mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Compare commits
117 Commits
tmp_no_rot
...
precompile
Author | SHA1 | Date | |
---|---|---|---|
5ac3302fac | |||
41416d2376 | |||
5ebcfeaf0f | |||
7c7400fb63 | |||
058a910d0e | |||
26fe162ab5 | |||
121a71e01f | |||
2d5f2a728d | |||
68f7655895 | |||
b60064780d | |||
14010a8498 | |||
0de0795220 | |||
c1b418586c | |||
ad73e93da2 | |||
13c67226e6 | |||
d0aa197b07 | |||
274bf11633 | |||
1e26d539d9 | |||
74497e6bf7 | |||
8ab384e63d | |||
27ffd644a9 | |||
bf20cc854c | |||
42ce593ec6 | |||
67589791d2 | |||
1c8d61f051 | |||
90447bc993 | |||
40ce16001b | |||
5657e596cd | |||
0dee8ea19b | |||
9cadd4e644 | |||
020a979de2 | |||
cdc3823d8f | |||
e5eb9602d0 | |||
b75e8945bc | |||
a90fc5ca5a | |||
adfae2460a | |||
678f64dd27 | |||
b545f54a19 | |||
1ba11f22d6 | |||
982722019b | |||
a83ca2ece0 | |||
153c940a9c | |||
50be8a98ba | |||
58cc896e69 | |||
5cdd84e0f6 | |||
a510ddec4e | |||
d32abbce53 | |||
dfab45e1c8 | |||
96bc704d17 | |||
a52d407ae6 | |||
9e824ec810 | |||
beadb1b434 | |||
6d83d42efb | |||
b6afb46601 | |||
fd7c856564 | |||
73d79e6092 | |||
b1879f17f6 | |||
4f79f5df8a | |||
1cf34368b7 | |||
17e6e2d7ee | |||
80b1c689f9 | |||
db923517b3 | |||
403680f17d | |||
86a8e58897 | |||
5270224f40 | |||
7e3349d7c3 | |||
1257fc6719 | |||
ea36f3b11f | |||
79478ff5a1 | |||
86b7c01b30 | |||
bdd8107fda | |||
ecf88a6d38 | |||
e6d86b0819 | |||
88618255cb | |||
539ead927a | |||
a46864bd56 | |||
bafe95b660 | |||
a3d92ab226 | |||
e90bcdcc7c | |||
8e06bfb4fd | |||
6242276c09 | |||
e06e8d0dbe | |||
e63bb8661b | |||
41915184bb | |||
c1876b8041 | |||
85e5680277 | |||
1327419776 | |||
402349d120 | |||
9f0c99f0c1 | |||
0fc95c9f0c | |||
2480c5dbdd | |||
63944714f2 | |||
d3bdd788cf | |||
ae06cb74bb | |||
a897fda74e | |||
1f1179913a | |||
6e98cf2a92 | |||
2cc1247999 | |||
edf3fcd1c4 | |||
53e4755015 | |||
87efb5d8eb | |||
ad181f9cdc | |||
88945f2c22 | |||
12b2a337f3 | |||
fb05af4c42 | |||
ad075a5f7e | |||
0eb90ed783 | |||
89b5a06858 | |||
3f04a79ada | |||
30313c3081 | |||
e72d52b1a2 | |||
b4cb982e49 | |||
6ebe043273 | |||
6bf52b9fdf | |||
84250bf52f | |||
8d1a57c9a0 | |||
955e63c803 |
7
.github/dependabot.yml
vendored
Normal file
7
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "cargo"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
open-pull-requests-limit: 5
|
74
.github/workflows/ci_cuda.yaml
vendored
74
.github/workflows/ci_cuda.yaml
vendored
@ -5,49 +5,15 @@ on:
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
start-runner:
|
||||
name: Start self-hosted EC2 runner
|
||||
runs-on: ubuntu-latest
|
||||
# Don't run on forks, they won't have access to secrets anyway.
|
||||
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
|
||||
env:
|
||||
AWS_REGION: us-east-1
|
||||
EC2_AMI_ID: ami-03cfed9ea28f4b002
|
||||
EC2_INSTANCE_TYPE: g5.xlarge
|
||||
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
|
||||
EC2_SECURITY_GROUP: sg-030175c435ac141d6
|
||||
outputs:
|
||||
label: ${{ steps.start-ec2-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Start EC2 runner
|
||||
id: start-ec2-runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
ec2-image-id: ${{ env.EC2_AMI_ID }}
|
||||
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
|
||||
subnet-id: ${{ env.EC2_SUBNET_ID }}
|
||||
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
|
||||
aws-resource-tags: > # optional, requires additional permissions
|
||||
[
|
||||
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
|
||||
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
|
||||
]
|
||||
|
||||
test-cuda:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
needs: start-runner # required to start the main job when the runner is ready
|
||||
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
|
||||
options: --gpus 0
|
||||
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
|
||||
permissions:
|
||||
contents: write
|
||||
packages: write
|
||||
@ -58,32 +24,10 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
- name: Install dependencies
|
||||
run: apt-get update && apt install curl build-essential libssl-dev protobuf-compiler pkg-config -y
|
||||
- name: Install Rust Stable
|
||||
run: curl https://sh.rustup.rs -sSf | sh -s -- -y
|
||||
uses: actions-rust-lang/setup-rust-toolchain@v1
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- run: apt-get update -y && apt-get install libssl-dev protobuf-compiler -y
|
||||
- name: Test (cuda)
|
||||
run: PATH=$PATH:/usr/local/cuda-11.8/bin/ /root/.cargo/bin/cargo test --features cuda
|
||||
stop-runner:
|
||||
name: Stop self-hosted EC2 runner
|
||||
needs:
|
||||
- start-runner
|
||||
- test-cuda
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
AWS_REGION: us-east-1
|
||||
if: ${{ (success() || failure()) && github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }} # required to stop the runner even if the error happened in the previous jobs
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Stop EC2 runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
label: ${{ needs.start-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
|
||||
run: cargo test --features cuda
|
||||
|
22
Cargo.toml
22
Cargo.toml
@ -19,7 +19,7 @@ exclude = [
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "0.3.3"
|
||||
version = "0.4.0"
|
||||
edition = "2021"
|
||||
description = "Minimalist ML framework."
|
||||
repository = "https://github.com/huggingface/candle"
|
||||
@ -31,10 +31,18 @@ license = "MIT OR Apache-2.0"
|
||||
accelerate-src = { version = "0.3.2" }
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.4.0" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.4.0" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.4.0" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.4.0" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.4.0" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.4.0" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.4.0" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.4.0" }
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
criterion = { version = "0.5.1", default-features=false }
|
||||
cudarc = { version = "0.9.14", features = ["f16"] }
|
||||
gemm = { version = "0.16.6", features = ["wasm-simd128-enable"] }
|
||||
cudarc = { version = "0.10.0", features = ["f16"] }
|
||||
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
|
||||
hf-hub = "0.3.0"
|
||||
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
|
||||
@ -42,20 +50,20 @@ imageproc = { version = "0.23.0", default-features = false }
|
||||
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
||||
libc = { version = "0.2.147" }
|
||||
log = "0.4"
|
||||
memmap2 = { version = "0.7.1", features = ["stable_deref_trait"] }
|
||||
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
|
||||
num_cpus = "1.15.0"
|
||||
num-traits = "0.2.15"
|
||||
parquet = { version = "45.0.0" }
|
||||
parquet = { version = "50.0.0" }
|
||||
rand = "0.8.5"
|
||||
rand_distr = "0.4.3"
|
||||
rayon = "1.7.0"
|
||||
rusttype = { version = "0.9", default-features = false }
|
||||
safetensors = "0.3.1"
|
||||
safetensors = "0.4.1"
|
||||
serde = { version = "1.0.171", features = ["derive"] }
|
||||
serde_plain = "1.0.2"
|
||||
serde_json = "1.0.99"
|
||||
thiserror = "1"
|
||||
tokenizers = { version = "0.13.4", default-features = false }
|
||||
tokenizers = { version = "0.15.0", default-features = false }
|
||||
tracing = "0.1.37"
|
||||
tracing-chrome = "0.7.1"
|
||||
tracing-subscriber = "0.3.7"
|
||||
|
22
README.md
22
README.md
@ -65,8 +65,9 @@ We also provide a some command line based examples using state of the art models
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets.
|
||||
- [Minimal Mamba](./candle-examples/examples/minimal-mamba/): a minimal
|
||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
||||
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
|
||||
- [Mamba](./candle-examples/examples/mamba/): an inference only
|
||||
implementation of the Mamba state space model.
|
||||
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
|
||||
better performance than all publicly available 13b models as of 2023-09-28.
|
||||
@ -74,6 +75,9 @@ We also provide a some command line based examples using state of the art models
|
||||
experts 8x7b general LLM with better performance than a Llama 2 70B model with
|
||||
much faster inference.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
|
||||
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
|
||||
- [RWKV v5](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
|
||||
performance.
|
||||
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
|
||||
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
|
||||
(English/Chinese) general LLMs with 6b and 34b parameters.
|
||||
@ -109,8 +113,12 @@ We also provide a some command line based examples using state of the art models
|
||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||
using self-supervision (can be used for imagenet classification, depth
|
||||
evaluation, segmentation).
|
||||
- [VGG](./candle-examples/examples/vgg/),
|
||||
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
|
||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||
generate captions for an image.
|
||||
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
|
||||
dedicated submodels for hand-writing and printed recognition.
|
||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
||||
model, generates the translated text from the input text.
|
||||
|
||||
@ -181,13 +189,15 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Falcon.
|
||||
- StarCoder.
|
||||
- Phi 1, 1.5, and 2.
|
||||
- Minimal Mamba
|
||||
- Mamba, Minimal Mamba
|
||||
- Mistral 7b v0.1.
|
||||
- Mixtral 8x7b v0.1.
|
||||
- StableLM-3B-4E1T.
|
||||
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
|
||||
- Replit-code-v1.5-3B.
|
||||
- Bert.
|
||||
- Yi-6B and Yi-34B.
|
||||
- Qwen1.5.
|
||||
- RWKV.
|
||||
- Quantized LLMs.
|
||||
- Llama 7b, 13b, 70b, as well as the chat and code variants.
|
||||
- Mistral 7b, and 7b instruct.
|
||||
@ -203,8 +213,10 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Wurstchen v2.
|
||||
- Image to text.
|
||||
- BLIP.
|
||||
- TrOCR.
|
||||
- Computer Vision Models.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
||||
ConvNeXTv2.
|
||||
- yolo-v3, yolo-v8.
|
||||
- Segment-Anything Model (SAM).
|
||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||
|
@ -11,11 +11,11 @@ readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
candle = { path = "../candle-core", version = "0.3.3", package = "candle-core" }
|
||||
candle-datasets = { path = "../candle-datasets", version = "0.3.3" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.3.3" }
|
||||
candle-transformers = { path = "../candle-transformers", version = "0.3.3" }
|
||||
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.3", optional = true }
|
||||
candle = { workspace = true }
|
||||
candle-datasets = { workspace = true }
|
||||
candle-nn = { workspace = true }
|
||||
candle-transformers = { workspace = true }
|
||||
candle-flash-attn = { workspace = true, optional = true }
|
||||
safetensors = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
serde_json = { workspace = true }
|
||||
|
@ -12,8 +12,8 @@ readme = "README.md"
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
byteorder = { workspace = true }
|
||||
candle-kernels = { path = "../candle-kernels", version = "0.3.3", optional = true }
|
||||
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.3", optional = true }
|
||||
candle-kernels = { workspace = true, optional = true }
|
||||
candle-metal-kernels = { workspace = true, optional = true }
|
||||
metal = { workspace = true, optional = true}
|
||||
cudarc = { workspace = true, optional = true }
|
||||
gemm = { workspace = true }
|
||||
@ -46,6 +46,5 @@ accelerate = ["dep:libc", "dep:accelerate-src"]
|
||||
metal = ["dep:metal", "dep:candle-metal-kernels"]
|
||||
|
||||
[[bench]]
|
||||
name = "matmul"
|
||||
name = "bench_main"
|
||||
harness = false
|
||||
|
||||
|
9
candle-core/benches/bench_main.rs
Normal file
9
candle-core/benches/bench_main.rs
Normal file
@ -0,0 +1,9 @@
|
||||
mod benchmarks;
|
||||
|
||||
use criterion::criterion_main;
|
||||
criterion_main!(
|
||||
benchmarks::affine::benches,
|
||||
benchmarks::matmul::benches,
|
||||
benchmarks::random::benches,
|
||||
benchmarks::where_cond::benches
|
||||
);
|
43
candle-core/benches/benchmarks/affine.rs
Normal file
43
candle-core/benches/benchmarks/affine.rs
Normal file
@ -0,0 +1,43 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor) {
|
||||
a.affine(12.34, 56.78).unwrap();
|
||||
}
|
||||
|
||||
fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
|
||||
|
||||
let flops = b * m * k * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_affine_benchmark(c, &device, DType::F32, "affine_f32");
|
||||
run_affine_benchmark(c, &device, DType::F16, "affine_f16");
|
||||
run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -1,25 +1,25 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion, Throughput};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor, b: &Tensor) {
|
||||
a.matmul(&b.t().unwrap()).unwrap();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
fn run_bench(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
let m = 1;
|
||||
let n = 2048;
|
||||
let k = 2048;
|
||||
|
||||
let device = Device::new_metal(0).unwrap();
|
||||
let dtype = DType::F32;
|
||||
let lhs = Tensor::zeros((b, m, k), dtype, &device).unwrap();
|
||||
let rhs = Tensor::zeros((b, n, k), dtype, &device).unwrap();
|
||||
let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap();
|
||||
let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap();
|
||||
|
||||
let flops = b * m * n * k;
|
||||
|
||||
let mut group = c.benchmark_group("matmul_metal");
|
||||
let mut group = c.benchmark_group(device.bench_name("matmul"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
@ -27,16 +27,18 @@ fn criterion_benchmark(c: &mut Criterion) {
|
||||
for _i in 0..iters {
|
||||
run(black_box(&lhs), black_box(&rhs));
|
||||
}
|
||||
if let Device::Metal(device) = &device {
|
||||
device.wait_until_completed().unwrap();
|
||||
} else {
|
||||
panic!("Expected metal device");
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_bench(c, &device);
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
||||
criterion_main!(benches);
|
66
candle-core/benches/benchmarks/mod.rs
Normal file
66
candle-core/benches/benchmarks/mod.rs
Normal file
@ -0,0 +1,66 @@
|
||||
pub(crate) mod affine;
|
||||
pub(crate) mod matmul;
|
||||
pub(crate) mod random;
|
||||
pub(crate) mod where_cond;
|
||||
|
||||
use candle_core::{Device, Result};
|
||||
|
||||
pub(crate) trait BenchDevice {
|
||||
fn sync(&self) -> Result<()>;
|
||||
|
||||
fn bench_name<S: Into<String>>(&self, name: S) -> String;
|
||||
}
|
||||
|
||||
impl BenchDevice for Device {
|
||||
fn sync(&self) -> Result<()> {
|
||||
match self {
|
||||
Device::Cpu => Ok(()),
|
||||
Device::Cuda(device) => {
|
||||
#[cfg(feature = "cuda")]
|
||||
return Ok(device.synchronize()?);
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
panic!("Cuda device without cuda feature enabled: {:?}", device)
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
#[cfg(feature = "metal")]
|
||||
return Ok(device.wait_until_completed()?);
|
||||
#[cfg(not(feature = "metal"))]
|
||||
panic!("Metal device without metal feature enabled: {:?}", device)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn bench_name<S: Into<String>>(&self, name: S) -> String {
|
||||
match self {
|
||||
Device::Cpu => {
|
||||
let cpu_type = if cfg!(feature = "accelerate") {
|
||||
"accelerate"
|
||||
} else if cfg!(feature = "mkl") {
|
||||
"mkl"
|
||||
} else {
|
||||
"cpu"
|
||||
};
|
||||
format!("{}_{}", cpu_type, name.into())
|
||||
}
|
||||
Device::Cuda(_) => format!("cuda_{}", name.into()),
|
||||
Device::Metal(_) => format!("metal_{}", name.into()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct BenchDeviceHandler {
|
||||
devices: Vec<Device>,
|
||||
}
|
||||
|
||||
impl BenchDeviceHandler {
|
||||
pub fn new() -> Result<Self> {
|
||||
let mut devices = Vec::new();
|
||||
if cfg!(feature = "metal") {
|
||||
devices.push(Device::new_metal(0)?);
|
||||
} else if cfg!(feature = "cuda") {
|
||||
devices.push(Device::new_cuda(0)?);
|
||||
}
|
||||
devices.push(Device::Cpu);
|
||||
Ok(Self { devices })
|
||||
}
|
||||
}
|
63
candle-core/benches/benchmarks/random.rs
Normal file
63
candle-core/benches/benchmarks/random.rs
Normal file
@ -0,0 +1,63 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn rand_uniform(a: &Tensor) {
|
||||
a.rand_like(-1.0, 123.0).unwrap();
|
||||
}
|
||||
|
||||
fn rand_normal(a: &Tensor) {
|
||||
a.randn_like(100.0, 15.0).unwrap();
|
||||
}
|
||||
|
||||
fn run_random_bench(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
|
||||
let rows = 2048;
|
||||
let cols = 2048;
|
||||
|
||||
let dtype = DType::F32;
|
||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
||||
|
||||
let flops = b * rows * cols * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name("random_uniform"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |benches| {
|
||||
benches.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
rand_uniform(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
|
||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name("random_normal"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |benches| {
|
||||
benches.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
rand_normal(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_random_bench(c, &device);
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
64
candle-core/benches/benchmarks/where_cond.rs
Normal file
64
candle-core/benches/benchmarks/where_cond.rs
Normal file
@ -0,0 +1,64 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
|
||||
a.where_cond(b, c).unwrap();
|
||||
}
|
||||
|
||||
const fn create_cond_arr<const N: usize>() -> [u8; N] {
|
||||
let mut arr = [0u8; N];
|
||||
let mut i = 0;
|
||||
while i < N {
|
||||
arr[i] = (i % 2) as u8;
|
||||
i += 1;
|
||||
}
|
||||
arr
|
||||
}
|
||||
|
||||
const B: usize = 1;
|
||||
const M: usize = 1024;
|
||||
const K: usize = 1024;
|
||||
const SIZE: usize = B * M * K;
|
||||
|
||||
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
|
||||
|
||||
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
|
||||
let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
|
||||
let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
|
||||
|
||||
let elements = B * M * K;
|
||||
// E.g. 2 f32 tensors + 1 u8 tensor
|
||||
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(
|
||||
black_box(&tensor),
|
||||
black_box(&on_true),
|
||||
black_box(&on_false),
|
||||
);
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let device = BenchDeviceHandler::new().unwrap();
|
||||
for d in device.devices {
|
||||
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
|
||||
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
|
||||
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -118,7 +118,7 @@ enum Command {
|
||||
},
|
||||
|
||||
Quantize {
|
||||
/// The input file, in gguf format.
|
||||
/// The input file(s), in safetensors format.
|
||||
in_file: Vec<std::path::PathBuf>,
|
||||
|
||||
/// The output file, in gguf format.
|
||||
@ -133,6 +133,15 @@ enum Command {
|
||||
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
|
||||
mode: QuantizationMode,
|
||||
},
|
||||
|
||||
Dequantize {
|
||||
/// The input file, in gguf format.
|
||||
in_file: std::path::PathBuf,
|
||||
|
||||
/// The output file, in safetensors format.
|
||||
#[arg(long)]
|
||||
out_file: std::path::PathBuf,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
@ -187,7 +196,7 @@ fn run_ls(
|
||||
}
|
||||
}
|
||||
Format::Pth => {
|
||||
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose)?;
|
||||
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose, None)?;
|
||||
tensors.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
for tensor_info in tensors.iter() {
|
||||
println!(
|
||||
@ -277,6 +286,23 @@ fn run_quantize_safetensors(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn run_dequantize(
|
||||
in_file: std::path::PathBuf,
|
||||
out_file: std::path::PathBuf,
|
||||
device: &Device,
|
||||
) -> Result<()> {
|
||||
let mut in_file = std::fs::File::open(in_file)?;
|
||||
let content = gguf_file::Content::read(&mut in_file)?;
|
||||
let mut tensors = std::collections::HashMap::new();
|
||||
for (tensor_name, _) in content.tensor_infos.iter() {
|
||||
let tensor = content.tensor(&mut in_file, tensor_name, device)?;
|
||||
let tensor = tensor.dequantize(device)?;
|
||||
tensors.insert(tensor_name.to_string(), tensor);
|
||||
}
|
||||
candle_core::safetensors::save(&tensors, out_file)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn run_quantize(
|
||||
in_files: &[std::path::PathBuf],
|
||||
out_file: std::path::PathBuf,
|
||||
@ -357,6 +383,7 @@ fn main() -> anyhow::Result<()> {
|
||||
quantization,
|
||||
mode,
|
||||
} => run_quantize(&in_file, out_file, quantization, mode, &device)?,
|
||||
Command::Dequantize { in_file, out_file } => run_dequantize(in_file, out_file, &device)?,
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -380,6 +380,16 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
||||
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
@ -402,6 +412,28 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vs_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vd_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! binary_op {
|
||||
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
|
||||
#[inline]
|
||||
|
@ -175,7 +175,7 @@ impl Tensor {
|
||||
// the backprop graph of the backprop itself. This would be an issue for second order
|
||||
// derivatives but these are out of scope at the moment.
|
||||
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
|
||||
let grad = if do_not_detach { grad } else { grad.detach()? };
|
||||
let grad = if do_not_detach { grad } else { grad.detach() };
|
||||
if let Some(op) = node.op() {
|
||||
match op {
|
||||
Op::Binary(lhs, rhs, BinaryOp::Add) => {
|
||||
@ -589,6 +589,13 @@ impl Tensor {
|
||||
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
|
||||
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
|
||||
}
|
||||
Op::Unary(arg, UnaryOp::Silu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
|
||||
let sigmoid_arg = (*node / arg)?;
|
||||
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
|
||||
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
|
||||
}
|
||||
Op::Elu(arg, alpha) => {
|
||||
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
|
@ -1149,6 +1149,55 @@ impl<'a> Map2 for Conv2D<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
|
||||
impl<'a> Map2 for ConvTranspose1D<'a> {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
inp: &CudaSlice<T>,
|
||||
inp_l: &Layout,
|
||||
k: &CudaSlice<T>,
|
||||
k_l: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>> {
|
||||
// Kernel shape: (c_in_k, c_out, l_k)
|
||||
// Input shape: (b_size, c_in, l_in)
|
||||
let p = &self.0;
|
||||
let l_out = p.l_out();
|
||||
let dst_el = p.c_out * l_out * p.b_size;
|
||||
let inp = &inp.slice(inp_l.start_offset()..);
|
||||
let k = &k.slice(k_l.start_offset()..);
|
||||
let shape = inp_l.shape();
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
|
||||
// SAFETY: Set later by running the kernel.
|
||||
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
|
||||
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose1d"), kernels::CONV)?;
|
||||
let ds = if dims.len() == 3 {
|
||||
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
|
||||
} else {
|
||||
crate::bail!("unexpected input shape for conv_transpose1d {dims:?}")
|
||||
};
|
||||
let ds = dev.htod_copy(ds).w()?;
|
||||
let params = (
|
||||
el,
|
||||
l_out,
|
||||
p.stride,
|
||||
p.padding,
|
||||
p.output_padding,
|
||||
p.dilation,
|
||||
&ds,
|
||||
inp,
|
||||
k,
|
||||
&out,
|
||||
);
|
||||
// SAFETY: ffi.
