@ -85,15 +89,7 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
[341970.0, 994574.0, 1656181.0, 2302182.0]
|
||||
]
|
||||
),
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[84866.0, 214045.0, 344676.0, 473707.0],
|
||||
[213425.0, 604313.0, 1000431.0, 1387960.0],
|
||||
[342030.0, 994630.0, 1656248.0, 2302250.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
_ => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[85120.0, 214562.0, 345455.0, 474748.0],
|
||||
@ -102,16 +98,22 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
]
|
||||
),
|
||||
}
|
||||
|
||||
test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs_s = (0..(m * k))
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 - (m * k) as f32 / 2.0)
|
||||
.collect::<Vec<_>>();
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..k * n)
|
||||
@ -119,7 +121,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
.collect::<Vec<_>>();
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -127,7 +129,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
-196472.0, 63012.0, 324585.0, 587902.0
|
||||
]
|
||||
);
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
to_vec2_round(&mm, 0)?,
|
||||
&[
|
||||
@ -139,7 +141,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&lhs)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
@ -149,15 +151,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
[-196102.0, 63022.0, 324233.0, 587191.0]
|
||||
]
|
||||
),
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243740.0, -19762.0, -285476.0, -550498.0],
|
||||
[23774.0, 21645.0, 19395.0, 18364.0],
|
||||
[-196045.0, 63030.0, 324120.0, 587079.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
_ => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243524.0, -19596.0, -285051.0, -549815.0],
|
||||
@ -166,60 +160,28 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
]
|
||||
),
|
||||
}
|
||||
let lhs2 = Tensor::stack(&[&lhs, &lhs], 0)?;
|
||||
let res2 = matmul.forward(&lhs2)?;
|
||||
let res2 = res2.i(1)?;
|
||||
let diff = (res - res2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if device.is_cuda() {
|
||||
assert!(diff < 0.1);
|
||||
} else {
|
||||
assert_eq!(diff, 0.);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn qmm_batch(dev: &Device) -> Result<()> {
|
||||
let (lhs, rhs, _mm) = get_random_tensors(2, 256, 6, dev)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
assert_eq!(mm.shape().dims(), [2, 6]);
|
||||
let lhs2 = Tensor::cat(&[&lhs, &lhs], 0)?;
|
||||
let mm2 = rhs.forward(&lhs2)?;
|
||||
assert_eq!(mm2.shape().dims(), [4, 6]);
|
||||
let diff2 = (mm2.i(2..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff2, 0.0);
|
||||
let lhs3 = Tensor::cat(&[&lhs2, &lhs], 0)?;
|
||||
let mm3 = rhs.forward(&lhs3)?;
|
||||
assert_eq!(mm3.shape().dims(), [6, 6]);
|
||||
let diff3 = (mm3.i(2..4)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let diff3 = (mm3.i(4..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let lhs4 = Tensor::cat(&[&lhs3, &lhs3], 0)?;
|
||||
let mm4 = rhs.forward(&lhs4)?;
|
||||
assert_eq!(mm4.shape().dims(), [12, 6]);
|
||||
let diff4 = (mm4.i(..6)? - &mm3)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if dev.is_cuda() {
|
||||
// We use a different kernel for sizes from 1 to 8 on cuda which explains
|
||||
// the difference here.
|
||||
assert!(0. < diff4 && diff4 < 1e-4)
|
||||
} else {
|
||||
assert_eq!(diff4, 0.0)
|
||||
};
|
||||
let diff4 = (mm4.i(6..)? - &mm4.i(..6)?)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff4, 0.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(quantized_matmul, qmm_cpu, qmm_cuda, qmm_metal);
|
||||
test_device!(quantized_matmul_neg, qmm_n_cpu, qmm_n_cuda, qmm_n_metal);
|
||||
test_device!(qmm_batch, qmm_b_cpu, qmm_b_cuda, qmm_b_metal);
|
||||
test_device!(
|
||||
quantized_matmul,
|
||||
quantized_matmul_cpu,
|
||||
quantized_matmul_cuda,
|
||||
quantized_matmul_metal
|
||||
);
|
||||
test_device!(
|
||||
quantized_matmul_neg,
|
||||
quantized_matmul_neg_cpu,
|
||||
quantized_matmul_neg_cuda,
|
||||
quantized_matmul_neg_metal
|
||||
);
|
||||
|
||||
fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
@ -247,6 +209,10 @@ fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
|
||||
@ -273,6 +239,10 @@ fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
|
||||
@ -299,6 +269,10 @@ fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5_1(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
|
||||
@ -399,6 +373,10 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
|
||||
}
|
||||
|
||||
fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q2K;
|
||||
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
@ -433,6 +411,10 @@ fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q3K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -466,6 +448,10 @@ fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q4K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -499,6 +485,10 @@ fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q5K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -532,6 +522,10 @@ fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q6K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -565,6 +559,10 @@ fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q8k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q8K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -780,6 +778,10 @@ macro_rules! quantized_matmul {
|
||||
// stable. https://github.com/rust-lang/rust/issues/29599
|
||||
($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => {
|
||||
fn $fn_name(device: &Device) -> Result<()> {
|
||||
if device.is_cuda() {
|
||||
// TODO Enable Cuda GGML sometime maybe.
|
||||
return Ok(());
|
||||
}
|
||||
test_matmul(device, (1, 3, 4, 256), $dtype)?;
|
||||
Ok(())
|
||||
}
|
||||
|
@ -106,9 +106,6 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
[2.6911, -0.0647, -0.1091, 1.7353, 2.7933]
|
||||
]
|
||||
);
|
||||
let t_f16 = tensor.to_dtype(DType::F16)?.gelu()?.to_dtype(DType::F32)?;
|
||||
let max_diff = (tensor.gelu()? - t_f16)?.flatten_all()?.max(0)?;
|
||||
assert!(max_diff.to_vec0::<f32>()? < 5e-3);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.gelu_erf()?, 4)?,
|
||||
[
|
||||
@ -151,14 +148,6 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(&tensor.round_to(-2)?, 4)?,
|
||||
[3000.0, 300.]
|
||||
);
|
||||
let tensor = Tensor::new(
|
||||
&[-1.01f32, -0.9, -0.1, 0.0, -0.0, 0.1, 0.9, 1.0, 1.1],
|
||||
device,
|
||||
)?;
|
||||
assert_eq!(
|
||||
tensor.sign()?.to_vec1::<f32>()?,
|
||||
[-1., -1., -1., 0., 0., 1., 1., 1., 1.]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -683,31 +672,6 @@ fn cat(device: &Device) -> Result<()> {
|
||||
[2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0]
|
||||
]
|
||||
);
|
||||
|
||||
// 3D
|
||||
let t1 = Tensor::arange(0, 48i64, device)?.reshape((2, 6, 4))?;
|
||||
let t2 = Tensor::arange(100, 124i64, device)?.reshape((2, 3, 4))?;
|
||||
let t3 = Tensor::arange(10000, 10032i64, device)?.reshape((2, 4, 4))?;
|
||||
|
||||
let t_cat = Tensor::cat(&[&t1, &t2, &t3], 1)?;
|
||||
|
||||
let t1 = t1.t()?.contiguous()?.t()?;
|
||||
let t2 = t2.t()?.contiguous()?.t()?;
|
||||
let t3 = t3.t()?.contiguous()?.t()?;
|
||||
let t_cat2 = Tensor::cat(&[&t1, &t2, &t3], 1)?;
|
||||
|
||||
let diff = t_cat.eq(&t_cat2)?.to_dtype(DType::F32)?.sum_all()?;
|
||||
assert_eq!(diff.to_vec0::<f32>()?, 104.0);
|
||||
assert_eq!(t_cat.i((0, 0, 0))?.to_vec0::<i64>()?, 0);
|
||||
assert_eq!(t_cat.i((0, 4, 0))?.to_vec0::<i64>()?, 16);
|
||||
assert_eq!(t_cat.i((0, 5, 0))?.to_vec0::<i64>()?, 20);
|
||||
assert_eq!(t_cat.i((1, 5, 0))?.to_vec0::<i64>()?, 44);
|
||||
assert_eq!(t_cat.i((0, 6, 0))?.to_vec0::<i64>()?, 100);
|
||||
assert_eq!(t_cat.i((1, 6, 0))?.to_vec0::<i64>()?, 112);
|
||||
assert_eq!(t_cat.i((0, 6, 1))?.to_vec0::<i64>()?, 101);
|
||||
assert_eq!(t_cat.i((0, 7, 1))?.to_vec0::<i64>()?, 105);
|
||||
assert_eq!(t_cat.i((0, 12, 1))?.to_vec0::<i64>()?, 10013);
|
||||
assert_eq!(t_cat.i((1, 12, 3))?.to_vec0::<i64>()?, 10031);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -718,8 +682,6 @@ fn embeddings(device: &Device) -> Result<()> {
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
let hs = t.index_select(&ids.to_dtype(DType::I64)?, 0)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -747,47 +709,44 @@ fn index_select(device: &Device) -> Result<()> {
|
||||
[9.0, 10.0, 11.0]
|
||||
]
|
||||
);
|
||||
for dtype in [DType::U8, DType::U32, DType::I64] {
|
||||
let ids = ids.to_dtype(dtype)?;
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 2.0, 1.0],
|
||||
[3.0, 5.0, 4.0],
|
||||
[6.0, 8.0, 7.0],
|
||||
[9.0, 11.0, 10.0]
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
|
||||
);
|
||||
// Prior to https://github.com/huggingface/candle/pull/1022
|
||||
// There would be a bug where the last values in the result tensor would be set to 0.
|
||||
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 2.0, 1.0],
|
||||
[3.0, 5.0, 4.0],
|
||||
[6.0, 8.0, 7.0],
|
||||
[9.0, 11.0, 10.0]
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
|
||||
);
|
||||
// Prior to https://github.com/huggingface/candle/pull/1022
|
||||
// There would be a bug where the last values in the result tensor would be set to 0.
|
||||
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
]
|
||||
);
|
||||
|
||||
// Test when selecting dim > 0 with ids size different from elem count of
|
||||
// target dim in source/input.
|
||||
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
|
||||
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
|
||||
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
|
||||
}
|
||||
// Test when selecting dim > 0 with ids size different from elem count of
|
||||
// target dim in source/input.
|
||||
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
|
||||
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
|
||||
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -949,6 +908,74 @@ fn gather(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn matmul(device: &Device) -> Result<()> {
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let a = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
|
||||
let data = vec![1.0f32, 2.0];
|
||||
let a = Tensor::from_slice(&data, (2, 1), device)?;
|
||||
let data = vec![3.0f32, 4.0];
|
||||
let b = Tensor::from_slice(&data, (1, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
|
||||
|
||||
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 3), device)?;
|
||||
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (3, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
|
||||
|
||||
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
|
||||
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
|
||||
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec3::<f32>()?, &expected);
|
||||
|
||||
// Also perform the matmul on contiguous transposed versions.
|
||||
let a_tt = a.t()?.contiguous()?.t()?;
|
||||
assert!(!a_tt.is_contiguous());
|
||||
assert_eq!(a.dims(), a_tt.dims());
|
||||
assert_eq!(a_tt.stride(), &[6, 1, 2]);
|
||||
|
||||
let b_tt = b.t()?.contiguous()?.t()?;
|
||||
assert!(!b_tt.is_contiguous());
|
||||
assert_eq!(b.dims(), b_tt.dims());
|
||||
assert_eq!(b_tt.stride(), &[6, 1, 3]);
|
||||
|
||||
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn broadcast_matmul(device: &Device) -> Result<()> {
|
||||
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
|
||||
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
|
||||
let out = lhs.broadcast_matmul(&rhs)?;
|
||||
assert_eq!(out.dims(), &[3, 6, 4, 2]);
|
||||
for idx1 in 0..3 {
|
||||
for idx2 in 0..6 {
|
||||
let out = out.i((idx1, idx2))?;
|
||||
let lhs = lhs.i((idx1, 0))?;
|
||||
let rhs = rhs.i(idx2)?;
|
||||
let out2 = lhs.matmul(&rhs);
|
||||
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
|
||||
// With cuda, we see errors of up to ~1e-12.
|
||||
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn broadcasting(device: &Device) -> Result<()> {
|
||||
let t1 = Tensor::arange(0f32, 24f32, device)?.reshape((4, 2, 3))?;
|
||||
let t2 = Tensor::new(&[100f32, 200f32], device)?;
|
||||
@ -1053,54 +1080,8 @@ fn broadcasting(device: &Device) -> Result<()> {
|
||||
fn randn(device: &Device) -> Result<()> {
|
||||
let tensor = Tensor::randn(0f32, 1f32, (5, 3), device)?;
|
||||
assert_eq!(tensor.dims(), [5, 3]);
|
||||
// Check that the seed gets updated by checking that
|
||||
// a new series of numbers is generated each time
|
||||
let tensor2 = Tensor::randn(0f32, 1f32, (5, 3), device)?;
|
||||
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
|
||||
let tensor = Tensor::rand(0f32, 1f32, (5, 3), device)?;
|
||||
assert_eq!(tensor.dims(), [5, 3]);
|
||||
// Check that the seed gets updated by checking that
|
||||
// a new series of numbers is generated each time
|
||||
let tensor2 = Tensor::rand(0f32, 1f32, (5, 3), device)?;
|
||||
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
|
||||
// We do not expect deterministic elements at any index.
|
||||
// There once was a bug that had a deterministic zero element in evenly sized tensors.
|
||||
const N: usize = 2;
|
||||
let v = (0..100)
|
||||
.map(|_| Tensor::randn(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
assert!(
|
||||
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
|
||||
"There are deterministic values in the randn tensors"
|
||||
);
|
||||
let v = (0..100)
|
||||
.map(|_| Tensor::rand(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
assert!(
|
||||
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
|
||||
"There are deterministic values in the rand tensors"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn zero_dim(device: &Device) -> Result<()> {
|
||||
let t = Tensor::zeros((4, 0, 1), DType::F32, device)?;
|
||||
assert_eq!(t.dims3()?, (4, 0, 1));
|
||||
let t2 = Tensor::zeros((4, 3, 1), DType::F32, device)?;
|
||||
let t_cat = Tensor::cat(&[&t, &t2], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 3, 1));
|
||||
let t_cat = Tensor::cat(&[&t, &t], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 0, 1));
|
||||
let t_unary = t.sqrt()?;
|
||||
assert_eq!(t_unary.dims3()?, (4, 0, 1));
|
||||
let t_plus = (&t + 1.)?;
|
||||
assert_eq!(t_plus.dims3()?, (4, 0, 1));
|
||||
let t_mm = t2.matmul(&t.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 3, 0));
|
||||
let t_mm = t.matmul(&t2.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 0, 3));
|
||||
let t_mm = t.t()?.matmul(&t)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 1, 1));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1123,6 +1104,13 @@ test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
|
||||
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
|
||||
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
|
||||
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
|
||||
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
|
||||
test_device!(
|
||||
broadcast_matmul,
|
||||
broadcast_matmul_cpu,
|
||||
broadcast_matmul_gpu,
|
||||
broadcast_matmul_metal
|
||||
);
|
||||
test_device!(
|
||||
broadcasting,
|
||||
broadcasting_cpu,
|
||||
@ -1152,7 +1140,6 @@ test_device!(
|
||||
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
|
||||
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
|
||||
test_device!(var, var_cpu, var_gpu, var_metal);
|
||||
test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal);
|
||||
|
||||
// There was originally a bug on the CPU implementation for randn
|
||||
// https://github.com/huggingface/candle/issues/381
|
||||
@ -1280,8 +1267,8 @@ fn pow() -> Result<()> {
|
||||
let rhs = (&lhs - 2.)?;
|
||||
let res = lhs.pow(&rhs)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res, 3)?,
|
||||
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0]]
|
||||
test_utils::to_vec2_round(&res, 4)?,
|
||||
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -12,7 +12,7 @@ readme = "README.md"
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
candle = { workspace = true }
|
||||
candle-datasets = { workspace = true, optional = true }
|
||||
candle-datasets = { workspace = true }
|
||||
candle-nn = { workspace = true }
|
||||
candle-transformers = { workspace = true }
|
||||
candle-flash-attn = { workspace = true, optional = true }
|
||||
@ -25,13 +25,12 @@ hf-hub = { workspace = true, features = ["tokio"] }
|
||||
image = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
num-traits = { workspace = true }
|
||||
pyo3 = { version = "0.21.0", features = ["auto-initialize"], optional = true }
|
||||
pyo3 = { version = "0.20.0", features = ["auto-initialize"], optional = true }
|
||||
rayon = { workspace = true }
|
||||
rubato = { version = "0.15.0", optional = true }
|
||||
safetensors = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
serde_json = { workspace = true }
|
||||
symphonia = { version = "0.5.3", features = ["all"], optional = true }
|
||||
symphonia = { version = "0.5.3", features = ["all"] }
|
||||
tokenizers = { workspace = true, features = ["onig"] }
|
||||
cpal= { version = "0.15.2", optional = true }
|
||||
|
||||
@ -42,7 +41,7 @@ clap = { workspace = true }
|
||||
imageproc = { workspace = true }
|
||||
memmap2 = { workspace = true }
|
||||
rand = { workspace = true }
|
||||
ab_glyph = { workspace = true }
|
||||
rusttype = { workspace = true }
|
||||
tracing = { workspace = true }
|
||||
tracing-chrome = { workspace = true }
|
||||
tracing-subscriber = { workspace = true }
|
||||
@ -64,7 +63,6 @@ nccl = ["cuda", "cudarc/nccl", "dep:half"]
|
||||
onnx = ["candle-onnx"]
|
||||
metal = ["candle/metal", "candle-nn/metal"]
|
||||
microphone = ["cpal"]
|
||||
encodec = ["cpal", "symphonia", "rubato"]
|
||||
|
||||
[[example]]
|
||||
name = "llama_multiprocess"
|
||||
@ -82,22 +80,6 @@ required-features = ["onnx"]
|
||||
name = "onnx_basics"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "whisper"
|
||||
required-features = ["symphonia"]
|
||||
|
||||
[[example]]
|
||||
name = "whisper-microphone"
|
||||
required-features = ["microphone"]
|
||||
|
||||
[[example]]
|
||||
name = "mnist-training"
|
||||
required-features = ["candle-datasets"]
|
||||
|
||||
[[example]]
|
||||
name = "llama2-c"
|
||||
required-features = ["candle-datasets"]
|
||||
|
||||
[[example]]
|
||||
name = "encodec"
|
||||
required-features = ["encodec"]
|
||||
|
@ -1,46 +0,0 @@
|
||||
Contrastive Language-Image Pre-Training
|
||||
|
||||
Contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
|
||||
pairs of images with related texts.
|
||||
|
||||
https://github.com/openai/CLIP
|
||||
|
||||
https://github.com/huggingface/transformers/tree/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip
|
||||
|
||||
## Running on an example on cpu
|
||||
|
||||
```
|
||||
$ cargo run --example clip --release -- --images "candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg","candle-examples/examples/yolo-v8/assets/bike.jpg" --cpu --sequences "a cycling race","a photo of two cats","a robot holding a candle"
|
||||
|
||||
|
||||
Results for image: candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg
|
||||
|
||||
INFO clip: Probability: 0.0000% Text: a cycling race
|
||||
INFO clip: Probability: 0.0000% Text: a photo of two cats
|
||||
INFO clip: Probability: 100.0000% Text: a robot holding a candle
|
||||
|
||||
Results for image: candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
|
||||
INFO clip: Probability: 99.9999% Text: a cycling race
|
||||
INFO clip: Probability: 0.0001% Text: a photo of two cats
|
||||
INFO clip: Probability: 0.0000% Text: a robot holding a candle
|
||||
```
|
||||
|
||||
## Running on an example with metal feature (mac)
|
||||
|
||||
```
|
||||
$ cargo run --features metal --example clip --release -- --images "candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg","candle-examples/examples/yolo-v8/assets/bike.jpg" --cpu --sequences "a cycling race","a photo of two cats","a robot holding a candle"
|
||||
|
||||
|
||||
Results for image: candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg
|
||||
|
||||
INFO clip: Probability: 0.0000% Text: a cycling race
|
||||
INFO clip: Probability: 0.0000% Text: a photo of two cats
|
||||
INFO clip: Probability: 100.0000% Text: a robot holding a candle
|
||||
|
||||
Results for image: candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
|
||||
INFO clip: Probability: 99.9999% Text: a cycling race
|
||||
INFO clip: Probability: 0.0001% Text: a photo of two cats
|
||||
INFO clip: Probability: 0.0000% Text: a robot holding a candle
|
||||
```
|
@ -1,202 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Error as E;
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::{ops::softmax, VarBuilder};
|
||||
use candle_transformers::models::clip;
|
||||
|
||||
use tokenizers::Tokenizer;
|
||||
use tracing::info;
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long, use_value_delimiter = true)]
|
||||
images: Option<Vec<String>>,
|
||||
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(long, use_value_delimiter = true)]
|
||||
sequences: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
|
||||
let img = image::io::Reader::open(path)?.decode()?;
|
||||
let (height, width) = (image_size, image_size);
|
||||
let img = img.resize_to_fill(
|
||||
width as u32,
|
||||
height as u32,
|
||||
image::imageops::FilterType::Triangle,
|
||||
);
|
||||
|
||||
let img = img.to_rgb8();
|
||||
|
||||
let img = img.into_raw();
|
||||
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
|
||||
.permute((2, 0, 1))?