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
|
||||
impl<'a> Map2 for ConvTranspose2D<'a> {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
@ -1810,12 +1859,15 @@ impl BackendStorage for CudaStorage {
|
||||
|
||||
fn conv_transpose1d(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &crate::conv::ParamsConvTranspose1D,
|
||||
l: &Layout,
|
||||
kernel: &Self,
|
||||
kernel_l: &Layout,
|
||||
params: &crate::conv::ParamsConvTranspose1D,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
let device = self.device().clone();
|
||||
let slice =
|
||||
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "cudnn"))]
|
||||
|
@ -72,7 +72,7 @@ pub mod utils;
|
||||
mod variable;
|
||||
|
||||
pub use cpu_backend::CpuStorage;
|
||||
pub use device::{Device, DeviceLocation};
|
||||
pub use device::{Device, DeviceLocation, NdArray};
|
||||
pub use dtype::{DType, FloatDType, IntDType, WithDType};
|
||||
pub use error::{Error, Result};
|
||||
pub use indexer::IndexOp;
|
||||
|
@ -7,8 +7,9 @@ use candle_metal_kernels::Kernels;
|
||||
use metal;
|
||||
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
|
||||
use std::collections::HashMap;
|
||||
use std::ffi::c_void;
|
||||
use std::path::Path;
|
||||
use std::sync::{Arc, RwLock, TryLockError};
|
||||
use std::sync::{Arc, Mutex, RwLock, TryLockError};
|
||||
|
||||
/// Simple way to catch lock error without
|
||||
/// depending on T
|
||||
@ -84,13 +85,8 @@ pub struct MetalDevice {
|
||||
command_buffer_index: Arc<RwLock<usize>>,
|
||||
/// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc)
|
||||
compute_per_buffer: usize,
|
||||
/// Every compute command encoder (and blit encoders) are defended with this Fence, forcing the
|
||||
/// execution order to be linear.
|
||||
/// It could be relaxed in some circumstances, by managing ourselves the dependencies in the
|
||||
/// compute graph.
|
||||
// fence: metal::Fence,
|
||||
/// Simple keeper struct to keep track of the already compiled kernels so we can reuse them.
|
||||
/// Heavily used by [`candle_metal_kernels`], both fences need to match
|
||||
/// Heavily used by [`candle_metal_kernels`]
|
||||
kernels: Arc<candle_metal_kernels::Kernels>,
|
||||
/// Simple allocator struct.
|
||||
/// The buffers are stored in size buckets since ML tends to use similar shapes over and over.
|
||||
@ -106,6 +102,8 @@ pub struct MetalDevice {
|
||||
/// Whenever we actually allocate a new buffer, we make a full sweep to cleanup unused buffers
|
||||
/// (strong_count = 1).
|
||||
buffers: AllocatedBuffers,
|
||||
/// Seed for random number generation.
|
||||
seed: Arc<Mutex<Buffer>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for MetalDevice {
|
||||
@ -131,10 +129,6 @@ impl MetalDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
// pub(crate) fn fence(&self) -> &metal::Fence {
|
||||
// &self.fence
|
||||
// }
|
||||
|
||||
pub fn command_queue(&self) -> &CommandQueue {
|
||||
&self.command_queue
|
||||
}
|
||||
@ -225,10 +219,8 @@ impl MetalDevice {
|
||||
let command_buffer = self.command_buffer()?;
|
||||
command_buffer.set_label("with_data");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
// blit.wait_for_fence(&self.fence);
|
||||
blit.set_label("with_data_blit");
|
||||
blit.copy_from_buffer(&tmp, 0, &real, 0, tmp.length());
|
||||
// blit.update_fence(&self.fence);
|
||||
blit.end_encoding();
|
||||
|
||||
// This is necessary, for mmaped safetensors
|
||||
@ -236,7 +228,7 @@ impl MetalDevice {
|
||||
// The slice might not live long enough for metal
|
||||
// To actually fill the GPU buffer.
|
||||
// Putting this wait forces the GPU buffer to be filled
|
||||
// with the actual data allowing the CPU storage todo
|
||||
// with the actual data allowing the CPU storage to do
|
||||
// deallocate properly.
|
||||
self.wait_until_completed()?;
|
||||
Ok(real)
|
||||
@ -251,7 +243,6 @@ impl MetalDevice {
|
||||
let command_buffer = self.command_buffer()?;
|
||||
command_buffer.set_label("zeros");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
// blit.wait_for_fence(&self.fence);
|
||||
blit.fill_buffer(
|
||||
&buffer,
|
||||
metal::NSRange {
|
||||
@ -260,7 +251,6 @@ impl MetalDevice {
|
||||
},
|
||||
0,
|
||||
);
|
||||
// blit.update_fence(&self.fence);
|
||||
blit.end_encoding();
|
||||
Ok(buffer)
|
||||
}
|
||||
@ -359,6 +349,7 @@ impl BackendStorage for MetalStorage {
|
||||
let name = match self.dtype {
|
||||
DType::F32 => "affine_f32",
|
||||
DType::F16 => "affine_f16",
|
||||
DType::BF16 => "affine_bf16",
|
||||
dtype => crate::bail!("Metal contiguous affine {dtype:?} not implemented"),
|
||||
};
|
||||
candle_metal_kernels::call_affine(
|
||||
@ -377,6 +368,7 @@ impl BackendStorage for MetalStorage {
|
||||
let name = match self.dtype {
|
||||
DType::F32 => "affine_f32_strided",
|
||||
DType::F16 => "affine_f16_strided",
|
||||
DType::BF16 => "affine_bf16_strided",
|
||||
dtype => crate::bail!("Metal strided affine {dtype:?} not implemented"),
|
||||
};
|
||||
candle_metal_kernels::call_affine_strided(
|
||||
@ -596,14 +588,27 @@ impl BackendStorage for MetalStorage {
|
||||
(DType::U32, DType::F32) => "cast_u32_f32",
|
||||
(DType::U32, DType::U8) => "cast_u32_u8",
|
||||
(DType::U32, DType::I64) => "cast_u32_i64",
|
||||
(DType::U32, DType::F16) => "cast_u32_f16",
|
||||
(DType::U32, DType::BF16) => "cast_u32_bf16",
|
||||
|
||||
(DType::U8, DType::U32) => "cast_u8_u32",
|
||||
(DType::U8, DType::F32) => "cast_u8_f32",
|
||||
(DType::U8, DType::I64) => "cast_u8_i64",
|
||||
(DType::U8, DType::BF16) => "cast_u8_bf16",
|
||||
|
||||
(DType::F32, DType::F16) => "cast_f32_f16",
|
||||
(DType::F16, DType::F32) => "cast_f16_f32",
|
||||
(DType::I64, DType::F32) => "cast_i64_f32",
|
||||
(DType::F32, DType::BF16) => "cast_f32_bf16",
|
||||
|
||||
(DType::I64, DType::F32) => "cast_i64_f32",
|
||||
|
||||
(DType::F16, DType::BF16) => "cast_f16_bf16",
|
||||
(DType::F16, DType::F32) => "cast_f16_f32",
|
||||
|
||||
(DType::BF16, DType::U8) => "cast_bf16_u8",
|
||||
(DType::BF16, DType::U32) => "cast_bf16_u32",
|
||||
(DType::BF16, DType::F16) => "cast_bf16_f16",
|
||||
(DType::BF16, DType::F32) => "cast_bf16_f32",
|
||||
|
||||
(left, right) => {
|
||||
crate::bail!("Metal contiguous to_dtype {left:?} {right:?} not implemented")
|
||||
}
|
||||
@ -675,12 +680,14 @@ impl BackendStorage for MetalStorage {
|
||||
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
|
||||
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
|
||||
("uerf", DType::F32) => contiguous::erf::FLOAT,
|
||||
("usilu", DType::F32) => contiguous::silu::FLOAT,
|
||||
("uabs", DType::F32) => contiguous::abs::FLOAT,
|
||||
("uceil", DType::F32) => contiguous::ceil::FLOAT,
|
||||
("ufloor", DType::F32) => contiguous::floor::FLOAT,
|
||||
("uround", DType::F32) => contiguous::round::FLOAT,
|
||||
("urecip", DType::F32) => contiguous::recip::FLOAT,
|
||||
("utanh", DType::F32) => contiguous::tanh::FLOAT,
|
||||
("urelu", DType::F32) => contiguous::relu::FLOAT,
|
||||
("ucos", DType::F16) => contiguous::cos::HALF,
|
||||
("usin", DType::F16) => contiguous::sin::HALF,
|
||||
("usqr", DType::F16) => contiguous::sqr::HALF,
|
||||
@ -691,12 +698,14 @@ impl BackendStorage for MetalStorage {
|
||||
("ugelu", DType::F16) => contiguous::gelu::HALF,
|
||||
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
|
||||
("uerf", DType::F16) => contiguous::erf::HALF,
|
||||
("usilu", DType::F16) => contiguous::silu::HALF,
|
||||
("uabs", DType::F16) => contiguous::abs::HALF,
|
||||
("uceil", DType::F16) => contiguous::ceil::HALF,
|
||||
("ufloor", DType::F16) => contiguous::floor::HALF,
|
||||
("uround", DType::F16) => contiguous::round::HALF,
|
||||
("urecip", DType::F16) => contiguous::recip::HALF,
|
||||
("utanh", DType::F16) => contiguous::tanh::HALF,
|
||||
("urelu", DType::F16) => contiguous::relu::HALF,
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented")
|
||||
}
|
||||
@ -724,9 +733,11 @@ impl BackendStorage for MetalStorage {
|
||||
("ugelu", DType::F32) => strided::gelu::FLOAT,
|
||||
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
|
||||
("uerf", DType::F32) => strided::erf::FLOAT,
|
||||
("usilu", DType::F32) => strided::silu::FLOAT,
|
||||
("uabs", DType::F32) => strided::abs::FLOAT,
|
||||
("uceil", DType::F32) => strided::ceil::FLOAT,
|
||||
("ufloor", DType::F32) => strided::floor::FLOAT,
|
||||
("urelu", DType::F32) => strided::relu::FLOAT,
|
||||
("uround", DType::F32) => strided::round::FLOAT,
|
||||
("ucos", DType::F16) => strided::cos::HALF,
|
||||
("usin", DType::F16) => strided::sin::HALF,
|
||||
@ -738,9 +749,11 @@ impl BackendStorage for MetalStorage {
|
||||
("ugelu", DType::F16) => strided::gelu::HALF,
|
||||
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
|
||||
("uerf", DType::F16) => strided::erf::HALF,
|
||||
("usilu", DType::F16) => strided::silu::HALF,
|
||||
("uabs", DType::F16) => strided::abs::HALF,
|
||||
("uceil", DType::F16) => strided::ceil::HALF,
|
||||
("ufloor", DType::F16) => strided::floor::HALF,
|
||||
("urelu", DType::F16) => strided::relu::HALF,
|
||||
("uround", DType::F16) => strided::round::HALF,
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal strided unary {name} {dtype:?} not implemented")
|
||||
@ -796,6 +809,7 @@ impl BackendStorage for MetalStorage {
|
||||
}
|
||||
let name = match (self.dtype, t.dtype()) {
|
||||
(DType::U8, DType::F32) => "where_u8_f32",
|
||||
(DType::U8, DType::BF16) => "where_u8_bf16",
|
||||
(DType::U8, DType::F16) => "where_u8_f16",
|
||||
(DType::U8, DType::I64) => "where_u8_i64",
|
||||
(DType::U8, DType::U32) => "where_u8_u32",
|
||||
@ -1133,8 +1147,12 @@ impl BackendStorage for MetalStorage {
|
||||
let device = self.device();
|
||||
let buffer = device.new_buffer(dst_el, dtype, "index_select")?;
|
||||
let name = match (ids.dtype, self.dtype) {
|
||||
(DType::U8, DType::BF16) => "is_u8_bf16",
|
||||
|
||||
(DType::U32, DType::F32) => "is_u32_f32",
|
||||
(DType::U32, DType::F16) => "is_u32_f16",
|
||||
(DType::U32, DType::BF16) => "is_u32_bf16",
|
||||
|
||||
(left, right) => {
|
||||
crate::bail!("Metal contiguous index_select {left:?} {right:?} not implemented")
|
||||
}
|
||||
@ -1324,6 +1342,7 @@ impl MetalStorage {
|
||||
("lt", DType::F32) => (contiguous::lt::FLOAT, DType::U8),
|
||||
("ge", DType::F32) => (contiguous::ge::FLOAT, DType::U8),
|
||||
("gt", DType::F32) => (contiguous::gt::FLOAT, DType::U8),
|
||||
|
||||
("add", DType::F16) => (contiguous::add::HALF, self.dtype),
|
||||
("sub", DType::F16) => (contiguous::sub::HALF, self.dtype),
|
||||
("mul", DType::F16) => (contiguous::mul::HALF, self.dtype),
|
||||
@ -1334,6 +1353,18 @@ impl MetalStorage {
|
||||
("lt", DType::F16) => (contiguous::lt::HALF, DType::U8),
|
||||
("ge", DType::F16) => (contiguous::ge::HALF, DType::U8),
|
||||
("gt", DType::F16) => (contiguous::gt::HALF, DType::U8),
|
||||
|
||||
("add", DType::BF16) => (contiguous::add::BFLOAT, self.dtype),
|
||||
("sub", DType::BF16) => (contiguous::sub::BFLOAT, self.dtype),
|
||||
("mul", DType::BF16) => (contiguous::mul::BFLOAT, self.dtype),
|
||||
("div", DType::BF16) => (contiguous::div::BFLOAT, self.dtype),
|
||||
("eq", DType::BF16) => (contiguous::eq::BFLOAT, DType::U8),
|
||||
("ne", DType::BF16) => (contiguous::ne::BFLOAT, DType::U8),
|
||||
("le", DType::BF16) => (contiguous::le::BFLOAT, DType::U8),
|
||||
("lt", DType::BF16) => (contiguous::lt::BFLOAT, DType::U8),
|
||||
("ge", DType::BF16) => (contiguous::ge::BFLOAT, DType::U8),
|
||||
("gt", DType::BF16) => (contiguous::gt::BFLOAT, DType::U8),
|
||||
|
||||
("add", DType::I64) => (contiguous::add::I64, self.dtype),
|
||||
("sub", DType::I64) => (contiguous::sub::I64, self.dtype),
|
||||
("mul", DType::I64) => (contiguous::mul::I64, self.dtype),
|
||||
@ -1344,6 +1375,7 @@ impl MetalStorage {
|
||||
("lt", DType::I64) => (contiguous::lt::I64, DType::U8),
|
||||
("ge", DType::I64) => (contiguous::ge::I64, DType::U8),
|
||||
("gt", DType::I64) => (contiguous::gt::I64, DType::U8),
|
||||
|
||||
("add", DType::U32) => (contiguous::add::U32, self.dtype),
|
||||
("sub", DType::U32) => (contiguous::sub::U32, self.dtype),
|
||||
("mul", DType::U32) => (contiguous::mul::U32, self.dtype),
|
||||
@ -1354,6 +1386,7 @@ impl MetalStorage {
|
||||
("lt", DType::U32) => (contiguous::lt::U32, DType::U8),
|
||||
("ge", DType::U32) => (contiguous::ge::U32, DType::U8),
|
||||
("gt", DType::U32) => (contiguous::gt::U32, DType::U8),
|
||||
|
||||
("add", DType::U8) => (contiguous::add::U8, self.dtype),
|
||||
("sub", DType::U8) => (contiguous::sub::U8, self.dtype),
|
||||
("mul", DType::U8) => (contiguous::mul::U8, self.dtype),
|
||||
@ -1364,6 +1397,7 @@ impl MetalStorage {
|
||||
("lt", DType::U8) => (contiguous::lt::U8, DType::U8),
|
||||
("ge", DType::U8) => (contiguous::ge::U8, DType::U8),
|
||||
("gt", DType::U8) => (contiguous::gt::U8, DType::U8),
|
||||
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal contiguous binary {name} {dtype:?} not implemented")
|
||||
}
|
||||
@ -1397,6 +1431,7 @@ impl MetalStorage {
|
||||
("lt", DType::F32) => (strided::lt::FLOAT, DType::U8),
|
||||
("ge", DType::F32) => (strided::ge::FLOAT, DType::U8),
|
||||
("gt", DType::F32) => (strided::gt::FLOAT, DType::U8),
|
||||
|
||||
("badd", DType::F16) => (strided::add::HALF, self.dtype),
|
||||
("bsub", DType::F16) => (strided::sub::HALF, self.dtype),
|
||||
("bmul", DType::F16) => (strided::mul::HALF, self.dtype),
|
||||
@ -1409,6 +1444,20 @@ impl MetalStorage {
|
||||
("lt", DType::F16) => (strided::lt::HALF, DType::U8),
|
||||
("ge", DType::F16) => (strided::ge::HALF, DType::U8),
|
||||
("gt", DType::F16) => (strided::gt::HALF, DType::U8),
|
||||
|
||||
("badd", DType::BF16) => (strided::add::BFLOAT, self.dtype),
|
||||
("bsub", DType::BF16) => (strided::sub::BFLOAT, self.dtype),
|
||||
("bmul", DType::BF16) => (strided::mul::BFLOAT, self.dtype),
|
||||
("bdiv", DType::BF16) => (strided::div::BFLOAT, self.dtype),
|
||||
("bminimum", DType::BF16) => (strided::min::BFLOAT, self.dtype),
|
||||
("bmaximum", DType::BF16) => (strided::max::BFLOAT, self.dtype),
|
||||
("eq", DType::BF16) => (strided::eq::BFLOAT, DType::U8),
|
||||
("ne", DType::BF16) => (strided::ne::BFLOAT, DType::U8),
|
||||
("le", DType::BF16) => (strided::le::BFLOAT, DType::U8),
|
||||
("lt", DType::BF16) => (strided::lt::BFLOAT, DType::U8),
|
||||
("ge", DType::BF16) => (strided::ge::BFLOAT, DType::U8),
|
||||
("gt", DType::BF16) => (strided::gt::BFLOAT, DType::U8),
|
||||
|
||||
("badd", DType::I64) => (strided::add::I64, self.dtype),
|
||||
("bsub", DType::I64) => (strided::sub::I64, self.dtype),
|
||||
("bmul", DType::I64) => (strided::mul::I64, self.dtype),
|
||||
@ -1421,6 +1470,7 @@ impl MetalStorage {
|
||||
("lt", DType::I64) => (strided::lt::I64, DType::U8),
|
||||
("ge", DType::I64) => (strided::ge::I64, DType::U8),
|
||||
("gt", DType::I64) => (strided::gt::I64, DType::U8),
|
||||
|
||||
("badd", DType::U32) => (strided::add::U32, self.dtype),
|
||||
("bsub", DType::U32) => (strided::sub::U32, self.dtype),
|
||||
("bmul", DType::U32) => (strided::mul::U32, self.dtype),
|
||||
@ -1433,6 +1483,7 @@ impl MetalStorage {
|
||||
("lt", DType::U32) => (strided::lt::U32, DType::U8),
|
||||
("ge", DType::U32) => (strided::ge::U32, DType::U8),
|
||||
("gt", DType::U32) => (strided::gt::U32, DType::U8),
|
||||
|
||||
("badd", DType::U8) => (strided::add::U8, self.dtype),
|
||||
("bsub", DType::U8) => (strided::sub::U8, self.dtype),
|
||||
("bmul", DType::U8) => (strided::mul::U8, self.dtype),
|
||||
@ -1445,6 +1496,7 @@ impl MetalStorage {
|
||||
("lt", DType::U8) => (strided::lt::U8, DType::U8),
|
||||
("ge", DType::U8) => (strided::ge::U8, DType::U8),
|
||||
("gt", DType::U8) => (strided::gt::U8, DType::U8),
|
||||
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal strided binary {name} {dtype:?} not implemented")
|
||||
}
|
||||
@ -1486,9 +1538,7 @@ impl MetalStorage {
|
||||
command_buffer.set_label("to_cpu");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
blit.set_label("blit_to_cpu");
|
||||
// blit.wait_for_fence(&self.device.fence);
|
||||
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
|
||||
// blit.update_fence(&self.device.fence);
|
||||
blit.end_encoding();
|
||||
}
|
||||
self.device.wait_until_completed()?;
|
||||
@ -1506,29 +1556,29 @@ impl BackendDevice for MetalDevice {
|
||||
command_buffer.enqueue();
|
||||
let command_buffer = Arc::new(RwLock::new(command_buffer));
|
||||
let command_buffer_index = Arc::new(RwLock::new(0));
|
||||
// let fence = device.new_fence();
|
||||
let kernels = Arc::new(Kernels::new());
|
||||
let buffers = Arc::new(RwLock::new(HashMap::new()));
|
||||
let compute_per_buffer = match std::env::var("CANDLE_METAL_COMPUTE_PER_BUFFER") {
|
||||
Ok(val) => val.parse()?,
|
||||
_ => 10,
|
||||
};
|
||||
let seed = Arc::new(Mutex::new(device.new_buffer_with_data(
|
||||
[299792458].as_ptr() as *const c_void,
|
||||
4,
|
||||
MTLResourceOptions::StorageModeManaged,
|
||||
)));
|
||||
Ok(Self {
|
||||
device,
|
||||
// fence,
|
||||
command_queue,
|
||||
command_buffer,
|
||||
command_buffer_index,
|
||||
compute_per_buffer,
|
||||
buffers,
|
||||
kernels,
|
||||
seed,
|
||||
})
|
||||
}
|
||||
|
||||
fn set_seed(&self, _seed: u64) -> Result<()> {
|
||||
crate::bail!("Metal set_seed not implemented")
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
crate::DeviceLocation::Metal {
|
||||
gpu_id: self.registry_id() as usize,
|
||||
@ -1568,12 +1618,31 @@ impl BackendDevice for MetalDevice {
|
||||
&self,
|
||||
shape: &Shape,
|
||||
dtype: DType,
|
||||
mean: f64,
|
||||
stddev: f64,
|
||||
min: f64,
|
||||
max: f64,
|
||||
) -> Result<Self::Storage> {
|
||||
// TODO is there a better way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.rand_uniform(shape, dtype, mean, stddev)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
let name = match dtype {
|
||||
DType::F32 => "rand_uniform_f32",
|
||||
DType::F16 => "rand_uniform_f16",
|
||||
DType::BF16 => "rand_uniform_bf16",
|
||||
dtype => crate::bail!("rand_uniform not implemented for {dtype:?}"),
|
||||
};
|
||||
let buffer = self.new_buffer(shape.elem_count(), dtype, "rand_uniform")?;
|
||||
let command_buffer = self.command_buffer()?;
|
||||
candle_metal_kernels::call_random_uniform(
|
||||
&self.device,
|
||||
&command_buffer,
|
||||
&self.kernels,
|
||||
name,
|
||||
min as f32,
|
||||
max as f32,
|
||||
shape.elem_count(),
|
||||
&*self.seed.lock().unwrap(),
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
|
||||
Ok(Self::Storage::new(buffer, self.clone(), dtype))
|
||||
}
|
||||
|
||||
fn rand_normal(
|
||||
@ -1583,9 +1652,43 @@ impl BackendDevice for MetalDevice {
|
||||
mean: f64,
|
||||
stddev: f64,
|
||||
) -> Result<Self::Storage> {
|
||||
// TODO is there a better way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.rand_normal(shape, dtype, mean, stddev)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
let name = match dtype {
|
||||
DType::F32 => "rand_normal_f32",
|
||||
DType::F16 => "rand_normal_f16",
|
||||
DType::BF16 => "rand_normal_bf16",
|
||||
dtype => crate::bail!("rand_uniform not implemented for {dtype:?}"),
|
||||
};
|
||||
let buffer = self.new_buffer(shape.elem_count(), dtype, "rand_normal")?;
|
||||
let command_buffer = self.command_buffer()?;
|
||||
candle_metal_kernels::call_random_normal(
|
||||
&self.device,
|
||||
&command_buffer,
|
||||
&self.kernels,
|
||||
name,
|
||||
mean as f32,
|
||||
stddev as f32,
|
||||
shape.elem_count(),
|
||||
&*self.seed.lock().unwrap(),
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
|
||||
Ok(Self::Storage::new(buffer, self.clone(), dtype))
|
||||
}
|
||||
|
||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
let seed: u32 = seed.try_into().map_err(|_| {
|
||||
MetalError::Message("Metal seed must be less than or equal to u32::MAX".to_string())
|
||||
})?;
|
||||
|
||||
let seed_buffer = self.seed.try_lock().map_err(MetalError::from)?;
|
||||
let contents = seed_buffer.contents();
|
||||
unsafe {
|
||||
std::ptr::copy([seed].as_ptr(), contents as *mut u32, 4);
|
||||
}
|
||||
seed_buffer.did_modify_range(metal::NSRange::new(0, 4));
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -333,6 +333,16 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
||||
unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
@ -355,6 +365,28 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vs_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vd_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! binary_op {
|
||||
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
|
||||
#[inline]
|
||||
|
@ -61,6 +61,7 @@ pub enum UnaryOp {
|
||||
GeluErf,
|
||||
Erf,
|
||||
Relu,
|
||||
Silu,
|
||||
Tanh,
|
||||
Floor,
|
||||
Ceil,
|
||||
@ -390,6 +391,7 @@ pub(crate) struct Gelu;
|
||||
pub(crate) struct GeluErf;
|
||||
pub(crate) struct Erf;
|
||||
pub(crate) struct Relu;
|
||||
pub(crate) struct Silu;
|
||||
pub(crate) struct Tanh;
|
||||
pub(crate) struct Floor;
|
||||
pub(crate) struct Ceil;
|
||||
@ -724,6 +726,77 @@ impl UnaryOpT for Erf {
|
||||
}
|
||||
}
|
||||
|
||||
/// Silu operation
|
||||
impl UnaryOpT for Silu {
|
||||
const NAME: &'static str = "silu";
|
||||
const V: Self = Silu;
|
||||
#[inline(always)]
|
||||
fn bf16(v: bf16) -> bf16 {
|
||||
v / (bf16::ONE + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f16(v: f16) -> f16 {
|
||||
v / (f16::ONE + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
v / (1.0 + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
v / (1.0 + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(_: u8) -> u8 {
|
||||
0
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u32(_: u32) -> u32 {
|
||||
0
|
||||
}
|
||||
#[inline(always)]
|
||||
fn i64(_: i64) -> i64 {
|
||||
0
|
||||
}
|
||||
const KERNEL: &'static str = "usilu";
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
const F32_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
#[inline(always)]
|
||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
||||
crate::mkl::vs_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
const F64_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
#[inline(always)]
|
||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
||||
crate::mkl::vd_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
const F32_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
#[inline(always)]
|
||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
||||
crate::accelerate::vs_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
const F64_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
#[inline(always)]
|
||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
||||
crate::accelerate::vd_silu(xs, ys)
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Abs {
|
||||
const NAME: &'static str = "abs";
|
||||
const KERNEL: &'static str = "uabs";
|
||||
|
@ -217,6 +217,13 @@ impl Object {
|
||||
let args = args.remove(1);
|
||||
(callable, args)
|
||||
}
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
|
||||
let mut args = args.tuple()?;
|
||||
args.remove(0).reduce()?
|
||||
}
|
||||
_ => (callable, args),
|
||||
};
|
||||
match callable {
|
||||
@ -227,13 +234,11 @@ impl Object {
|
||||
_ => return Ok(None),
|
||||
};
|
||||
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
|
||||
let mut path = dir_name.to_path_buf();
|
||||
path.push(file_path);
|
||||
Ok(Some(TensorInfo {
|
||||
name,
|
||||
dtype,
|
||||
layout,
|
||||
path: path.to_string_lossy().into_owned(),
|
||||
path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
|
||||
storage_size,
|
||||
}))
|
||||
}
|
||||
@ -345,8 +350,10 @@ impl Stack {
|
||||
module_name,
|
||||
class_name,
|
||||
} => {
|
||||
if module_name == "collections" && class_name == "OrderedDict" {
|
||||
// TODO: have a separate ordered dict.
|
||||
if module_name == "collections"
|
||||
&& (class_name == "OrderedDict" || class_name == "defaultdict")
|
||||
{
|
||||
// TODO: have a separate ordered dict and a separate default dict.
|
||||
Some(Object::Dict(vec![]))
|
||||
} else {
|
||||
None
|
||||
@ -627,9 +634,16 @@ pub struct TensorInfo {
|
||||
pub storage_size: usize,
|
||||
}
|
||||
|
||||
/// Read the tensor info from a .pth file.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `file` - The path to the .pth file.
|
||||
/// * `verbose` - Whether to print debug information.
|
||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
|
||||
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
file: P,
|
||||
verbose: bool,
|
||||
key: Option<&str>,
|
||||
) -> Result<Vec<TensorInfo>> {
|
||||
let file = std::fs::File::open(file)?;
|
||||
let zip_reader = std::io::BufReader::new(file);
|
||||
@ -651,8 +665,9 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
stack.read_loop(&mut reader)?;
|
||||
let obj = stack.finalize()?;
|
||||
if VERBOSE || verbose {
|
||||
println!("{obj:?}");
|
||||
println!("{obj:#?}");
|
||||
}
|
||||
|
||||
let obj = match obj {
|
||||
Object::Build { callable, args } => match *callable {
|
||||
Object::Reduce { callable, args: _ } => match *callable {
|
||||
@ -666,6 +681,24 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
},
|
||||
obj => obj,
|
||||
};
|
||||
|
||||
// If key is provided, then we need to extract the state_dict from the object.
|
||||
let obj = if let Some(key) = key {
|
||||
if let Object::Dict(key_values) = obj {
|
||||
key_values
|
||||
.into_iter()
|
||||
.find(|(k, _)| *k == Object::Unicode(key.to_owned()))
|
||||
.map(|(_, v)| v)
|
||||
.ok_or_else(|| E::Msg(format!("key {key} not found")))?
|
||||
} else {
|
||||
obj
|
||||
}
|
||||
} else {
|
||||
obj
|
||||
};
|
||||
|
||||
// If the object is a dict, then we can extract the tensor info from it.
|
||||
// NOTE: We are assuming that the `obj` is state_dict by this stage.
|
||||
if let Object::Dict(key_values) = obj {
|
||||
for (name, value) in key_values.into_iter() {
|
||||
match value.into_tensor_info(name, &dir_name) {
|
||||
@ -688,8 +721,8 @@ pub struct PthTensors {
|
||||
}
|
||||
|
||||
impl PthTensors {
|
||||
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
|
||||
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
|
||||
pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
|
||||
let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
|
||||
let tensor_infos = tensor_infos
|
||||
.into_iter()
|
||||
.map(|ti| (ti.name.to_string(), ti))
|
||||
@ -703,6 +736,7 @@ impl PthTensors {
|
||||
}
|
||||
|
||||
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
|
||||
use std::io::Read;
|
||||
let tensor_info = match self.tensor_infos.get(name) {
|
||||
None => return Ok(None),
|
||||
Some(tensor_info) => tensor_info,
|
||||
@ -711,27 +745,56 @@ impl PthTensors {
|
||||
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
|
||||
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
||||
let mut reader = zip.by_name(&tensor_info.path)?;
|
||||
let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
|
||||
let rank = tensor_info.layout.shape().rank();
|
||||
|
||||
// Reading the data is a bit tricky as it can be strided, use an offset, etc.
|
||||
// For now only support the basic case.
|
||||
if tensor_info.layout.start_offset() != 0 || !tensor_info.layout.is_contiguous() {
|
||||
// Reading the data is a bit tricky as it can be strided, for now only support the basic
|
||||
// case and when the tensor is fortran contiguous.
|
||||
if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
|
||||
crate::bail!(
|
||||
"cannot retrieve non-contiguous tensors {:?}",
|
||||
tensor_info.layout
|
||||
)
|
||||
}
|
||||
let start_offset = tensor_info.layout.start_offset();
|
||||
if start_offset > 0 {
|
||||
std::io::copy(
|
||||
&mut reader.by_ref().take(start_offset as u64),
|
||||
&mut std::io::sink(),
|
||||
)?;
|
||||
}
|
||||
let tensor = Tensor::from_reader(
|
||||
tensor_info.layout.shape().clone(),
|
||||
tensor_info.dtype,
|
||||
&mut reader,
|
||||
)?;
|
||||
Ok(Some(tensor))
|
||||
|
||||
if rank > 1 && is_fortran_contiguous {
|
||||
// Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
|
||||
let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
|
||||
let tensor = tensor.reshape(shape_reversed)?;
|
||||
|
||||
// Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
|
||||
let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
|
||||
let tensor = tensor.permute(dim_indeces_reversed)?;
|
||||
Ok(Some(tensor))
|
||||
} else {
|
||||
Ok(Some(tensor))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Read all the tensors from a PyTorch pth file.
|
||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
||||
let pth = PthTensors::new(path)?;
|
||||
/// Read all the tensors from a PyTorch pth file with a given key.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `path` - Path to the pth file.
|
||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
|
||||
/// contains multiple objects and the state_dict is the one we are interested in.
|
||||
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
|
||||
path: P,
|
||||
key: Option<&str>,
|
||||
) -> Result<Vec<(String, Tensor)>> {
|
||||
let pth = PthTensors::new(path, key)?;
|
||||
let tensor_names = pth.tensor_infos.keys();
|
||||
let mut tensors = Vec::with_capacity(tensor_names.len());
|
||||
for name in tensor_names {
|
||||
@ -741,3 +804,11 @@ pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tenso
|
||||
}
|
||||
Ok(tensors)
|
||||
}
|
||||
|
||||
/// Read all the tensors from a PyTorch pth file.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `path` - Path to the pth file.
|
||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
||||
read_all_with_key(path, None)
|
||||
}
|
||||
|
43
candle-core/src/quantized/dummy_metal.rs
Normal file
43
candle-core/src/quantized/dummy_metal.rs
Normal file
@ -0,0 +1,43 @@
|
||||
#![allow(unused)]
|
||||
use super::GgmlDType;
|
||||
use crate::{Error, MetalDevice, MetalStorage, Result};
|
||||
|
||||
pub struct QMetalStorage {
|
||||
dtype: GgmlDType,
|
||||
device: MetalDevice,
|
||||
}
|
||||
|
||||
impl QMetalStorage {
|
||||
pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &MetalDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
_self_shape: &crate::Shape,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &crate::Layout,
|
||||
) -> Result<(MetalStorage, crate::Shape)> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
}
|
@ -233,6 +233,7 @@ pub struct Content {
|
||||
pub hparams: HParams,
|
||||
pub vocab: Vocab,
|
||||
pub tensors: HashMap<String, super::QTensor>,
|
||||
pub device: Device,
|
||||
}
|
||||
|
||||
impl Content {
|
||||
@ -252,11 +253,13 @@ impl Content {
|
||||
let (name, tensor) = read_one_tensor(reader, magic, device)?;
|
||||
tensors.insert(name, tensor);
|
||||
}
|
||||
let device = device.clone();
|
||||
Ok(Self {
|
||||
magic,
|
||||
hparams,
|
||||
vocab,
|
||||
tensors,
|
||||
device,
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -1545,13 +1545,13 @@ impl GgmlType for BlockQ5K {
|
||||
let d2 = d * sc as f32;
|
||||
let m2 = min * m as f32;
|
||||
for (ql, qh) in ql.iter().zip(qh) {
|
||||
let to_add = if qh & u1 != 0 { 16 } else { 1 };
|
||||
y[ys_index] = d1 * ((ql & 0xF) + to_add) as f32 - m1;
|
||||
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
|
||||
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
|
||||
ys_index += 1;
|
||||
}
|
||||
for (ql, qh) in ql.iter().zip(qh) {
|
||||
let to_add = if qh & u2 != 0 { 16 } else { 1 };
|
||||
y[ys_index] = d2 * ((ql >> 4) + to_add) as f32 - m2;
|
||||
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
|
||||
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
|
||||
ys_index += 1;
|
||||
}
|
||||
is += 2;
|
||||
|
@ -1,5 +1,6 @@
|
||||
use super::{GgmlDType, QStorage};
|
||||
use crate::{DType, MetalDevice, MetalStorage, Result};
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{DType, MetalDevice, MetalStorage, Result, Shape};
|
||||
use metal::Buffer;
|
||||
use std::sync::Arc;
|
||||
|
||||
@ -10,20 +11,26 @@ pub struct QMetalStorage {
|
||||
}
|
||||
|
||||
impl QMetalStorage {
|
||||
pub fn zeros(device: &MetalDevice, elem_count: usize, dtype: GgmlDType) -> Result<Self> {
|
||||
let size = elem_count * dtype.type_size() / dtype.block_size();
|
||||
let buffer = device.allocate_zeros(size)?;
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn buffer(&self) -> &Buffer {
|
||||
&self.buffer
|
||||
pub fn device(&self) -> &MetalDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn new(buffer: Arc<Buffer>, device: MetalDevice, dtype: GgmlDType) -> Self {
|
||||
Self {
|
||||
device,
|
||||
buffer,
|
||||
dtype,
|
||||
}
|
||||
pub fn buffer(&self) -> &Buffer {
|
||||
&self.buffer
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
|
||||
@ -32,9 +39,7 @@ impl QMetalStorage {
|
||||
command_buffer.set_label("to_cpu");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
blit.set_label("blit_to_cpu");
|
||||
// blit.wait_for_fence(&self.device.fence());
|
||||
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
|
||||
// blit.update_fence(&self.device.fence());
|
||||
blit.end_encoding();
|
||||
self.device.wait_until_completed()?;
|
||||
let mut out = vec![0.0; elem_count];
|
||||
@ -132,6 +137,59 @@ impl QMetalStorage {
|
||||
self.buffer = buffer;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
self.buffer.length() as usize
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
self_shape: &Shape,
|
||||
storage: &MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
use crate::MetalError;
|
||||
|
||||
if !layout.is_contiguous() {
|
||||
crate::bail!("input tensor is not contiguous {layout:?}")
|
||||
}
|
||||
let src_shape = layout.shape();
|
||||
// self is transposed so n is first then k.
|
||||
if src_shape.rank() < 2 {
|
||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||
}
|
||||
let (n, k) = self_shape.dims2()?;
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
|
||||
let (b, m) = match dst_shape.len() {
|
||||
3 => (dst_shape[0], dst_shape[1]),
|
||||
2 => (1, dst_shape[0]),
|
||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
||||
};
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
if last_k != k {
|
||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self_shape)
|
||||
}
|
||||
dst_shape.push(n);
|
||||
let dst_shape = Shape::from(dst_shape);
|
||||
let device = storage.device().clone();
|
||||
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
|
||||
let command_buffer = device.command_buffer()?;
|
||||
candle_metal_kernels::call_quantized_matmul_t(
|
||||
device.device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
self.dtype.into(),
|
||||
(b, m, n, k),
|
||||
storage.buffer(),
|
||||
layout.start_offset() * storage.dtype().size_in_bytes(),
|
||||
&self.buffer,
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, DType::F32);
|
||||
Ok((dst_storage, dst_shape))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized_metal<T: super::GgmlType + Send + Sync + 'static>(
|
||||
@ -153,3 +211,24 @@ fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
||||
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
|
||||
slice.to_vec()
|
||||
}
|
||||
|
||||
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
|
||||
fn from(value: GgmlDType) -> Self {
|
||||
match value {
|
||||
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
|
||||
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
|
||||
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
|
||||
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
|
||||
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
|
||||
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
|
||||
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
|
||||
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
|
||||
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
|
||||
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,16 +1,19 @@
|
||||
#[cfg(feature = "metal")]
|
||||
use crate::{backend::BackendStorage, DType};
|
||||
use crate::{CpuStorage, Device, Result, Shape, Storage, Tensor};
|
||||
use k_quants::*;
|
||||
use std::borrow::Cow;
|
||||
|
||||
#[cfg(target_feature = "avx")]
|
||||
pub mod avx;
|
||||
mod dummy_metal;
|
||||
pub mod ggml_file;
|
||||
pub mod gguf_file;
|
||||
pub mod k_quants;
|
||||
#[cfg(feature = "metal")]
|
||||
pub mod metal;
|
||||
#[cfg(not(feature = "metal"))]
|
||||
mod metal {
|
||||
pub use super::dummy_metal::*;
|
||||
}
|
||||
#[cfg(target_feature = "neon")]
|
||||
pub mod neon;
|
||||
#[cfg(target_feature = "simd128")]
|
||||
@ -32,19 +35,9 @@ impl Device {
|
||||
let storage = dtype.cpu_zeros(elem_count);
|
||||
Ok(QStorage::Cpu(storage))
|
||||
}
|
||||
#[cfg(feature = "metal")]
|
||||
Device::Metal(metal) => {
|
||||
let size = elem_count * dtype.type_size() / dtype.block_size();
|
||||
let buffer = metal.allocate_zeros(size)?;
|
||||
Ok(QStorage::Metal(metal::QMetalStorage::new(
|
||||
buffer,
|
||||
metal.clone(),
|
||||
dtype,
|
||||
)))
|
||||
}
|
||||
#[cfg(not(feature = "metal"))]
|
||||
Device::Metal(_metal) => {
|
||||
crate::bail!("Metal feature not activated");
|
||||
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
|
||||
Ok(QStorage::Metal(storage))
|
||||
}
|
||||
Device::Cuda(_cuda) => {
|
||||
crate::bail!("Cuda ggml quantization not supported");
|
||||
@ -55,7 +48,6 @@ impl Device {
|
||||
|
||||
pub enum QStorage {
|
||||
Cpu(Box<dyn QuantizedType>),
|
||||
#[cfg(feature = "metal")]
|
||||
Metal(metal::QMetalStorage),
|
||||
}
|
||||
|
||||
@ -63,7 +55,6 @@ impl QStorage {
|
||||
fn block_size(&self) -> usize {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.block_size(),
|
||||
#[cfg(feature = "metal")]
|
||||
QStorage::Metal(storage) => storage.dtype().block_size(),
|
||||
}
|
||||
}
|
||||
@ -71,16 +62,21 @@ impl QStorage {
|
||||
fn dtype(&self) -> GgmlDType {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.dtype(),
|
||||
#[cfg(feature = "metal")]
|
||||
QStorage::Metal(storage) => storage.dtype(),
|
||||
}
|
||||
}
|
||||
|
||||
fn device(&self) -> Device {
|
||||
match self {
|
||||
QStorage::Cpu(_storage) => Device::Cpu,
|
||||
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
|
||||
}
|
||||
}
|
||||
|
||||
fn size_in_bytes(&self) -> usize {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
|
||||
#[cfg(feature = "metal")]
|
||||
QStorage::Metal(storage) => storage.buffer().length() as usize,
|
||||
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -89,7 +85,6 @@ impl QStorage {
|
||||
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
|
||||
storage.from_float(src.as_slice::<f32>()?)?;
|
||||
}
|
||||
#[cfg(feature = "metal")]
|
||||
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
|
||||
_ => crate::bail!("Invalid dequantize storage locations do not match"),
|
||||
}
|
||||
@ -99,7 +94,6 @@ impl QStorage {
|
||||
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
|
||||
#[cfg(feature = "metal")]
|
||||
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
|
||||
}
|
||||
}
|
||||
@ -112,7 +106,6 @@ impl QStorage {
|
||||
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
||||
Ok(Cow::from(data))
|
||||
}
|
||||
#[cfg(feature = "metal")]
|
||||
QStorage::Metal(_storage) => {
|
||||
crate::bail!("not implemented");
|
||||
}
|
||||
@ -336,6 +329,10 @@ impl QTensor {
|
||||
self.storage.dtype()
|
||||
}
|
||||
|
||||
pub fn device(&self) -> Device {
|
||||
self.storage.device()
|
||||
}
|
||||
|
||||
pub fn rank(&self) -> usize {
|
||||
self.shape.rank()
|
||||
}
|
||||
@ -427,8 +424,7 @@ impl crate::CustomOp1 for QTensor {
|
||||
#[allow(clippy::infallible_destructuring_match)]
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Cpu(storage) => storage,
|
||||
#[cfg(feature = "metal")]
|
||||
_ => crate::bail!("Invalid storage"),
|
||||
QStorage::Metal(_) => crate::bail!("Invalid storage"),
|
||||
};
|
||||
let slice = storage.as_slice::<f32>()?;
|
||||
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||
@ -437,79 +433,16 @@ impl crate::CustomOp1 for QTensor {
|
||||
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &crate::MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::MetalStorage, Shape)> {
|
||||
use crate::MetalError;
|
||||
|
||||
if !layout.is_contiguous() {
|
||||
crate::bail!("input tensor is not contiguous {layout:?}")
|
||||
}
|
||||
let src_shape = layout.shape();
|
||||
// self is transposed so n is first then k.
|
||||
if src_shape.rank() < 2 {
|
||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||
}
|
||||
let (n, k) = self.shape.dims2()?;
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
|
||||
let (b, m) = match dst_shape.len() {
|
||||
3 => (dst_shape[0], dst_shape[1]),
|
||||
2 => (1, dst_shape[0]),
|
||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
||||
};
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
if last_k != k {
|
||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
|
||||
}
|
||||
dst_shape.push(n);
|
||||
let dst_shape = Shape::from(dst_shape);
|
||||
let device = storage.device().clone();
|
||||
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
|
||||
let (buffer, dtype) = match &self.storage {
|
||||
QStorage::Metal(metal) => (metal.buffer(), metal.dtype()),
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Metal(metal) => metal,
|
||||
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
|
||||
};
|
||||
let command_buffer = device.command_buffer()?;
|
||||
candle_metal_kernels::call_quantized_matmul_t(
|
||||
device.device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
dtype.into(),
|
||||
(b, m, n, k),
|
||||
storage.buffer(),
|
||||
layout.start_offset() * storage.dtype().size_in_bytes(),
|
||||
buffer,
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, DType::F32);
|
||||
Ok((dst_storage, dst_shape))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
|
||||
fn from(value: GgmlDType) -> Self {
|
||||
match value {
|
||||
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
|
||||
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
|
||||
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
|
||||
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
|
||||
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
|
||||
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
|
||||
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
|
||||
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
|
||||
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
|
||||
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
|
||||
}
|
||||
self_storage.fwd(&self.shape, storage, layout)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -12,6 +12,14 @@ use core::arch::arm::*;
|
||||
#[cfg(target_arch = "aarch64")]
|
||||
use core::arch::aarch64::*;
|
||||
|
||||
#[inline(always)]
|
||||
unsafe fn vdotq_s32(a: int8x16_t, b: int8x16_t) -> int32x4_t {
|
||||
// TODO: dotprod
|
||||
let p0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
|
||||
let p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
||||
let qk = QK8_0;
|
||||
@ -43,15 +51,8 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
|
||||
let v1_0l = vld1q_s8(y0.qs.as_ptr());
|
||||
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||
|
||||
// TODO: Support dotprod when it's available outside of nightly.
|
||||
let pl0l = vmull_s8(vget_low_s8(v0_0ls), vget_low_s8(v1_0l));
|
||||
let pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
|
||||
let ph0l = vmull_s8(vget_low_s8(v0_0hs), vget_low_s8(v1_0h));
|
||||
let ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
|
||||
|
||||
let pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
||||
let ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
||||
|
||||
let pl0 = vdotq_s32(v0_0ls, v1_0l);
|
||||
let ph0 = vdotq_s32(v0_0hs, v1_0h);
|
||||
sumv0 = vmlaq_n_f32(
|
||||
sumv0,
|
||||
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
|
||||
@ -82,14 +83,8 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
||||
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
||||
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||
|
||||
// TODO dotprod once this is the intrinsics are.
|
||||
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
|
||||
let p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
|
||||
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
|
||||
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
||||
|
||||
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
||||
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
||||
let p0 = vdotq_s32(x0_0, y0_0);
|
||||
let p1 = vdotq_s32(x0_1, y0_1);
|
||||
|
||||
sumv0 = vmlaq_n_f32(
|
||||
sumv0,
|
||||
@ -118,10 +113,7 @@ pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Res
|
||||
for i in (0..QK_K).step_by(16) {
|
||||
let xs = vld1q_s8(xs.add(i));
|
||||
let ys = vld1q_s8(ys.add(i));
|
||||
let xy_lo = vmull_s8(vget_low_s8(xs), vget_low_s8(ys));
|
||||
let xy_up = vmull_s8(vget_high_s8(xs), vget_high_s8(ys));
|
||||
|
||||
let xy = vaddq_s32(vpaddlq_s16(xy_lo), vpaddlq_s16(xy_up));
|
||||
let xy = vdotq_s32(xs, ys);
|
||||
sum_i = vaddq_s32(sum_i, xy)
|
||||
}
|
||||
sumf += vaddvq_s32(sum_i) as f32 * scale
|
||||
@ -191,30 +183,16 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
|
||||
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
|
||||
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
|
||||
|
||||
// TODO: dotprod
|
||||
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
|
||||
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
|
||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
|
||||
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
|
||||
scale = scale.add(2);
|
||||
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
|
||||
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
|
||||
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
|
||||
);
|
||||
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
|
||||
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
|
||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
|
||||
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
|
||||
scale = scale.add(2);
|
||||
|
||||
let q8bytes = vld1q_s8_x4(q8);
|
||||
@ -234,29 +212,16 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
|
||||
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
|
||||
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
|
||||
|
||||
// TODO: dotprod case.