|
||||
.to_dtype(DType::F32)?
|
||||
.affine(2. / 255., -1.)?;
|
||||
// .unsqueeze(0)?;
|
||||
Ok(img)
|
||||
}
|
||||
|
||||
fn load_images<T: AsRef<std::path::Path>>(
|
||||
paths: &Vec<T>,
|
||||
image_size: usize,
|
||||
) -> anyhow::Result<Tensor> {
|
||||
let mut images = vec![];
|
||||
|
||||
for path in paths {
|
||||
let tensor = load_image(path, image_size)?;
|
||||
images.push(tensor);
|
||||
}
|
||||
|
||||
let images = Tensor::stack(&images, 0)?;
|
||||
|
||||
Ok(images)
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
// std::env::set_var("RUST_BACKTRACE", "full");
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
tracing_subscriber::fmt::init();
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
|
||||
let api = api.repo(hf_hub::Repo::with_revision(
|
||||
"openai/clip-vit-base-patch32".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/15".to_string(),
|
||||
));
|
||||
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
|
||||
let tokenizer = get_tokenizer(args.tokenizer)?;
|
||||
|
||||
let config = clip::ClipConfig::vit_base_patch32();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let vec_imgs = match args.images {
|
||||
Some(imgs) => imgs,
|
||||
None => vec![
|
||||
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
|
||||
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
|
||||
],
|
||||
};
|
||||
|
||||
// let image = load_image(args.image, config.image_size)?.to_device(&device)?;
|
||||
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
|
||||
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? };
|
||||
|
||||
let model = clip::ClipModel::new(vb, &config)?;
|
||||
|
||||
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
|
||||
|
||||
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
|
||||
|
||||
let softmax_image = softmax(&logits_per_image, 1)?;
|
||||
|
||||
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
|
||||
|
||||
info!("softmax_image_vec: {:?}", softmax_image_vec);
|
||||
|
||||
let probability_vec = softmax_image_vec
|
||||
.iter()
|
||||
.map(|v| v * 100.0)
|
||||
.collect::<Vec<f32>>();
|
||||
|
||||
let probability_per_image = probability_vec.len() / vec_imgs.len();
|
||||
|
||||
for (i, img) in vec_imgs.iter().enumerate() {
|
||||
let start = i * probability_per_image;
|
||||
let end = start + probability_per_image;
|
||||
let prob = &probability_vec[start..end];
|
||||
info!("\n\nResults for image: {}\n", img);
|
||||
|
||||
for (i, p) in prob.iter().enumerate() {
|
||||
info!("Probability: {:.4}% Text: {} ", p, vec_seq[i]);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn get_tokenizer(tokenizer: Option<String>) -> anyhow::Result<Tokenizer> {
|
||||
let tokenizer = match tokenizer {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.repo(hf_hub::Repo::with_revision(
|
||||
"openai/clip-vit-base-patch32".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/15".to_string(),
|
||||
));
|
||||
api.get("tokenizer.json")?
|
||||
}
|
||||
Some(file) => file.into(),
|
||||
};
|
||||
|
||||
Tokenizer::from_file(tokenizer).map_err(E::msg)
|
||||
}
|
||||
|
||||
pub fn tokenize_sequences(
|
||||
sequences: Option<Vec<String>>,
|
||||
tokenizer: &Tokenizer,
|
||||
device: &Device,
|
||||
) -> anyhow::Result<(Tensor, Vec<String>)> {
|
||||
let pad_id = *tokenizer
|
||||
.get_vocab(true)
|
||||
.get("<|endoftext|>")
|
||||
.ok_or(E::msg("No pad token"))?;
|
||||
|
||||
let vec_seq = match sequences {
|
||||
Some(seq) => seq,
|
||||
None => vec![
|
||||
"a cycling race".to_string(),
|
||||
"a photo of two cats".to_string(),
|
||||
"a robot holding a candle".to_string(),
|
||||
],
|
||||
};
|
||||
|
||||
let mut tokens = vec![];
|
||||
|
||||
for seq in vec_seq.clone() {
|
||||
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
|
||||
tokens.push(encoding.get_ids().to_vec());
|
||||
}
|
||||
|
||||
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
|
||||
|
||||
// Pad the sequences to have the same length
|
||||
for token_vec in tokens.iter_mut() {
|
||||
let len_diff = max_len - token_vec.len();
|
||||
if len_diff > 0 {
|
||||
token_vec.extend(vec![pad_id; len_diff]);
|
||||
}
|
||||
}
|
||||
|
||||
let input_ids = Tensor::new(tokens, device)?;
|
||||
|
||||
Ok((input_ids, vec_seq))
|
||||
}
|
@ -28,7 +28,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -93,7 +93,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -1 +0,0 @@
|
||||
pub const LAYERNORM_KERNELS: &str = include_str!(concat!(env!("OUT_DIR"), "/layernorm_kernels.ptx"));
|
||||
|
@ -31,7 +31,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -47,7 +47,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -1,20 +0,0 @@
|
||||
# candle-efficientvit
|
||||
|
||||
[EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention](https://arxiv.org/abs/2305.07027).
|
||||
|
||||
This candle implementation uses a pre-trained EfficientViT (from Microsoft Research Asia) network for inference.
|
||||
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example efficientvit --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which m1
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
mountain bike, all-terrain bike, off-roader: 69.80%
|
||||
unicycle, monocycle : 13.03%
|
||||
bicycle-built-for-two, tandem bicycle, tandem: 9.28%
|
||||
crash helmet : 2.25%
|
||||
alp : 0.46%
|
||||
```
|
@ -1,99 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::efficientvit;
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
M0,
|
||||
M1,
|
||||
M2,
|
||||
M3,
|
||||
M4,
|
||||
M5,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_filename(&self) -> String {
|
||||
let name = match self {
|
||||
Self::M0 => "m0",
|
||||
Self::M1 => "m1",
|
||||
Self::M2 => "m2",
|
||||
Self::M3 => "m3",
|
||||
Self::M4 => "m4",
|
||||
Self::M5 => "m5",
|
||||
};
|
||||
format!("timm/efficientvit_{}.r224_in1k", name)
|
||||
}
|
||||
|
||||
fn config(&self) -> efficientvit::Config {
|
||||
match self {
|
||||
Self::M0 => efficientvit::Config::m0(),
|
||||
Self::M1 => efficientvit::Config::m1(),
|
||||
Self::M2 => efficientvit::Config::m2(),
|
||||
Self::M3 => efficientvit::Config::m3(),
|
||||
Self::M4 => efficientvit::Config::m4(),
|
||||
Self::M5 => efficientvit::Config::m5(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(value_enum, long, default_value_t=Which::M0)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let model_name = args.which.model_filename();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(model_name);
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = efficientvit::efficientvit(&args.which.config(), 1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,25 +0,0 @@
|
||||
# candle-endocec
|
||||
|
||||
[EnCodec](https://huggingface.co/facebook/encodec_24khz) is a high-quality audio
|
||||
compression model using an encoder/decoder architecture with residual vector
|
||||
quantization.
|
||||
|
||||
## Running one example
|
||||
|
||||
```bash
|
||||
cargo run --example encodec --features symphonia --release -- code-to-audio \
|
||||
candle-examples/examples/encodec/jfk-codes.safetensors \
|
||||
jfk.wav
|
||||
```
|
||||
|
||||
This decodes the EnCodec tokens stored in `jfk-codes.safetensors` and generates
|
||||
an output wav file containing the audio data.
|
||||
|
||||
Instead of `code-to-audio` one can use:
|
||||
- `audio-to-audio in.mp3 out.wav`: encodes the input audio file then decodes it to a wav file.
|
||||
- `audio-to-code in.mp3 out.safetensors`: generates a safetensors file
|
||||
containing EnCodec tokens for the input audio file.
|
||||
|
||||
If the audio output file name is set to `-`, the audio content directly gets
|
||||
played on default audio output device. If the audio input file is set to `-`, the audio
|
||||
gets recorded from the default audio input.
|
@ -1,275 +0,0 @@
|
||||
#![allow(unused)]
|
||||
use anyhow::{Context, Result};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
pub const SAMPLE_RATE: usize = 24_000;
|
||||
|
||||
pub(crate) struct AudioOutputData_ {
|
||||
resampled_data: std::collections::VecDeque<f32>,
|
||||
resampler: rubato::FastFixedIn<f32>,
|
||||
output_buffer: Vec<f32>,
|
||||
input_buffer: Vec<f32>,
|
||||
input_len: usize,
|
||||
}
|
||||
|
||||
impl AudioOutputData_ {
|
||||
pub(crate) fn new(input_sample_rate: usize, output_sample_rate: usize) -> Result<Self> {
|
||||
use rubato::Resampler;
|
||||
|
||||
let resampled_data = std::collections::VecDeque::with_capacity(output_sample_rate * 10);
|
||||
let resample_ratio = output_sample_rate as f64 / input_sample_rate as f64;
|
||||
let resampler = rubato::FastFixedIn::new(
|
||||
resample_ratio,
|
||||
f64::max(resample_ratio, 1.0),
|
||||
rubato::PolynomialDegree::Septic,
|
||||
1024,
|
||||
1,
|
||||
)?;
|
||||
let input_buffer = resampler.input_buffer_allocate(true).remove(0);
|
||||
let output_buffer = resampler.output_buffer_allocate(true).remove(0);
|
||||
Ok(Self {
|
||||
resampled_data,
|
||||
resampler,
|
||||
input_buffer,
|
||||
output_buffer,
|
||||
input_len: 0,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
use rubato::Resampler;
|
||||
self.output_buffer.fill(0.);
|
||||
self.input_buffer.fill(0.);
|
||||
self.resampler.reset();
|
||||
self.resampled_data.clear();
|
||||
}
|
||||
|
||||
pub(crate) fn take_all(&mut self) -> Vec<f32> {
|
||||
let mut data = Vec::with_capacity(self.resampled_data.len());
|
||||
while let Some(elem) = self.resampled_data.pop_back() {
|
||||
data.push(elem);
|
||||
}
|
||||
data
|
||||
}
|
||||
|
||||
pub(crate) fn is_empty(&self) -> bool {
|
||||
self.resampled_data.is_empty()
|
||||
}
|
||||
|
||||
// Assumes that the input buffer is large enough.
|
||||
fn push_input_buffer(&mut self, samples: &[f32]) {
|
||||
self.input_buffer[self.input_len..self.input_len + samples.len()].copy_from_slice(samples);
|
||||
self.input_len += samples.len()
|
||||
}
|
||||
|
||||
pub(crate) fn push_samples(&mut self, samples: &[f32]) -> Result<()> {
|
||||
use rubato::Resampler;
|
||||
|
||||
let mut pos_in = 0;
|
||||
loop {
|
||||
let rem = self.input_buffer.len() - self.input_len;
|
||||
let pos_end = usize::min(pos_in + rem, samples.len());
|
||||
self.push_input_buffer(&samples[pos_in..pos_end]);
|
||||
pos_in = pos_end;
|
||||
if self.input_len < self.input_buffer.len() {
|
||||
break;
|
||||
}
|
||||
let (_, out_len) = self.resampler.process_into_buffer(
|
||||
&[&self.input_buffer],
|
||||
&mut [&mut self.output_buffer],
|
||||
None,
|
||||
)?;
|
||||
for &elem in self.output_buffer[..out_len].iter() {
|
||||
self.resampled_data.push_front(elem)
|
||||
}
|
||||
self.input_len = 0;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
type AudioOutputData = Arc<Mutex<AudioOutputData_>>;
|
||||
|
||||
pub(crate) fn setup_output_stream() -> Result<(cpal::Stream, AudioOutputData)> {
|
||||
use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
|
||||
|
||||
println!("Setup audio output stream!");
|
||||
let host = cpal::default_host();
|
||||
let device = host
|
||||
.default_output_device()
|
||||
.context("no output device available")?;
|
||||
let mut supported_configs_range = device.supported_output_configs()?;
|
||||
let config_range = match supported_configs_range.find(|c| c.channels() == 1) {
|
||||
// On macOS, it's commonly the case that there are only stereo outputs.
|
||||
None => device
|
||||
.supported_output_configs()?
|
||||
.next()
|
||||
.context("no audio output available")?,
|
||||
Some(config_range) => config_range,
|
||||
};
|
||||
let sample_rate = cpal::SampleRate(SAMPLE_RATE as u32).clamp(
|
||||
config_range.min_sample_rate(),
|
||||
config_range.max_sample_rate(),
|
||||
);
|
||||
let config: cpal::StreamConfig = config_range.with_sample_rate(sample_rate).into();
|
||||
let channels = config.channels as usize;
|
||||
println!(
|
||||
"cpal device: {} {} {config:?}",
|
||||
device.name().unwrap_or_else(|_| "unk".to_string()),
|
||||
config.sample_rate.0
|
||||
);
|
||||
let audio_data = Arc::new(Mutex::new(AudioOutputData_::new(
|
||||
SAMPLE_RATE,
|
||||
config.sample_rate.0 as usize,
|
||||
)?));
|
||||
let ad = audio_data.clone();
|
||||
let stream = device.build_output_stream(
|
||||
&config,
|
||||
move |data: &mut [f32], _: &cpal::OutputCallbackInfo| {
|
||||
data.fill(0.);
|
||||
let mut ad = ad.lock().unwrap();
|
||||
let mut last_elem = 0f32;
|
||||
for (idx, elem) in data.iter_mut().enumerate() {
|
||||
if idx % channels == 0 {
|
||||
match ad.resampled_data.pop_back() {
|
||||
None => break,
|
||||
Some(v) => {
|
||||
last_elem = v;
|
||||
*elem = v
|
||||
}
|
||||
}
|
||||
} else {
|
||||
*elem = last_elem
|
||||
}
|
||||
}
|
||||
},
|
||||
move |err| eprintln!("cpal error: {err}"),
|
||||
None, // None=blocking, Some(Duration)=timeout
|
||||
)?;
|
||||
stream.play()?;
|
||||
Ok((stream, audio_data))
|
||||
}
|
||||
|
||||
pub(crate) fn setup_input_stream() -> Result<(cpal::Stream, AudioOutputData)> {
|
||||
use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
|
||||
|
||||
println!("Setup audio input stream!");
|
||||
let host = cpal::default_host();
|
||||
let device = host
|
||||
.default_input_device()
|
||||
.context("no input device available")?;
|
||||
let mut supported_configs_range = device.supported_input_configs()?;
|
||||
let config_range = supported_configs_range
|
||||
.find(|c| c.channels() == 1)
|
||||
.context("no audio input available")?;
|
||||
let sample_rate = cpal::SampleRate(SAMPLE_RATE as u32).clamp(
|
||||
config_range.min_sample_rate(),
|
||||
config_range.max_sample_rate(),
|
||||
);
|
||||
let config: cpal::StreamConfig = config_range.with_sample_rate(sample_rate).into();
|
||||
println!(
|
||||
"cpal device: {} {} {config:?}",
|
||||
device.name().unwrap_or_else(|_| "unk".to_string()),
|
||||
config.sample_rate.0
|
||||
);
|
||||
let audio_data = Arc::new(Mutex::new(AudioOutputData_::new(
|
||||
config.sample_rate.0 as usize,
|
||||
SAMPLE_RATE,
|
||||
)?));
|
||||
let ad = audio_data.clone();
|
||||
let stream = device.build_input_stream(
|
||||
&config,
|
||||
move |data: &[f32], _: &cpal::InputCallbackInfo| {
|
||||
let mut ad = ad.lock().unwrap();
|
||||
if let Err(err) = ad.push_samples(data) {
|
||||
eprintln!("error processing audio input {err:?}")
|
||||
}
|
||||
},
|
||||
move |err| eprintln!("cpal error: {err}"),
|
||||
None, // None=blocking, Some(Duration)=timeout
|
||||
)?;
|
||||
stream.play()?;
|
||||
Ok((stream, audio_data))
|
||||
}
|
||||
|
||||
fn conv<T>(samples: &mut Vec<f32>, data: std::borrow::Cow<symphonia::core::audio::AudioBuffer<T>>)
|
||||
where
|
||||
T: symphonia::core::sample::Sample,
|
||||
f32: symphonia::core::conv::FromSample<T>,
|
||||
{
|
||||
use symphonia::core::audio::Signal;
|
||||
use symphonia::core::conv::FromSample;
|
||||
samples.extend(data.chan(0).iter().map(|v| f32::from_sample(*v)))
|
||||
}
|
||||
|
||||
pub(crate) fn pcm_decode<P: AsRef<std::path::Path>>(path: P) -> Result<(Vec<f32>, u32)> {
|
||||
use symphonia::core::audio::{AudioBufferRef, Signal};
|
||||
|
||||
let src = std::fs::File::open(path)?;
|
||||
let mss = symphonia::core::io::MediaSourceStream::new(Box::new(src), Default::default());
|
||||
let hint = symphonia::core::probe::Hint::new();
|
||||
let meta_opts: symphonia::core::meta::MetadataOptions = Default::default();
|
||||
let fmt_opts: symphonia::core::formats::FormatOptions = Default::default();
|
||||
let probed = symphonia::default::get_probe().format(&hint, mss, &fmt_opts, &meta_opts)?;
|
||||
let mut format = probed.format;
|
||||
let track = format
|
||||
.tracks()
|
||||
.iter()
|
||||
.find(|t| t.codec_params.codec != symphonia::core::codecs::CODEC_TYPE_NULL)
|
||||
.expect("no supported audio tracks");
|
||||
let mut decoder = symphonia::default::get_codecs()
|
||||
.make(&track.codec_params, &Default::default())
|
||||
.expect("unsupported codec");
|
||||
let track_id = track.id;
|
||||
let sample_rate = track.codec_params.sample_rate.unwrap_or(0);
|
||||
let mut pcm_data = Vec::new();
|
||||
while let Ok(packet) = format.next_packet() {
|
||||
while !format.metadata().is_latest() {
|
||||
format.metadata().pop();
|
||||
}
|
||||
if packet.track_id() != track_id {
|
||||
continue;
|
||||
}
|
||||
match decoder.decode(&packet)? {
|
||||
AudioBufferRef::F32(buf) => pcm_data.extend(buf.chan(0)),
|
||||
AudioBufferRef::U8(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U16(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U24(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U32(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S8(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S16(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S24(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S32(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::F64(data) => conv(&mut pcm_data, data),
|
||||
}
|
||||
}
|
||||
Ok((pcm_data, sample_rate))
|
||||
}
|
||||
|
||||
pub(crate) fn resample(pcm_in: &[f32], sr_in: usize, sr_out: usize) -> Result<Vec<f32>> {
|
||||
use rubato::Resampler;
|
||||
|
||||
let mut pcm_out =
|
||||
Vec::with_capacity((pcm_in.len() as f64 * sr_out as f64 / sr_in as f64) as usize + 1024);
|
||||
|
||||
let mut resampler = rubato::FftFixedInOut::<f32>::new(sr_in, sr_out, 1024, 1)?;
|
||||
let mut output_buffer = resampler.output_buffer_allocate(true);
|
||||
let mut pos_in = 0;
|
||||
while pos_in + resampler.input_frames_next() < pcm_in.len() {
|
||||
let (in_len, out_len) =
|
||||
resampler.process_into_buffer(&[&pcm_in[pos_in..]], &mut output_buffer, None)?;
|
||||
pos_in += in_len;
|
||||
pcm_out.extend_from_slice(&output_buffer[0][..out_len]);
|
||||
}
|
||||
|
||||
if pos_in < pcm_in.len() {
|
||||
let (_in_len, out_len) = resampler.process_partial_into_buffer(
|
||||
Some(&[&pcm_in[pos_in..]]),
|
||||
&mut output_buffer,
|
||||
None,
|
||||
)?;
|
||||
pcm_out.extend_from_slice(&output_buffer[0][..out_len]);
|
||||
}
|
||||
|
||||
Ok(pcm_out)
|
||||
}
|
Binary file not shown.
@ -1,131 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{DType, IndexOp, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::encodec::{Config, Model};
|
||||
use clap::{Parser, ValueEnum};
|
||||
use hf_hub::api::sync::Api;
|
||||
|
||||
mod audio_io;
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||||
enum Action {
|
||||
AudioToAudio,
|
||||
AudioToCode,
|
||||
CodeToAudio,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// The action to be performed, specifies the format for the input and output data.
|
||||
action: Action,
|
||||
|
||||
/// The input file, either an audio file or some encodec tokens stored as safetensors.
|
||||
in_file: String,
|
||||
|
||||
/// The output file, either a wave audio file or some encodec tokens stored as safetensors.
|
||||
out_file: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// The model weight file, in safetensor format.