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
|
||||
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
|
||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
|
||||
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
|
||||
scale = scale.add(2);
|
||||
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
|
||||
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
|
||||
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
|
||||
);
|
||||
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
|
||||
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
|
||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
|
||||
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
|
||||
scale = scale.add(2);
|
||||
}
|
||||
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
|
||||
@ -333,28 +298,14 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
|
||||
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
|
||||
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
|
||||
|
||||
// TODO: dotprod
|
||||
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q5bytes_0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q5bytes_0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q5bytes_1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q5bytes_1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
sumi += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * *scales as i32;
|
||||
let p0 = vdotq_s32(q5bytes_0, q8bytes.0);
|
||||
let p1 = vdotq_s32(q5bytes_1, q8bytes.1);
|
||||
sumi += vaddvq_s32(vaddq_s32(p0, p1)) * *scales as i32;
|
||||
scales = scales.add(1);
|
||||
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q5bytes_2), vget_low_s8(q8bytes.2)),
|
||||
vmull_s8(vget_high_s8(q5bytes_2), vget_high_s8(q8bytes.2)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q5bytes_3), vget_low_s8(q8bytes.3)),
|
||||
vmull_s8(vget_high_s8(q5bytes_3), vget_high_s8(q8bytes.3)),
|
||||
);
|
||||
sumi += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * *scales as i32;
|
||||
let p2 = vdotq_s32(q5bytes_2, q8bytes.2);
|
||||
let p3 = vdotq_s32(q5bytes_3, q8bytes.3);
|
||||
sumi += vaddvq_s32(vaddq_s32(p2, p3)) * *scales as i32;
|
||||
scales = scales.add(1);
|
||||
}
|
||||
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
|
||||
@ -417,22 +368,15 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
|
||||
for j in 0..QK_K / 64 {
|
||||
let q4bits = vld1q_u8_x2(q4);
|
||||
q4 = q4.add(32);
|
||||
// TODO: dotprod
|
||||
let q8bytes = vld1q_s8_x2(q8);
|
||||
q8 = q8.add(32);
|
||||
let q4bytes = int8x16x2_t(
|
||||
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
|
||||
);
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * scales[2 * j] as i32;
|
||||
let p0 = vdotq_s32(q4bytes.0, q8bytes.0);
|
||||
let p1 = vdotq_s32(q4bytes.1, q8bytes.1);
|
||||
sumi1 += vaddvq_s32(vaddq_s32(p0, p1)) * scales[2 * j] as i32;
|
||||
|
||||
let q8bytes = vld1q_s8_x2(q8);
|
||||
q8 = q8.add(32);
|
||||
@ -440,15 +384,9 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
|
||||
);
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * scales[2 * j + 1] as i32;
|
||||
let p2 = vdotq_s32(q4bytes.0, q8bytes.0);
|
||||
let p3 = vdotq_s32(q4bytes.1, q8bytes.1);
|
||||
sumi2 += vaddvq_s32(vaddq_s32(p2, p3)) * scales[2 * j + 1] as i32;
|
||||
}
|
||||
sumf += d * (sumi1 + sumi2) as f32;
|
||||
}
|
||||
@ -526,27 +464,14 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
|
||||
vreinterpretq_s8_u8(q3h_3),
|
||||
);
|
||||
|
||||
// TODO: dotprod
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_1.0)),
|
||||
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_1.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_1.1)),
|
||||
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_1.1)),
|
||||
);
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_1.2)),
|
||||
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_1.2)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_1.3)),
|
||||
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_1.3)),
|
||||
);
|
||||
isum += vaddvq_s16(p0) as i32 * *scale as i32
|
||||
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
|
||||
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
|
||||
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
|
||||
let p0 = vdotq_s32(q3bytes_0, q8bytes_1.0);
|
||||
let p1 = vdotq_s32(q3bytes_1, q8bytes_1.1);
|
||||
let p2 = vdotq_s32(q3bytes_2, q8bytes_1.2);
|
||||
let p3 = vdotq_s32(q3bytes_3, q8bytes_1.3);
|
||||
isum += vaddvq_s32(p0) * *scale as i32
|
||||
+ vaddvq_s32(p1) * *scale.add(1) as i32
|
||||
+ vaddvq_s32(p2) * *scale.add(2) as i32
|
||||
+ vaddvq_s32(p3) * *scale.add(3) as i32;
|
||||
scale = scale.add(4);
|
||||
|
||||
let q3h_0 = vbicq_u8(m2, qhbits.0);
|
||||
@ -571,27 +496,14 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
|
||||
vreinterpretq_s8_u8(q3h_3),
|
||||
);
|
||||
|
||||
// TODO: dotprod
|
||||
let p0 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_2.0)),
|
||||
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_2.0)),
|
||||
);
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_2.1)),
|
||||
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_2.1)),
|
||||
);
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_2.2)),
|
||||
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_2.2)),
|
||||
);
|
||||
let p3 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_2.3)),
|
||||
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_2.3)),
|
||||
);
|
||||
isum += vaddvq_s16(p0) as i32 * *scale as i32
|
||||
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
|
||||
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
|
||||
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
|
||||
let p0 = vdotq_s32(q3bytes_0, q8bytes_2.0);
|
||||
let p1 = vdotq_s32(q3bytes_1, q8bytes_2.1);
|
||||
let p2 = vdotq_s32(q3bytes_2, q8bytes_2.2);
|
||||
let p3 = vdotq_s32(q3bytes_3, q8bytes_2.3);
|
||||
isum += vaddvq_s32(p0) * *scale as i32
|
||||
+ vaddvq_s32(p1) * *scale.add(1) as i32
|
||||
+ vaddvq_s32(p2) * *scale.add(2) as i32
|
||||
+ vaddvq_s32(p3) * *scale.add(3) as i32;
|
||||
scale = scale.add(4);
|
||||
|
||||
if j == 0 {
|
||||
@ -649,7 +561,6 @@ pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Res
|
||||
let mut is = 0usize;
|
||||
|
||||
// TODO: dotprod
|
||||
|
||||
for _j in 0..QK_K / 128 {
|
||||
let q2bits = vld1q_u8_x2(q2);
|
||||
q2 = q2.add(32);
|
||||
@ -696,14 +607,7 @@ unsafe fn multiply_accum_with_scale(
|
||||
q2bytes: int8x16x2_t,
|
||||
q8bytes: int8x16x2_t,
|
||||
) -> i32 {
|
||||
let p1 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q2bytes.0), vget_low_s8(q8bytes.0)),
|
||||
vmull_s8(vget_high_s8(q2bytes.0), vget_high_s8(q8bytes.0)),
|
||||
);
|
||||
let p2 = vaddq_s16(
|
||||
vmull_s8(vget_low_s8(q2bytes.1), vget_low_s8(q8bytes.1)),
|
||||
vmull_s8(vget_high_s8(q2bytes.1), vget_high_s8(q8bytes.1)),
|
||||
);
|
||||
vaddvq_s16(p1) as i32 * aux[is + index] as i32
|
||||
+ vaddvq_s16(p2) as i32 * aux[is + 1 + index] as i32
|
||||
let p1 = vdotq_s32(q2bytes.0, q8bytes.0);
|
||||
let p2 = vdotq_s32(q2bytes.1, q8bytes.1);
|
||||
vaddvq_s32(p1) * aux[is + index] as i32 + vaddvq_s32(p2) * aux[is + 1 + index] as i32
|
||||
}
|
||||
|
@ -426,9 +426,7 @@ impl Tensor {
|
||||
if buffer_size != shape.elem_count() {
|
||||
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
|
||||
}
|
||||
// println!("from vec {buffer_size}");
|
||||
let storage = device.storage_owned(data)?;
|
||||
// println!("Created storage");
|
||||
let none = BackpropOp::none();
|
||||
Ok(from_storage(storage, shape, none, is_variable))
|
||||
}
|
||||
@ -510,6 +508,7 @@ impl Tensor {
|
||||
unary_op!(gelu_erf, GeluErf);
|
||||
unary_op!(erf, Erf);
|
||||
unary_op!(relu, Relu);
|
||||
unary_op!(silu, Silu);
|
||||
unary_op!(ceil, Ceil);
|
||||
unary_op!(floor, Floor);
|
||||
unary_op!(round, Round);
|
||||
@ -806,6 +805,35 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Roll the tensor input along the given dimension.
|
||||
/// Elements that are shifted beyond the last position are re-introduced at the first position.
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, Device};
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.roll(1, 0)?;
|
||||
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]);
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.roll(-1, 0)?;
|
||||
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self>
|
||||
where
|
||||
D: Dim + Clone,
|
||||
{
|
||||
let dim = dim.to_index(self.shape(), "roll")?;
|
||||
let dim_size = self.dim(dim)?;
|
||||
let shift = shift.rem_euclid(dim_size as i32) as usize;
|
||||
if shift == 0 {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
let a = self.narrow(dim, 0, dim_size - shift)?;
|
||||
let b = self.narrow(dim, dim_size - shift, shift)?;
|
||||
Tensor::cat(&[&b, &a], dim)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
|
||||
/// input dimensions.
|
||||
///
|
||||
@ -1855,9 +1883,9 @@ impl Tensor {
|
||||
/// this new node. The storage of this tensor is shared with the initial tensor.
|
||||
///
|
||||
/// If the tensor is already detached from the computation graph, the same tensor is returned.
|
||||
pub fn detach(&self) -> Result<Tensor> {
|
||||
pub fn detach(&self) -> Tensor {
|
||||
if self.op.is_none() && !self.is_variable {
|
||||
Ok(self.clone())
|
||||
self.clone()
|
||||
} else {
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
@ -1868,7 +1896,7 @@ impl Tensor {
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
Tensor(Arc::new(tensor_))
|
||||
}
|
||||
}
|
||||
|
||||
@ -2580,11 +2608,21 @@ impl Tensor {
|
||||
}
|
||||
|
||||
/// Returns log(sum(exp(tensor), dim)).
|
||||
pub fn logsumexp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
let exp = self.exp()?;
|
||||
let sum = exp.sum(sum_dims)?;
|
||||
sum.log()
|
||||
}
|
||||
|
||||
/// Pointwise pow operation.
|
||||
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.mul(&self.log()?)?.exp()
|
||||
}
|
||||
|
||||
/// Broadcasting version of `pow`.
|
||||
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.broadcast_mul(&self.log()?)?.exp()
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! bin_trait {
|
||||
|
@ -107,6 +107,10 @@ impl Var {
|
||||
Ok(Self(inner))
|
||||
}
|
||||
|
||||
pub fn as_detached_tensor(&self) -> Tensor {
|
||||
self.0.detach()
|
||||
}
|
||||
|
||||
pub fn as_tensor(&self) -> &Tensor {
|
||||
&self.0
|
||||
}
|
||||
|
@ -50,17 +50,15 @@ fn conv1d(dev: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
||||
);
|
||||
if dev.is_cpu() {
|
||||
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
|
||||
4.7076, -5.9745, -0.8276, 1.621
|
||||
],
|
||||
);
|
||||
}
|
||||
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
|
||||
4.7076, -5.9745, -0.8276, 1.621
|
||||
],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
BIN
candle-core/tests/fortran_tensor_3d.pth
Normal file
BIN
candle-core/tests/fortran_tensor_3d.pth
Normal file
Binary file not shown.
@ -270,6 +270,19 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
[0.7358, 2.0000, 0.2707, 1.0000]
|
||||
);
|
||||
|
||||
// testing compared to pytorch nn.Silu()
|
||||
let y = x.silu()?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[2.8577, 0.7311, 3.9281, 0.0806]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(grad_x, 4)?,
|
||||
[1.0881, 0.9277, 1.0527, 0.5747],
|
||||
);
|
||||
|
||||
// manually checked: see comments
|
||||
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
|
||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
||||
|
37
candle-core/tests/pth.py
Normal file
37
candle-core/tests/pth.py
Normal file
@ -0,0 +1,37 @@
|
||||
import torch
|
||||
from collections import OrderedDict
|
||||
|
||||
# Write a trivial tensor to a pt file
|
||||
a= torch.tensor([[1,2,3,4], [5,6,7,8]])
|
||||
o = OrderedDict()
|
||||
o["test"] = a
|
||||
|
||||
# Write a trivial tensor to a pt file
|
||||
torch.save(o, "test.pt")
|
||||
|
||||
############################################################################################################
|
||||
# Write a trivial tensor to a pt file with a key
|
||||
torch.save({"model_state_dict": o}, "test_with_key.pt")
|
||||
|
||||
############################################################################################################
|
||||
# Create a tensor with fortran contiguous memory layout
|
||||
import numpy as np
|
||||
|
||||
# Step 1: Create a 3D NumPy array with Fortran order using a range of numbers
|
||||
# For example, creating a 2x3x4 array
|
||||
array_fortran = np.asfortranarray(np.arange(1, 2*3*4 + 1).reshape(2, 3, 4))
|
||||
|
||||
# Verify the memory order
|
||||
print("Is Fortran contiguous (F order):", array_fortran.flags['F_CONTIGUOUS']) # Should be True
|
||||
print("Is C contiguous (C order):", array_fortran.flags['C_CONTIGUOUS']) # Should be False
|
||||
|
||||
# Step 2: Convert the NumPy array to a PyTorch tensor
|
||||
tensor_fortran = torch.from_numpy(array_fortran)
|
||||
|
||||
# Verify the tensor layout
|
||||
print("Tensor stride:", tensor_fortran.stride()) # Stride will reflect the Fortran memory layout
|
||||
|
||||
# Step 3: Save the PyTorch tensor to a .pth file
|
||||
torch.save({"tensor_fortran": tensor_fortran}, 'fortran_tensor_3d.pth')
|
||||
|
||||
print("3D Tensor saved with Fortran layout.")
|
31
candle-core/tests/pth_tests.rs
Normal file
31
candle-core/tests/pth_tests.rs
Normal file
@ -0,0 +1,31 @@
|
||||
/// Regression test for pth files not loading on Windows.
|
||||
#[test]
|
||||
fn test_pth() {
|
||||
let tensors = candle_core::pickle::PthTensors::new("tests/test.pt", None).unwrap();
|
||||
tensors.get("test").unwrap().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pth_with_key() {
|
||||
let tensors =
|
||||
candle_core::pickle::PthTensors::new("tests/test_with_key.pt", Some("model_state_dict"))
|
||||
.unwrap();
|
||||
tensors.get("test").unwrap().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pth_fortran_congiguous() {
|
||||
let tensors =
|
||||
candle_core::pickle::PthTensors::new("tests/fortran_tensor_3d.pth", None).unwrap();
|
||||
let tensor = tensors.get("tensor_fortran").unwrap().unwrap();
|
||||
|
||||
assert_eq!(tensor.dims3().unwrap(), (2, 3, 4));
|
||||
|
||||
assert_eq!(
|
||||
tensor.to_vec3::<i64>().unwrap(),
|
||||
[
|
||||
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
|
||||
[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]
|
||||
]
|
||||
);
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
use candle_core::{
|
||||
bail,
|
||||
quantized::{self, GgmlDType},
|
||||
test_device,
|
||||
test_utils::to_vec2_round,
|
||||
@ -46,6 +47,10 @@ fn test_matmul(
|
||||
}
|
||||
|
||||
fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
@ -100,6 +105,10 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 - (m * k) as f32 / 2.0)
|
||||
@ -169,6 +178,10 @@ test_device!(
|
||||
);
|
||||
|
||||
fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
@ -196,6 +209,10 @@ fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
|
||||
@ -222,6 +239,10 @@ fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
|
||||
@ -248,6 +269,10 @@ fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5_1(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
|
||||
@ -309,7 +334,8 @@ fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) {
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
|
||||
/// Creates a vector similar to the ones used in GGML unit tests:
|
||||
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
|
||||
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
|
||||
(0..GGML_TEST_SIZE)
|
||||
.map(|i| 0.1 + 2.0 * (i as f32 + offset).cos())
|
||||
@ -328,7 +354,8 @@ fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 {
|
||||
sum / a.len() as f32
|
||||
}
|
||||
|
||||
/// Mirrores the GGML quanitzation unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
|
||||
/// Similar to the GGML quantization unit test:
|
||||
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
|
||||
fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f32) -> Result<()> {
|
||||
let src = create_ggml_like_vector(0.0);
|
||||
let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?;
|
||||
@ -336,7 +363,7 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
|
||||
let dst = quant.dequantize(device)?;
|
||||
let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?);
|
||||
if error > max_error {
|
||||
candle_core::bail!(
|
||||
bail!(
|
||||
"Quantization error {} exceeds max error {}",
|
||||
error,
|
||||
max_error
|
||||
@ -346,6 +373,10 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
|
||||
}
|
||||
|
||||
fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q2K;
|
||||
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
@ -380,6 +411,10 @@ fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q3K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -413,6 +448,10 @@ fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q4K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -446,6 +485,10 @@ fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q5K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -463,7 +506,7 @@ fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
let dst = round_vector(&dst);
|
||||
assert_eq!(
|
||||
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
||||
[-0.499, -0.372, -0.249, 0.001, 0.279, 0.499]
|
||||
[-0.5, -0.373, -0.25, 0.0, 0.279, 0.499]
|
||||
);
|
||||
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
@ -479,6 +522,10 @@ fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q6K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -512,6 +559,10 @@ fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
}
|
||||
|
||||
fn quantize_q8k(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let dtype = GgmlDType::Q8K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
@ -620,54 +671,66 @@ fn ggml_reference_matmul_error(dtype: GgmlDType) -> Result<f32> {
|
||||
GgmlDType::Q5K => 0.000740,
|
||||
GgmlDType::Q6K => 0.000952,
|
||||
GgmlDType::Q4_0 => 0.001143,
|
||||
GgmlDType::Q4_1 => 0.007784,
|
||||
GgmlDType::Q4_1 => 0.008,
|
||||
GgmlDType::Q5_0 => 0.001353,
|
||||
GgmlDType::Q5_1 => 0.001363,
|
||||
GgmlDType::Q5_1 => 0.00149,
|
||||
GgmlDType::Q8_0 => 0.000092,
|
||||
|
||||
// Not from the ggml repo.
|
||||
GgmlDType::Q8K => 0.00065,
|
||||
_ => candle_core::bail!("No GGML results for quantization type {dtype:?}",),
|
||||
_ => bail!("No GGML results for quantization type {dtype:?}",),
|
||||
};
|
||||
Ok(err)
|
||||
}
|
||||
|
||||
/// Mirrores the GGML matmul unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
|
||||
/// Similar to the GGML matmul unit test:
|
||||
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
|
||||
fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
|
||||
let a = create_ggml_like_vector(0.0);
|
||||
let b = create_ggml_like_vector(1.0);
|
||||
ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 1.0)?;
|
||||
// Another example that is more likely to trigger the overflow reported in #1526
|
||||
let a = (0..GGML_TEST_SIZE)
|
||||
.map(|i| i as f32 / GGML_TEST_SIZE as f32)
|
||||
.collect::<Vec<_>>();
|
||||
let b = (0..GGML_TEST_SIZE)
|
||||
.map(|i| i as f32 / GGML_TEST_SIZE as f32)
|
||||
.collect::<Vec<_>>();
|
||||
ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 2.0)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn ggml_matmul_error_test_<T: GgmlType>(a: &[f32], b: &[f32], err_m: f32) -> Result<()> {
|
||||
let length = a.len();
|
||||
|
||||
let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE];
|
||||
let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE];
|
||||
T::from_float(&a, &mut a_quant)?;
|
||||
T::VecDotType::from_float(&b, &mut b_quant)?;
|
||||
T::from_float(a, &mut a_quant)?;
|
||||
T::VecDotType::from_float(b, &mut b_quant)?;
|
||||
|
||||
let result = T::vec_dot(length, &a_quant, &b_quant)?;
|
||||
let result_unopt = T::vec_dot_unopt(length, &a_quant, &b_quant)?;
|
||||
let reference_result = vec_dot_reference(&a, &b);
|
||||
let reference_result = vec_dot_reference(a, b);
|
||||
|
||||
if (result - result_unopt).abs() / length as f32 > 1e-6 {
|
||||
candle_core::bail!(
|
||||
bail!(
|
||||
"the opt and unopt vec-dot returned different values, opt {result}, unopt {result_unopt}"
|
||||
)
|
||||
}
|
||||
|
||||
let error = (result - reference_result).abs() / length as f32;
|
||||
|
||||
let ggml_error = ggml_reference_matmul_error(T::DTYPE)?;
|
||||
let ggml_error = ggml_reference_matmul_error(T::DTYPE)? * err_m;
|
||||
|
||||
if !error.is_finite() || error > GGML_MAX_DOT_PRODUCT_ERROR {
|
||||
candle_core::bail!(
|
||||
"Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",
|
||||
);
|
||||
bail!("Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",);
|
||||
}
|
||||
|
||||
// We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML
|
||||
// => we use a slightly higher error threshold
|
||||
const ERROR_LENIENCY: f32 = 0.00001;
|
||||
if error - ERROR_LENIENCY > ggml_error {
|
||||
candle_core::bail!(
|
||||
bail!(
|
||||
"Dot product error {} exceeds ggml reference error {}",
|
||||
error,
|
||||
ggml_error
|
||||
@ -676,6 +739,16 @@ fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantized_mm() -> Result<()> {
|
||||
ggml_matmul_error_test::<k_quants::BlockQ4_0>()?;
|
||||
ggml_matmul_error_test::<k_quants::BlockQ4_1>()?;
|
||||
ggml_matmul_error_test::<k_quants::BlockQ5_0>()?;
|
||||
ggml_matmul_error_test::<k_quants::BlockQ5_1>()?;
|
||||
ggml_matmul_error_test::<k_quants::BlockQ8_0>()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result.
|
||||
fn get_random_tensors(
|
||||
m: usize,
|
||||
@ -705,6 +778,10 @@ macro_rules! quantized_matmul {
|
||||
// stable. https://github.com/rust-lang/rust/issues/29599
|
||||
($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => {
|
||||
fn $fn_name(device: &Device) -> Result<()> {
|
||||
if device.is_cuda() {
|
||||
// TODO Enable Cuda GGML sometime maybe.
|
||||
return Ok(());
|
||||
}
|
||||
test_matmul(device, (1, 3, 4, 256), $dtype)?;
|
||||
Ok(())
|
||||
}
|
||||
|
@ -120,6 +120,13 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
[0.9999, -0.9891, -0.3079, 0.9891, 0.9999]
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.silu()?, 4)?,
|
||||
[
|
||||
[-0.1423, 0.7311, 3.9281, -0.0475, 0.3112],
|
||||
[2.53, -0.2553, -0.1205, 1.5447, 2.6395]
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.ceil()?, 4)?,
|
||||
[[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]]
|
||||
@ -1245,11 +1252,23 @@ fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn logsumexp() -> Result<()> {
|
||||
fn log_sum_exp() -> Result<()> {
|
||||
let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let output = input.logsumexp(D::Minus1)?;
|
||||
let output = input.log_sum_exp(D::Minus1)?;
|
||||
// The expectations obtained from pytorch.
|
||||
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
|
||||
assert_close(&output, &expected, 0.00001)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pow() -> Result<()> {
|
||||
let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let rhs = (&lhs - 2.)?;
|
||||
let res = lhs.pow(&rhs)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res, 4)?,
|
||||
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
BIN
candle-core/tests/test.pt
Normal file
BIN
candle-core/tests/test.pt
Normal file
Binary file not shown.
BIN
candle-core/tests/test_with_key.pt
Normal file
BIN
candle-core/tests/test_with_key.pt
Normal file
Binary file not shown.
@ -11,8 +11,8 @@ readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
byteorder = { workspace = true }
|
||||
candle = { path = "../candle-core", version = "0.3.3", package = "candle-core" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.3.3" }
|
||||
candle = { workspace = true }
|
||||
candle-nn = { workspace = true }
|
||||
hf-hub = { workspace = true}
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
memmap2 = { workspace = true }
|
||||
|
@ -11,17 +11,17 @@ readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
candle = { path = "../candle-core", version = "0.3.3", package = "candle-core" }
|
||||
candle-datasets = { path = "../candle-datasets", version = "0.3.3" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.3.3" }
|
||||
candle-transformers = { path = "../candle-transformers", version = "0.3.3" }
|
||||
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.3", optional = true }
|
||||
candle-onnx = { path = "../candle-onnx", version = "0.3.3", optional = true }
|
||||
candle = { workspace = true }
|
||||
candle-datasets = { workspace = true }
|
||||
candle-nn = { workspace = true }
|
||||
candle-transformers = { workspace = true }
|
||||
candle-flash-attn = { workspace = true, optional = true }
|
||||
candle-onnx = { workspace = true, optional = true }
|
||||
|
||||
csv = "1.3.0"
|
||||
cudarc = { workspace = true, optional = true }
|
||||
half = { workspace = true, optional = true }
|
||||
hf-hub = { workspace = true, features=["tokio"]}
|
||||
hf-hub = { workspace = true, features = ["tokio"] }
|
||||
image = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
num-traits = { workspace = true }
|
||||
@ -30,7 +30,9 @@ rayon = { workspace = true }
|
||||
safetensors = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
serde_json = { workspace = true }
|
||||
symphonia = { version = "0.5.3", features = ["all"] }
|
||||
tokenizers = { workspace = true, features = ["onig"] }
|
||||
cpal= { version = "0.15.2", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
@ -43,23 +45,24 @@ rusttype = { workspace = true }
|
||||
tracing = { workspace = true }
|
||||
tracing-chrome = { workspace = true }
|
||||
tracing-subscriber = { workspace = true }
|
||||
wav = { workspace = true }
|
||||
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
|
||||
tokio = "1.29.1"
|
||||
|
||||
[build-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
bindgen_cuda = { version = "0.1.1", optional = true }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
|
||||
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda"]
|
||||
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda", "dep:bindgen_cuda"]
|
||||
cudnn = ["candle/cudnn"]
|
||||
flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
|
||||
nccl = ["cuda", "cudarc/nccl", "dep:half"]
|
||||
onnx = ["candle-onnx"]
|
||||
metal = ["candle/metal", "candle-nn/metal"]
|
||||
microphone = ["cpal"]
|
||||
|
||||
[[example]]
|
||||
name = "llama_multiprocess"
|
||||
@ -76,3 +79,7 @@ required-features = ["onnx"]
|
||||
[[example]]
|
||||
name = "onnx_basics"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "whisper-microphone"
|
||||
required-features = ["microphone"]
|
||||
|
@ -4,251 +4,28 @@ use std::io::Write;
|
||||
use std::path::PathBuf;
|
||||
|
||||
struct KernelDirectories {
|
||||
kernel_dir: &'static str,
|
||||
kernel_glob: &'static str,
|
||||
rust_target: &'static str,
|
||||
include_dirs: &'static [&'static str],
|
||||
}
|
||||
|
||||
const DIRS: [KernelDirectories; 1] = [KernelDirectories {
|
||||
kernel_dir: "examples/custom-ops/kernels/",
|
||||
const KERNEL_DIRS: [KernelDirectories; 1] = [KernelDirectories {
|
||||
kernel_glob: "examples/custom-ops/kernels/*.cu",
|
||||
rust_target: "examples/custom-ops/cuda_kernels.rs",
|
||||
include_dirs: &[],
|
||||
}];
|
||||
|
||||
impl KernelDirectories {
|
||||
fn maybe_build_ptx(
|
||||
&self,
|
||||
cu_file: &std::path::Path,
|
||||
ptx_file: &std::path::Path,
|
||||
compute_cap: usize,
|
||||
) -> Result<()> {
|
||||
let should_compile = if ptx_file.exists() {
|
||||
let ptx_modified = ptx_file.metadata()?.modified()?;
|
||||
let cu_modified = cu_file.metadata()?.modified()?;
|
||||
cu_modified.duration_since(ptx_modified).is_ok()
|
||||
} else {
|
||||
true
|
||||
};
|
||||
if should_compile {
|
||||
#[cfg(feature = "cuda")]
|
||||
{
|
||||
let ccbin_env = std::env::var("CANDLE_NVCC_CCBIN");
|
||||
println!("cargo:rerun-if-env-changed=CANDLE_NVCC_CCBIN");
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
let out_dir = ptx_file.parent().context("no parent for ptx file")?;
|
||||
let include_dirs: Vec<String> =
|
||||
self.include_dirs.iter().map(|c| format!("-I{c}")).collect();
|
||||
command
|
||||
.arg(format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.arg("--ptx")
|
||||
.args(["--default-stream", "per-thread"])
|
||||
.args(["--output-directory", out_dir.to_str().unwrap()])
|
||||
.arg(format!("-I/{}", self.kernel_dir))
|
||||
.args(include_dirs)
|
||||
.arg(cu_file);
|
||||
if let Ok(ccbin_path) = &ccbin_env {
|
||||
command
|
||||
.arg("-allow-unsupported-compiler")
|
||||
.args(["-ccbin", ccbin_path]);
|
||||
}
|
||||
let output = command
|
||||
.spawn()
|
||||
.context("failed spawning nvcc")?
|
||||
.wait_with_output()?;
|
||||
if !output.status.success() {
|
||||
anyhow::bail!(
|
||||
"nvcc error while compiling {cu_file:?}:\n\n# stdout\n{:#}\n\n# stderr\n{:#}",
|
||||
String::from_utf8_lossy(&output.stdout),
|
||||
String::from_utf8_lossy(&output.stderr)
|
||||
)
|
||||
}
|
||||
}
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
std::fs::OpenOptions::new()
|
||||
.create(true)
|
||||
.write(true)
|
||||
.open(ptx_file)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn process(&self, out_dir: &std::path::Path, compute_cap: usize) -> Result<()> {
|
||||
println!("cargo:rerun-if-changed={}", self.kernel_dir);
|
||||
let kernel_dir = PathBuf::from(self.kernel_dir);
|
||||
let out_dir = out_dir.join(self.kernel_dir);
|
||||
if !out_dir.exists() {
|
||||
std::fs::create_dir_all(&out_dir)?;
|
||||
}
|
||||
let mut cu_files = vec![];
|
||||
let mut cuh_files = vec![];
|
||||
for file in std::fs::read_dir(kernel_dir)?.flatten() {
|
||||
let file = file.path();
|
||||
match file.extension().and_then(|v| v.to_str()) {
|
||||
Some("cu") => cu_files.push(file),
|
||||
Some("cuh") => cuh_files.push(file),
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
let mut ptx_paths = vec![];
|
||||
for cu_file in cu_files.iter() {
|
||||
let file_stem = cu_file
|
||||
.file_stem()
|
||||
.with_context(|| format!("no stem {cu_file:?}"))?;
|
||||
let file_stem = file_stem.to_string_lossy().into_owned();
|
||||
let ptx_file = out_dir.join(&format!("{file_stem}.ptx"));
|
||||
self.maybe_build_ptx(cu_file, &ptx_file, compute_cap)?;
|
||||
ptx_paths.push(ptx_file);
|
||||
}
|
||||
|
||||
let regenerate_rs_file = true;
|
||||
if regenerate_rs_file {
|
||||
let mut file = std::fs::File::create(self.rust_target)?;
|
||||
for ptx_path in ptx_paths {
|
||||
let name = ptx_path
|
||||
.file_stem()
|
||||
.context("empty stem")?
|
||||
.to_string_lossy();
|
||||
file.write_all(b"#[rustfmt::skip]\n")?;
|
||||
let const_definition = format!(
|
||||
r#"pub const {}: &str = include_str!(concat!(env!("OUT_DIR"), "/{}/{name}.ptx"));"#,
|
||||
name.to_uppercase().replace('.', "_"),
|
||||
self.kernel_dir,
|
||||
);
|
||||
file.write_all(const_definition.as_bytes())?;
|
||||
file.write_all(b"\n")?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
println!("cargo:rerun-if-changed=build.rs");
|
||||
|
||||
let out_dir = std::env::var("OUT_DIR").context("OUT_DIR not set")?;
|
||||
let out_dir = PathBuf::from(out_dir);
|
||||
#[cfg(feature = "cuda")]
|
||||
set_cuda_include_dir()?;
|
||||
#[cfg(feature = "cuda")]
|
||||
let compute_cap = compute_cap()?;
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
let compute_cap = 0;
|
||||
for d in DIRS {
|
||||
d.process(&out_dir, compute_cap)?
|
||||
{
|
||||
for kdir in KERNEL_DIRS.iter() {
|
||||
let builder = bindgen_cuda::Builder::default().kernel_paths_glob(kdir.kernel_glob);
|
||||
println!("cargo:info={builder:?}");
|
||||
let bindings = builder.build_ptx().unwrap();
|
||||
bindings.write(kdir.rust_target).unwrap()
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn set_cuda_include_dir() -> Result<()> {
|
||||
// NOTE: copied from cudarc build.rs.
|
||||
let env_vars = [
|
||||
"CUDA_PATH",
|
||||
"CUDA_ROOT",
|
||||
"CUDA_TOOLKIT_ROOT_DIR",
|
||||
"CUDNN_LIB",
|
||||
];
|
||||
let env_vars = env_vars
|
||||
.into_iter()
|
||||
.map(std::env::var)
|
||||
.filter_map(Result::ok)
|
||||
.map(Into::<PathBuf>::into);
|
||||
|
||||
let roots = [
|
||||
"/usr",
|
||||
"/usr/local/cuda",
|
||||
"/opt/cuda",
|
||||
"/usr/lib/cuda",
|
||||
"C:/Program Files/NVIDIA GPU Computing Toolkit",
|
||||
"C:/CUDA",
|
||||
];
|
||||
let roots = roots.into_iter().map(Into::<PathBuf>::into);
|
||||
let root = env_vars
|
||||
.chain(roots)
|
||||
.find(|path| path.join("include").join("cuda.h").is_file())
|
||||
.context("cannot find include/cuda.h")?;
|
||||
println!(
|
||||
"cargo:rustc-env=CUDA_INCLUDE_DIR={}",
|
||||
root.join("include").display()
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
fn compute_cap() -> Result<usize> {
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
|
||||
// Try to parse compute cap from env
|
||||
let mut compute_cap = if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={compute_cap_str}");
|
||||
compute_cap_str
|
||||
.parse::<usize>()
|
||||
.context("Could not parse code")?
|
||||
} else {
|
||||
// Grab compute cap from nvidia-smi
|
||||
let out = std::process::Command::new("nvidia-smi")
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
|
||||
let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?;
|
||||
let mut lines = out.lines();
|
||||
assert_eq!(
|
||||
lines.next().context("missing line in stdout")?,
|
||||
"compute_cap"
|
||||
);
|
||||
let cap = lines
|
||||
.next()
|
||||
.context("missing line in stdout")?
|
||||
.replace('.', "");
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={cap}");
|
||||
cap.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as int {cap}"))?
|
||||
};
|
||||
|
||||
// Grab available GPU codes from nvcc and select the highest one
|
||||
let max_nvcc_code = {
|
||||
let out = std::process::Command::new("nvcc")
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
|
||||
let out = out.lines().collect::<Vec<&str>>();
|
||||
let mut codes = Vec::with_capacity(out.len());
|
||||
for code in out {
|
||||
let code = code.split('_').collect::<Vec<&str>>();
|
||||
if !code.is_empty() && code.contains(&"sm") {
|
||||
if let Ok(num) = code[1].parse::<usize>() {
|
||||
codes.push(num);
|
||||
}
|
||||
}
|
||||
}
|
||||
codes.sort();
|
||||
if !codes.contains(&compute_cap) {
|
||||
anyhow::bail!(
|
||||
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {codes:?}."
|
||||
);
|
||||
}
|
||||
*codes.last().unwrap()
|
||||
};
|
||||
|
||||
// If nvidia-smi compute_cap is higher than the highest gpu code from nvcc,
|
||||
// then choose the highest gpu code in nvcc
|
||||
if compute_cap > max_nvcc_code {
|
||||
println!(
|
||||
"cargo:warning=Lowering gpu arch {compute_cap} to max nvcc target {max_nvcc_code}."
|
||||
);
|
||||
compute_cap = max_nvcc_code;
|
||||
}
|
||||
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
|
||||
if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
compute_cap = compute_cap_str
|
||||
.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as usize '{compute_cap_str}'"))?;
|
||||
println!("cargo:warning=Using gpu arch {compute_cap} from $CUDA_COMPUTE_CAP");
|
||||
}
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP=sm_{compute_cap}");
|
||||
Ok(compute_cap)
|
||||
}
|
||||
|
237
candle-examples/examples/chatglm/main.rs
Normal file
237
candle-examples/examples/chatglm/main.rs
Normal file
@ -0,0 +1,237 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::chatglm::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
verbose_prompt,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the chatglm model.")
|
||||
}
|
||||
if self.verbose_prompt {
|
||||
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
println!("{id:7} -> '{token}'");
|
||||
}
|
||||
}
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_vocab(true).get("</s>") {
|
||||
Some(token) => *token,
|
||||
None => anyhow::bail!("cannot find the endoftext token"),
|
||||
};
|
||||
print!("{prompt}");
|
||||
std::io::stdout().flush()?;
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input)?;
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||
print!("{token}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "THUDM/chatglm3-6b".to_string(),
|
||||
};
|
||||
let revision = match args.revision {
|
||||
Some(rev) => rev.to_string(),
|
||||
None => "main".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => api
|
||||
.model("lmz/candle-chatglm".to_string())
|
||||
.get("chatglm-tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_file {
|
||||
Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = Config::glm3_6b();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
args.verbose_prompt,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
23
candle-examples/examples/convnext/README.md
Normal file
23
candle-examples/examples/convnext/README.md
Normal file
@ -0,0 +1,23 @@
|
||||
# candle-convnext
|
||||
|
||||
[A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) and
|
||||
[ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808).
|
||||
|
||||
This candle implementation uses a pre-trained ConvNeXt network for inference. The
|
||||
classification head has been trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example convnext --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which tiny
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
mountain bike, all-terrain bike, off-roader: 84.09%
|
||||
bicycle-built-for-two, tandem bicycle, tandem: 4.15%
|
||||
maillot : 0.74%
|
||||
crash helmet : 0.54%
|
||||
unicycle, monocycle : 0.44%
|
||||
|
||||
```
|
126
candle-examples/examples/convnext/main.rs
Normal file
126
candle-examples/examples/convnext/main.rs
Normal file
@ -0,0 +1,126 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::convnext;
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
Atto,
|
||||
Femto,
|
||||
Pico,
|
||||
Nano,
|
||||
Tiny,
|
||||
Small,
|
||||
Base,
|
||||
Large,
|
||||
AttoV2,
|
||||
FemtoV2,
|
||||
PicoV2,
|
||||
NanoV2,
|
||||
TinyV2,
|
||||
BaseV2,
|
||||
LargeV2,
|
||||
XLarge,
|
||||
Huge,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_filename(&self) -> String {
|
||||
let name = match self {
|
||||
Self::Atto => "convnext_atto.d2_in1k",
|
||||
Self::Femto => "convnext_femto.d1_in1k",
|
||||
Self::Pico => "convnext_pico.d1_in1k",
|
||||
Self::Nano => "convnext_nano.d1h_in1k",
|
||||
Self::Tiny => "convnext_tiny.fb_in1k",
|
||||
Self::Small => "convnext_small.fb_in1k",
|
||||
Self::Base => "convnext_base.fb_in1k",
|
||||
Self::Large => "convnext_large.fb_in1k",
|
||||
Self::AttoV2 => "convnextv2_atto.fcmae_ft_in1k",
|
||||
Self::FemtoV2 => "convnextv2_femto.fcmae_ft_in1k",
|
||||
Self::PicoV2 => "convnextv2_pico.fcmae_ft_in1k",
|
||||
Self::NanoV2 => "convnextv2_nano.fcmae_ft_in1k",
|
||||
Self::TinyV2 => "convnextv2_tiny.fcmae_ft_in1k",
|
||||
Self::BaseV2 => "convnextv2_base.fcmae_ft_in1k",
|
||||
Self::LargeV2 => "convnextv2_large.fcmae_ft_in1k",
|
||||
Self::XLarge => "convnext_xlarge.fb_in22k_ft_in1k",
|
||||
Self::Huge => "convnextv2_huge.fcmae_ft_in1k",
|
||||
};
|
||||
|
||||
format!("timm/{name}")
|
||||
}
|
||||
|
||||
fn config(&self) -> convnext::Config {
|
||||
match self {
|
||||
Self::Atto | Self::AttoV2 => convnext::Config::atto(),
|
||||
Self::Femto | Self::FemtoV2 => convnext::Config::femto(),
|
||||
Self::Pico | Self::PicoV2 => convnext::Config::pico(),
|
||||
Self::Nano | Self::NanoV2 => convnext::Config::nano(),
|
||||
Self::Tiny | Self::TinyV2 => convnext::Config::tiny(),
|
||||
Self::Small => convnext::Config::small(),
|
||||
Self::Base | Self::BaseV2 => convnext::Config::base(),
|
||||
Self::Large | Self::LargeV2 => convnext::Config::large(),
|
||||
Self::XLarge => convnext::Config::xlarge(),
|
||||
Self::Huge => convnext::Config::huge(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(value_enum, long, default_value_t=Which::Tiny)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let model_name = args.which.model_filename();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(model_name);
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = convnext::convnext(&args.which.config(), 1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,2 +0,0 @@
|
||||
#[rustfmt::skip]
|
||||
pub const LAYERNORM_KERNELS: &str = include_str!(concat!(env!("OUT_DIR"), "/examples/custom-ops/kernels//layernorm_kernels.ptx"));
|
||||
|
@ -6,7 +6,8 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[allow(unused)]
|
||||
#[rustfmt::skip]
|
||||
#[cfg(feature = "cuda")]
|
||||
mod cuda_kernels;
|
||||
|
||||
use clap::Parser;
|
||||
|
@ -57,7 +57,7 @@ struct Args {
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, default_value_t = 100)]
|
||||
#[arg(long, default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// Disable the key-value cache.
|
||||
@ -143,7 +143,6 @@ fn main() -> Result<()> {
|
||||
}
|
||||
Which::TinyLlama1_1BChat => vec![api.get("model.safetensors")?],
|
||||
};
|
||||
println!("building the model");
|
||||
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
@ -157,6 +156,7 @@ fn main() -> Result<()> {
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
|
||||
|
||||
println!("starting the inference loop");
|
||||
print!("{prompt}");
|
||||
@ -165,14 +165,14 @@ fn main() -> Result<()> {
|
||||
let mut index_pos = 0;
|
||||
let mut token_generated = 0;
|
||||
for index in 0..args.sample_len {
|
||||
let context_size = if cache.use_kv_cache && index > 0 {
|
||||
1
|
||||
let (context_size, context_index) = if cache.use_kv_cache && index > 0 {
|
||||
(1, index_pos)
|
||||
} else {
|
||||
tokens.len()
|
||||
(tokens.len(), 0)
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = llama.forward(&input, index_pos)?;
|
||||
let logits = llama.forward(&input, context_index)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
logits
|
||||
@ -190,18 +190,16 @@ fn main() -> Result<()> {
|
||||
token_generated += 1;
|
||||
tokens.push(next_token);
|
||||
|
||||
// Extracting the last token as a string is complicated, here we just apply some simple
|
||||
// heuristics as it seems to work well enough for this example. See the following for more
|
||||
// details:
|
||||
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
|
||||
if let Some(text) = tokenizer.id_to_token(next_token) {
|
||||
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
print!("{text}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
if Some(next_token) == eos_token_id {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
|
@ -328,6 +328,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0.. {
|
||||
@ -353,16 +354,14 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
// Extracting the last token as a string is complicated, here we just apply some simple
|
||||
// heuristics as it seems to work well enough for this example. See the following for more
|
||||
// details:
|
||||
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
|
||||
if let Some(text) = tokenizer.id_to_token(next_token) {
|
||||
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
print!("{text}");
|
||||
if let Some(t) = tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n{} tokens generated ({:.2} token/s)\n",
|
||||
|
@ -2,6 +2,9 @@
|
||||
|
||||
This is based on [mamba-minimal](https://github.com/johnma2006/mamba-minimal).
|
||||
|
||||
Compared to the mamba example, this version can handle training but is much
|
||||
slower.
|
||||
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
|
17
candle-examples/examples/mamba/README.md
Normal file
17
candle-examples/examples/mamba/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
# candle-mamba: Mamba implementation
|
||||
|
||||
Candle implementation of *Mamba* [1] inference only. Mamba is an alternative to
|
||||
the transformer architecture. It leverages State Space Models (SSMs) with the
|
||||
goal of being computationally efficient on long sequences. The implementation is
|
||||
based on [mamba.rs](https://github.com/LaurentMazare/mamba.rs).
|
||||
|
||||
- [1]. [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752).
|
||||
|
||||
Compared to the mamba-minimal example, this version is far more efficient but
|
||||
would only work for inference.