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = match args.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => Api::new()?
|
||||
.model("facebook/encodec_24khz".to_string())
|
||||
.get("model.safetensors")?,
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
|
||||
let config = Config::default();
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
let codes = match args.action {
|
||||
Action::CodeToAudio => {
|
||||
let codes = candle::safetensors::load(args.in_file, &device)?;
|
||||
codes.get("codes").expect("no codes in input file").clone()
|
||||
}
|
||||
Action::AudioToCode | Action::AudioToAudio => {
|
||||
let pcm = if args.in_file == "-" {
|
||||
println!(">>>> RECORDING AUDIO, PRESS ENTER ONCE DONE <<<<");
|
||||
let (stream, input_audio) = audio_io::setup_input_stream()?;
|
||||
let mut pcms = vec![];
|
||||
let stdin = std::thread::spawn(|| {
|
||||
let mut s = String::new();
|
||||
std::io::stdin().read_line(&mut s)
|
||||
});
|
||||
while !stdin.is_finished() {
|
||||
let input = input_audio.lock().unwrap().take_all();
|
||||
if input.is_empty() {
|
||||
std::thread::sleep(std::time::Duration::from_millis(100));
|
||||
continue;
|
||||
}
|
||||
pcms.push(input)
|
||||
}
|
||||
drop(stream);
|
||||
pcms.concat()
|
||||
} else {
|
||||
let (pcm, sample_rate) = audio_io::pcm_decode(args.in_file)?;
|
||||
if sample_rate != 24_000 {
|
||||
println!("WARNING: encodec uses a 24khz sample rate, input uses {sample_rate}, resampling...");
|
||||
audio_io::resample(&pcm, sample_rate as usize, 24_000)?
|
||||
} else {
|
||||
pcm
|
||||
}
|
||||
};
|
||||
let pcm_len = pcm.len();
|
||||
let pcm = Tensor::from_vec(pcm, (1, 1, pcm_len), &device)?;
|
||||
println!("input pcm shape: {:?}", pcm.shape());
|
||||
model.encode(&pcm)?
|
||||
}
|
||||
};
|
||||
println!("codes shape: {:?}", codes.shape());
|
||||
|
||||
match args.action {
|
||||
Action::AudioToCode => {
|
||||
codes.save_safetensors("codes", &args.out_file)?;
|
||||
}
|
||||
Action::AudioToAudio | Action::CodeToAudio => {
|
||||
let pcm = model.decode(&codes)?;
|
||||
println!("output pcm shape: {:?}", pcm.shape());
|
||||
let pcm = pcm.i(0)?.i(0)?;
|
||||
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
|
||||
let pcm = pcm.to_vec1::<f32>()?;
|
||||
if args.out_file == "-" {
|
||||
let (stream, ad) = audio_io::setup_output_stream()?;
|
||||
{
|
||||
let mut ad = ad.lock().unwrap();
|
||||
ad.push_samples(&pcm)?;
|
||||
}
|
||||
loop {
|
||||
let ad = ad.lock().unwrap();
|
||||
if ad.is_empty() {
|
||||
break;
|
||||
}
|
||||
// That's very weird, calling thread::sleep here triggers the stream to stop
|
||||
// playing (the callback doesn't seem to be called anymore).
|
||||
// std::thread::sleep(std::time::Duration::from_millis(100));
|
||||
}
|
||||
drop(stream)
|
||||
} else {
|
||||
let mut output = std::fs::File::create(&args.out_file)?;
|
||||
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
# candle-gemma: 2b and 7b LLMs from Google DeepMind
|
||||
|
||||
[Gemma](https://ai.google.dev/gemma/docs) is a collection of lightweight open
|
||||
models published by Google Deepmind with a 2b and a 7b variant.
|
||||
|
||||
In order to use the example below, you have to accept the license on the
|
||||
[HuggingFace Hub Gemma repo](https://huggingface.co/google/gemma-7b) and set up
|
||||
your access token via the [HuggingFace cli login
|
||||
command](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login).
|
||||
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
$ cargo run --example gemma --release -- --prompt "fn count_primes(max_n: usize)"
|
||||
fn count_primes(max_n: usize) -> usize {
|
||||
let mut primes = vec![true; max_n];
|
||||
for i in 2..=max_n {
|
||||
if primes[i] {
|
||||
for j in i * i..max_n {
|
||||
primes[j] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
primes.len()
|
||||
}
|
||||
```
|
||||
|
@ -1,289 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::gemma::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "2b")]
|
||||
Base2B,
|
||||
#[value(name = "7b")]
|
||||
Base7B,
|
||||
#[value(name = "2b-it")]
|
||||
Instruct2B,
|
||||
#[value(name = "7b-it")]
|
||||
Instruct7B,
|
||||
#[value(name = "1.1-2b-it")]
|
||||
InstructV1_1_2B,
|
||||
#[value(name = "1.1-7b-it")]
|
||||
InstructV1_1_7B,
|
||||
#[value(name = "code-2b")]
|
||||
CodeBase2B,
|
||||
#[value(name = "code-7b")]
|
||||
CodeBase7B,
|
||||
#[value(name = "code-2b-it")]
|
||||
CodeInstruct2B,
|
||||
#[value(name = "code-7b-it")]
|
||||
CodeInstruct7B,
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The model to use.
|
||||
#[arg(long, default_value = "2b")]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => match args.which {
|
||||
Which::InstructV1_1_2B => "google/gemma-1.1-2b-it".to_string(),
|
||||
Which::InstructV1_1_7B => "google/gemma-1.1-7b-it".to_string(),
|
||||
Which::Base2B => "google/gemma-2b".to_string(),
|
||||
Which::Base7B => "google/gemma-7b".to_string(),
|
||||
Which::Instruct2B => "google/gemma-2b-it".to_string(),
|
||||
Which::Instruct7B => "google/gemma-7b-it".to_string(),
|
||||
Which::CodeBase2B => "google/codegemma-2b".to_string(),
|
||||
Which::CodeBase7B => "google/codegemma-7b".to_string(),
|
||||
Which::CodeInstruct2B => "google/codegemma-2b-it".to_string(),
|
||||
Which::CodeInstruct7B => "google/codegemma-7b-it".to_string(),
|
||||
},
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let config_filename = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -31,8 +31,6 @@ const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
||||
enum Which {
|
||||
V1,
|
||||
V2,
|
||||
V3,
|
||||
V3Instruct,
|
||||
#[value(name = "solar-10.7b")]
|
||||
Solar10_7B,
|
||||
#[value(name = "tiny-llama-1.1b-chat")]
|
||||
@ -47,8 +45,8 @@ struct Args {
|
||||
cpu: bool,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
@ -92,11 +90,11 @@ struct Args {
|
||||
use_flash_attn: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 128)]
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
@ -120,18 +118,13 @@ fn main() -> Result<()> {
|
||||
Some("bf16") => DType::BF16,
|
||||
Some("f32") => DType::F32,
|
||||
Some(dtype) => bail!("Unsupported dtype {dtype}"),
|
||||
None => match args.which {
|
||||
Which::V3 | Which::V3Instruct => DType::BF16,
|
||||
Which::V1 | Which::V2 | Which::Solar10_7B | Which::TinyLlama1_1BChat => DType::F16,
|
||||
},
|
||||
None => DType::F16,
|
||||
};
|
||||
let (llama, tokenizer_filename, mut cache, config) = {
|
||||
let (llama, tokenizer_filename, cache) = {
|
||||
let api = Api::new()?;
|
||||
let model_id = args.model_id.unwrap_or_else(|| match args.which {
|
||||
Which::V1 => "Narsil/amall-7b".to_string(),
|
||||
Which::V2 => "meta-llama/Llama-2-7b-hf".to_string(),
|
||||
Which::V3 => "meta-llama/Meta-Llama-3-8B".to_string(),
|
||||
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct".to_string(),
|
||||
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0".to_string(),
|
||||
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0".to_string(),
|
||||
});
|
||||
@ -145,7 +138,7 @@ fn main() -> Result<()> {
|
||||
let config = config.into_config(args.use_flash_attn);
|
||||
|
||||
let filenames = match args.which {
|
||||
Which::V1 | Which::V2 | Which::V3 | Which::V3Instruct | Which::Solar10_7B => {
|
||||
Which::V1 | Which::V2 | Which::Solar10_7B => {
|
||||
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
|
||||
}
|
||||
Which::TinyLlama1_1BChat => vec![api.get("model.safetensors")?],
|
||||
@ -153,12 +146,10 @@ fn main() -> Result<()> {
|
||||
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
(Llama::load(vb, &config)?, tokenizer_filename, cache, config)
|
||||
(Llama::load(vb, &cache, &config)?, tokenizer_filename, cache)
|
||||
};
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let eos_token_id = config
|
||||
.eos_token_id
|
||||
.or_else(|| tokenizer.token_to_id(EOS_TOKEN));
|
||||
let eos_token_id = tokenizer.token_to_id(EOS_TOKEN);
|
||||
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
||||
let mut tokens = tokenizer
|
||||
.encode(prompt, true)
|
||||
@ -169,7 +160,7 @@ fn main() -> Result<()> {
|
||||
|
||||
println!("starting the inference loop");
|
||||
print!("{prompt}");
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, Some(args.temperature), args.top_p);
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature, args.top_p);
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut index_pos = 0;
|
||||
let mut token_generated = 0;
|
||||
@ -181,7 +172,7 @@ fn main() -> Result<()> {
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = llama.forward(&input, context_index, &mut cache)?;
|
||||
let logits = llama.forward(&input, context_index)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
logits
|
||||
|
@ -19,7 +19,7 @@ use candle_transformers::generation::LogitsProcessor;
|
||||
use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use model::{Cache, Config, Llama};
|
||||
use model::{Config, Llama};
|
||||
use qmodel::QLlama;
|
||||
use weights::TransformerWeights;
|
||||
|
||||
@ -160,10 +160,10 @@ enum Model {
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, xs: &Tensor, pos: usize, cache: &mut Cache) -> anyhow::Result<Tensor> {
|
||||
fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
|
||||
match self {
|
||||
Self::Llama(l) => Ok(l.forward(xs, pos, cache)?),
|
||||
Self::QLlama(l) => Ok(l.forward(xs, pos, cache)?),
|
||||
Self::Llama(l) => Ok(l.forward(xs, pos)?),
|
||||
Self::QLlama(l) => Ok(l.forward(xs, pos)?),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -188,8 +188,8 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
let mut cache = Cache::new(false, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, config)?;
|
||||
let cache = model::Cache::new(false, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, config)?;
|
||||
|
||||
let tokens = match &args.pretokenized_dir {
|
||||
None => {
|
||||
@ -235,7 +235,7 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
||||
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);
|
||||
for inp_tgt in batch_iter {
|
||||
let (inp, tgt) = inp_tgt?;
|
||||
let logits = model.forward(&inp, 0, &mut cache)?;
|
||||
let logits = model.forward(&inp, 0)?;
|
||||
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
|
||||
println!("{}", loss.to_vec0::<f32>()?);
|
||||
}
|
||||
@ -261,7 +261,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
let is_safetensors = config_path
|
||||
.extension()
|
||||
.map_or(false, |v| v == "safetensors");
|
||||
let (model, config, mut cache) = if is_gguf {
|
||||
let (model, config) = if is_gguf {
|
||||
let vb = qmodel::VarBuilder::from_gguf(config_path, &device)?;
|
||||
let (_vocab_size, dim) = vb
|
||||
.get_no_shape("model.embed_tokens.weight")?
|
||||
@ -298,15 +298,15 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
&device,
|
||||
);
|
||||
let cache = model::Cache::new(true, &config, fake_vb)?;
|
||||
let model = Model::QLlama(QLlama::load(vb, config.clone())?);
|
||||
(model, config, cache)
|
||||
let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
} else if is_safetensors {
|
||||
let config = Config::tiny_15m();
|
||||
let tensors = candle::safetensors::load(config_path, &device)?;
|
||||
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Model::Llama(Llama::load(vb, config.clone())?);
|
||||
(model, config, cache)
|
||||
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
} else {
|
||||
let mut file = std::fs::File::open(config_path)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
@ -314,8 +314,8 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Model::Llama(Llama::load(vb, config.clone())?);
|
||||
(model, config, cache)
|
||||
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
};
|
||||
|
||||
println!("starting the inference loop");
|
||||
@ -338,7 +338,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, index_pos, &mut cache)?;
|
||||
let logits = model.forward(&input, index_pos)?;
|
||||
let logits = logits.i((0, logits.dim(1)? - 1))?;
|
||||
let logits = if common_args.repeat_penalty == 1. || tokens.is_empty() {
|
||||
logits
|
||||
|
@ -8,7 +8,6 @@ fn valid_loss(
|
||||
model: &Llama,
|
||||
args: &crate::TrainingCmd,
|
||||
device: &Device,
|
||||
cache: &mut Cache,
|
||||
) -> Result<f64> {
|
||||
let iter = DatasetRandomIter::new(dataset, true, model.config.seq_len, device.clone());
|
||||
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);
|
||||
@ -16,7 +15,7 @@ fn valid_loss(
|
||||
let mut cnt = 0usize;
|
||||
for inp_tgt in batch_iter.take(50) {
|
||||
let (inp, tgt) = inp_tgt?;
|
||||
let logits = model.forward(&inp, 0, cache)?;
|
||||
let logits = model.forward(&inp, 0)?;
|
||||
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
|
||||
sum_ce += loss.to_vec0::<f32>()? as f64;
|
||||
cnt += 1;
|
||||
@ -38,8 +37,8 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
|
||||
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
|
||||
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);
|
||||
|
||||
let mut cache = Cache::new(false, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, config)?;
|
||||
let cache = Cache::new(false, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, config)?;
|
||||
let params = candle_nn::ParamsAdamW {
|
||||
lr: args.learning_rate,
|
||||
..Default::default()
|
||||
@ -47,14 +46,14 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
|
||||
let mut opt = candle_nn::AdamW::new(varmap.all_vars(), params)?;
|
||||
for (batch_index, batch) in batch_iter.enumerate() {
|
||||
let (inp, tgt) = batch?;
|
||||
let logits = model.forward(&inp, 0, &mut cache)?;
|
||||
let logits = model.forward(&inp, 0)?;
|
||||
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
|
||||
opt.backward_step(&loss)?;
|
||||
|
||||
if batch_index > 0 && batch_index % 100 == 0 {
|
||||
// TODO: Add a way to deactivate the backprop graph tracking when computing the
|
||||
// validation loss.
|
||||
let loss = valid_loss(&dataset, &model, args, &device, &mut cache)?;
|
||||
let loss = valid_loss(&dataset, &model, args, &device)?;
|
||||
println!("{batch_index} {loss}");
|
||||
}
|
||||
if batch_index > 0 && batch_index % 1000 == 0 {
|
||||
|
@ -54,7 +54,6 @@ impl TextGeneration {
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let dtype = self.model.dtype();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
@ -67,7 +66,7 @@ impl TextGeneration {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the </s> token"),
|
||||
};
|
||||
let mut state = State::new(1, &self.config, dtype, &self.device)?;
|
||||
let mut state = State::new(1, &self.config, &self.device)?;
|
||||
let mut next_logits = None;
|
||||
for &t in tokens.iter() {
|
||||
let input = Tensor::new(&[t], &self.device)?;
|
||||
@ -85,7 +84,7 @@ impl TextGeneration {
|
||||
Some(logits) => logits,
|
||||
None => anyhow::bail!("cannot work on an empty prompt"),
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(dtype)?;
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
@ -211,9 +210,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "f32")]
|
||||
dtype: String,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
@ -224,7 +220,6 @@ struct Args {
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use std::str::FromStr;
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
@ -284,8 +279,7 @@ fn main() -> Result<()> {
|
||||
let start = std::time::Instant::now();
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = DType::from_str(&args.dtype)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = Model::new(&config, vb.pp("backbone"))?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
|
@ -1,18 +0,0 @@
|
||||
# candle-metavoice
|
||||
|
||||
MetaVoice-1B is a text-to-speech model trained on 100K hours of speech, more
|
||||
details on the [model
|
||||
card](https://huggingface.co/metavoiceio/metavoice-1B-v0.1).
|
||||
|
||||
Note that the current candle implementation suffers from some limitations as of
|
||||
2024-03-02:
|
||||
- The speaker embeddings are hardcoded.
|
||||
- The generated audio file quality is weaker than the Python implementation,
|
||||
probably because of some implementation discrepancies.
|
||||
|
||||
## Run an example
|
||||
|
||||
```bash
|
||||
cargo run --example metavoice --release -- \\
|
||||
--prompt "This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model."
|
||||
```
|
@ -1,277 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use clap::Parser;
|
||||
use std::io::Write;
|
||||
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use candle_transformers::models::encodec;
|
||||
use candle_transformers::models::metavoice::{adapters, gpt, tokenizers, transformer};
|
||||
use candle_transformers::models::quantized_metavoice::transformer as qtransformer;
|
||||
|
||||
use candle::{DType, IndexOp, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use hf_hub::api::sync::Api;
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
|
||||
pub const ENCODEC_NTOKENS: u32 = 1024;
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum ArgDType {
|
||||
F32,
|
||||
F16,
|
||||
Bf16,
|
||||
}
|
||||
|
||||
enum Transformer {
|
||||
Normal(transformer::Model),
|
||||
Quantized(qtransformer::Model),
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// Use the quantized version of the model.
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// The guidance scale.
|
||||
#[arg(long, default_value_t = 3.0)]
|
||||
guidance_scale: f64,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
temperature: f64,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The maximum number of tokens to generate for the first stage.
|
||||
#[arg(long, default_value_t = 2000)]
|
||||
max_tokens: u64,
|
||||
|
||||
/// The output file using the wav format.
|
||||
#[arg(long, default_value = "out.wav")]
|
||||
out_file: String,
|
||||
|
||||
#[arg(long)]
|
||||
first_stage_meta: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
first_stage_weights: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
second_stage_weights: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
encodec_weights: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
spk_emb: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "f32")]
|
||||
dtype: ArgDType,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let api = Api::new()?;
|
||||
let repo = api.model("lmz/candle-metavoice".to_string());
|
||||
let first_stage_meta = match &args.first_stage_meta {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => repo.get("first_stage.meta.json")?,
|
||||
};
|
||||
let first_stage_meta: serde_json::Value =
|
||||
serde_json::from_reader(&std::fs::File::open(first_stage_meta)?)?;
|
||||
let first_stage_tokenizer = match first_stage_meta.as_object() {
|
||||
None => anyhow::bail!("not a json object"),
|
||||
Some(j) => match j.get("tokenizer") {
|
||||
None => anyhow::bail!("no tokenizer key"),
|
||||
Some(j) => j,
|
||||
},
|
||||
};
|
||||
let fs_tokenizer = tokenizers::BPE::from_json(first_stage_tokenizer, 512)?;
|
||||
|
||||
let second_stage_weights = match &args.second_stage_weights {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => repo.get("second_stage.safetensors")?,
|
||||
};
|
||||
let encodec_weights = match args.encodec_weights {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => Api::new()?
|
||||
.model("facebook/encodec_24khz".to_string())
|
||||
.get("model.safetensors")?,
|
||||
};
|
||||
let dtype = match args.dtype {
|
||||
ArgDType::F32 => DType::F32,
|
||||
ArgDType::F16 => DType::F16,
|
||||
ArgDType::Bf16 => DType::BF16,
|
||||
};
|
||||
|
||||
let first_stage_config = transformer::Config::cfg1b_v0_1();
|
||||
let mut first_stage_model = if args.quantized {
|
||||
let filename = match &args.first_stage_weights {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => repo.get("first_stage_q4k.gguf")?,
|
||||
};
|
||||
let vb =
|
||||
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?;
|
||||
let first_stage_model = qtransformer::Model::new(&first_stage_config, vb)?;
|
||||
Transformer::Quantized(first_stage_model)
|
||||
} else {
|
||||
let first_stage_weights = match &args.first_stage_weights {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => repo.get("first_stage.safetensors")?,
|
||||
};
|
||||
let first_stage_vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[first_stage_weights], dtype, &device)? };
|
||||
let first_stage_model = transformer::Model::new(&first_stage_config, first_stage_vb)?;
|
||||
Transformer::Normal(first_stage_model)
|
||||
};
|
||||
|
||||
let second_stage_vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[second_stage_weights], dtype, &device)? };
|
||||
let second_stage_config = gpt::Config::cfg1b_v0_1();
|
||||
let second_stage_model = gpt::Model::new(second_stage_config.clone(), second_stage_vb)?;
|
||||
|
||||
let encodec_device = if device.is_metal() {
|
||||
&candle::Device::Cpu
|
||||
} else {
|
||||
&device
|
||||
};
|
||||
let encodec_vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[encodec_weights], dtype, encodec_device)? };
|
||||
let encodec_config = encodec::Config::default();
|
||||
let encodec_model = encodec::Model::new(&encodec_config, encodec_vb)?;
|
||||
|
||||
println!("prompt: '{}'", args.prompt);
|
||||
let prompt_tokens = fs_tokenizer.encode(&args.prompt)?;
|
||||
let mut tokens = prompt_tokens.clone();
|
||||
println!("{tokens:?}");
|
||||
let spk_emb_file = match &args.spk_emb {
|
||||
Some(w) => std::path::PathBuf::from(w),
|
||||
None => repo.get("spk_emb.safetensors")?,
|
||||
};
|
||||
let spk_emb = candle::safetensors::load(&spk_emb_file, &candle::Device::Cpu)?;
|
||||
let spk_emb = match spk_emb.get("spk_emb") {
|
||||
None => anyhow::bail!("missing spk_emb tensor in {spk_emb_file:?}"),
|
||||
Some(spk_emb) => spk_emb.to_dtype(dtype)?,
|
||||
};
|
||||
let spk_emb = spk_emb.to_device(&device)?;
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, Some(args.temperature), Some(0.95));
|
||||
|
||||
// First stage generation.
|
||||
for index in 0..args.max_tokens {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &device)?;
|
||||
let input = Tensor::stack(&[&input, &input], 0)?;
|
||||
let logits = match &mut first_stage_model {
|
||||
Transformer::Normal(m) => m.forward(&input, &spk_emb, tokens.len() - context_size)?,
|
||||
Transformer::Quantized(m) => {
|
||||
m.forward(&input, &spk_emb, tokens.len() - context_size)?
|
||||
}
|
||||
};
|
||||
let logits0 = logits.i((0, 0))?;
|
||||
let logits1 = logits.i((1, 0))?;
|
||||
let logits = ((logits0 * args.guidance_scale)? + logits1 * (1. - args.guidance_scale))?;
|
||||
let logits = logits.to_dtype(DType::F32)?;
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
print!(".");
|
||||
std::io::stdout().flush()?;
|
||||
if next_token == 2048 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
println!();
|
||||
let fie2c = adapters::FlattenedInterleavedEncodec2Codebook::new(ENCODEC_NTOKENS);
|
||||
let (text_ids, ids1, ids2) = fie2c.decode(&tokens);
|
||||
println!("text ids len: {}", text_ids.len());
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(args.seed + 1337);
|
||||
// TODO: Use the config rather than hardcoding the offset here.
|
||||
let encoded_text: Vec<_> = prompt_tokens.iter().map(|v| v - 1024).collect();
|
||||
let mut hierarchies_in1 =
|
||||
[encoded_text.as_slice(), ids1.as_slice(), &[ENCODEC_NTOKENS]].concat();
|
||||
let mut hierarchies_in2 = [
|
||||
vec![ENCODEC_NTOKENS; encoded_text.len()].as_slice(),
|
||||
ids2.as_slice(),
|
||||
&[ENCODEC_NTOKENS],
|
||||
]
|
||||
.concat();
|
||||
hierarchies_in1.resize(second_stage_config.block_size, ENCODEC_NTOKENS);
|
||||
hierarchies_in2.resize(second_stage_config.block_size, ENCODEC_NTOKENS);
|
||||
let in_x1 = Tensor::new(hierarchies_in1, &device)?;
|
||||
let in_x2 = Tensor::new(hierarchies_in2, &device)?;
|
||||
let in_x = Tensor::stack(&[in_x1, in_x2], 0)?.unsqueeze(0)?;
|
||||
let logits = second_stage_model.forward(&in_x)?;
|
||||
println!("sampling from logits...");
|
||||
let mut codes = vec![];
|
||||
for logits in logits.iter() {
|
||||
let logits = logits.squeeze(0)?;
|
||||
let (seq_len, _) = logits.dims2()?;
|
||||
let mut codes_ = Vec::with_capacity(seq_len);
|
||||
for step in 0..seq_len {
|
||||
let logits = logits.i(step)?.to_dtype(DType::F32)?;
|
||||
let logits = &(&logits / 1.0)?;
|
||||
let prs = candle_nn::ops::softmax_last_dim(logits)?.to_vec1::<f32>()?;
|
||||
let distr = rand::distributions::WeightedIndex::new(prs.as_slice())?;
|
||||
let sample = distr.sample(&mut rng) as u32;
|
||||
codes_.push(sample)
|
||||
}
|
||||
codes.push(codes_)
|
||||
}
|
||||
|
||||
let codes = Tensor::new(codes, &device)?.unsqueeze(0)?;
|
||||
let codes = Tensor::cat(&[in_x, codes], 1)?;
|
||||
println!("codes: {codes}");
|
||||
let tilted_encodec = adapters::TiltedEncodec::new(ENCODEC_NTOKENS);
|
||||
let codes = codes.i(0)?.to_vec2::<u32>()?;
|
||||
let (text_ids, audio_ids) = tilted_encodec.decode(&codes);
|
||||
println!("text_ids len: {:?}", text_ids.len());
|
||||
let audio_ids = Tensor::new(audio_ids, encodec_device)?.unsqueeze(0)?;
|
||||
println!("audio_ids shape: {:?}", audio_ids.shape());
|
||||
let pcm = encodec_model.decode(&audio_ids)?;
|
||||
println!("output pcm shape: {:?}", pcm.shape());
|
||||
let pcm = pcm.i(0)?.i(0)?.to_dtype(DType::F32)?;
|
||||
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
|
||||
let pcm = pcm.to_vec1::<f32>()?;
|
||||
let mut output = std::fs::File::create(&args.out_file)?;
|
||||
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
|
||||
Ok(())
|
||||
}
|
@ -13,7 +13,7 @@ use candle_transformers::models::quantized_mistral::Model as QMistral;
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
@ -39,26 +39,11 @@ impl TextGeneration {
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
top_k: Option<usize>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = {
|
||||
let temperature = temp.unwrap_or(0.);
|
||||
let sampling = if temperature <= 0. {
|
||||
Sampling::ArgMax
|
||||
} else {
|
||||
match (top_k, top_p) {
|
||||
(None, None) => Sampling::All { temperature },
|
||||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||||
}
|
||||
};
|
||||
LogitsProcessor::from_sampling(seed, sampling)
|
||||
};
|
||||
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
@ -137,18 +122,6 @@ impl TextGeneration {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "7b-v0.1")]
|
||||
Mistral7bV01,
|
||||
#[value(name = "7b-v0.2")]
|
||||
Mistral7bV02,
|
||||
#[value(name = "7b-instruct-v0.1")]
|
||||
Mistral7bInstructV01,
|
||||
#[value(name = "7b-instruct-v0.2")]
|
||||
Mistral7bInstructV02,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
@ -174,10 +147,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
@ -186,10 +155,6 @@ struct Args {
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// The model size to use.
|
||||
#[arg(long, default_value = "7b-v0.1")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
@ -199,9 +164,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
@ -215,10 +177,6 @@ struct Args {
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// Use the slower dmmv cuda kernel.
|
||||
#[arg(long)]
|
||||
force_dmmv: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -226,9 +184,6 @@ fn main() -> Result<()> {
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
#[cfg(feature = "cuda")]
|
||||
candle::quantized::cuda::set_force_dmmv(args.force_dmmv);
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
@ -256,17 +211,9 @@ fn main() -> Result<()> {
|
||||
Some(model_id) => model_id,
|
||||
None => {
|
||||
if args.quantized {
|
||||
if args.which != Which::Mistral7bV01 {
|
||||
anyhow::bail!("only 7b-v0.1 is available as a quantized model for now")
|
||||
}
|
||||
"lmz/candle-mistral".to_string()
|
||||
} else {
|
||||
match args.which {
|
||||
Which::Mistral7bV01 => "mistralai/Mistral-7B-v0.1".to_string(),
|
||||
Which::Mistral7bV02 => "mistralai/Mistral-7B-v0.2".to_string(),
|
||||
Which::Mistral7bInstructV01 => "mistralai/Mistral-7B-Instruct-v0.1".to_string(),
|
||||
Which::Mistral7bInstructV02 => "mistralai/Mistral-7B-Instruct-v0.2".to_string(),
|
||||
}
|
||||
"mistralai/Mistral-7B-v0.1".to_string()
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -296,17 +243,7 @@ fn main() -> Result<()> {
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = match args.config_file {
|
||||
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
|
||||
None => {
|
||||
if args.quantized {
|
||||
Config::config_7b_v0_1(args.use_flash_attn)
|
||||
} else {
|
||||
let config_file = repo.get("config.json")?;
|
||||
serde_json::from_slice(&std::fs::read(config_file)?)?
|
||||
}
|
||||
}
|
||||
};
|
||||
let config = Config::config_7b_v0_1(args.use_flash_attn);
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let (model, device) = if args.quantized {
|
||||
let filename = &filenames[0];
|
||||
@ -333,7 +270,6 @@ fn main() -> Result<()> {
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.top_k,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
|
@ -63,7 +63,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -1,26 +0,0 @@
|
||||
# candle-moondream
|
||||
|
||||
[Moondream](https://github.com/vikhyat/moondream) is a computer-vision model can answer real-world questions about images. It's tiny by today's models, with only 1.6B parameters. That enables it to run on a variety of devices, including mobile phones and edge devices.
|
||||
|
||||
## Running some examples
|
||||
First download an example image
|
||||
```bash
|
||||
$ wget https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg
|
||||
```
|
||||
|
||||
<img src="https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg" width="200">
|
||||
|
||||
Now you can run Moondream from the `candle-examples` crate:
|
||||
```bash
|
||||
$ cargo run --example moondream --release -- --prompt "What is the girl eating?" --image "./demo-1.jpg"
|
||||
|
||||
avavx: false, neon: true, simd128: false, f16c: false
|
||||
temp: 0.00 repeat-penalty: 1.00 repeat-last-n: 64
|
||||
retrieved the files in 3.395583ms
|
||||
Running on CPU, to run on GPU(metal), build this example with `--features metal`
|
||||
loaded the model in 5.485493792s
|
||||
loaded and encoded the image Tensor[dims 3, 378, 378; f32] in 4.801396417s
|
||||
starting the inference loop
|
||||
The girl is eating a hamburger.<
|
||||
9 tokens generated (0.68 token/s)
|
||||
```
|
@ -1,343 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::{
|
||||
generation::LogitsProcessor,
|
||||
models::{moondream, quantized_moondream},
|
||||
};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
Moondream(moondream::Model),
|
||||
Quantized(quantized_moondream::Model),
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
verbose_prompt,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the Moondream model.")
|
||||
}
|
||||
if self.verbose_prompt {
|
||||
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
println!("{id:7} -> '{token}'");
|
||||
}
|
||||
}
|
||||
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
|
||||
// Moondream tokenizer bos_token and eos_token is "<|endoftext|>"
|
||||
// https://huggingface.co/vikhyatk/moondream2/blob/main/special_tokens_map.json
|
||||
let special_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||
Some(token) => *token,
|
||||
None => anyhow::bail!("cannot find the special token"),
|
||||
};
|
||||
let (bos_token, eos_token) = (special_token, special_token);
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut load_t = std::time::Duration::from_secs_f64(0f64);
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = if index > 0 {
|
||||
match self.model {
|
||||
Model::Moondream(ref mut model) => model.text_model.forward(&input)?,
|
||||
Model::Quantized(ref mut model) => model.text_model.forward(&input)?,
|
||||
}
|
||||
} else {
|
||||
let bos_token = Tensor::new(&[bos_token], &self.device)?.unsqueeze(0)?;
|
||||
let logits = match self.model {
|
||||
Model::Moondream(ref mut model) => {
|
||||
model
|
||||
.text_model
|
||||
.forward_with_img(&bos_token, &input, image_embeds)?
|
||||
}
|
||||
Model::Quantized(ref mut model) => {
|
||||
model
|
||||
.text_model
|
||||
.forward_with_img(&bos_token, &input, image_embeds)?
|
||||
}
|
||||
};
|
||||
load_t = start_gen.elapsed();
|
||||
println!("load_t: {:?}", load_t);
|
||||
logits
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token || tokens.ends_with(&[27, 10619, 29] /* <END> */) {
|
||||
break;
|
||||
}
|
||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||
print!("{token}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let dt = start_gen.elapsed() - load_t;
|
||||
println!(
|
||||
"\ngenerated in {} seconds\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
dt.as_secs_f64(),
|
||||
(generated_tokens - 1) as f64 / dt.as_secs_f64()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 0)]
|
||||
seed: u64,
|
||||
|
||||
#[arg(long, default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// Use f16 precision for all the computations rather than f32.
|
||||
#[arg(long)]
|
||||
f16: bool,
|
||||
|
||||
#[arg(long)]
|
||||
model_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
}
|
||||
|
||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||
/// (3, 378, 378).
|
||||
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> {
|
||||
let img = image::io::Reader::open(p)?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?
|
||||
.resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
|
||||
let img = img.to_rgb8();
|
||||
let data = img.into_raw();
|
||||
let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
||||
let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
||||
.broadcast_sub(&mean)?
|
||||
.broadcast_div(&std)
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = hf_hub::api::tokio::Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
"santiagomed/candle-moondream".to_string()
|
||||
} else {
|
||||
"vikhyatk/moondream2".to_string()
|
||||
}
|
||||
}
|
||||
};
|
||||
let repo = api.repo(hf_hub::Repo::with_revision(
|
||||
model_id,
|
||||
hf_hub::RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let model_file = match args.model_file {
|
||||
Some(m) => m.into(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
repo.get("model-q4_0.gguf").await?
|
||||
} else {
|
||||
repo.get("model.safetensors").await?
|
||||
}
|
||||
}
|
||||
};
|
||||
let tokenizer = match args.tokenizer_file {
|
||||
Some(m) => m.into(),
|
||||
None => repo.get("tokenizer.json").await?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let config = moondream::Config::v2();
|
||||
let dtype = if args.quantized {
|
||||
if args.f16 {
|
||||
anyhow::bail!("Quantized model does not support f16");
|
||||
}
|
||||
DType::F32
|
||||
} else if device.is_cuda() || args.f16 {
|
||||
DType::F16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let model = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&model_file,
|
||||
&device,
|
||||
)?;
|
||||
let model = quantized_moondream::Model::new(&config, vb)?;
|
||||
Model::Quantized(model)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], dtype, &device)? };
|
||||
let model = moondream::Model::new(&config, vb)?;
|
||||
Model::Moondream(model)
|
||||
};
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let image = load_image(args.image)?
|
||||
.to_device(&device)?
|
||||
.to_dtype(dtype)?;
|
||||
let image_embeds = image.unsqueeze(0)?;
|
||||
let image_embeds = match model {
|
||||
Model::Moondream(ref m) => image_embeds.apply(m.vision_encoder())?,
|
||||
Model::Quantized(ref m) => image_embeds.apply(m.vision_encoder())?,
|
||||
};
|
||||
println!(
|
||||
"loaded and encoded the image {image:?} in {:?}",
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
args.verbose_prompt,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&prompt, &image_embeds, args.sample_len)?;
|
||||
|
||||
Ok(())
|
||||
}
|
580
candle-examples/examples/musicgen/encodec_model.rs
Normal file
580
candle-examples/examples/musicgen/encodec_model.rs
Normal file
@ -0,0 +1,580 @@
|
||||
use crate::nn::conv1d_weight_norm;
|
||||
use candle::{DType, IndexOp, Module, Result, Tensor};
|
||||
use candle_nn::{conv1d, Conv1d, Conv1dConfig, VarBuilder};
|
||||
|
||||
// Encodec Model
|
||||
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
enum NormType {
|
||||
WeightNorm,
|
||||
TimeGroupNorm,
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct Config {
|
||||
target_bandwidths: Vec<f64>,
|
||||
sampling_rate: usize,
|
||||
audio_channels: usize,
|
||||
normalize: bool,
|
||||
chunk_length_s: Option<usize>,
|
||||
overlap: Option<usize>,
|
||||
hidden_size: usize,
|
||||
num_filters: usize,
|
||||
num_residual_layers: usize,
|
||||
upsampling_ratios: Vec<usize>,
|
||||
norm_type: NormType,
|
||||
kernel_size: usize,
|
||||
last_kernel_size: usize,
|
||||
residual_kernel_size: usize,
|
||||
dilation_growth_rate: usize,
|
||||
use_causal_conv: bool,
|
||||
pad_mode: &'static str,
|
||||
compress: usize,
|
||||
num_lstm_layers: usize,
|
||||
trim_right_ratio: f64,
|
||||
codebook_size: usize,
|
||||
codebook_dim: Option<usize>,
|
||||
use_conv_shortcut: bool,
|
||||
}
|
||||
|
||||
impl Default for Config {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
target_bandwidths: vec![1.5, 3.0, 6.0, 12.0, 24.0],
|
||||
sampling_rate: 24_000,
|
||||
audio_channels: 1,
|
||||
normalize: false,
|
||||
chunk_length_s: None,
|
||||
overlap: None,
|
||||
hidden_size: 128,
|
||||
num_filters: 32,
|
||||
num_residual_layers: 1,
|
||||
upsampling_ratios: vec![8, 5, 4, 2],
|
||||
norm_type: NormType::WeightNorm,
|
||||
kernel_size: 7,
|
||||
last_kernel_size: 7,
|
||||
residual_kernel_size: 3,
|
||||
dilation_growth_rate: 2,
|
||||
use_causal_conv: true,
|
||||
pad_mode: "reflect",
|
||||
compress: 2,
|
||||
num_lstm_layers: 2,
|
||||
trim_right_ratio: 1.0,
|
||||
codebook_size: 1024,
|
||||
codebook_dim: None,
|
||||
use_conv_shortcut: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Config {
|
||||
// https://huggingface.co/facebook/musicgen-small/blob/495da4ad086b3416a27c6187f9239f9fd96f3962/config.json#L6
|
||||
pub fn musicgen_small() -> Self {
|
||||
Self {
|
||||
audio_channels: 1,
|
||||
chunk_length_s: None,
|
||||
codebook_dim: Some(128),
|
||||
codebook_size: 2048,
|
||||
compress: 2,
|
||||
dilation_growth_rate: 2,
|
||||
hidden_size: 128,
|
||||
kernel_size: 7,
|
||||
last_kernel_size: 7,
|
||||
norm_type: NormType::WeightNorm,
|
||||
normalize: false,
|
||||
num_filters: 64,
|
||||
num_lstm_layers: 2,
|
||||
num_residual_layers: 1,
|
||||
overlap: None,
|
||||
pad_mode: "reflect",
|
||||
residual_kernel_size: 3,
|
||||
sampling_rate: 32_000,
|
||||
target_bandwidths: vec![2.2],
|
||||
trim_right_ratio: 1.0,
|
||||
upsampling_ratios: vec![8, 5, 4, 4],
|
||||
use_causal_conv: false,
|
||||
use_conv_shortcut: false,
|
||||
}
|
||||
}
|
||||
|
||||
fn codebook_dim(&self) -> usize {
|
||||
self.codebook_dim.unwrap_or(self.codebook_size)
|
||||
}
|
||||
|
||||
fn frame_rate(&self) -> usize {
|
||||
let hop_length: usize = self.upsampling_ratios.iter().product();
|
||||
(self.sampling_rate + hop_length - 1) / hop_length
|
||||
}
|
||||
|
||||
fn num_quantizers(&self) -> usize {
|
||||
let num = 1000f64
|
||||
* self
|
||||
.target_bandwidths
|
||||
.last()
|
||||
.expect("empty target_bandwidths");
|
||||
(num as usize) / (self.frame_rate() * 10)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L340
|
||||
#[derive(Debug)]
|
||||
struct EncodecEuclideanCodebook {
|
||||
inited: Tensor,
|
||||
cluster_size: Tensor,
|
||||
embed: Tensor,
|
||||
embed_avg: Tensor,
|
||||
}
|
||||
|
||||
impl EncodecEuclideanCodebook {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let inited = vb.get(1, "inited")?;
|
||||
let cluster_size = vb.get(cfg.codebook_size, "cluster_size")?;
|
||||
let e_shape = (cfg.codebook_size, cfg.codebook_dim());
|
||||
let embed = vb.get(e_shape, "embed")?;
|
||||
let embed_avg = vb.get(e_shape, "embed_avg")?;
|
||||
Ok(Self {
|
||||
inited,
|
||||
cluster_size,
|
||||
embed,
|
||||
embed_avg,
|
||||
})
|
||||
}
|
||||
|
||||
fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
|
||||
let quantize = self.embed.embedding(embed_ind)?;
|
||||
Ok(quantize)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecVectorQuantization {
|
||||
codebook: EncodecEuclideanCodebook,
|
||||
}
|
||||
|
||||
impl EncodecVectorQuantization {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let codebook = EncodecEuclideanCodebook::load(vb.pp("codebook"), cfg)?;
|
||||
Ok(Self { codebook })
|
||||
}
|
||||
|
||||
fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
|
||||
let quantize = self.codebook.decode(embed_ind)?;
|
||||
let quantize = quantize.transpose(1, 2)?;
|
||||
Ok(quantize)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecResidualVectorQuantizer {
|
||||
layers: Vec<EncodecVectorQuantization>,
|
||||
}
|
||||
|
||||
impl EncodecResidualVectorQuantizer {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let vb = &vb.pp("layers");
|
||||
let layers = (0..cfg.num_quantizers())
|
||||
.map(|i| EncodecVectorQuantization::load(vb.pp(&i.to_string()), cfg))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self { layers })
|
||||
}
|
||||
|
||||
fn decode(&self, codes: &Tensor) -> Result<Tensor> {
|
||||
let mut quantized_out = Tensor::zeros((), DType::F32, codes.device())?;
|
||||
if codes.dim(0)? != self.layers.len() {
|
||||
candle::bail!(
|
||||
"codes shape {:?} does not match the number of quantization layers {}",
|
||||
codes.shape(),
|
||||
self.layers.len()
|
||||
)
|
||||
}
|
||||
for (i, layer) in self.layers.iter().enumerate() {
|
||||
let quantized = layer.decode(&codes.i(i)?)?;
|
||||
quantized_out = quantized.broadcast_add(&quantized_out)?;
|
||||
}
|
||||
Ok(quantized_out)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L226
|
||||
#[derive(Debug)]
|
||||
struct EncodecLSTM {
|
||||
layers: Vec<candle_nn::LSTM>,
|
||||
}
|
||||
|
||||
impl EncodecLSTM {
|
||||
fn load(dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let vb = &vb.pp("lstm");
|
||||
let mut layers = vec![];
|
||||
for layer_idx in 0..cfg.num_lstm_layers {
|
||||
let config = candle_nn::LSTMConfig {
|
||||
layer_idx,
|
||||
..Default::default()
|
||||
};
|
||||
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
|
||||
layers.push(lstm)
|
||||
}
|
||||
Ok(Self { layers })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecLSTM {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
use candle_nn::RNN;
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter() {
|
||||
let states = layer.seq(&xs)?;
|
||||
xs = layer.states_to_tensor(&states)?;
|
||||
}
|
||||
Ok(xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecConvTranspose1d {
|
||||
weight_g: Tensor,
|
||||
weight_v: Tensor,
|
||||
bias: Tensor,
|
||||
}
|
||||
|
||||
impl EncodecConvTranspose1d {
|
||||
fn load(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
k: usize,
|
||||
_stride: usize,
|
||||
vb: VarBuilder,
|
||||
_cfg: &Config,
|
||||
) -> Result<Self> {
|
||||
let vb = &vb.pp("conv");
|
||||
let weight_g = vb.get((in_c, 1, 1), "weight_g")?;
|
||||
let weight_v = vb.get((in_c, out_c, k), "weight_v")?;
|
||||
let bias = vb.get(out_c, "bias")?;
|
||||
Ok(Self {
|
||||
weight_g,
|
||||
weight_v,
|
||||
bias,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecConvTranspose1d {
|
||||
fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecConv1d {
|
||||
causal: bool,
|
||||
conv: Conv1d,
|
||||
norm: Option<candle_nn::GroupNorm>,
|
||||
}
|
||||
|
||||
impl EncodecConv1d {
|
||||
fn load(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
stride: usize,
|
||||
vb: VarBuilder,
|
||||
cfg: &Config,
|
||||
) -> Result<Self> {
|
||||
let conv = match cfg.norm_type {
|
||||
NormType::WeightNorm => conv1d_weight_norm(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
Conv1dConfig {
|
||||
padding: 0,
|
||||
stride,
|
||||
groups: 1,
|
||||
dilation: 1,
|
||||
},
|
||||
vb.pp("conv"),
|
||||
)?,
|
||||
NormType::None | NormType::TimeGroupNorm => conv1d(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
Conv1dConfig {
|
||||
padding: 0,
|
||||
stride,
|
||||
groups: 1,
|
||||
dilation: 1,
|
||||
},
|
||||
vb.pp("conv"),
|
||||
)?,
|
||||
};
|
||||
let norm = match cfg.norm_type {
|
||||
NormType::None | NormType::WeightNorm => None,
|
||||
NormType::TimeGroupNorm => {
|
||||
let gn = candle_nn::group_norm(1, out_c, 1e-5, vb.pp("norm"))?;
|
||||
Some(gn)
|
||||
}
|
||||
};
|
||||
Ok(Self {
|
||||
causal: cfg.use_causal_conv,
|
||||
conv,
|
||||
norm,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecConv1d {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
// TODO: padding, depending on causal.