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
$ cargo run --example mamba-minimal --release -- --prompt "Mamba is the"
|
||||
```
|
||||
|
299
candle-examples/examples/mamba/main.rs
Normal file
299
candle-examples/examples/mamba/main.rs
Normal file
@ -0,0 +1,299 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::mamba::{Config, Model, State};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
config: Config,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
config: Config,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
config,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the </s> token"),
|
||||
};
|
||||
let mut state = State::new(1, &self.config, &self.device)?;
|
||||
let mut next_logits = None;
|
||||
for &t in tokens.iter() {
|
||||
let input = Tensor::new(&[t], &self.device)?;
|
||||
let logits = self.model.forward(&input, &mut state)?;
|
||||
next_logits = Some(logits);
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for _ in 0..sample_len {
|
||||
let logits = match next_logits.as_ref() {
|
||||
Some(logits) => logits,
|
||||
None => anyhow::bail!("cannot work on an empty prompt"),
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let input = Tensor::new(&[next_token], &self.device)?;
|
||||
next_logits = Some(self.model.forward(&input, &mut state)?)
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, ValueEnum, Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Which {
|
||||
Mamba130m,
|
||||
Mamba370m,
|
||||
Mamba790m,
|
||||
Mamba1_4b,
|
||||
Mamba2_8b,
|
||||
Mamba2_8bSlimPj,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Which {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_id(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Mamba130m => "state-spaces/mamba-130m",
|
||||
Self::Mamba370m => "state-spaces/mamba-370m",
|
||||
Self::Mamba790m => "state-spaces/mamba-790m",
|
||||
Self::Mamba1_4b => "state-spaces/mamba-1.4b",
|
||||
Self::Mamba2_8b => "state-spaces/mamba-2.8b",
|
||||
Self::Mamba2_8bSlimPj => "state-spaces/mamba-2.8b-slimpj'",
|
||||
}
|
||||
}
|
||||
|
||||
fn revision(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Mamba130m
|
||||
| Self::Mamba370m
|
||||
| Self::Mamba790m
|
||||
| Self::Mamba1_4b
|
||||
| Self::Mamba2_8bSlimPj => "refs/pr/1",
|
||||
Self::Mamba2_8b => "refs/pr/4",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long, default_value = "mamba130m")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
args.model_id
|
||||
.unwrap_or_else(|| args.which.model_id().to_string()),
|
||||
RepoType::Model,
|
||||
args.revision
|
||||
.unwrap_or_else(|| args.which.revision().to_string()),
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => api
|
||||
.model("EleutherAI/gpt-neox-20b".to_string())
|
||||
.get("tokenizer.json")?,
|
||||
};
|
||||
let config_filename = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
vec![repo.get("model.safetensors")?]
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = Model::new(&config, vb.pp("backbone"))?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
config,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -152,7 +152,7 @@ struct Args {
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 100)]
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
|
@ -143,7 +143,7 @@ struct Args {
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 100)]
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long, default_value = "mistralai/Mixtral-8x7B-v0.1")]
|
||||
|
22
candle-examples/examples/mobileone/README.md
Normal file
22
candle-examples/examples/mobileone/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
# candle-mobileone
|
||||
|
||||
[MobileOne: An Improved One millisecond Mobile Backbone](https://arxiv.org/abs/2206.04040).
|
||||
|
||||
This candle implementation uses a pre-trained MobileOne network for inference. The
|
||||
classification head has been trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example mobileone --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which s2
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
mountain bike, all-terrain bike, off-roader: 79.33%
|
||||
bicycle-built-for-two, tandem bicycle, tandem: 15.32%
|
||||
crash helmet : 2.58%
|
||||
unicycle, monocycle : 1.70%
|
||||
alp : 0.21%
|
||||
|
||||
```
|
96
candle-examples/examples/mobileone/main.rs
Normal file
96
candle-examples/examples/mobileone/main.rs
Normal file
@ -0,0 +1,96 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::mobileone;
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
S0,
|
||||
S1,
|
||||
S2,
|
||||
S3,
|
||||
S4,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_filename(&self) -> String {
|
||||
let name = match self {
|
||||
Self::S0 => "s0",
|
||||
Self::S1 => "s1",
|
||||
Self::S2 => "s2",
|
||||
Self::S3 => "s3",
|
||||
Self::S4 => "s4",
|
||||
};
|
||||
format!("timm/mobileone_{}.apple_in1k", name)
|
||||
}
|
||||
|
||||
fn config(&self) -> mobileone::Config {
|
||||
match self {
|
||||
Self::S0 => mobileone::Config::s0(),
|
||||
Self::S1 => mobileone::Config::s1(),
|
||||
Self::S2 => mobileone::Config::s2(),
|
||||
Self::S3 => mobileone::Config::s3(),
|
||||
Self::S4 => mobileone::Config::s4(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(value_enum, long, default_value_t=Which::S0)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let model_name = args.which.model_filename();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(model_name);
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = mobileone::mobileone(&args.which.config(), 1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,10 +1,39 @@
|
||||
## Using ONNX models in Candle
|
||||
|
||||
This example demonstrates how to run ONNX based models in Candle, the model
|
||||
being used here is a small sequeezenet variant.
|
||||
This example demonstrates how to run [ONNX](https://github.com/onnx/onnx) based models in Candle.
|
||||
|
||||
You can run the example with the following command:
|
||||
It contains small variants of two models, [SqueezeNet](https://arxiv.org/pdf/1602.07360.pdf) (default) and [EfficientNet](https://arxiv.org/pdf/1905.11946.pdf).
|
||||
|
||||
You can run the examples with following commands:
|
||||
|
||||
```bash
|
||||
cargo run --example squeezenet-onnx --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
cargo run --example onnx --features=onnx --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
```
|
||||
|
||||
Use the `--which` flag to specify explicitly which network to use, i.e.
|
||||
|
||||
```bash
|
||||
$ cargo run --example onnx --features=onnx --release -- --which squeeze-net --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
|
||||
Finished release [optimized] target(s) in 0.21s
|
||||
Running `target/release/examples/onnx --which squeeze-net --image candle-examples/examples/yolo-v8/assets/bike.jpg`
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
unicycle, monocycle : 83.23%
|
||||
ballplayer, baseball player : 3.68%
|
||||
bearskin, busby, shako : 1.54%
|
||||
military uniform : 0.78%
|
||||
cowboy hat, ten-gallon hat : 0.76%
|
||||
```
|
||||
|
||||
```bash
|
||||
$ cargo run --example onnx --features=onnx --release -- --which efficient-net --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
|
||||
Finished release [optimized] target(s) in 0.20s
|
||||
Running `target/release/examples/onnx --which efficient-net --image candle-examples/examples/yolo-v8/assets/bike.jpg`
|
||||
loaded image Tensor[dims 224, 224, 3; f32]
|
||||
bicycle-built-for-two, tandem bicycle, tandem : 99.16%
|
||||
mountain bike, all-terrain bike, off-roader : 0.60%
|
||||
unicycle, monocycle : 0.17%
|
||||
crash helmet : 0.02%
|
||||
alp : 0.02%
|
||||
```
|
||||
|
@ -8,6 +8,7 @@ use anyhow::{Error as E, Result};
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
||||
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
|
||||
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
@ -18,6 +19,7 @@ use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
MixFormer(MixFormer),
|
||||
Phi(Phi),
|
||||
Quantized(QMixFormer),
|
||||
}
|
||||
|
||||
@ -84,6 +86,7 @@ impl TextGeneration {
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = match &mut self.model {
|
||||
Model::MixFormer(m) => m.forward(&input)?,
|
||||
Model::Phi(m) => m.forward(&input)?,
|
||||
Model::Quantized(m) => m.forward(&input)?,
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
@ -117,7 +120,7 @@ impl TextGeneration {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
|
||||
enum WhichModel {
|
||||
#[value(name = "1")]
|
||||
V1,
|
||||
@ -125,6 +128,8 @@ enum WhichModel {
|
||||
V1_5,
|
||||
#[value(name = "2")]
|
||||
V2,
|
||||
#[value(name = "2-old")]
|
||||
V2Old,
|
||||
PuffinPhiV2,
|
||||
PhiHermes,
|
||||
}
|
||||
@ -169,7 +174,7 @@ struct Args {
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "1.5")]
|
||||
#[arg(long, default_value = "2")]
|
||||
model: WhichModel,
|
||||
|
||||
#[arg(long)]
|
||||
@ -230,7 +235,7 @@ fn main() -> Result<()> {
|
||||
match args.model {
|
||||
WhichModel::V1 => "microsoft/phi-1".to_string(),
|
||||
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
|
||||
WhichModel::V2 => "microsoft/phi-2".to_string(),
|
||||
WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(),
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
"lmz/candle-quantized-phi".to_string()
|
||||
}
|
||||
@ -245,8 +250,9 @@ fn main() -> Result<()> {
|
||||
"main".to_string()
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 => "refs/pr/2".to_string(),
|
||||
WhichModel::V1_5 => "refs/pr/18".to_string(),
|
||||
WhichModel::V1 => "refs/pr/8".to_string(),
|
||||
WhichModel::V1_5 => "refs/pr/73".to_string(),
|
||||
WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
|
||||
WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
"main".to_string()
|
||||
}
|
||||
@ -258,7 +264,9 @@ fn main() -> Result<()> {
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => repo.get("tokenizer.json")?,
|
||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2Old => {
|
||||
repo.get("tokenizer.json")?
|
||||
}
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
repo.get("tokenizer-puffin-phi-v2.json")?
|
||||
}
|
||||
@ -271,14 +279,14 @@ fn main() -> Result<()> {
|
||||
match args.model {
|
||||
WhichModel::V1 => vec![repo.get("model-v1-q4k.gguf")?],
|
||||
WhichModel::V1_5 => vec![repo.get("model-q4k.gguf")?],
|
||||
WhichModel::V2 => vec![repo.get("model-v2-q4k.gguf")?],
|
||||
WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?],
|
||||
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
|
||||
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
|
||||
}
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
|
||||
WhichModel::V2 => candle_examples::hub_load_safetensors(
|
||||
WhichModel::V2 | WhichModel::V2Old => candle_examples::hub_load_safetensors(
|
||||
&repo,
|
||||
"model.safetensors.index.json",
|
||||
)?,
|
||||
@ -292,33 +300,44 @@ fn main() -> Result<()> {
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = match args.model {
|
||||
let config = || match args.model {
|
||||
WhichModel::V1 => Config::v1(),
|
||||
WhichModel::V1_5 => Config::v1_5(),
|
||||
WhichModel::V2 => Config::v2(),
|
||||
WhichModel::V2 | WhichModel::V2Old => Config::v2(),
|
||||
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
|
||||
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
|
||||
};
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = if args.quantized {
|
||||
let config = config();
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&filenames[0],
|
||||
&device,
|
||||
)?;
|
||||
println!("Loaded vb");
|
||||
let model = match args.model {
|
||||
WhichModel::V2 => QMixFormer::new_v2(&config, vb)?,
|
||||
WhichModel::V2 | WhichModel::V2Old => QMixFormer::new_v2(&config, vb)?,
|
||||
_ => QMixFormer::new(&config, vb)?,
|
||||
};
|
||||
println!("Loaded model");
|
||||
Model::Quantized(model)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = match args.model {
|
||||
WhichModel::V2 => MixFormer::new_v2(&config, vb)?,
|
||||
_ => MixFormer::new(&config, vb)?,
|
||||
};
|
||||
Model::MixFormer(model)
|
||||
match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => {
|
||||
let config_filename = repo.get("config.json")?;
|
||||
let config = std::fs::read_to_string(config_filename)?;
|
||||
let config: PhiConfig = serde_json::from_str(&config)?;
|
||||
let phi = Phi::new(&config, vb)?;
|
||||
Model::Phi(phi)
|
||||
}
|
||||
WhichModel::V2Old => {
|
||||
let config = config();
|
||||
Model::MixFormer(MixFormer::new_v2(&config, vb)?)
|
||||
}
|
||||
WhichModel::PhiHermes | WhichModel::PuffinPhiV2 => {
|
||||
let config = config();
|
||||
Model::MixFormer(MixFormer::new(&config, vb)?)
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
@ -398,6 +417,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input)?
|
||||
}
|
||||
Model::Phi(m) => {
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input)?
|
||||
}
|
||||
Model::Quantized(m) => {
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input)?
|
||||
|
281
candle-examples/examples/qwen/main.rs
Normal file
281
candle-examples/examples/qwen/main.rs
Normal file
@ -0,0 +1,281 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::qwen2::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <|endoftext|> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, clap::ValueEnum, PartialEq, Eq)]
|
||||
enum WhichModel {
|
||||
#[value(name = "0.5b")]
|
||||
W0_5b,
|
||||
#[value(name = "1.8b")]
|
||||
W1_8b,
|
||||
#[value(name = "4b")]
|
||||
W4b,
|
||||
#[value(name = "7b")]
|
||||
W7b,
|
||||
#[value(name = "14b")]
|
||||
W14b,
|
||||
#[value(name = "72b")]
|
||||
W72b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long, default_value = "0.5b")]
|
||||
model: WhichModel,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => {
|
||||
let size = match args.model {
|
||||
WhichModel::W0_5b => "0.5B",
|
||||
WhichModel::W1_8b => "1.8B",
|
||||
WhichModel::W4b => "4B",
|
||||
WhichModel::W7b => "7B",
|
||||
WhichModel::W14b => "14B",
|
||||
WhichModel::W72b => "72B",
|
||||
};
|
||||
format!("Qwen/Qwen1.5-{size}")
|
||||
}
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => match args.model {
|
||||
WhichModel::W0_5b | WhichModel::W1_8b => vec![repo.get("model.safetensors")?],
|
||||
WhichModel::W4b | WhichModel::W7b | WhichModel::W14b | WhichModel::W72b => {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
},
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config_file = repo.get("config.json")?;
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -411,7 +411,7 @@ impl DDPG<'_> {
|
||||
pub fn actions(&mut self, state: &Tensor) -> Result<f32> {
|
||||
let actions = self
|
||||
.actor
|
||||
.forward(&state.detach()?.unsqueeze(0)?)?
|
||||
.forward(&state.detach().unsqueeze(0)?)?
|
||||
.squeeze(0)?;
|
||||
let actions = if self.train {
|
||||
(actions + self.ou_noise.sample()?)?
|
||||
|
@ -74,7 +74,7 @@ pub fn run() -> Result<()> {
|
||||
loop {
|
||||
let action = {
|
||||
let action_probs: Vec<f32> =
|
||||
softmax(&model.forward(&state.detach()?.unsqueeze(0)?)?, 1)?
|
||||
softmax(&model.forward(&state.detach().unsqueeze(0)?)?, 1)?
|
||||
.squeeze(0)?
|
||||
.to_vec1()?;
|
||||
weighted_sample(action_probs, &mut rng)? as i64
|
||||
@ -109,7 +109,7 @@ pub fn run() -> Result<()> {
|
||||
|
||||
let rewards = Tensor::from_vec(accumulate_rewards(&steps), batch_size, &Device::Cpu)?
|
||||
.to_dtype(DType::F32)?
|
||||
.detach()?;
|
||||
.detach();
|
||||
|
||||
let actions_mask = {
|
||||
let actions: Vec<i64> = steps.iter().map(|s| s.action).collect();
|
||||
@ -126,12 +126,12 @@ pub fn run() -> Result<()> {
|
||||
.unwrap()
|
||||
})
|
||||
.collect();
|
||||
Tensor::stack(&actions_mask, 0)?.detach()?
|
||||
Tensor::stack(&actions_mask, 0)?.detach()
|
||||
};
|
||||
|
||||
let states = {
|
||||
let states: Vec<Tensor> = steps.into_iter().map(|s| s.state).collect();
|
||||
Tensor::stack(&states, 0)?.detach()?
|
||||
Tensor::stack(&states, 0)?.detach()
|
||||
};
|
||||
|
||||
let log_probs = actions_mask
|
||||
|
@ -236,18 +236,15 @@ fn main() -> Result<()> {
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = Device::Cpu;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let config = Config::replit_code_v1_5_3b();
|
||||
let (model, device) = if args.quantized {
|
||||
let model = if args.quantized {
|
||||
let vb =
|
||||
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename, &device)?;
|
||||
let model = Model::Q(Q::new(&config, vb.pp("transformer"))?);
|
||||
(model, Device::Cpu)
|
||||
Model::Q(Q::new(&config, vb.pp("transformer"))?)
|
||||
} else {
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
|
||||
let model = Model::M(M::new(&config, vb.pp("transformer"))?);
|
||||
(model, device)
|
||||
Model::M(M::new(&config, vb.pp("transformer"))?)
|
||||
};
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
|
22
candle-examples/examples/repvgg/README.md
Normal file
22
candle-examples/examples/repvgg/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
# candle-repvgg
|
||||
|
||||
[RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697).
|
||||
|
||||
This candle implementation uses a pre-trained RepVGG network for inference. The
|
||||
classification head has been trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example repvgg --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
mountain bike, all-terrain bike, off-roader: 61.70%
|
||||
bicycle-built-for-two, tandem bicycle, tandem: 33.14%
|
||||
unicycle, monocycle : 4.88%
|
||||
crash helmet : 0.15%
|
||||
moped : 0.04%
|
||||
|
||||
```
|
111
candle-examples/examples/repvgg/main.rs
Normal file
111
candle-examples/examples/repvgg/main.rs
Normal file
@ -0,0 +1,111 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::repvgg;
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
A0,
|
||||
A1,
|
||||
A2,
|
||||
B0,
|
||||
B1,
|
||||
B2,
|
||||
B3,
|
||||
B1G4,
|
||||
B2G4,
|
||||
B3G4,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_filename(&self) -> String {
|
||||
let name = match self {
|
||||
Self::A0 => "a0",
|
||||
Self::A1 => "a1",
|
||||
Self::A2 => "a2",
|
||||
Self::B0 => "b0",
|
||||
Self::B1 => "b1",
|
||||
Self::B2 => "b2",
|
||||
Self::B3 => "b3",
|
||||
Self::B1G4 => "b1g4",
|
||||
Self::B2G4 => "b2g4",
|
||||
Self::B3G4 => "b3g4",
|
||||
};
|
||||
format!("timm/repvgg_{}.rvgg_in1k", name)
|
||||
}
|
||||
|
||||
fn config(&self) -> repvgg::Config {
|
||||
match self {
|
||||
Self::A0 => repvgg::Config::a0(),
|
||||
Self::A1 => repvgg::Config::a1(),
|
||||
Self::A2 => repvgg::Config::a2(),
|
||||
Self::B0 => repvgg::Config::b0(),
|
||||
Self::B1 => repvgg::Config::b1(),
|
||||
Self::B2 => repvgg::Config::b2(),
|
||||
Self::B3 => repvgg::Config::b3(),
|
||||
Self::B1G4 => repvgg::Config::b1g4(),
|
||||
Self::B2G4 => repvgg::Config::b2g4(),
|
||||
Self::B3G4 => repvgg::Config::b3g4(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(value_enum, long, default_value_t=Which::A0)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let model_name = args.which.model_filename();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(model_name);
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = repvgg::repvgg(&args.which.config(), 1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
17
candle-examples/examples/rwkv/README.md
Normal file
17
candle-examples/examples/rwkv/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
## candle-rwkv
|
||||
|
||||
The [RWKV model](https://wiki.rwkv.com/) is a recurrent neural network model
|
||||
with performance on par with transformer architectures. Several variants are
|
||||
available, candle implements the v5 version and can be used with Eagle 7B([blog
|
||||
post](https://blog.rwkv.com/p/eagle-7b-soaring-past-transformers)).
|
||||
|
||||
```bash
|
||||
$ cargo run --example rwkv --release -- --prompt "The smallest prime is "
|
||||
avx: true, neon: false, simd128: false, f16c: true
|
||||
temp: 0.00 repeat-penalty: 1.10 repeat-last-n: 64
|
||||
The smallest prime is ϕ(2) = 2.
|
||||
The smallest composite is ϕ(3) = 3.
|
||||
The smallest perfect number is ϕ(5) = 5.
|
||||
The smallest perfect square is ϕ(4) = 4.
|
||||
The smallest perfect cube is ϕ(6) = 6.
|
||||
```
|
265
candle-examples/examples/rwkv/main.rs
Normal file
265
candle-examples/examples/rwkv/main.rs
Normal file
@ -0,0 +1,265 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::rwkv_v5::{Config, Model, State, Tokenizer};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
config: Config,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
config: Config,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
config,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
let mut tokens = self.tokenizer.encode(prompt)?;
|
||||
let mut generated_tokens = 0usize;
|
||||
let mut state = State::new(1, &self.config, &self.device)?;
|
||||
let mut next_logits = None;
|
||||
for &t in tokens.iter() {
|
||||
let input = Tensor::new(&[[t]], &self.device)?;
|
||||
let logits = self.model.forward(&input, &mut state)?;
|
||||
next_logits = Some(logits);
|
||||
print!("{}", self.tokenizer.decode(&[t])?)
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for _ in 0..sample_len {
|
||||
let logits = match next_logits.as_ref() {
|
||||
Some(logits) => logits,
|
||||
None => anyhow::bail!("cannot work on an empty prompt"),
|
||||
};
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
print!("{}", self.tokenizer.decode(&[next_token])?);
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let input = Tensor::new(&[[next_token]], &self.device)?;
|
||||
next_logits = Some(self.model.forward(&input, &mut state)?)
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, ValueEnum, Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Which {
|
||||
Eagle7b,
|
||||
World1b5,
|
||||
World3b,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Which {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn model_id(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Eagle7b => "RWKV/HF_v5-Eagle-7B",
|
||||
Self::World1b5 => "RWKV/rwkv-5-world-1b5",
|
||||
Self::World3b => "RWKV/rwkv-5-world-3b",
|
||||
}
|
||||
}
|
||||
|
||||
fn revision(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Eagle7b => "refs/pr/1",
|
||||
Self::World1b5 | Self::World3b => "refs/pr/2",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long, default_value = "world1b5")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
args.model_id
|
||||
.unwrap_or_else(|| args.which.model_id().to_string()),
|
||||
RepoType::Model,
|
||||
args.revision
|
||||
.unwrap_or_else(|| args.which.revision().to_string()),
|
||||
));
|
||||
let tokenizer = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => api
|
||||
.model("lmz/candle-rwkv".to_string())
|
||||
.get("rwkv_vocab_v20230424.json")?,
|
||||
};
|
||||
let config_filename = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
vec![repo.get("model.safetensors")?]