|
||||
let xs = self.conv.forward(xs)?;
|
||||
match &self.norm {
|
||||
None => Ok(xs),
|
||||
Some(norm) => xs.apply(norm),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecResnetBlock {
|
||||
block_conv1: EncodecConv1d,
|
||||
block_conv2: EncodecConv1d,
|
||||
shortcut: Option<EncodecConv1d>,
|
||||
}
|
||||
|
||||
impl EncodecResnetBlock {
|
||||
fn load(dim: usize, dilations: &[usize], vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let h = dim / cfg.compress;
|
||||
let mut layer = Layer::new(vb.pp("block"));
|
||||
if dilations.len() != 2 {
|
||||
candle::bail!("expected dilations of size 2")
|
||||
}
|
||||
// TODO: Apply dilations!
|
||||
layer.inc();
|
||||
let block_conv1 =
|
||||
EncodecConv1d::load(dim, h, cfg.residual_kernel_size, 1, layer.next(), cfg)?;
|
||||
layer.inc();
|
||||
let block_conv2 = EncodecConv1d::load(h, dim, 1, 1, layer.next(), cfg)?;
|
||||
let shortcut = if cfg.use_conv_shortcut {
|
||||
let conv = EncodecConv1d::load(dim, dim, 1, 1, vb.pp("shortcut"), cfg)?;
|
||||
Some(conv)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Ok(Self {
|
||||
block_conv1,
|
||||
block_conv2,
|
||||
shortcut,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecResnetBlock {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let residual = xs.clone();
|
||||
let xs = xs.elu(1.)?;
|
||||
let xs = self.block_conv1.forward(&xs)?;
|
||||
let xs = xs.elu(1.)?;
|
||||
let xs = self.block_conv2.forward(&xs)?;
|
||||
let xs = match &self.shortcut {
|
||||
None => (xs + residual)?,
|
||||
Some(shortcut) => xs.add(&shortcut.forward(&residual)?)?,
|
||||
};
|
||||
Ok(xs)
|
||||
}
|
||||
}
|
||||
|
||||
struct Layer<'a> {
|
||||
vb: VarBuilder<'a>,
|
||||
cnt: usize,
|
||||
}
|
||||
|
||||
impl<'a> Layer<'a> {
|
||||
fn new(vb: VarBuilder<'a>) -> Self {
|
||||
Self { vb, cnt: 0 }
|
||||
}
|
||||
|
||||
fn inc(&mut self) {
|
||||
self.cnt += 1;
|
||||
}
|
||||
|
||||
fn next(&mut self) -> VarBuilder {
|
||||
let vb = self.vb.pp(&self.cnt.to_string());
|
||||
self.cnt += 1;
|
||||
vb
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecEncoder {
|
||||
init_conv: EncodecConv1d,
|
||||
sampling_layers: Vec<(Vec<EncodecResnetBlock>, EncodecConv1d)>,
|
||||
final_lstm: EncodecLSTM,
|
||||
final_conv: EncodecConv1d,
|
||||
}
|
||||
|
||||
impl EncodecEncoder {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let mut layer = Layer::new(vb.pp("layers"));
|
||||
let init_conv = EncodecConv1d::load(
|
||||
cfg.audio_channels,
|
||||
cfg.num_filters,
|
||||
cfg.kernel_size,
|
||||
1,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
let mut sampling_layers = vec![];
|
||||
let mut scaling = 1;
|
||||
for &ratio in cfg.upsampling_ratios.iter().rev() {
|
||||
let current_scale = scaling * cfg.num_filters;
|
||||
let mut resnets = vec![];
|
||||
for j in 0..(cfg.num_residual_layers as u32) {
|
||||
let resnet = EncodecResnetBlock::load(
|
||||
current_scale,
|
||||
&[cfg.dilation_growth_rate.pow(j), 1],
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
resnets.push(resnet)
|
||||
}
|
||||
layer.inc(); // ELU
|
||||
let conv1d = EncodecConv1d::load(
|
||||
current_scale,
|
||||
current_scale * 2,
|
||||
ratio * 2,
|
||||
ratio,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
sampling_layers.push((resnets, conv1d));
|
||||
scaling *= 2;
|
||||
}
|
||||
let final_lstm = EncodecLSTM::load(cfg.num_filters * scaling, layer.next(), cfg)?;
|
||||
layer.inc(); // ELU
|
||||
let final_conv = EncodecConv1d::load(
|
||||
cfg.num_filters * scaling,
|
||||
cfg.hidden_size,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
Ok(Self {
|
||||
init_conv,
|
||||
sampling_layers,
|
||||
final_conv,
|
||||
final_lstm,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = xs.apply(&self.init_conv)?;
|
||||
for (resnets, conv) in self.sampling_layers.iter() {
|
||||
for resnet in resnets.iter() {
|
||||
xs = xs.apply(resnet)?;
|
||||
}
|
||||
xs = xs.elu(1.0)?.apply(conv)?;
|
||||
}
|
||||
xs.apply(&self.final_lstm)?
|
||||
.elu(1.0)?
|
||||
.apply(&self.final_conv)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecDecoder {
|
||||
init_conv: EncodecConv1d,
|
||||
init_lstm: EncodecLSTM,
|
||||
sampling_layers: Vec<(EncodecConvTranspose1d, Vec<EncodecResnetBlock>)>,
|
||||
final_conv: EncodecConv1d,
|
||||
}
|
||||
|
||||
impl EncodecDecoder {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let mut layer = Layer::new(vb.pp("layers"));
|
||||
let mut scaling = usize::pow(2, cfg.upsampling_ratios.len() as u32);
|
||||
let init_conv = EncodecConv1d::load(
|
||||
cfg.hidden_size,
|
||||
cfg.num_filters * scaling,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
let init_lstm = EncodecLSTM::load(cfg.num_filters * scaling, layer.next(), cfg)?;
|
||||
let mut sampling_layers = vec![];
|
||||
for &ratio in cfg.upsampling_ratios.iter() {
|
||||
let current_scale = scaling * cfg.num_filters;
|
||||
layer.inc(); // ELU
|
||||
let conv1d = EncodecConvTranspose1d::load(
|
||||
current_scale,
|
||||
current_scale / 2,
|
||||
ratio * 2,
|
||||
ratio,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
let mut resnets = vec![];
|
||||
for j in 0..(cfg.num_residual_layers as u32) {
|
||||
let resnet = EncodecResnetBlock::load(
|
||||
current_scale / 2,
|
||||
&[cfg.dilation_growth_rate.pow(j), 1],
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
resnets.push(resnet)
|
||||
}
|
||||
sampling_layers.push((conv1d, resnets));
|
||||
scaling /= 2;
|
||||
}
|
||||
layer.inc(); // ELU
|
||||
let final_conv = EncodecConv1d::load(
|
||||
cfg.num_filters,
|
||||
cfg.audio_channels,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
layer.next(),
|
||||
cfg,
|
||||
)?;
|
||||
Ok(Self {
|
||||
init_conv,
|
||||
init_lstm,
|
||||
sampling_layers,
|
||||
final_conv,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
|
||||
for (conv, resnets) in self.sampling_layers.iter() {
|
||||
xs = xs.elu(1.)?.apply(conv)?;
|
||||
for resnet in resnets.iter() {
|
||||
xs = xs.apply(resnet)?
|
||||
}
|
||||
}
|
||||
xs.elu(1.)?.apply(&self.final_conv)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct EncodecModel {
|
||||
encoder: EncodecEncoder,
|
||||
decoder: EncodecDecoder,
|
||||
quantizer: EncodecResidualVectorQuantizer,
|
||||
}
|
||||
|
||||
impl EncodecModel {
|
||||
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let encoder = EncodecEncoder::load(vb.pp("encoder"), cfg)?;
|
||||
let decoder = EncodecDecoder::load(vb.pp("decoder"), cfg)?;
|
||||
let quantizer = EncodecResidualVectorQuantizer::load(vb.pp("quantizer"), cfg)?;
|
||||
Ok(Self {
|
||||
encoder,
|
||||
decoder,
|
||||
quantizer,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
|
||||
todo!()
|
||||
}
|
||||
}
|
@ -10,7 +10,9 @@ extern crate intel_mkl_src;
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod encodec_model;
|
||||
mod musicgen_model;
|
||||
mod nn;
|
||||
|
||||
use musicgen_model::{GenConfig, MusicgenForConditionalGeneration};
|
||||
|
||||
|
@ -1,9 +1,10 @@
|
||||
use crate::encodec_model;
|
||||
use candle::{DType, Device, Result, Tensor, D};
|
||||
use candle_nn::{
|
||||
embedding, layer_norm, linear_no_bias, Activation, Embedding, LayerNorm, Linear, Module,
|
||||
VarBuilder,
|
||||
};
|
||||
use candle_transformers::models::{encodec, t5};
|
||||
use candle_transformers::models::t5;
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/models/musicgen/configuration_musicgen.py#L83
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
@ -371,7 +372,7 @@ impl MusicgenForCausalLM {
|
||||
#[derive(Debug)]
|
||||
pub struct MusicgenForConditionalGeneration {
|
||||
pub text_encoder: t5::T5EncoderModel,
|
||||
pub audio_encoder: encodec::Model,
|
||||
pub audio_encoder: crate::encodec_model::EncodecModel,
|
||||
pub decoder: MusicgenForCausalLM,
|
||||
cfg: GenConfig,
|
||||
}
|
||||
@ -380,42 +381,15 @@ pub struct MusicgenForConditionalGeneration {
|
||||
pub struct GenConfig {
|
||||
musicgen: Config,
|
||||
t5: t5::Config,
|
||||
encodec: encodec::Config,
|
||||
encodec: crate::encodec_model::Config,
|
||||
}
|
||||
|
||||
impl GenConfig {
|
||||
pub fn small() -> Self {
|
||||
// https://huggingface.co/facebook/musicgen-small/blob/495da4ad086b3416a27c6187f9239f9fd96f3962/config.json#L6
|
||||
let encodec = encodec::Config {
|
||||
audio_channels: 1,
|
||||
chunk_length_s: None,
|
||||
codebook_dim: Some(128),
|
||||
codebook_size: 2048,
|
||||
compress: 2,
|
||||
dilation_growth_rate: 2,
|
||||
hidden_size: 128,
|
||||
kernel_size: 7,
|
||||
last_kernel_size: 7,
|
||||
norm_type: encodec::NormType::WeightNorm,
|
||||
normalize: false,
|
||||
num_filters: 64,
|
||||
num_lstm_layers: 2,
|
||||
num_residual_layers: 1,
|
||||
overlap: None,
|
||||
// This should be Reflect and not Replicate but Reflect does not work yet.
|
||||
pad_mode: encodec::PadMode::Replicate,
|
||||
residual_kernel_size: 3,
|
||||
sampling_rate: 32_000,
|
||||
target_bandwidths: vec![2.2],
|
||||
trim_right_ratio: 1.0,
|
||||
upsampling_ratios: vec![8, 5, 4, 4],
|
||||
use_causal_conv: false,
|
||||
use_conv_shortcut: false,
|
||||
};
|
||||
Self {
|
||||
musicgen: Config::musicgen_small(),
|
||||
t5: t5::Config::musicgen_small(),
|
||||
encodec,
|
||||
encodec: encodec_model::Config::musicgen_small(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -427,7 +401,8 @@ impl MusicgenForConditionalGeneration {
|
||||
|
||||
pub fn load(vb: VarBuilder, cfg: GenConfig) -> Result<Self> {
|
||||
let text_encoder = t5::T5EncoderModel::load(vb.pp("text_encoder"), &cfg.t5)?;
|
||||
let audio_encoder = encodec::Model::new(&cfg.encodec, vb.pp("audio_encoder"))?;
|
||||
let audio_encoder =
|
||||
encodec_model::EncodecModel::load(vb.pp("audio_encoder"), &cfg.encodec)?;
|
||||
let decoder = MusicgenForCausalLM::load(vb.pp("decoder"), &cfg.musicgen)?;
|
||||
Ok(Self {
|
||||
text_encoder,
|
||||
|
20
candle-examples/examples/musicgen/nn.rs
Normal file
20
candle-examples/examples/musicgen/nn.rs
Normal file
@ -0,0 +1,20 @@
|
||||
use candle::Result;
|
||||
use candle_nn::{Conv1d, Conv1dConfig, VarBuilder};
|
||||
|
||||
// Applies weight norm for inference by recomputing the weight tensor. This
|
||||
// does not apply to training.
|
||||
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
|
||||
pub fn conv1d_weight_norm(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: Conv1dConfig,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Conv1d> {
|
||||
let weight_g = vb.get((out_c, 1, 1), "weight_g")?;
|
||||
let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?;
|
||||
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
||||
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
||||
let bias = vb.get(out_c, "bias")?;
|
||||
Ok(Conv1d::new(weight, Some(bias), config))
|
||||
}
|
@ -17,7 +17,7 @@ generate quantized weight files from the original safetensors file by using the
|
||||
`tensor-tools` command line utility via:
|
||||
|
||||
```bash
|
||||
$ cargo run --bin tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf
|
||||
$ cargo run --example tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf
|
||||
```
|
||||
|
||||
## Using custom models
|
||||
|
@ -10,7 +10,7 @@ use tokenizers::Tokenizer;
|
||||
|
||||
use candle::quantized::{ggml_file, gguf_file};
|
||||
use candle::Tensor;
|
||||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_transformers::models::quantized_llama as model;
|
||||
@ -67,8 +67,6 @@ enum Which {
|
||||
Mixtral,
|
||||
#[value(name = "mixtral-instruct")]
|
||||
MixtralInstruct,
|
||||
#[value(name = "llama3-8b")]
|
||||
L8b,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
@ -84,8 +82,7 @@ impl Which {
|
||||
| Self::L13bCode
|
||||
| Self::L34bCode
|
||||
| Self::Leo7b
|
||||
| Self::Leo13b
|
||||
| Self::L8b => false,
|
||||
| Self::Leo13b => false,
|
||||
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
|
||||
// same way. Starling is a fine tuned version of OpenChat.
|
||||
Self::OpenChat35
|
||||
@ -119,8 +116,7 @@ impl Which {
|
||||
| Self::Mistral7bInstruct
|
||||
| Self::Mistral7bInstructV02
|
||||
| Self::OpenChat35
|
||||
| Self::Starling7bAlpha
|
||||
| Self::L8b => false,
|
||||
| Self::Starling7bAlpha => false,
|
||||
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
|
||||
}
|
||||
}
|
||||
@ -144,8 +140,7 @@ impl Which {
|
||||
| Self::Mistral7bInstruct
|
||||
| Self::Mistral7bInstructV02
|
||||
| Self::Zephyr7bAlpha
|
||||
| Self::Zephyr7bBeta
|
||||
| Self::L8b => false,
|
||||
| Self::Zephyr7bBeta => false,
|
||||
Self::OpenChat35 | Self::Starling7bAlpha => true,
|
||||
}
|
||||
}
|
||||
@ -172,7 +167,6 @@ impl Which {
|
||||
| Which::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
|
||||
Which::OpenChat35 => "openchat/openchat_3.5",
|
||||
Which::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
|
||||
Self::L8b => "meta-llama/Meta-Llama-3-8B",
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -206,10 +200,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
@ -222,14 +212,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
/// Process prompt elements separately.
|
||||
#[arg(long)]
|
||||
split_prompt: bool,
|
||||
|
||||
/// Run on CPU rather than GPU even if a GPU is available.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
@ -245,10 +227,6 @@ struct Args {
|
||||
/// Group-Query Attention, use 8 for the 70B version of LLaMAv2.
|
||||
#[arg(long)]
|
||||
gqa: Option<usize>,
|
||||
|
||||
/// Use the slower dmmv cuda kernel.
|
||||
#[arg(long)]
|
||||
force_dmmv: bool,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
@ -328,11 +306,6 @@ impl Args {
|
||||
"TheBloke/Starling-LM-7B-alpha-GGUF",
|
||||
"starling-lm-7b-alpha.Q4_K_M.gguf",
|
||||
),
|
||||
// TODO: swap to TheBloke model when available
|
||||
Which::L8b => (
|
||||
"QuantFactory/Meta-Llama-3-8B-GGUF",
|
||||
"Meta-Llama-3-8B.Q4_K_S.gguf",
|
||||
),
|
||||
};
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(repo.to_string());
|
||||
@ -360,10 +333,11 @@ fn main() -> anyhow::Result<()> {
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
candle::quantized::cuda::set_force_dmmv(args.force_dmmv);
|
||||
|
||||
let temperature = if args.temperature == 0. {
|
||||
None
|
||||
} else {
|
||||
Some(args.temperature)
|
||||
};
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
@ -387,7 +361,7 @@ fn main() -> anyhow::Result<()> {
|
||||
let model_path = args.model()?;
|
||||
let mut file = std::fs::File::open(&model_path)?;
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let device = candle_examples::device(false)?;
|
||||
|
||||
let mut model = match model_path.extension().and_then(|v| v.to_str()) {
|
||||
Some("gguf") => {
|
||||
@ -431,8 +405,7 @@ fn main() -> anyhow::Result<()> {
|
||||
| Which::L13bCode
|
||||
| Which::L34bCode
|
||||
| Which::Leo7b
|
||||
| Which::Leo13b
|
||||
| Which::L8b => 1,
|
||||
| Which::Leo13b => 1,
|
||||
Which::Mixtral
|
||||
| Which::MixtralInstruct
|
||||
| Which::Mistral7b
|
||||
@ -511,36 +484,14 @@ fn main() -> anyhow::Result<()> {
|
||||
prompt_tokens
|
||||
};
|
||||
let mut all_tokens = vec![];
|
||||
let mut logits_processor = {
|
||||
let temperature = args.temperature;
|
||||
let sampling = if temperature <= 0. {
|
||||
Sampling::ArgMax
|
||||
} else {
|
||||
match (args.top_k, args.top_p) {
|
||||
(None, None) => Sampling::All { temperature },
|
||||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||||
}
|
||||
};
|
||||
LogitsProcessor::from_sampling(args.seed, sampling)
|
||||
};
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, temperature, args.top_p);
|
||||
|
||||
let start_prompt_processing = std::time::Instant::now();
|
||||
let mut next_token = if !args.split_prompt {
|
||||
let mut next_token = {
|
||||
let input = Tensor::new(prompt_tokens.as_slice(), &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, 0)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
logits_processor.sample(&logits)?
|
||||
} else {
|
||||
let mut next_token = 0;
|
||||
for (pos, token) in prompt_tokens.iter().enumerate() {
|
||||
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
next_token = logits_processor.sample(&logits)?
|
||||
}
|
||||
next_token
|
||||
};
|
||||
let prompt_dt = start_prompt_processing.elapsed();
|
||||
all_tokens.push(next_token);
|
||||
@ -549,14 +500,11 @@ fn main() -> anyhow::Result<()> {
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let eos_token = match args.which {
|
||||
Which::L8b => "<|end_of_text|>",
|
||||
_ => match args.which.is_open_chat() {
|
||||
true => "<|end_of_turn|>",
|
||||
false => "</s>",
|
||||
},
|
||||
let eos_token = if args.which.is_open_chat() {
|
||||
"<|end_of_turn|>"
|
||||
} else {
|
||||
"</s>"
|
||||
};
|
||||
|
||||
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
|
||||
let start_post_prompt = std::time::Instant::now();
|
||||
let mut sampled = 0;
|
||||
|
@ -1,27 +0,0 @@
|
||||
# candle-qwen: large language model series from Alibaba Cloud
|
||||
|
||||
Qwen 1.5 is a series of large language models that provide strong performances
|
||||
on English and Chinese.
|
||||
|
||||
- [Blog post](https://qwenlm.github.io/blog/qwen1.5/) introducing Qwen1.5.
|
||||
- [Model card](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the HuggingFace Hub.
|
||||
- [Blog post](https://qwenlm.github.io/blog/qwen-moe/) for the
|
||||
mixture-of-experts (MoE) variant.
|
||||
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
$ cargo run --example qwen --release -- --prompt "Hello there "
|
||||
```
|
||||
|
||||
Various model sizes are available via the `--model` argument, including the MoE
|
||||
variant.
|
||||
|
||||
```bash
|
||||
$ cargo run --example qwen --release -- --model moe-a2.7b --prompt 'def print_prime(n: int): '
|
||||
def print_prime(n: int): # n is the number of primes to be printed
|
||||
for i in range(2, n + 1):
|
||||
if all(i % j != 0 for j in range(2, i)):
|
||||
print(i)
|
||||
```
|
||||
|
@ -7,8 +7,7 @@ extern crate accelerate_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::qwen2::{Config as ConfigBase, Model as ModelBase};
|
||||
use candle_transformers::models::qwen2_moe::{Config as ConfigMoe, Model as ModelMoe};
|
||||
use candle_transformers::models::qwen2::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
@ -17,20 +16,6 @@ use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
Base(ModelBase),
|
||||
Moe(ModelMoe),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor, s: usize) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Moe(ref mut m) => m.forward(xs, s),
|
||||
Self::Base(ref mut m) => m.forward(xs, s),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
@ -142,8 +127,6 @@ enum WhichModel {
|
||||
W14b,
|
||||
#[value(name = "72b")]
|
||||
W72b,
|
||||
#[value(name = "moe-a2.7b")]
|
||||
MoeA27b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
@ -241,7 +224,6 @@ fn main() -> Result<()> {
|
||||
WhichModel::W7b => "7B",
|
||||
WhichModel::W14b => "14B",
|
||||
WhichModel::W72b => "72B",
|
||||
WhichModel::MoeA27b => "MoE-A2.7B",
|
||||
};
|
||||
format!("Qwen/Qwen1.5-{size}")
|
||||
}
|
||||
@ -262,11 +244,7 @@ fn main() -> Result<()> {
|
||||
.collect::<Vec<_>>(),
|
||||
None => match args.model {
|
||||
WhichModel::W0_5b | WhichModel::W1_8b => vec![repo.get("model.safetensors")?],
|
||||
WhichModel::W4b
|
||||
| WhichModel::W7b
|
||||
| WhichModel::W14b
|
||||
| WhichModel::W72b
|
||||
| WhichModel::MoeA27b => {
|
||||
WhichModel::W4b | WhichModel::W7b | WhichModel::W14b | WhichModel::W72b => {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
},
|
||||
@ -276,6 +254,7 @@ fn main() -> Result<()> {
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config_file = repo.get("config.json")?;
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
@ -283,16 +262,7 @@ fn main() -> Result<()> {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = match args.model {
|
||||
WhichModel::MoeA27b => {
|
||||
let config: ConfigMoe = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
||||
Model::Moe(ModelMoe::new(&config, vb)?)
|
||||
}
|
||||
_ => {
|
||||
let config: ConfigBase = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
||||
Model::Base(ModelBase::new(&config, vb)?)
|
||||
}
|
||||
};
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
|
@ -1,9 +0,0 @@
|
||||
# candle-recurrent-gemma
|
||||
|
||||
This model card corresponds to the 2B base version of the RecurrentGemma model
|
||||
[huggingface model card](https://huggingface.co/google/recurrentgemma-2b).
|
||||
|
||||
```bash
|
||||
cargo run --features cuda -r --example recurrent-gemma -- \
|
||||
--prompt "Write me a poem about Machine Learning."
|
||||
```
|
@ -1,321 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::quantized_recurrent_gemma::Model as QModel;
|
||||
use candle_transformers::models::recurrent_gemma::{Config, Model as BModel};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
B(BModel),
|
||||
Q(QModel),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::B(m) => m.forward(xs, pos),
|
||||
Self::Q(m) => m.forward(xs, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "2b")]
|
||||
Base2B,
|
||||
#[value(name = "2b-it")]
|
||||
Instruct2B,
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
top_k: usize,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let sampling = match temp {
|
||||
None => candle_transformers::generation::Sampling::ArgMax,
|
||||
Some(temperature) => match top_p {
|
||||
None => candle_transformers::generation::Sampling::TopK {
|
||||
temperature,
|
||||
k: top_k,
|
||||
},
|
||||
Some(top_p) => candle_transformers::generation::Sampling::TopKThenTopP {
|
||||
temperature,
|
||||
k: top_k,
|
||||
p: top_p,
|
||||
},
|
||||
},
|
||||
};
|
||||
let logits_processor = LogitsProcessor::from_sampling(seed, sampling);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
#[arg(long, default_value_t = 250)]
|
||||
top_k: usize,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 8000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The model to use.
|
||||
#[arg(long, default_value = "2b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => match args.which {
|
||||
Which::Base2B => "google/recurrentgemma-2b".to_string(),
|
||||
Which::Instruct2B => "google/recurrentgemma-2b-it".to_string(),
|
||||
},
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let config_filename = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
let filename = match args.which {
|
||||
Which::Base2B => "recurrent-gemma-2b-q4k.gguf",
|
||||
Which::Instruct2B => "recurrent-gemma-7b-q4k.gguf",
|
||||
};
|
||||
let filename = api.model("lmz/candle-gemma".to_string()).get(filename)?;
|
||||
vec![filename]
|
||||
} else {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let model = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&filenames[0],
|
||||
&device,
|
||||
)?;
|
||||
Model::Q(QModel::new(&config, vb.pp("model"))?)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
Model::B(BModel::new(&config, vb.pp("model"))?)
|
||||
};
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.top_k,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -1,118 +0,0 @@
|
||||
use std::collections::VecDeque;
|
||||
|
||||
use rand::distributions::Uniform;
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use candle::{DType, Device, Module, Result, Tensor};
|
||||
use candle_nn::loss::mse;
|
||||
use candle_nn::{linear, seq, Activation, AdamW, Optimizer, VarBuilder, VarMap};
|
||||
|
||||
use crate::gym_env::GymEnv;
|
||||
|
||||
const DEVICE: Device = Device::Cpu;
|
||||
const EPISODES: usize = 200;
|
||||
const BATCH_SIZE: usize = 64;
|
||||
const GAMMA: f64 = 0.99;
|
||||
const LEARNING_RATE: f64 = 0.01;
|
||||
|
||||
pub fn run() -> Result<()> {
|
||||
let env = GymEnv::new("CartPole-v1")?;
|
||||
|
||||
// Build the model that predicts the estimated rewards given a specific state.
|
||||
let var_map = VarMap::new();
|
||||
let vb = VarBuilder::from_varmap(&var_map, DType::F32, &DEVICE);
|
||||
let observation_space = *env.observation_space().first().unwrap();
|
||||
|
||||
let model = seq()
|
||||
.add(linear(observation_space, 64, vb.pp("linear_in"))?)
|
||||
.add(Activation::Relu)
|
||||
.add(linear(64, env.action_space(), vb.pp("linear_out"))?);
|
||||
|
||||
let mut optimizer = AdamW::new_lr(var_map.all_vars(), LEARNING_RATE)?;
|
||||
|
||||
// Initialize the model's memory.
|
||||
let mut memory = VecDeque::with_capacity(10000);
|
||||
|
||||
// Start the training loop.
|
||||
let mut state = env.reset(0)?;
|
||||
let mut episode = 0;
|
||||
let mut accumulate_rewards = 0.0;
|
||||
while episode < EPISODES {
|
||||
// Given the current state, predict the estimated rewards, and take the
|
||||
// action that is expected to return the most rewards.
|
||||
let estimated_rewards = model.forward(&state.unsqueeze(0)?)?;
|
||||
let action: u32 = estimated_rewards.squeeze(0)?.argmax(0)?.to_scalar()?;
|
||||
|
||||
// Take that action in the environment, and memorize the outcome:
|
||||
// - the state for which the action was taken
|
||||
// - the action taken
|
||||
// - the new state resulting of taking that action
|
||||
// - the actual rewards of taking that action
|
||||
// - whether the environment reached a terminal state or not (e.g. game over)
|
||||
let step = env.step(action)?;
|
||||
accumulate_rewards += step.reward;
|
||||
memory.push_back((
|
||||
state,
|
||||
action,
|
||||
step.state.clone(),
|
||||
step.reward,
|
||||
step.terminated || step.truncated,
|
||||
));
|
||||
state = step.state;
|
||||
|
||||
// If there's enough entries in the memory, perform a learning step, where
|
||||
// BATCH_SIZE transitions will be sampled from the memory and will be
|
||||
// fed to the model so that it performs a backward pass.
|
||||
if memory.len() > BATCH_SIZE {
|
||||
// Sample randomly from the memory.
|
||||
let batch = thread_rng()
|
||||
.sample_iter(Uniform::from(0..memory.len()))
|
||||
.take(BATCH_SIZE)
|
||||
.map(|i| memory.get(i).unwrap().clone())
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Group all the samples together into tensors with the appropriate shape.
|
||||
let states: Vec<_> = batch.iter().map(|e| e.0.clone()).collect();
|
||||
let states = Tensor::stack(&states, 0)?;
|
||||
|
||||
let actions = batch.iter().map(|e| e.1);
|
||||
let actions = Tensor::from_iter(actions, &DEVICE)?.unsqueeze(1)?;
|
||||
|
||||
let next_states: Vec<_> = batch.iter().map(|e| e.2.clone()).collect();
|
||||
let next_states = Tensor::stack(&next_states, 0)?;
|
||||
|
||||
let rewards = batch.iter().map(|e| e.3 as f32);
|
||||
let rewards = Tensor::from_iter(rewards, &DEVICE)?.unsqueeze(1)?;
|
||||
|
||||
let non_final_mask = batch.iter().map(|e| !e.4 as u8 as f32);
|
||||
let non_final_mask = Tensor::from_iter(non_final_mask, &DEVICE)?.unsqueeze(1)?;
|
||||
|
||||
// Get the estimated rewards for the actions that where taken at each step.
|
||||
let estimated_rewards = model.forward(&states)?;
|
||||
let x = estimated_rewards.gather(&actions, 1)?;
|
||||
|
||||
// Get the maximum expected rewards for the next state, apply them a discount rate
|
||||
// GAMMA and add them to the rewards that were actually gathered on the current state.
|
||||
// If the next state is a terminal state, just omit maximum estimated
|
||||
// rewards for that state.
|
||||
let expected_rewards = model.forward(&next_states)?.detach();
|
||||
let y = expected_rewards.max_keepdim(1)?;
|
||||
let y = (y * GAMMA * non_final_mask + rewards)?;
|
||||
|
||||
// Compare the estimated rewards with the maximum expected rewards and
|
||||
// perform the backward step.
|
||||
let loss = mse(&x, &y)?;
|
||||
optimizer.backward_step(&loss)?;
|
||||
}
|
||||
|
||||
// If we are on a terminal state, reset the environment and log how it went.
|
||||
if step.terminated || step.truncated {
|
||||
episode += 1;
|
||||
println!("Episode {episode} | Rewards {}", accumulate_rewards as i64);
|
||||
state = env.reset(0)?;
|
||||
accumulate_rewards = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
@ -42,7 +42,7 @@ impl GymEnv {
|
||||
/// Creates a new session of the specified OpenAI Gym environment.
|
||||
pub fn new(name: &str) -> Result<GymEnv> {
|
||||
Python::with_gil(|py| {
|
||||
let gym = py.import_bound("gymnasium")?;
|
||||
let gym = py.import("gymnasium")?;
|
||||
let make = gym.getattr("make")?;
|
||||
let env = make.call1((name,))?;
|
||||
let action_space = env.getattr("action_space")?;
|
||||
@ -66,10 +66,10 @@ impl GymEnv {
|
||||
/// Resets the environment, returning the observation tensor.
|
||||
pub fn reset(&self, seed: u64) -> Result<Tensor> {
|
||||
let state: Vec<f32> = Python::with_gil(|py| {
|
||||
let kwargs = PyDict::new_bound(py);
|
||||
let kwargs = PyDict::new(py);
|
||||
kwargs.set_item("seed", seed)?;
|
||||
let state = self.env.call_method_bound(py, "reset", (), Some(&kwargs))?;
|
||||
state.bind(py).get_item(0)?.extract()
|
||||
let state = self.env.call_method(py, "reset", (), Some(kwargs))?;
|
||||
state.as_ref(py).get_item(0)?.extract()
|
||||
})
|
||||
.map_err(w)?;
|
||||
Tensor::new(state, &Device::Cpu)
|
||||
@ -81,10 +81,8 @@ impl GymEnv {
|
||||
action: A,
|
||||
) -> Result<Step<A>> {
|
||||
let (state, reward, terminated, truncated) = Python::with_gil(|py| {
|
||||
let step = self
|
||||
.env
|
||||
.call_method_bound(py, "step", (action.clone(),), None)?;
|
||||
let step = step.bind(py);
|
||||
let step = self.env.call_method(py, "step", (action.clone(),), None)?;
|
||||
let step = step.as_ref(py);
|
||||
let state: Vec<f32> = step.get_item(0)?.extract()?;
|
||||
let reward: f64 = step.get_item(1)?.extract()?;
|
||||
let terminated: bool = step.get_item(2)?.extract()?;
|
||||
|
@ -13,7 +13,6 @@ mod gym_env;
|
||||
mod vec_gym_env;
|
||||
|
||||
mod ddpg;
|
||||
mod dqn;
|
||||
mod policy_gradient;
|
||||
|
||||
#[derive(Parser)]
|
||||
@ -26,7 +25,6 @@ struct Args {
|
||||
enum Command {
|
||||
Pg,
|
||||
Ddpg,
|
||||
Dqn,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -34,7 +32,6 @@ fn main() -> Result<()> {
|
||||
match args.command {
|
||||
Command::Pg => policy_gradient::run()?,
|
||||
Command::Ddpg => ddpg::run()?,
|
||||
Command::Dqn => dqn::run()?,
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -24,13 +24,13 @@ fn w(res: PyErr) -> candle::Error {
|
||||
impl VecGymEnv {
|
||||
pub fn new(name: &str, img_dir: Option<&str>, nprocesses: usize) -> Result<VecGymEnv> {
|
||||
Python::with_gil(|py| {
|
||||
let sys = py.import_bound("sys")?;
|
||||
let sys = py.import("sys")?;
|
||||
let path = sys.getattr("path")?;
|
||||
let _ = path.call_method1(
|
||||
"append",
|
||||
("candle-examples/examples/reinforcement-learning",),
|
||||
)?;
|
||||
let gym = py.import_bound("atari_wrappers")?;
|
||||
let gym = py.import("atari_wrappers")?;
|
||||
let make = gym.getattr("make")?;
|
||||
let env = make.call1((name, img_dir, nprocesses))?;
|
||||
let action_space = env.getattr("action_space")?;
|
||||
@ -60,10 +60,10 @@ impl VecGymEnv {
|
||||
|
||||
pub fn step(&self, action: Vec<usize>) -> Result<Step> {
|
||||
let (obs, reward, is_done) = Python::with_gil(|py| {
|
||||
let step = self.env.call_method_bound(py, "step", (action,), None)?;
|
||||
let step = step.bind(py);
|
||||
let step = self.env.call_method(py, "step", (action,), None)?;
|
||||
let step = step.as_ref(py);
|
||||
let obs = step.get_item(0)?.call_method("flatten", (), None)?;
|
||||
let obs_buffer = pyo3::buffer::PyBuffer::get_bound(&obs)?;
|
||||
let obs_buffer = pyo3::buffer::PyBuffer::get(obs)?;
|
||||
let obs: Vec<u8> = obs_buffer.to_vec(py)?;
|
||||
let reward: Vec<f32> = step.get_item(1)?.extract()?;
|
||||
let is_done: Vec<f32> = step.get_item(2)?.extract()?;
|
||||
|
@ -78,7 +78,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -45,7 +45,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
The [RWKV model](https://wiki.rwkv.com/) is a recurrent neural network model
|
||||
with performance on par with transformer architectures. Several variants are
|
||||
available, candle implements the v5 and v6 versions and can be used with
|
||||
Eagle 7B([blog post](https://blog.rwkv.com/p/eagle-7b-soaring-past-transformers)).
|
||||
available, candle implements the v5 version and can be used with Eagle 7B([blog
|
||||
post](https://blog.rwkv.com/p/eagle-7b-soaring-past-transformers)).
|
||||
|
||||
```bash
|
||||
$ cargo run --example rwkv --release -- --prompt "The smallest prime is "
|
||||
|
@ -7,36 +7,13 @@ extern crate accelerate_src;
|
||||
use anyhow::Result;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::quantized_rwkv_v5::Model as Q5;
|
||||
use candle_transformers::models::quantized_rwkv_v6::Model as Q6;
|
||||
use candle_transformers::models::rwkv_v5::{Config, Model as M5, State, Tokenizer};
|
||||
use candle_transformers::models::rwkv_v6::Model as M6;
|
||||
use candle_transformers::models::rwkv_v5::{Config, Model, State, Tokenizer};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
|
||||
const EOS_TOKEN_ID: u32 = 261;
|
||||
|
||||
enum Model {
|
||||
M5(M5),
|
||||
Q5(Q5),
|
||||
M6(M6),
|
||||
Q6(Q6),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, xs: &Tensor, state: &mut State) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::M5(m) => m.forward(xs, state),
|
||||
Self::Q5(m) => m.forward(xs, state),
|
||||
Self::M6(m) => m.forward(xs, state),
|
||||
Self::Q6(m) => m.forward(xs, state),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
config: Config,
|
||||
@ -106,9 +83,6 @@ impl TextGeneration {
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == EOS_TOKEN_ID || next_token == 0 {
|
||||
break;
|
||||
}
|
||||
print!("{}", self.tokenizer.decode(&[next_token])?);
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
@ -129,7 +103,6 @@ enum Which {
|
||||
Eagle7b,
|
||||
World1b5,
|
||||
World3b,
|
||||
World6_1b6,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Which {
|
||||
@ -141,10 +114,9 @@ impl std::fmt::Display for Which {
|
||||
impl Which {
|
||||
fn model_id(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Eagle7b => "RWKV/v5-Eagle-7B-HF",
|
||||
Self::Eagle7b => "RWKV/HF_v5-Eagle-7B",
|
||||
Self::World1b5 => "RWKV/rwkv-5-world-1b5",
|
||||
Self::World3b => "RWKV/rwkv-5-world-3b",
|
||||
Self::World6_1b6 => "paperfun/rwkv",
|
||||
}
|
||||
}
|
||||
|
||||
@ -152,7 +124,6 @@ impl Which {
|
||||
match self {
|
||||
Self::Eagle7b => "refs/pr/1",
|
||||
Self::World1b5 | Self::World3b => "refs/pr/2",
|
||||
Self::World6_1b6 => "main",
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -205,9 +176,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
@ -268,27 +236,7 @@ fn main() -> Result<()> {
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
vec![match args.which {
|
||||
Which::World1b5 => api
|
||||
.model("lmz/candle-rwkv".to_string())
|
||||
.get("world1b5-q4k.gguf")?,
|
||||
Which::World3b => api
|
||||
.model("lmz/candle-rwkv".to_string())
|
||||
.get("world3b-q4k.gguf")?,
|
||||
Which::Eagle7b => api
|
||||
.model("lmz/candle-rwkv".to_string())
|
||||
.get("eagle7b-q4k.gguf")?,
|
||||
Which::World6_1b6 => repo.get("rwkv-6-world-1b6-q4k.gguf")?,
|
||||
}]
|
||||
} else {
|
||||
vec![match args.which {
|
||||
Which::World1b5 | Which::World3b | Which::Eagle7b => {
|
||||
repo.get("model.safetensors")?
|
||||
}
|
||||
Which::World6_1b6 => repo.get("rwkv-6-world-1b6.safetensors")?,
|
||||
}]
|
||||
}
|
||||
vec![repo.get("model.safetensors")?]