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::new(tokenizer)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
config,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -8,6 +8,13 @@ Card](https://huggingface.co/stabilityai/stablelm-3b-4e1t).
|
||||
Note that this model is gated so you will have to request access on the Hub in
|
||||
order to be able to use it.
|
||||
|
||||
Other available models are Stable-Code-3B, StableLM-2 and Zephyr variants.
|
||||
|
||||
StableLM-2 uses a Tiktoken based GPT-3.5/GPT-4 tokenizer not supported by
|
||||
Candle, so to run it you can download a somewhat compatible
|
||||
[tokenizer.json](https://huggingface.co/Xenova/gpt-4/resolve/main/tokenizer.json?download=true)
|
||||
and pass it via the --tokenizer-file argument.
|
||||
|
||||
## Running some example
|
||||
|
||||
```bash
|
||||
|
@ -5,7 +5,7 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::quantized_stable_lm::Model as QStableLM;
|
||||
use candle_transformers::models::stable_lm::{Config, Model as StableLM};
|
||||
@ -122,6 +122,16 @@ impl TextGeneration {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
|
||||
enum Which {
|
||||
V1Orig,
|
||||
V1,
|
||||
V1Zephyr,
|
||||
V2,
|
||||
V2Zephyr,
|
||||
Code,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
@ -152,15 +162,18 @@ struct Args {
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 100)]
|
||||
#[arg(long, short = 'n', default_value_t = 1000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long, default_value = "lmz/candle-stablelm-3b-4e1t")]
|
||||
model_id: String,
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long, default_value = "v2")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
@ -207,33 +220,80 @@ fn main() -> Result<()> {
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => match args.which {
|
||||
Which::V1Orig => "lmz/candle-stablelm-3b-4e1t".to_string(),
|
||||
Which::V1 => "stabilityai/stablelm-3b-4e1t".to_string(),
|
||||
Which::V1Zephyr => "stabilityai/stablelm-zephyr-3b".to_string(),
|
||||
Which::Code => "stabilityai/stable-code-3b".to_string(),
|
||||
Which::V2 => "stabilityai/stablelm-2-1_6b".to_string(),
|
||||
Which::V2Zephyr => "stabilityai/stablelm-2-zephyr-1_6b".to_string(),
|
||||
},
|
||||
};
|
||||
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
args.model_id,
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
None => match args.which {
|
||||
Which::V1Orig | Which::V1 | Which::V1Zephyr | Which::Code => {
|
||||
repo.get("tokenizer.json")?
|
||||
}
|
||||
Which::V2 | Which::V2Zephyr => api
|
||||
.model("lmz/candle-stablelm".to_string())
|
||||
.get("tokenizer-gpt4.json")?,
|
||||
},
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
vec![repo.get("model-q4k.gguf")?]
|
||||
} else {
|
||||
None => match (args.which, args.quantized) {
|
||||
(Which::V1Orig | Which::V1, true) => vec![repo.get("model-q4k.gguf")?],
|
||||
(Which::V2, true) => {
|
||||
let gguf = api
|
||||
.model("lmz/candle-stablelm".to_string())
|
||||
.get("stablelm-2-1_6b-q4k.gguf")?;
|
||||
vec![gguf]
|
||||
}
|
||||
(Which::V2Zephyr, true) => {
|
||||
let gguf = api
|
||||
.model("lmz/candle-stablelm".to_string())
|
||||
.get("stablelm-2-zephyr-1_6b-q4k.gguf")?;
|
||||
vec![gguf]
|
||||
}
|
||||
(Which::V1Zephyr | Which::Code, true) => {
|
||||
anyhow::bail!("Quantized {:?} variant not supported.", args.which)
|
||||
}
|
||||
(Which::V1Orig | Which::V1 | Which::V1Zephyr | Which::V2 | Which::V2Zephyr, false) => {
|
||||
vec![repo.get("model.safetensors")?]
|
||||
}
|
||||
}
|
||||
(Which::Code, false) => {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = Config::stablelm_3b_4e1t(args.use_flash_attn);
|
||||
let config = match args.which {
|
||||
Which::V1Orig => Config::stablelm_3b_4e1t(args.use_flash_attn),
|
||||
Which::V1 | Which::V1Zephyr | Which::V2 | Which::V2Zephyr | Which::Code => {
|
||||
let config_filename = repo.get("config.json")?;
|
||||
let config = std::fs::read_to_string(config_filename)?;
|
||||
let mut config: Config = serde_json::from_str(&config)?;
|
||||
config.set_use_flash_attn(args.use_flash_attn);
|
||||
config
|
||||
}
|
||||
};
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let (model, device) = if args.quantized {
|
||||
let filename = &filenames[0];
|
||||
|
BIN
candle-examples/examples/trocr/assets/noto.png
Normal file
BIN
candle-examples/examples/trocr/assets/noto.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.5 KiB |
@ -10,15 +10,36 @@ use clap::{Parser, ValueEnum};
|
||||
use candle::{DType, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::trocr;
|
||||
use candle_transformers::models::{trocr, vit};
|
||||
|
||||
use tokenizers::Tokenizer;
|
||||
mod image_processor;
|
||||
|
||||
#[derive(Clone, Debug, Copy, ValueEnum)]
|
||||
enum Which {
|
||||
Base,
|
||||
Large,
|
||||
#[value(name = "base")]
|
||||
BaseHandwritten,
|
||||
#[value(name = "large")]
|
||||
LargeHandwritten,
|
||||
BasePrinted,
|
||||
LargePrinted,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
fn repo_and_branch_name(&self) -> (&str, &str) {
|
||||
match self {
|
||||
Self::BaseHandwritten => ("microsoft/trocr-base-handwritten", "refs/pr/3"),
|
||||
Self::LargeHandwritten => ("microsoft/trocr-large-handwritten", "refs/pr/6"),
|
||||
Self::BasePrinted => ("microsoft/trocr-base-printed", "refs/pr/7"),
|
||||
Self::LargePrinted => ("microsoft/trocr-large-printed", "main"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
struct Config {
|
||||
encoder: vit::Config,
|
||||
decoder: trocr::TrOCRConfig,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
@ -34,63 +55,64 @@ struct Args {
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Text to be translated
|
||||
/// The image file to be processed.
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Tokenization config.
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
use hf_hub::api::sync::Api;
|
||||
let args = Args::parse();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
|
||||
let tokenizer_dec = {
|
||||
let tokenizer = Api::new()?
|
||||
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
|
||||
.get("tokenizer.json")?;
|
||||
|
||||
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
|
||||
let mut tokenizer_dec = {
|
||||
let tokenizer_file = match args.tokenizer {
|
||||
None => api
|
||||
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
|
||||
.get("tokenizer.json")?,
|
||||
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
|
||||
};
|
||||
let tokenizer = Tokenizer::from_file(&tokenizer_file).map_err(E::msg)?;
|
||||
TokenOutputStream::new(tokenizer)
|
||||
};
|
||||
|
||||
let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec);
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let vb = {
|
||||
let model = match args.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => match args.which {
|
||||
Which::Base => Api::new()?
|
||||
.repo(hf_hub::Repo::with_revision(
|
||||
"microsoft/trocr-base-handwritten".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/3".to_string(),
|
||||
))
|
||||
.get("model.safetensors")?,
|
||||
Which::Large => Api::new()?
|
||||
.repo(hf_hub::Repo::with_revision(
|
||||
"microsoft/trocr-large-handwritten".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/6".to_string(),
|
||||
))
|
||||
.get("model.safetensors")?,
|
||||
},
|
||||
None => {
|
||||
let (repo, branch) = args.which.repo_and_branch_name();
|
||||
api.repo(hf_hub::Repo::with_revision(
|
||||
repo.to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
branch.to_string(),
|
||||
))
|
||||
.get("model.safetensors")?
|
||||
}
|
||||
};
|
||||
println!("model: {:?}", model);
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }
|
||||
};
|
||||
|
||||
let encoder_config = match args.which {
|
||||
Which::Base => candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten(),
|
||||
Which::Large => {
|
||||
candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten()
|
||||
}
|
||||
let (encoder_config, decoder_config) = {
|
||||
let (repo, branch) = args.which.repo_and_branch_name();
|
||||
let config_filename = api
|
||||
.repo(hf_hub::Repo::with_revision(
|
||||
repo.to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
branch.to_string(),
|
||||
))
|
||||
.get("config.json")?;
|
||||
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
(config.encoder, config.decoder)
|
||||
};
|
||||
|
||||
let decoder_config = trocr::TrOCRConfig::default();
|
||||
let mut model = trocr::TrOCRModel::new(&encoder_config, &decoder_config, vb)?;
|
||||
|
||||
let config = image_processor::ProcessorConfig::default();
|
||||
let processor = image_processor::ViTImageProcessor::new(&config);
|
||||
let processor_config = image_processor::ProcessorConfig::default();
|
||||
let processor = image_processor::ViTImageProcessor::new(&processor_config);
|
||||
|
||||
let image = vec![args.image.as_str()];
|
||||
let image = processor.preprocess(image)?;
|
||||
|
@ -5,12 +5,27 @@ transcribe image text. See the associated [model
|
||||
card](https://huggingface.co/microsoft/trocr-base-printed) for details on
|
||||
the model itself.
|
||||
|
||||
Supported models include:
|
||||
|
||||
- `--which base`: small handwritten OCR model.
|
||||
- `--which large`: large handwritten OCR model.
|
||||
- `--which base-printed`: small printed OCR model.
|
||||
- `--which large-printed`: large printed OCR model.
|
||||
|
||||
## Running an example
|
||||
|
||||
```bash
|
||||
cargo run --example trocr --release -- --which base --cpu --image candle-examples/examples/trocr/assets/trocr.png
|
||||
cargo run --example trocr --release -- --image candle-examples/examples/trocr/assets/trocr.png
|
||||
cargo run --example trocr --release -- --which large --image candle-examples/examples/trocr/assets/trocr.png
|
||||
cargo run --example trocr --release -- --which base-printed --image candle-examples/examples/trocr/assets/noto.png
|
||||
cargo run --example trocr --release -- --which large-printed --image candle-examples/examples/trocr/assets/noto.png
|
||||
```
|
||||
|
||||
### Outputs
|
||||
|
||||
```
|
||||
<s> industry , Mr. Brown commented icily . " Let us have a</s>
|
||||
industry , Mr. Brown commented icily . " Let us have a
|
||||
industry , " Mr. Brown commented icily . " Let us have a
|
||||
THE QUICK BROWN FOR JUMPS OVER THE LAY DOG
|
||||
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
|
||||
```
|
||||
|
673
candle-examples/examples/whisper-microphone/main.rs
Normal file
673
candle-examples/examples/whisper-microphone/main.rs
Normal file
@ -0,0 +1,673 @@
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{Device, IndexOp, Tensor};
|
||||
use candle_nn::{ops::softmax, VarBuilder};
|
||||
use clap::{Parser, ValueEnum};
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use std::iter;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod multilingual;
|
||||
|
||||
use candle_transformers::models::whisper::{self as m, audio, Config};
|
||||
|
||||
use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
pub enum Model {
|
||||
Normal(m::model::Whisper),
|
||||
Quantized(m::quantized_model::Whisper),
|
||||
}
|
||||
|
||||
// Maybe we should use some traits rather than doing the dispatch for all these.
|
||||
impl Model {
|
||||
pub fn config(&self) -> &Config {
|
||||
match self {
|
||||
Self::Normal(m) => &m.config,
|
||||
Self::Quantized(m) => &m.config,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn encoder_forward(&mut self, x: &Tensor, flush: bool) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Normal(m) => m.encoder.forward(x, flush),
|
||||
Self::Quantized(m) => m.encoder.forward(x, flush),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn decoder_forward(
|
||||
&mut self,
|
||||
x: &Tensor,
|
||||
xa: &Tensor,
|
||||
flush: bool,
|
||||
) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Normal(m) => m.decoder.forward(x, xa, flush),
|
||||
Self::Quantized(m) => m.decoder.forward(x, xa, flush),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn decoder_final_linear(&self, x: &Tensor) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Normal(m) => m.decoder.final_linear(x),
|
||||
Self::Quantized(m) => m.decoder.final_linear(x),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecodingResult {
|
||||
tokens: Vec<u32>,
|
||||
text: String,
|
||||
avg_logprob: f64,
|
||||
no_speech_prob: f64,
|
||||
temperature: f64,
|
||||
compression_ratio: f64,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct Segment {
|
||||
start: f64,
|
||||
duration: f64,
|
||||
dr: DecodingResult,
|
||||
}
|
||||
|
||||
struct Decoder {
|
||||
model: Model,
|
||||
rng: rand::rngs::StdRng,
|
||||
task: Option<Task>,
|
||||
timestamps: bool,
|
||||
verbose: bool,
|
||||
tokenizer: Tokenizer,
|
||||
suppress_tokens: Tensor,
|
||||
sot_token: u32,
|
||||
transcribe_token: u32,
|
||||
translate_token: u32,
|
||||
eot_token: u32,
|
||||
no_speech_token: u32,
|
||||
no_timestamps_token: u32,
|
||||
language_token: Option<u32>,
|
||||
}
|
||||
|
||||
impl Decoder {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
device: &Device,
|
||||
language_token: Option<u32>,
|
||||
task: Option<Task>,
|
||||
timestamps: bool,
|
||||
verbose: bool,
|
||||
) -> Result<Self> {
|
||||
let no_timestamps_token = token_id(&tokenizer, m::NO_TIMESTAMPS_TOKEN)?;
|
||||
// Suppress the notimestamps token when in timestamps mode.
|
||||
// https://github.com/openai/whisper/blob/e8622f9afc4eba139bf796c210f5c01081000472/whisper/decoding.py#L452
|
||||
let suppress_tokens: Vec<f32> = (0..model.config().vocab_size as u32)
|
||||
.map(|i| {
|
||||
if model.config().suppress_tokens.contains(&i)
|
||||
|| timestamps && i == no_timestamps_token
|
||||
{
|
||||
f32::NEG_INFINITY
|
||||
} else {
|
||||
0f32
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
|
||||
let sot_token = token_id(&tokenizer, m::SOT_TOKEN)?;
|
||||
let transcribe_token = token_id(&tokenizer, m::TRANSCRIBE_TOKEN)?;
|
||||
let translate_token = token_id(&tokenizer, m::TRANSLATE_TOKEN)?;
|
||||
let eot_token = token_id(&tokenizer, m::EOT_TOKEN)?;
|
||||
let no_speech_token = m::NO_SPEECH_TOKENS
|
||||
.iter()
|
||||
.find_map(|token| token_id(&tokenizer, token).ok());
|
||||
let no_speech_token = match no_speech_token {
|
||||
None => anyhow::bail!("unable to find any non-speech token"),
|
||||
Some(n) => n,
|
||||
};
|
||||
Ok(Self {
|
||||
model,
|
||||
rng: rand::rngs::StdRng::seed_from_u64(seed),
|
||||
tokenizer,
|
||||
task,
|
||||
timestamps,
|
||||
verbose,
|
||||
suppress_tokens,
|
||||
sot_token,
|
||||
transcribe_token,
|
||||
translate_token,
|
||||
eot_token,
|
||||
no_speech_token,
|
||||
language_token,
|
||||
no_timestamps_token,
|
||||
})
|
||||
}
|
||||
|
||||
fn decode(&mut self, mel: &Tensor, t: f64) -> Result<DecodingResult> {
|
||||
let model = &mut self.model;
|
||||
let audio_features = model.encoder_forward(mel, true)?;
|
||||
if self.verbose {
|
||||
println!("audio features: {:?}", audio_features.dims());
|
||||
}
|
||||
let sample_len = model.config().max_target_positions / 2;
|
||||
let mut sum_logprob = 0f64;
|
||||
let mut no_speech_prob = f64::NAN;
|
||||
let mut tokens = vec![self.sot_token];
|
||||
if let Some(language_token) = self.language_token {
|
||||
tokens.push(language_token);
|
||||
}
|
||||
match self.task {
|
||||
None | Some(Task::Transcribe) => tokens.push(self.transcribe_token),
|
||||
Some(Task::Translate) => tokens.push(self.translate_token),
|
||||
}
|
||||
if !self.timestamps {
|
||||
tokens.push(self.no_timestamps_token);
|
||||
}
|
||||
for i in 0..sample_len {
|
||||
let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?;
|
||||
|
||||
// The model expects a batch dim but this inference loop does not handle
|
||||
// it so we add it at this point.
|
||||
let tokens_t = tokens_t.unsqueeze(0)?;
|
||||
let ys = model.decoder_forward(&tokens_t, &audio_features, i == 0)?;
|
||||
|
||||
// Extract the no speech probability on the first iteration by looking at the first
|
||||
// token logits and the probability for the according token.
|
||||
if i == 0 {
|
||||
let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?;
|
||||
no_speech_prob = softmax(&logits, 0)?
|
||||
.i(self.no_speech_token as usize)?
|
||||
.to_scalar::<f32>()? as f64;
|
||||
}
|
||||
|
||||
let (_, seq_len, _) = ys.dims3()?;
|
||||
let logits = model
|
||||
.decoder_final_linear(&ys.i((..1, seq_len - 1..))?)?
|
||||
.i(0)?
|
||||
.i(0)?;
|
||||
// TODO: Besides suppress tokens, we should apply the heuristics from
|
||||
// ApplyTimestampRules, i.e.:
|
||||
// - Timestamps come in pairs, except before EOT.
|
||||
// - Timestamps should be non-decreasing.
|
||||
// - If the sum of the probabilities of timestamps is higher than any other tokens,
|
||||
// only consider timestamps when sampling.
|
||||
// https://github.com/openai/whisper/blob/e8622f9afc4eba139bf796c210f5c01081000472/whisper/decoding.py#L439
|
||||
let logits = logits.broadcast_add(&self.suppress_tokens)?;
|
||||
let next_token = if t > 0f64 {
|
||||
let prs = softmax(&(&logits / t)?, 0)?;
|
||||
let logits_v: Vec<f32> = prs.to_vec1()?;
|
||||
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
|
||||
distr.sample(&mut self.rng) as u32
|
||||
} else {
|
||||
let logits_v: Vec<f32> = logits.to_vec1()?;
|
||||
logits_v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
||||
.map(|(i, _)| i as u32)
|
||||
.unwrap()
|
||||
};
|
||||
tokens.push(next_token);
|
||||
let prob = softmax(&logits, candle::D::Minus1)?
|
||||
.i(next_token as usize)?
|
||||
.to_scalar::<f32>()? as f64;
|
||||
if next_token == self.eot_token || tokens.len() > model.config().max_target_positions {
|
||||
break;
|
||||
}
|
||||
sum_logprob += prob.ln();
|
||||
}
|
||||
let text = self.tokenizer.decode(&tokens, true).map_err(E::msg)?;
|
||||
let avg_logprob = sum_logprob / tokens.len() as f64;
|
||||
|
||||
Ok(DecodingResult {
|
||||
tokens,
|
||||
text,
|
||||
avg_logprob,
|
||||
no_speech_prob,
|
||||
temperature: t,
|
||||
compression_ratio: f64::NAN,
|
||||
})
|
||||
}
|
||||
|
||||
fn decode_with_fallback(&mut self, segment: &Tensor) -> Result<DecodingResult> {
|
||||
for (i, &t) in m::TEMPERATURES.iter().enumerate() {
|
||||
let dr: Result<DecodingResult> = self.decode(segment, t);
|
||||
if i == m::TEMPERATURES.len() - 1 {
|
||||
return dr;
|
||||
}
|
||||
// On errors, we try again with a different temperature.
|
||||
match dr {
|
||||
Ok(dr) => {
|
||||
let needs_fallback = dr.compression_ratio > m::COMPRESSION_RATIO_THRESHOLD
|
||||
|| dr.avg_logprob < m::LOGPROB_THRESHOLD;
|
||||
if !needs_fallback || dr.no_speech_prob > m::NO_SPEECH_THRESHOLD {
|
||||
return Ok(dr);
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
println!("Error running at {t}: {err}")
|
||||
}
|
||||
}
|
||||
}
|
||||
unreachable!()
|
||||
}
|
||||
|
||||
fn run(&mut self, mel: &Tensor, times: Option<(f64, f64)>) -> Result<Vec<Segment>> {
|
||||
let (_, _, content_frames) = mel.dims3()?;
|
||||
let mut seek = 0;
|
||||
let mut segments = vec![];
|
||||
while seek < content_frames {
|
||||
let start = std::time::Instant::now();
|
||||
let time_offset = (seek * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
|
||||
let segment_size = usize::min(content_frames - seek, m::N_FRAMES);
|
||||
let mel_segment = mel.narrow(2, seek, segment_size)?;
|
||||
let segment_duration = (segment_size * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
|
||||
let dr = self.decode_with_fallback(&mel_segment)?;
|
||||
seek += segment_size;
|
||||
if dr.no_speech_prob > m::NO_SPEECH_THRESHOLD && dr.avg_logprob < m::LOGPROB_THRESHOLD {
|
||||
println!("no speech detected, skipping {seek} {dr:?}");
|
||||
continue;
|
||||
}
|
||||
let segment = Segment {
|
||||
start: time_offset,
|
||||
duration: segment_duration,
|
||||
dr,
|
||||
};
|
||||
if self.timestamps {
|
||||
println!(
|
||||
"{:.1}s -- {:.1}s",
|
||||
segment.start,
|
||||
segment.start + segment.duration,
|
||||
);
|
||||
let mut tokens_to_decode = vec![];
|
||||
let mut prev_timestamp_s = 0f32;
|
||||
for &token in segment.dr.tokens.iter() {
|
||||
if token == self.sot_token || token == self.eot_token {
|
||||
continue;
|
||||
}
|
||||
// The no_timestamp_token is the last before the timestamp ones.