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
@ -297,21 +245,8 @@ fn main() -> Result<()> {
|
||||
let start = std::time::Instant::now();
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = if args.quantized {
|
||||
let filename = &filenames[0];
|
||||
let vb =
|
||||
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?;
|
||||
match args.which {
|
||||
Which::World1b5 | Which::World3b | Which::Eagle7b => Model::Q5(Q5::new(&config, vb)?),
|
||||
Which::World6_1b6 => Model::Q6(Q6::new(&config, vb)?),
|
||||
}
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
match args.which {
|
||||
Which::World1b5 | Which::World3b | Which::Eagle7b => Model::M5(M5::new(&config, vb)?),
|
||||
Which::World6_1b6 => Model::M6(M6::new(&config, vb)?),
|
||||
}
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
|
@ -1,28 +0,0 @@
|
||||
# candle-segformer
|
||||
|
||||
- [HuggingFace Segformer Model Card][segformer]
|
||||
- [`mit-b0` - An encoder only pretrained model][encoder]
|
||||
- [`segformer-b0-finetuned-ade-512-512` - A fine tuned model for segmentation][ade512]
|
||||
|
||||
## How to run the example
|
||||
|
||||
If you want you can use the example images from this [pull request][pr], download them and supply the path to the image as an argument to the example.
|
||||
|
||||
```bash
|
||||
# run the image classification task
|
||||
cargo run --example segformer classify <path-to-image>
|
||||
# run the segmentation task
|
||||
cargo run --example segformer segment <path-to-image>
|
||||
```
|
||||
|
||||
Example output for classification:
|
||||
|
||||
```text
|
||||
classification logits [3.275261e-5, 0.0008562019, 0.0008868563, 0.9977506, 0.0002465068, 0.0002241473, 2.846596e-6]
|
||||
label: hamburger
|
||||
```
|
||||
|
||||
[pr]: https://github.com/huggingface/candle/pull/1617
|
||||
[segformer]: https://huggingface.co/docs/transformers/model_doc/segformer
|
||||
[encoder]: https://huggingface.co/nvidia/mit-b0
|
||||
[ade512]: https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512
|
@ -1,752 +0,0 @@
|
||||
[
|
||||
{
|
||||
"index": 1,
|
||||
"color": "#787878",
|
||||
"label": "wall"
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"color": "#B47878",
|
||||
"label": "building;edifice"
|
||||
},
|
||||
{
|
||||
"index": 3,
|
||||
"color": "#06E6E6",
|
||||
"label": "sky"
|
||||
},
|
||||
{
|
||||
"index": 4,
|
||||
"color": "#503232",
|
||||
"label": "floor;flooring"
|
||||
},
|
||||
{
|
||||
"index": 5,
|
||||
"color": "#04C803",
|
||||
"label": "tree"
|
||||
},
|
||||
{
|
||||
"index": 6,
|
||||
"color": "#787850",
|
||||
"label": "ceiling"
|
||||
},
|
||||
{
|
||||
"index": 7,
|
||||
"color": "#8C8C8C",
|
||||
"label": "road;route"
|
||||
},
|
||||
{
|
||||
"index": 8,
|
||||
"color": "#CC05FF",
|
||||
"label": "bed"
|
||||
},
|
||||
{
|
||||
"index": 9,
|
||||
"color": "#E6E6E6",
|
||||
"label": "windowpane;window"
|
||||
},
|
||||
{
|
||||
"index": 10,
|
||||
"color": "#04FA07",
|
||||
"label": "grass"
|
||||
},
|
||||
{
|
||||
"index": 11,
|
||||
"color": "#E005FF",
|
||||
"label": "cabinet"
|
||||
},
|
||||
{
|
||||
"index": 12,
|
||||
"color": "#EBFF07",
|
||||
"label": "sidewalk;pavement"
|
||||
},
|
||||
{
|
||||
"index": 13,
|
||||
"color": "#96053D",
|
||||
"label": "person;individual;someone;somebody;mortal;soul"
|
||||
},
|
||||
{
|
||||
"index": 14,
|
||||
"color": "#787846",
|
||||
"label": "earth;ground"
|
||||
},
|
||||
{
|
||||
"index": 15,
|
||||
"color": "#08FF33",
|
||||
"label": "door;double;door"
|
||||
},
|
||||
{
|
||||
"index": 16,
|
||||
"color": "#FF0652",
|
||||
"label": "table"
|
||||
},
|
||||
{
|
||||
"index": 17,
|
||||
"color": "#8FFF8C",
|
||||
"label": "mountain;mount"
|
||||
},
|
||||
{
|
||||
"index": 18,
|
||||
"color": "#CCFF04",
|
||||
"label": "plant;flora;plant;life"
|
||||
},
|
||||
{
|
||||
"index": 19,
|
||||
"color": "#FF3307",
|
||||
"label": "curtain;drape;drapery;mantle;pall"
|
||||
},
|
||||
{
|
||||
"index": 20,
|
||||
"color": "#CC4603",
|
||||
"label": "chair"
|
||||
},
|
||||
{
|
||||
"index": 21,
|
||||
"color": "#0066C8",
|
||||
"label": "car;auto;automobile;machine;motorcar"
|
||||
},
|
||||
{
|
||||
"index": 22,
|
||||
"color": "#3DE6FA",
|
||||
"label": "water"
|
||||
},
|
||||
{
|
||||
"index": 23,
|
||||
"color": "#FF0633",
|
||||
"label": "painting;picture"
|
||||
},
|
||||
{
|
||||
"index": 24,
|
||||
"color": "#0B66FF",
|
||||
"label": "sofa;couch;lounge"
|
||||
},
|
||||
{
|
||||
"index": 25,
|
||||
"color": "#FF0747",
|
||||
"label": "shelf"
|
||||
},
|
||||
{
|
||||
"index": 26,
|
||||
"color": "#FF09E0",
|
||||
"label": "house"
|
||||
},
|
||||
{
|
||||
"index": 27,
|
||||
"color": "#0907E6",
|
||||
"label": "sea"
|
||||
},
|
||||
{
|
||||
"index": 28,
|
||||
"color": "#DCDCDC",
|
||||
"label": "mirror"
|
||||
},
|
||||
{
|
||||
"index": 29,
|
||||
"color": "#FF095C",
|
||||
"label": "rug;carpet;carpeting"
|
||||
},
|
||||
{
|
||||
"index": 30,
|
||||
"color": "#7009FF",
|
||||
"label": "field"
|
||||
},
|
||||
{
|
||||
"index": 31,
|
||||
"color": "#08FFD6",
|
||||
"label": "armchair"
|
||||
},
|
||||
{
|
||||
"index": 32,
|
||||
"color": "#07FFE0",
|
||||
"label": "seat"
|
||||
},
|
||||
{
|
||||
"index": 33,
|
||||
"color": "#FFB806",
|
||||
"label": "fence;fencing"
|
||||
},
|
||||
{
|
||||
"index": 34,
|
||||
"color": "#0AFF47",
|
||||
"label": "desk"
|
||||
},
|
||||
{
|
||||
"index": 35,
|
||||
"color": "#FF290A",
|
||||
"label": "rock;stone"
|
||||
},
|
||||
{
|
||||
"index": 36,
|
||||
"color": "#07FFFF",
|
||||
"label": "wardrobe;closet;press"
|
||||
},
|
||||
{
|
||||
"index": 37,
|
||||
"color": "#E0FF08",
|
||||
"label": "lamp"
|
||||
},
|
||||
{
|
||||
"index": 38,
|
||||
"color": "#6608FF",
|
||||
"label": "bathtub;bathing;tub;bath;tub"
|
||||
},
|
||||
{
|
||||
"index": 39,
|
||||
"color": "#FF3D06",
|
||||
"label": "railing;rail"
|
||||
},
|
||||
{
|
||||
"index": 40,
|
||||
"color": "#FFC207",
|
||||
"label": "cushion"
|
||||
},
|
||||
{
|
||||
"index": 41,
|
||||
"color": "#FF7A08",
|
||||
"label": "base;pedestal;stand"
|
||||
},
|
||||
{
|
||||
"index": 42,
|
||||
"color": "#00FF14",
|
||||
"label": "box"
|
||||
},
|
||||
{
|
||||
"index": 43,
|
||||
"color": "#FF0829",
|
||||
"label": "column;pillar"
|
||||
},
|
||||
{
|
||||
"index": 44,
|
||||
"color": "#FF0599",
|
||||
"label": "signboard;sign"
|
||||
},
|
||||
{
|
||||
"index": 45,
|
||||
"color": "#0633FF",
|
||||
"label": "chest;of;drawers;chest;bureau;dresser"
|
||||
},
|
||||
{
|
||||
"index": 46,
|
||||
"color": "#EB0CFF",
|
||||
"label": "counter"
|
||||
},
|
||||
{
|
||||
"index": 47,
|
||||
"color": "#A09614",
|
||||
"label": "sand"
|
||||
},
|
||||
{
|
||||
"index": 48,
|
||||
"color": "#00A3FF",
|
||||
"label": "sink"
|
||||
},
|
||||
{
|
||||
"index": 49,
|
||||
"color": "#8C8C8C",
|
||||
"label": "skyscraper"
|
||||
},
|
||||
{
|
||||
"index": 50,
|
||||
"color": "#FA0A0F",
|
||||
"label": "fireplace;hearth;open;fireplace"
|
||||
},
|
||||
{
|
||||
"index": 51,
|
||||
"color": "#14FF00",
|
||||
"label": "refrigerator;icebox"
|
||||
},
|
||||
{
|
||||
"index": 52,
|
||||
"color": "#1FFF00",
|
||||
"label": "grandstand;covered;stand"
|
||||
},
|
||||
{
|
||||
"index": 53,
|
||||
"color": "#FF1F00",
|
||||
"label": "path"
|
||||
},
|
||||
{
|
||||
"index": 54,
|
||||
"color": "#FFE000",
|
||||
"label": "stairs;steps"
|
||||
},
|
||||
{
|
||||
"index": 55,
|
||||
"color": "#99FF00",
|
||||
"label": "runway"
|
||||
},
|
||||
{
|
||||
"index": 56,
|
||||
"color": "#0000FF",
|
||||
"label": "case;display;case;showcase;vitrine"
|
||||
},
|
||||
{
|
||||
"index": 57,
|
||||
"color": "#FF4700",
|
||||
"label": "pool;table;billiard;table;snooker;table"
|
||||
},
|
||||
{
|
||||
"index": 58,
|
||||
"color": "#00EBFF",
|
||||
"label": "pillow"
|
||||
},
|
||||
{
|
||||
"index": 59,
|
||||
"color": "#00ADFF",
|
||||
"label": "screen;door;screen"
|
||||
},
|
||||
{
|
||||
"index": 60,
|
||||
"color": "#1F00FF",
|
||||
"label": "stairway;staircase"
|
||||
},
|
||||
{
|
||||
"index": 61,
|
||||
"color": "#0BC8C8",
|
||||
"label": "river"
|
||||
},
|
||||
{
|
||||
"index": 62,
|
||||
"color": "#FF5200",
|
||||
"label": "bridge;span"
|
||||
},
|
||||
{
|
||||
"index": 63,
|
||||
"color": "#00FFF5",
|
||||
"label": "bookcase"
|
||||
},
|
||||
{
|
||||
"index": 64,
|
||||
"color": "#003DFF",
|
||||
"label": "blind;screen"
|
||||
},
|
||||
{
|
||||
"index": 65,
|
||||
"color": "#00FF70",
|
||||
"label": "coffee;table;cocktail;table"
|
||||
},
|
||||
{
|
||||
"index": 66,
|
||||
"color": "#00FF85",
|
||||
"label": "toilet;can;commode;crapper;pot;potty;stool;throne"
|
||||
},
|
||||
{
|
||||
"index": 67,
|
||||
"color": "#FF0000",
|
||||
"label": "flower"
|
||||
},
|
||||
{
|
||||
"index": 68,
|
||||
"color": "#FFA300",
|
||||
"label": "book"
|
||||
},
|
||||
{
|
||||
"index": 69,
|
||||
"color": "#FF6600",
|
||||
"label": "hill"
|
||||
},
|
||||
{
|
||||
"index": 70,
|
||||
"color": "#C2FF00",
|
||||
"label": "bench"
|
||||
},
|
||||
{
|
||||
"index": 71,
|
||||
"color": "#008FFF",
|
||||
"label": "countertop"
|
||||
},
|
||||
{
|
||||
"index": 72,
|
||||
"color": "#33FF00",
|
||||
"label": "stove;kitchen;stove;range;kitchen;range;cooking;stove"
|
||||
},
|
||||
{
|
||||
"index": 73,
|
||||
"color": "#0052FF",
|
||||
"label": "palm;palm;tree"
|
||||
},
|
||||
{
|
||||
"index": 74,
|
||||
"color": "#00FF29",
|
||||
"label": "kitchen;island"
|
||||
},
|
||||
{
|
||||
"index": 75,
|
||||
"color": "#00FFAD",
|
||||
"label": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system"
|
||||
},
|
||||
{
|
||||
"index": 76,
|
||||
"color": "#0A00FF",
|
||||
"label": "swivel;chair"
|
||||
},
|
||||
{
|
||||
"index": 77,
|
||||
"color": "#ADFF00",
|
||||
"label": "boat"
|
||||
},
|
||||
{
|
||||
"index": 78,
|
||||
"color": "#00FF99",
|
||||
"label": "bar"
|
||||
},
|
||||
{
|
||||
"index": 79,
|
||||
"color": "#FF5C00",
|
||||
"label": "arcade;machine"
|
||||
},
|
||||
{
|
||||
"index": 80,
|
||||
"color": "#FF00FF",
|
||||
"label": "hovel;hut;hutch;shack;shanty"
|
||||
},
|
||||
{
|
||||
"index": 81,
|
||||
"color": "#FF00F5",
|
||||
"label": "bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle"
|
||||
},
|
||||
{
|
||||
"index": 82,
|
||||
"color": "#FF0066",
|
||||
"label": "towel"
|
||||
},
|
||||
{
|
||||
"index": 83,
|
||||
"color": "#FFAD00",
|
||||
"label": "light;light;source"
|
||||
},
|
||||
{
|
||||
"index": 84,
|
||||
"color": "#FF0014",
|
||||
"label": "truck;motortruck"
|
||||
},
|
||||
{
|
||||
"index": 85,
|
||||
"color": "#FFB8B8",
|
||||
"label": "tower"
|
||||
},
|
||||
{
|
||||
"index": 86,
|
||||
"color": "#001FFF",
|
||||
"label": "chandelier;pendant;pendent"
|
||||
},
|
||||
{
|
||||
"index": 87,
|
||||
"color": "#00FF3D",
|
||||
"label": "awning;sunshade;sunblind"
|
||||
},
|
||||
{
|
||||
"index": 88,
|
||||
"color": "#0047FF",
|
||||
"label": "streetlight;street;lamp"
|
||||
},
|
||||
{
|
||||
"index": 89,
|
||||
"color": "#FF00CC",
|
||||
"label": "booth;cubicle;stall;kiosk"
|
||||
},
|
||||
{
|
||||
"index": 90,
|
||||
"color": "#00FFC2",
|
||||
"label": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box"
|
||||
},
|
||||
{
|
||||
"index": 91,
|
||||
"color": "#00FF52",
|
||||
"label": "airplane;aeroplane;plane"
|
||||
},
|
||||
{
|
||||
"index": 92,
|
||||
"color": "#000AFF",
|
||||
"label": "dirt;track"
|
||||
},
|
||||
{
|
||||
"index": 93,
|
||||
"color": "#0070FF",
|
||||
"label": "apparel;wearing;apparel;dress;clothes"
|
||||
},
|
||||
{
|
||||
"index": 94,
|
||||
"color": "#3300FF",
|
||||
"label": "pole"
|
||||
},
|
||||
{
|
||||
"index": 95,
|
||||
"color": "#00C2FF",
|
||||
"label": "land;ground;soil"
|
||||
},
|
||||
{
|
||||
"index": 96,
|
||||
"color": "#007AFF",
|
||||
"label": "bannister;banister;balustrade;balusters;handrail"
|
||||
},
|
||||
{
|
||||
"index": 97,
|
||||
"color": "#00FFA3",
|
||||
"label": "escalator;moving;staircase;moving;stairway"
|
||||
},
|
||||
{
|
||||
"index": 98,
|
||||
"color": "#FF9900",
|
||||
"label": "ottoman;pouf;pouffe;puff;hassock"
|
||||
},
|
||||
{
|
||||
"index": 99,
|
||||
"color": "#00FF0A",
|
||||
"label": "bottle"
|
||||
},
|
||||
{
|
||||
"index": 100,
|
||||
"color": "#FF7000",
|
||||
"label": "buffet;counter;sideboard"
|
||||
},
|
||||
{
|
||||
"index": 101,
|
||||
"color": "#8FFF00",
|
||||
"label": "poster;posting;placard;notice;bill;card"
|
||||
},
|
||||
{
|
||||
"index": 102,
|
||||
"color": "#5200FF",
|
||||
"label": "stage"
|
||||
},
|
||||
{
|
||||
"index": 103,
|
||||
"color": "#A3FF00",
|
||||
"label": "van"
|
||||
},
|
||||
{
|
||||
"index": 104,
|
||||
"color": "#FFEB00",
|
||||
"label": "ship"
|
||||
},
|
||||
{
|
||||
"index": 105,
|
||||
"color": "#08B8AA",
|
||||
"label": "fountain"
|
||||
},
|
||||
{
|
||||
"index": 106,
|
||||
"color": "#8500FF",
|
||||
"label": "conveyer;belt;conveyor;belt;conveyer;conveyor;transporter"
|
||||
},
|
||||
{
|
||||
"index": 107,
|
||||
"color": "#00FF5C",
|
||||
"label": "canopy"
|
||||
},
|
||||
{
|
||||
"index": 108,
|
||||
"color": "#B800FF",
|
||||
"label": "washer;automatic;washer;washing;machine"
|
||||
},
|
||||
{
|
||||
"index": 109,
|
||||
"color": "#FF001F",
|
||||
"label": "plaything;toy"
|
||||
},
|
||||
{
|
||||
"index": 110,
|
||||
"color": "#00B8FF",
|
||||
"label": "swimming;pool;swimming;bath;natatorium"
|
||||
},
|
||||
{
|
||||
"index": 111,
|
||||
"color": "#00D6FF",
|
||||
"label": "stool"
|
||||
},
|
||||
{
|
||||
"index": 112,
|
||||
"color": "#FF0070",
|
||||
"label": "barrel;cask"
|
||||
},
|
||||
{
|
||||
"index": 113,
|
||||
"color": "#5CFF00",
|
||||
"label": "basket;handbasket"
|
||||
},
|
||||
{
|
||||
"index": 114,
|
||||
"color": "#00E0FF",
|
||||
"label": "waterfall;falls"
|
||||
},
|
||||
{
|
||||
"index": 115,
|
||||
"color": "#70E0FF",
|
||||
"label": "tent;collapsible;shelter"
|
||||
},
|
||||
{
|
||||
"index": 116,
|
||||
"color": "#46B8A0",
|
||||
"label": "bag"
|
||||
},
|
||||
{
|
||||
"index": 117,
|
||||
"color": "#A300FF",
|
||||
"label": "minibike;motorbike"
|
||||
},
|
||||
{
|
||||
"index": 118,
|
||||
"color": "#9900FF",
|
||||
"label": "cradle"
|
||||
},
|
||||
{
|
||||
"index": 119,
|
||||
"color": "#47FF00",
|
||||
"label": "oven"
|
||||
},
|
||||
{
|
||||
"index": 120,
|
||||
"color": "#FF00A3",
|
||||
"label": "ball"
|
||||
},
|
||||
{
|
||||
"index": 121,
|
||||
"color": "#FFCC00",
|
||||
"label": "food;solid;food"
|
||||
},
|
||||
{
|
||||
"index": 122,
|
||||
"color": "#FF008F",
|
||||
"label": "step;stair"
|
||||
},
|
||||
{
|
||||
"index": 123,
|
||||
"color": "#00FFEB",
|
||||
"label": "tank;storage;tank"
|
||||
},
|
||||
{
|
||||
"index": 124,
|
||||
"color": "#85FF00",
|
||||
"label": "trade;name;brand;name;brand;marque"
|
||||
},
|
||||
{
|
||||
"index": 125,
|
||||
"color": "#FF00EB",
|
||||
"label": "microwave;microwave;oven"
|
||||
},
|
||||
{
|
||||
"index": 126,
|
||||
"color": "#F500FF",
|
||||
"label": "pot;flowerpot"
|
||||
},
|
||||
{
|
||||
"index": 127,
|
||||
"color": "#FF007A",
|
||||
"label": "animal;animate;being;beast;brute;creature;fauna"
|
||||
},
|
||||
{
|
||||
"index": 128,
|
||||
"color": "#FFF500",
|
||||
"label": "bicycle;bike;wheel;cycle"
|
||||
},
|
||||
{
|
||||
"index": 129,
|
||||
"color": "#0ABED4",
|
||||
"label": "lake"
|
||||
},
|
||||
{
|
||||
"index": 130,
|
||||
"color": "#D6FF00",
|
||||
"label": "dishwasher;dish;washer;dishwashing;machine"
|
||||
},
|
||||
{
|
||||
"index": 131,
|
||||
"color": "#00CCFF",
|
||||
"label": "screen;silver;screen;projection;screen"
|
||||
},
|
||||
{
|
||||
"index": 132,
|
||||
"color": "#1400FF",
|
||||
"label": "blanket;cover"
|
||||
},
|
||||
{
|
||||
"index": 133,
|
||||
"color": "#FFFF00",
|
||||
"label": "sculpture"
|
||||
},
|
||||
{
|
||||
"index": 134,
|
||||
"color": "#0099FF",
|
||||
"label": "hood;exhaust;hood"
|
||||
},
|
||||
{
|
||||
"index": 135,
|
||||
"color": "#0029FF",
|
||||
"label": "sconce"
|
||||
},
|
||||
{
|
||||
"index": 136,
|
||||
"color": "#00FFCC",
|
||||
"label": "vase"
|
||||
},
|
||||
{
|
||||
"index": 137,
|
||||
"color": "#2900FF",
|
||||
"label": "traffic;light;traffic;signal;stoplight"
|
||||
},
|
||||
{
|
||||
"index": 138,
|
||||
"color": "#29FF00",
|
||||
"label": "tray"
|
||||
},
|
||||
{
|
||||
"index": 139,
|
||||
"color": "#AD00FF",
|
||||
"label": "ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin"
|
||||
},
|
||||
{
|
||||
"index": 140,
|
||||
"color": "#00F5FF",
|
||||
"label": "fan"
|
||||
},
|
||||
{
|
||||
"index": 141,
|
||||
"color": "#4700FF",
|
||||
"label": "pier;wharf;wharfage;dock"
|
||||
},
|
||||
{
|
||||
"index": 142,
|
||||
"color": "#7A00FF",
|
||||
"label": "crt;screen"
|
||||
},
|
||||
{
|
||||
"index": 143,
|
||||
"color": "#00FFB8",
|
||||
"label": "plate"
|
||||
},
|
||||
{
|
||||
"index": 144,
|
||||
"color": "#005CFF",
|
||||
"label": "monitor;monitoring;device"
|
||||
},
|
||||
{
|
||||
"index": 145,
|
||||
"color": "#B8FF00",
|
||||
"label": "bulletin;board;notice;board"
|
||||
},
|
||||
{
|
||||
"index": 146,
|
||||
"color": "#0085FF",
|
||||
"label": "shower"
|
||||
},
|
||||
{
|
||||
"index": 147,
|
||||
"color": "#FFD600",
|
||||
"label": "radiator"
|
||||
},
|
||||
{
|
||||
"index": 148,
|
||||
"color": "#19C2C2",
|
||||
"label": "glass;drinking;glass"
|
||||
},
|
||||
{
|
||||
"index": 149,
|
||||
"color": "#66FF00",
|
||||
"label": "clock"
|
||||
},
|
||||
{
|
||||
"index": 150,
|
||||
"color": "#5C00FF",
|
||||
"label": "flag"
|
||||
}
|
||||
]
|
@ -1,155 +0,0 @@
|
||||
use candle::Device;
|
||||
use candle::Module;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::segformer::{
|
||||
Config, ImageClassificationModel, SemanticSegmentationModel,
|
||||
};
|
||||
use clap::{Args, Parser, Subcommand};
|
||||
use imageproc::image::Rgb;
|
||||
use imageproc::integral_image::ArrayData;
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
|
||||
#[derive(Parser)]
|
||||
#[clap(about, version, long_about = None)]
|
||||
struct CliArgs {
|
||||
#[arg(long, help = "use cpu")]
|
||||
cpu: bool,
|
||||
#[command(subcommand)]
|
||||
command: Commands,
|
||||
}
|
||||
#[derive(Args, Debug)]
|
||||
struct SegmentationArgs {
|
||||
#[arg(
|
||||
long,
|
||||
help = "name of the huggingface hub model",
|
||||
default_value = "nvidia/segformer-b0-finetuned-ade-512-512"
|
||||
)]
|
||||
model_name: String,
|
||||
#[arg(
|
||||
long,
|
||||
help = "path to the label file in json format",
|
||||
default_value = "candle-examples/examples/segformer/assets/labels.json"
|
||||
)]
|
||||
label_path: PathBuf,
|
||||
#[arg(long, help = "path to for the output mask image")]
|
||||
output_path: PathBuf,
|
||||
#[arg(help = "path to image as input")]
|
||||
image: PathBuf,
|
||||
}
|
||||
|
||||
#[derive(Args, Debug)]
|
||||
struct ClassificationArgs {
|
||||
#[arg(
|
||||
long,
|
||||
help = "name of the huggingface hub model",
|
||||
default_value = "paolinox/segformer-finetuned-food101"
|
||||
)]
|
||||
model_name: String,
|
||||
#[arg(help = "path to image as input")]
|
||||
image: PathBuf,
|
||||
}
|
||||
|
||||
#[derive(Subcommand, Debug)]
|
||||
enum Commands {
|
||||
Segment(SegmentationArgs),
|
||||
Classify(ClassificationArgs),
|
||||
}
|
||||
|
||||
fn get_vb_and_config(model_name: String, device: &Device) -> anyhow::Result<(VarBuilder, Config)> {
|
||||
println!("loading model {} via huggingface hub", model_name);
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(model_name.clone());
|
||||
let model_file = api.get("model.safetensors")?;
|
||||
println!("model {} downloaded and loaded", model_name);
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], candle::DType::F32, device)? };
|
||||
let config = std::fs::read_to_string(api.get("config.json")?)?;
|
||||
let config: Config = serde_json::from_str(&config)?;
|
||||
println!("{:?}", config);
|
||||
Ok((vb, config))
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Deserialize)]
|
||||
struct LabelItem {
|
||||
index: u32,
|
||||
color: String,
|
||||
}
|
||||
|
||||
fn segmentation_task(args: SegmentationArgs, device: &Device) -> anyhow::Result<()> {
|
||||
let label_file = std::fs::read_to_string(&args.label_path)?;
|
||||
let label_items: Vec<LabelItem> = serde_json::from_str(&label_file)?;
|
||||
let label_colors: HashMap<u32, Rgb<u8>> = label_items
|
||||
.iter()
|
||||
.map(|x| {
|
||||
(x.index - 1, {
|
||||
let color = x.color.trim_start_matches('#');
|
||||
let r = u8::from_str_radix(&color[0..2], 16).unwrap();
|
||||
let g = u8::from_str_radix(&color[2..4], 16).unwrap();
|
||||
let b = u8::from_str_radix(&color[4..6], 16).unwrap();
|
||||
Rgb([r, g, b])
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?
|
||||
.unsqueeze(0)?
|
||||
.to_device(device)?;
|
||||
let (vb, config) = get_vb_and_config(args.model_name, device)?;
|
||||
let num_labels = label_items.len();
|
||||
|
||||
let model = SemanticSegmentationModel::new(&config, num_labels, vb)?;
|
||||
let segmentations = model.forward(&image)?;
|
||||
|
||||
// generate a mask image
|
||||
let mask = &segmentations.squeeze(0)?.argmax(0)?;
|
||||
let (h, w) = mask.dims2()?;
|
||||
let mask = mask.flatten_all()?.to_vec1::<u32>()?;
|
||||
let mask = mask
|
||||
.iter()
|
||||
.flat_map(|x| label_colors[x].data())
|
||||
.collect::<Vec<u8>>();
|
||||
let mask: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
||||
image::ImageBuffer::from_raw(w as u32, h as u32, mask).unwrap();
|
||||
// resize
|
||||
let mask = image::DynamicImage::from(mask);
|
||||
let mask = mask.resize_to_fill(
|
||||
w as u32 * 4,
|
||||
h as u32 * 4,
|
||||
image::imageops::FilterType::CatmullRom,
|
||||
);
|
||||
mask.save(args.output_path.clone())?;
|
||||
println!("mask image saved to {:?}", args.output_path);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn classification_task(args: ClassificationArgs, device: &Device) -> anyhow::Result<()> {
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?
|
||||
.unsqueeze(0)?
|
||||
.to_device(device)?;
|
||||
let (vb, config) = get_vb_and_config(args.model_name, device)?;
|
||||
let num_labels = 7;
|
||||
let model = ImageClassificationModel::new(&config, num_labels, vb)?;
|
||||
let classification = model.forward(&image)?;
|
||||
let classification = candle_nn::ops::softmax_last_dim(&classification)?;
|
||||
let classification = classification.squeeze(0)?;
|
||||
println!(
|
||||
"classification logits {:?}",
|
||||
classification.to_vec1::<f32>()?
|
||||
);
|
||||
let label_id = classification.argmax(0)?.to_scalar::<u32>()?;
|
||||
let label_id = format!("{}", label_id);
|
||||
println!("label: {}", config.id2label[&label_id]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = CliArgs::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
if let Commands::Segment(args) = args.command {
|
||||
segmentation_task(args, &device)?
|
||||
} else if let Commands::Classify(args) = args.command {
|
||||
classification_task(args, &device)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -46,8 +46,7 @@ The default scheduler for the XL Turbo version is the Euler Ancestral scheduler.
|
||||
- `--cpu`: use the cpu rather than the gpu (much slower).
|
||||
- `--height`, `--width`: set the height and width for the generated image.
|
||||
- `--n-steps`: the number of steps to be used in the diffusion process.
|
||||
- `--num-samples`: the number of samples to generate iteratively.
|
||||
- `--bsize`: the numbers of samples to generate simultaneously.
|
||||
- `--num-samples`: the number of samples to generate.
|
||||
- `--final-image`: the filename for the generated image(s).
|
||||
|
||||
### Using flash-attention
|
||||
@ -58,7 +57,7 @@ The downside is some long compilation time. You can set the
|
||||
`/home/user/.candle` to ensures that the compilation artifacts are properly
|
||||
cached.
|
||||
|
||||
Enabling flash-attention requires both a feature flag, `--features flash-attn`
|
||||
Enabling flash-attention requires both a feature flag, `--feature flash-attn`
|
||||
and using the command line flag `--use-flash-attn`.
|
||||
|
||||
Note that flash-attention-v2 is only compatible with Ampere, Ada, or Hopper GPUs
|
||||
|
@ -9,7 +9,6 @@ use candle_transformers::models::stable_diffusion;
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, IndexOp, Module, Tensor, D};
|
||||
use clap::Parser;
|
||||
use stable_diffusion::vae::AutoEncoderKL;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Parser)]
|
||||
@ -65,13 +64,9 @@ struct Args {
|
||||
#[arg(long)]
|
||||
n_steps: Option<usize>,
|
||||
|
||||
/// The number of samples to generate iteratively.
|
||||
/// The number of samples to generate.
|
||||
#[arg(long, default_value_t = 1)]
|
||||
num_samples: usize,
|
||||
|
||||
/// The numbers of samples to generate simultaneously.
|
||||
#[arg[long, default_value_t = 1]]
|
||||
bsize: usize,
|
||||
num_samples: i64,
|
||||
|
||||
/// The name of the final image to generate.
|
||||
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
||||
@ -101,10 +96,6 @@ struct Args {
|
||||
/// information.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
img2img_strength: f64,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long)]
|
||||
seed: Option<u64>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, clap::ValueEnum, PartialEq, Eq)]
|
||||
@ -241,8 +232,8 @@ impl ModelFile {
|
||||
|
||||
fn output_filename(
|
||||
basename: &str,
|
||||
sample_idx: usize,
|
||||
num_samples: usize,
|
||||
sample_idx: i64,
|
||||
num_samples: i64,
|
||||
timestep_idx: Option<usize>,
|
||||
) -> String {
|
||||
let filename = if num_samples > 1 {
|
||||
@ -266,33 +257,6 @@ fn output_filename(
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn save_image(
|
||||
vae: &AutoEncoderKL,
|
||||
latents: &Tensor,
|
||||
vae_scale: f64,
|
||||
bsize: usize,
|
||||
idx: usize,
|
||||
final_image: &str,
|
||||
num_samples: usize,
|
||||
timestep_ids: Option<usize>,
|
||||
) -> Result<()> {
|
||||
let images = vae.decode(&(latents / vae_scale)?)?;
|
||||
let images = ((images / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let images = (images.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?;
|
||||
for batch in 0..bsize {
|
||||
let image = images.i(batch)?;
|
||||
let image_filename = output_filename(
|
||||
final_image,
|
||||
(bsize * idx) + batch + 1,
|
||||
batch + num_samples,
|
||||
timestep_ids,
|
||||
);
|
||||
candle_examples::save_image(&image, image_filename)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn text_embeddings(
|
||||
prompt: &str,
|
||||
@ -324,13 +288,6 @@ fn text_embeddings(
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
if tokens.len() > sd_config.clip.max_position_embeddings {
|
||||
anyhow::bail!(
|
||||
"the prompt is too long, {} > max-tokens ({})",
|
||||
tokens.len(),
|
||||
sd_config.clip.max_position_embeddings
|
||||
)
|
||||
}
|
||||
while tokens.len() < sd_config.clip.max_position_embeddings {
|
||||
tokens.push(pad_id)
|
||||
}
|
||||
@ -358,13 +315,6 @@ fn text_embeddings(
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
if uncond_tokens.len() > sd_config.clip.max_position_embeddings {
|
||||
anyhow::bail!(
|
||||
"the negative prompt is too long, {} > max-tokens ({})",
|
||||
uncond_tokens.len(),
|
||||
sd_config.clip.max_position_embeddings
|
||||
)
|
||||
}
|
||||
while uncond_tokens.len() < sd_config.clip.max_position_embeddings {
|
||||
uncond_tokens.push(pad_id)
|
||||
}
|
||||
@ -414,7 +364,6 @@ fn run(args: Args) -> Result<()> {
|
||||
final_image,
|
||||
sliced_attention_size,
|
||||
num_samples,
|
||||
bsize,
|
||||
sd_version,
|
||||
clip_weights,
|
||||
vae_weights,
|
||||
@ -425,7 +374,6 @@ fn run(args: Args) -> Result<()> {
|
||||
use_flash_attn,
|
||||
img2img,
|
||||
img2img_strength,
|
||||
seed,
|
||||
..
|
||||
} = args;
|
||||
|
||||
@ -479,9 +427,6 @@ fn run(args: Args) -> Result<()> {
|
||||
|
||||
let scheduler = sd_config.build_scheduler(n_steps)?;
|
||||
let device = candle_examples::device(cpu)?;
|
||||
if let Some(seed) = seed {
|
||||
device.set_seed(seed)?;
|
||||
}
|
||||
let use_guide_scale = guidance_scale > 1.0;
|
||||
|
||||
let which = match sd_version {
|
||||
@ -508,7 +453,6 @@ fn run(args: Args) -> Result<()> {
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let text_embeddings = Tensor::cat(&text_embeddings, D::Minus1)?;
|
||||
let text_embeddings = text_embeddings.repeat((bsize, 1, 1))?;
|
||||
println!("{text_embeddings:?}");
|
||||
|
||||
println!("Building the autoencoder.");
|
||||
@ -530,6 +474,7 @@ fn run(args: Args) -> Result<()> {
|
||||
} else {
|
||||
0
|
||||
};
|
||||
let bsize = 1;
|
||||
|
||||
let vae_scale = match sd_version {
|
||||
StableDiffusionVersion::V1_5
|
||||
@ -593,16 +538,12 @@ fn run(args: Args) -> Result<()> {
|
||||
println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt);
|
||||
|
||||
if args.intermediary_images {
|
||||
save_image(
|
||||
&vae,
|
||||
&latents,
|
||||
vae_scale,
|
||||
bsize,
|
||||
idx,
|
||||
&final_image,
|
||||
num_samples,
|
||||
Some(timestep_index + 1),
|
||||
)?;
|
||||
let image = vae.decode(&(&latents / vae_scale)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
}
|
||||
|
||||
@ -611,16 +552,11 @@ fn run(args: Args) -> Result<()> {
|
||||
idx + 1,
|
||||
num_samples
|
||||
);
|
||||
save_image(
|
||||
&vae,
|
||||
&latents,
|
||||
vae_scale,
|
||||
bsize,
|
||||
idx,
|
||||
&final_image,
|
||||
num_samples,
|
||||
None,
|
||||
)?;
|
||||
let image = vae.decode(&(&latents / vae_scale)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -10,6 +10,11 @@ order to be able to use it.
|
||||
|
||||
Other available models are Stable-Code-3B, StableLM-2 and Zephyr variants.
|
||||
|
||||
StableLM-2 uses a Tiktoken based GPT-3.5/GPT-4 tokenizer not supported by
|
||||
Candle, so to run it you can download a somewhat compatible
|
||||
[tokenizer.json](https://huggingface.co/Xenova/gpt-4/resolve/main/tokenizer.json?download=true)
|
||||
and pass it via the --tokenizer-file argument.
|
||||
|
||||
## Running some example
|
||||
|
||||
```bash
|
||||
|
@ -239,7 +239,14 @@ fn main() -> Result<()> {
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
None => match args.which {
|
||||
Which::V1Orig | Which::V1 | Which::V1Zephyr | Which::Code => {
|
||||
repo.get("tokenizer.json")?
|
||||
}
|
||||
Which::V2 | Which::V2Zephyr => api
|
||||
.model("lmz/candle-stablelm".to_string())
|
||||
.get("tokenizer-gpt4.json")?,
|
||||
},
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
@ -288,12 +295,12 @@ fn main() -> Result<()> {
|
||||
};
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = if args.quantized {
|
||||
let (model, device) = if args.quantized {
|
||||
let filename = &filenames[0];
|
||||
let vb =
|
||||
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?;
|
||||
let model = QStableLM::new(&config, vb)?;
|
||||
Model::Quantized(model)
|
||||
(Model::Quantized(model), Device::Cpu)
|
||||
} else {
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
@ -302,7 +309,7 @@ fn main() -> Result<()> {
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = StableLM::new(&config, vb)?;
|
||||
Model::StableLM(model)
|
||||
(Model::StableLM(model), device)
|
||||
};
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
@ -1,253 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::starcoder2::Model;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <|endoftext|> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => "bigcode/starcoder2-3b".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let config_file = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let tokenizer_file = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => vec![repo.get("model.safetensors")?],
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_file).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = serde_json::from_reader(std::fs::File::open(config_file)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user