|
||||
if token > self.no_timestamps_token {
|
||||
let timestamp_s = (token - self.no_timestamps_token + 1) as f32 / 50.;
|
||||
if !tokens_to_decode.is_empty() {
|
||||
let text = self
|
||||
.tokenizer
|
||||
.decode(&tokens_to_decode, true)
|
||||
.map_err(E::msg)?;
|
||||
println!(" {:.1}s-{:.1}s: {}", prev_timestamp_s, timestamp_s, text);
|
||||
tokens_to_decode.clear()
|
||||
}
|
||||
prev_timestamp_s = timestamp_s;
|
||||
} else {
|
||||
tokens_to_decode.push(token)
|
||||
}
|
||||
}
|
||||
if !tokens_to_decode.is_empty() {
|
||||
let text = self
|
||||
.tokenizer
|
||||
.decode(&tokens_to_decode, true)
|
||||
.map_err(E::msg)?;
|
||||
if !text.is_empty() {
|
||||
println!(" {:.1}s-...: {}", prev_timestamp_s, text);
|
||||
}
|
||||
tokens_to_decode.clear()
|
||||
}
|
||||
} else {
|
||||
match times {
|
||||
Some((start, end)) => {
|
||||
println!("{:.1}s -- {:.1}s: {}", start, end, segment.dr.text)
|
||||
}
|
||||
None => {
|
||||
println!(
|
||||
"{:.1}s -- {:.1}s: {}",
|
||||
segment.start,
|
||||
segment.start + segment.duration,
|
||||
segment.dr.text,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
if self.verbose {
|
||||
println!("{seek}: {segment:?}, in {:?}", start.elapsed());
|
||||
}
|
||||
segments.push(segment)
|
||||
}
|
||||
Ok(segments)
|
||||
}
|
||||
|
||||
fn set_language_token(&mut self, language_token: Option<u32>) {
|
||||
self.language_token = language_token;
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn reset_kv_cache(&mut self) {
|
||||
match &mut self.model {
|
||||
Model::Normal(m) => m.reset_kv_cache(),
|
||||
Model::Quantized(m) => m.reset_kv_cache(),
|
||||
}
|
||||
}
|
||||
|
||||
fn model(&mut self) -> &mut Model {
|
||||
&mut self.model
|
||||
}
|
||||
}
|
||||
|
||||
pub fn token_id(tokenizer: &Tokenizer, token: &str) -> candle::Result<u32> {
|
||||
match tokenizer.token_to_id(token) {
|
||||
None => candle::bail!("no token-id for {token}"),
|
||||
Some(id) => Ok(id),
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Task {
|
||||
Transcribe,
|
||||
Translate,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, ValueEnum)]
|
||||
enum WhichModel {
|
||||
Tiny,
|
||||
#[value(name = "tiny.en")]
|
||||
TinyEn,
|
||||
Base,
|
||||
#[value(name = "base.en")]
|
||||
BaseEn,
|
||||
Small,
|
||||
#[value(name = "small.en")]
|
||||
SmallEn,
|
||||
Medium,
|
||||
#[value(name = "medium.en")]
|
||||
MediumEn,
|
||||
Large,
|
||||
LargeV2,
|
||||
LargeV3,
|
||||
#[value(name = "distil-medium.en")]
|
||||
DistilMediumEn,
|
||||
#[value(name = "distil-large-v2")]
|
||||
DistilLargeV2,
|
||||
}
|
||||
|
||||
impl WhichModel {
|
||||
fn is_multilingual(&self) -> bool {
|
||||
match self {
|
||||
Self::Tiny
|
||||
| Self::Base
|
||||
| Self::Small
|
||||
| Self::Medium
|
||||
| Self::Large
|
||||
| Self::LargeV2
|
||||
| Self::LargeV3
|
||||
| Self::DistilLargeV2 => true,
|
||||
Self::TinyEn | Self::BaseEn | Self::SmallEn | Self::MediumEn | Self::DistilMediumEn => {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn model_and_revision(&self) -> (&'static str, &'static str) {
|
||||
match self {
|
||||
Self::Tiny => ("openai/whisper-tiny", "main"),
|
||||
Self::TinyEn => ("openai/whisper-tiny.en", "refs/pr/15"),
|
||||
Self::Base => ("openai/whisper-base", "refs/pr/22"),
|
||||
Self::BaseEn => ("openai/whisper-base.en", "refs/pr/13"),
|
||||
Self::Small => ("openai/whisper-small", "main"),
|
||||
Self::SmallEn => ("openai/whisper-small.en", "refs/pr/10"),
|
||||
Self::Medium => ("openai/whisper-medium", "main"),
|
||||
Self::MediumEn => ("openai/whisper-medium.en", "main"),
|
||||
Self::Large => ("openai/whisper-large", "refs/pr/36"),
|
||||
Self::LargeV2 => ("openai/whisper-large-v2", "refs/pr/57"),
|
||||
Self::LargeV3 => ("openai/whisper-large-v3", "main"),
|
||||
Self::DistilMediumEn => ("distil-whisper/distil-medium.en", "main"),
|
||||
Self::DistilLargeV2 => ("distil-whisper/distil-large-v2", "main"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
/// The model to use, check out available models:
|
||||
/// https://huggingface.co/models?search=whisper
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
/// The model to be used, can be tiny, small, medium.
|
||||
#[arg(long, default_value = "tiny.en")]
|
||||
model: WhichModel,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// Language.
|
||||
#[arg(long)]
|
||||
language: Option<String>,
|
||||
|
||||
/// Task, when no task is specified, the input tokens contain only the sot token which can
|
||||
/// improve things when in no-timestamp mode.
|
||||
#[arg(long)]
|
||||
task: Option<Task>,
|
||||
|
||||
/// Timestamps mode, this is not fully implemented yet.
|
||||
#[arg(long)]
|
||||
timestamps: bool,
|
||||
|
||||
/// Print the full DecodingResult structure rather than just the text.
|
||||
#[arg(long)]
|
||||
verbose: bool,
|
||||
}
|
||||
|
||||
pub fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let (default_model, default_revision) = if args.quantized {
|
||||
("lmz/candle-whisper", "main")
|
||||
} else {
|
||||
args.model.model_and_revision()
|
||||
};
|
||||
let default_model = default_model.to_string();
|
||||
let default_revision = default_revision.to_string();
|
||||
let (model_id, revision) = match (args.model_id, args.revision) {
|
||||
(Some(model_id), Some(revision)) => (model_id, revision),
|
||||
(Some(model_id), None) => (model_id, "main".to_string()),
|
||||
(None, Some(revision)) => (default_model, revision),
|
||||
(None, None) => (default_model, default_revision),
|
||||
};
|
||||
|
||||
let (config_filename, tokenizer_filename, weights_filename) = {
|
||||
let api = Api::new()?;
|
||||
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||
let (config, tokenizer, model) = if args.quantized {
|
||||
let ext = match args.model {
|
||||
WhichModel::TinyEn => "tiny-en",
|
||||
WhichModel::Tiny => "tiny",
|
||||
_ => unimplemented!("no quantized support for {:?}", args.model),
|
||||
};
|
||||
(
|
||||
repo.get(&format!("config-{ext}.json"))?,
|
||||
repo.get(&format!("tokenizer-{ext}.json"))?,
|
||||
repo.get(&format!("model-{ext}-q80.gguf"))?,
|
||||
)
|
||||
} else {
|
||||
let config = repo.get("config.json")?;
|
||||
let tokenizer = repo.get("tokenizer.json")?;
|
||||
let model = repo.get("model.safetensors")?;
|
||||
(config, tokenizer, model)
|
||||
};
|
||||
(config, tokenizer, model)
|
||||
};
|
||||
let config: Config = serde_json::from_str(&std::fs::read_to_string(config_filename)?)?;
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let model = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&weights_filename,
|
||||
&device,
|
||||
)?;
|
||||
Model::Quantized(m::quantized_model::Whisper::load(&vb, config.clone())?)
|
||||
} else {
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], m::DTYPE, &device)? };
|
||||
Model::Normal(m::model::Whisper::load(&vb, config.clone())?)
|
||||
};
|
||||
let language_token = None;
|
||||
let mut dc = Decoder::new(
|
||||
model,
|
||||
tokenizer.clone(),
|
||||
args.seed,
|
||||
&device,
|
||||
language_token,
|
||||
args.task,
|
||||
args.timestamps,
|
||||
args.verbose,
|
||||
)?;
|
||||
|
||||
let mel_bytes = match config.num_mel_bins {
|
||||
80 => include_bytes!("../whisper/melfilters.bytes").as_slice(),
|
||||
128 => include_bytes!("../whisper/melfilters128.bytes").as_slice(),
|
||||
nmel => anyhow::bail!("unexpected num_mel_bins {nmel}"),
|
||||
};
|
||||
let mut mel_filters = vec![0f32; mel_bytes.len() / 4];
|
||||
<byteorder::LittleEndian as byteorder::ByteOrder>::read_f32_into(mel_bytes, &mut mel_filters);
|
||||
|
||||
// Set up the input device and stream with the default input config.
|
||||
let host = cpal::default_host();
|
||||
let _device = "default";
|
||||
let _device = if _device == "default" {
|
||||
host.default_input_device()
|
||||
} else {
|
||||
host.input_devices()?
|
||||
.find(|x| x.name().map(|y| y == _device).unwrap_or(false))
|
||||
}
|
||||
.expect("failed to find input device");
|
||||
|
||||
let _config = _device
|
||||
.default_input_config()
|
||||
.expect("Failed to get default input config");
|
||||
|
||||
let channel_count = _config.channels() as usize;
|
||||
|
||||
let audio_ring_buffer = Arc::new(Mutex::new(Vec::new()));
|
||||
let audio_ring_buffer_2 = audio_ring_buffer.clone();
|
||||
|
||||
std::thread::spawn(move || loop {
|
||||
let data = record_audio(&_device, &_config, 300).unwrap();
|
||||
audio_ring_buffer.lock().unwrap().extend_from_slice(&data);
|
||||
let max_len = data.len() * 16;
|
||||
let data_len = data.len();
|
||||
let len = audio_ring_buffer.lock().unwrap().len();
|
||||
if len > max_len {
|
||||
let mut data = audio_ring_buffer.lock().unwrap();
|
||||
let new_data = data[data_len..].to_vec();
|
||||
*data = new_data;
|
||||
}
|
||||
});
|
||||
|
||||
// loop to process the audio data forever (until the user stops the program)
|
||||
println!("Transcribing audio...");
|
||||
for (i, _) in iter::repeat(()).enumerate() {
|
||||
std::thread::sleep(std::time::Duration::from_millis(1000));
|
||||
let data = audio_ring_buffer_2.lock().unwrap().clone();
|
||||
let pcm_data: Vec<_> = data[..data.len() / channel_count as usize]
|
||||
.iter()
|
||||
.map(|v| *v as f32 / 32768.)
|
||||
.collect();
|
||||
let mel = audio::pcm_to_mel(&config, &pcm_data, &mel_filters);
|
||||
let mel_len = mel.len();
|
||||
let mel = Tensor::from_vec(
|
||||
mel,
|
||||
(1, config.num_mel_bins, mel_len / config.num_mel_bins),
|
||||
&device,
|
||||
)?;
|
||||
|
||||
// on the first iteration, we detect the language and set the language token.
|
||||
if i == 0 {
|
||||
let language_token = match (args.model.is_multilingual(), args.language.clone()) {
|
||||
(true, None) => Some(multilingual::detect_language(dc.model(), &tokenizer, &mel)?),
|
||||
(false, None) => None,
|
||||
(true, Some(language)) => match token_id(&tokenizer, &format!("<|{language}|>")) {
|
||||
Ok(token_id) => Some(token_id),
|
||||
Err(_) => anyhow::bail!("language {language} is not supported"),
|
||||
},
|
||||
(false, Some(_)) => {
|
||||
anyhow::bail!("a language cannot be set for non-multilingual models")
|
||||
}
|
||||
};
|
||||
println!("language_token: {:?}", language_token);
|
||||
dc.set_language_token(language_token);
|
||||
}
|
||||
dc.run(
|
||||
&mel,
|
||||
Some((
|
||||
i as f64,
|
||||
i as f64 + data.len() as f64 / m::SAMPLE_RATE as f64,
|
||||
)),
|
||||
)?;
|
||||
dc.reset_kv_cache();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn record_audio(
|
||||
device: &cpal::Device,
|
||||
config: &cpal::SupportedStreamConfig,
|
||||
milliseconds: u64,
|
||||
) -> Result<Vec<i16>> {
|
||||
let writer = Arc::new(Mutex::new(Vec::new()));
|
||||
let writer_2 = writer.clone();
|
||||
let stream = device.build_input_stream(
|
||||
&config.config(),
|
||||
move |data: &[f32], _: &cpal::InputCallbackInfo| {
|
||||
let processed = data
|
||||
.iter()
|
||||
.map(|v| (v * 32768.0) as i16)
|
||||
.collect::<Vec<i16>>();
|
||||
writer_2.lock().unwrap().extend_from_slice(&processed);
|
||||
},
|
||||
move |err| {
|
||||
eprintln!("an error occurred on stream: {}", err);
|
||||
},
|
||||
None,
|
||||
)?;
|
||||
stream.play()?;
|
||||
std::thread::sleep(std::time::Duration::from_millis(milliseconds));
|
||||
drop(stream);
|
||||
let data = writer.lock().unwrap().clone();
|
||||
let step = 3;
|
||||
let data: Vec<i16> = data.iter().step_by(step).copied().collect();
|
||||
Ok(data)
|
||||
}
|
137
candle-examples/examples/whisper-microphone/multilingual.rs
Normal file
137
candle-examples/examples/whisper-microphone/multilingual.rs
Normal file
@ -0,0 +1,137 @@
|
||||
use crate::{token_id, Model};
|
||||
use candle::{IndexOp, Result, Tensor, D};
|
||||
use candle_transformers::models::whisper::{self as m};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
const LANGUAGES: [(&str, &str); 99] = [
|
||||
("en", "english"),
|
||||
("zh", "chinese"),
|
||||
("de", "german"),
|
||||
("es", "spanish"),
|
||||
("ru", "russian"),
|
||||
("ko", "korean"),
|
||||
("fr", "french"),
|
||||
("ja", "japanese"),
|
||||
("pt", "portuguese"),
|
||||
("tr", "turkish"),
|
||||
("pl", "polish"),
|
||||
("ca", "catalan"),
|
||||
("nl", "dutch"),
|
||||
("ar", "arabic"),
|
||||
("sv", "swedish"),
|
||||
("it", "italian"),
|
||||
("id", "indonesian"),
|
||||
("hi", "hindi"),
|
||||
("fi", "finnish"),
|
||||
("vi", "vietnamese"),
|
||||
("he", "hebrew"),
|
||||
("uk", "ukrainian"),
|
||||
("el", "greek"),
|
||||
("ms", "malay"),
|
||||
("cs", "czech"),
|
||||
("ro", "romanian"),
|
||||
("da", "danish"),
|
||||
("hu", "hungarian"),
|
||||
("ta", "tamil"),
|
||||
("no", "norwegian"),
|
||||
("th", "thai"),
|
||||
("ur", "urdu"),
|
||||
("hr", "croatian"),
|
||||
("bg", "bulgarian"),
|
||||
("lt", "lithuanian"),
|
||||
("la", "latin"),
|
||||
("mi", "maori"),
|
||||
("ml", "malayalam"),
|
||||
("cy", "welsh"),
|
||||
("sk", "slovak"),
|
||||
("te", "telugu"),
|
||||
("fa", "persian"),
|
||||
("lv", "latvian"),
|
||||
("bn", "bengali"),
|
||||
("sr", "serbian"),
|
||||
("az", "azerbaijani"),
|
||||
("sl", "slovenian"),
|
||||
("kn", "kannada"),
|
||||
("et", "estonian"),
|
||||
("mk", "macedonian"),
|
||||
("br", "breton"),
|
||||
("eu", "basque"),
|
||||
("is", "icelandic"),
|
||||
("hy", "armenian"),
|
||||
("ne", "nepali"),
|
||||
("mn", "mongolian"),
|
||||
("bs", "bosnian"),
|
||||
("kk", "kazakh"),
|
||||
("sq", "albanian"),
|
||||
("sw", "swahili"),
|
||||
("gl", "galician"),
|
||||
("mr", "marathi"),
|
||||
("pa", "punjabi"),
|
||||
("si", "sinhala"),
|
||||
("km", "khmer"),
|
||||
("sn", "shona"),
|
||||
("yo", "yoruba"),
|
||||
("so", "somali"),
|
||||
("af", "afrikaans"),
|
||||
("oc", "occitan"),
|
||||
("ka", "georgian"),
|
||||
("be", "belarusian"),
|
||||
("tg", "tajik"),
|
||||
("sd", "sindhi"),
|
||||
("gu", "gujarati"),
|
||||
("am", "amharic"),
|
||||
("yi", "yiddish"),
|
||||
("lo", "lao"),
|
||||
("uz", "uzbek"),
|
||||
("fo", "faroese"),
|
||||
("ht", "haitian creole"),
|
||||
("ps", "pashto"),
|
||||
("tk", "turkmen"),
|
||||
("nn", "nynorsk"),
|
||||
("mt", "maltese"),
|
||||
("sa", "sanskrit"),
|
||||
("lb", "luxembourgish"),
|
||||
("my", "myanmar"),
|
||||
("bo", "tibetan"),
|
||||
("tl", "tagalog"),
|
||||
("mg", "malagasy"),
|
||||
("as", "assamese"),
|
||||
("tt", "tatar"),
|
||||
("haw", "hawaiian"),
|
||||
("ln", "lingala"),
|
||||
("ha", "hausa"),
|
||||
("ba", "bashkir"),
|
||||
("jw", "javanese"),
|
||||
("su", "sundanese"),
|
||||
];
|
||||
|
||||
/// Returns the token id for the selected language.
|
||||
pub fn detect_language(model: &mut Model, tokenizer: &Tokenizer, mel: &Tensor) -> Result<u32> {
|
||||
let (_bsize, _, seq_len) = mel.dims3()?;
|
||||
let mel = mel.narrow(
|
||||
2,
|
||||
0,
|
||||
usize::min(seq_len, model.config().max_source_positions),
|
||||
)?;
|
||||
let device = mel.device();
|
||||
let language_token_ids = LANGUAGES
|
||||
.iter()
|
||||
.map(|(t, _)| token_id(tokenizer, &format!("<|{t}|>")))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let sot_token = token_id(tokenizer, m::SOT_TOKEN)?;
|
||||
let audio_features = model.encoder_forward(&mel, true)?;
|
||||
let tokens = Tensor::new(&[[sot_token]], device)?;
|
||||
let language_token_ids = Tensor::new(language_token_ids.as_slice(), device)?;
|
||||
let ys = model.decoder_forward(&tokens, &audio_features, true)?;
|
||||
let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?;
|
||||
let logits = logits.index_select(&language_token_ids, 0)?;
|
||||
let probs = candle_nn::ops::softmax(&logits, D::Minus1)?;
|
||||
let probs = probs.to_vec1::<f32>()?;
|
||||
let mut probs = LANGUAGES.iter().zip(probs.iter()).collect::<Vec<_>>();
|
||||
probs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for ((_, language), p) in probs.iter().take(5) {
|
||||
println!("{language}: {p}")
|
||||
}
|
||||
let language = token_id(tokenizer, &format!("<|{}|>", probs[0].0 .0))?;
|
||||
Ok(language)
|
||||
}
|
@ -18,6 +18,8 @@ use rand::{distributions::Distribution, SeedableRng};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod multilingual;
|
||||
mod pcm_decode;
|
||||
|
||||
use candle_transformers::models::whisper::{self as m, audio, Config};
|
||||
|
||||
pub enum Model {
|
||||
@ -535,17 +537,10 @@ fn main() -> Result<()> {
|
||||
let mut mel_filters = vec![0f32; mel_bytes.len() / 4];
|
||||
<byteorder::LittleEndian as byteorder::ByteOrder>::read_f32_into(mel_bytes, &mut mel_filters);
|
||||
|
||||
let mut input = std::fs::File::open(input)?;
|
||||
let (header, data) = wav::read(&mut input)?;
|
||||
println!("loaded wav data: {header:?}");
|
||||
if header.sampling_rate != m::SAMPLE_RATE as u32 {
|
||||
anyhow::bail!("wav file must have a {} sampling rate", m::SAMPLE_RATE)
|
||||
let (pcm_data, sample_rate) = pcm_decode::pcm_decode(input)?;
|
||||
if sample_rate != m::SAMPLE_RATE as u32 {
|
||||
anyhow::bail!("input file must have a {} sampling rate", m::SAMPLE_RATE)
|
||||
}
|
||||
let data = data.as_sixteen().expect("expected 16 bit wav file");
|
||||
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
|
||||
.iter()
|
||||
.map(|v| *v as f32 / 32768.)
|
||||
.collect();
|
||||
println!("pcm data loaded {}", pcm_data.len());
|
||||
let mel = audio::pcm_to_mel(&config, &pcm_data, &mel_filters);
|
||||
let mel_len = mel.len();
|
||||
|
74
candle-examples/examples/whisper/pcm_decode.rs
Normal file
74
candle-examples/examples/whisper/pcm_decode.rs
Normal file
@ -0,0 +1,74 @@
|
||||
use symphonia::core::audio::{AudioBufferRef, Signal};
|
||||
use symphonia::core::codecs::{DecoderOptions, CODEC_TYPE_NULL};
|
||||
use symphonia::core::conv::FromSample;
|
||||
|
||||
fn conv<T>(samples: &mut Vec<f32>, data: std::borrow::Cow<symphonia::core::audio::AudioBuffer<T>>)
|
||||
where
|
||||
T: symphonia::core::sample::Sample,
|
||||
f32: symphonia::core::conv::FromSample<T>,
|
||||
{
|
||||
samples.extend(data.chan(0).iter().map(|v| f32::from_sample(*v)))
|
||||
}
|
||||
|
||||
pub(crate) fn pcm_decode<P: AsRef<std::path::Path>>(path: P) -> anyhow::Result<(Vec<f32>, u32)> {
|
||||
// Open the media source.
|
||||
let src = std::fs::File::open(path)?;
|
||||
|
||||
// Create the media source stream.
|
||||
let mss = symphonia::core::io::MediaSourceStream::new(Box::new(src), Default::default());
|
||||
|
||||
// Create a probe hint using the file's extension. [Optional]
|
||||
let hint = symphonia::core::probe::Hint::new();
|
||||
|
||||
// Use the default options for metadata and format readers.
|
||||
let meta_opts: symphonia::core::meta::MetadataOptions = Default::default();
|
||||
let fmt_opts: symphonia::core::formats::FormatOptions = Default::default();
|
||||
|
||||
// Probe the media source.
|
||||
let probed = symphonia::default::get_probe().format(&hint, mss, &fmt_opts, &meta_opts)?;
|
||||
// Get the instantiated format reader.
|
||||
let mut format = probed.format;
|
||||
|
||||
// Find the first audio track with a known (decodeable) codec.
|
||||
let track = format
|
||||
.tracks()
|
||||
.iter()
|
||||
.find(|t| t.codec_params.codec != CODEC_TYPE_NULL)
|
||||
.expect("no supported audio tracks");
|
||||
|
||||
// Use the default options for the decoder.
|
||||
let dec_opts: DecoderOptions = Default::default();
|
||||
|
||||
// Create a decoder for the track.
|
||||
let mut decoder = symphonia::default::get_codecs()
|
||||
.make(&track.codec_params, &dec_opts)
|
||||
.expect("unsupported codec");
|
||||
let track_id = track.id;
|
||||
let sample_rate = track.codec_params.sample_rate.unwrap_or(0);
|
||||
let mut pcm_data = Vec::new();
|
||||
// The decode loop.
|
||||
while let Ok(packet) = format.next_packet() {
|
||||
// Consume any new metadata that has been read since the last packet.
|
||||
while !format.metadata().is_latest() {
|
||||
format.metadata().pop();
|
||||
}
|
||||
|
||||
// If the packet does not belong to the selected track, skip over it.
|
||||
if packet.track_id() != track_id {
|
||||
continue;
|
||||
}
|
||||
match decoder.decode(&packet)? {
|
||||
AudioBufferRef::F32(buf) => pcm_data.extend(buf.chan(0)),
|
||||
AudioBufferRef::U8(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U16(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U24(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::U32(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S8(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S16(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S24(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::S32(data) => conv(&mut pcm_data, data),
|
||||
AudioBufferRef::F64(data) => conv(&mut pcm_data, data),
|
||||
}
|
||||
}
|
||||
Ok((pcm_data, sample_rate))
|
||||
}
|
@ -104,6 +104,7 @@ impl TextGeneration {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
let t = t.replace("<|im_end|>", "\n");
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
@ -216,7 +216,7 @@ fn detect(
|
||||
xs: &Tensor,
|
||||
image_height: usize,
|
||||
classes: usize,
|
||||
anchors: &Vec<(usize, usize)>,
|
||||
anchors: &[(usize, usize)],
|
||||
) -> Result<Tensor> {
|
||||
let (bsize, _channels, height, _width) = xs.dims4()?;
|
||||
let stride = image_height / height;
|
||||
|
@ -40,7 +40,7 @@ impl TokenOutputStream {
|
||||
};
|
||||
self.tokens.push(token);
|
||||
let text = self.decode(&self.tokens[self.prev_index..])?;
|
||||
if text.len() > prev_text.len() && text.chars().last().unwrap().is_ascii() {
|
||||
if text.len() > prev_text.len() && text.chars().last().unwrap().is_alphabetic() {
|
||||
let text = text.split_at(prev_text.len());
|
||||
self.prev_index = self.current_index;
|
||||
self.current_index = self.tokens.len();
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-flash-attn"
|
||||
version = "0.3.3"
|
||||
version = "0.4.0"
|
||||
edition = "2021"
|
||||
|
||||
description = "Flash attention layer for the candle ML framework."
|
||||
@ -11,14 +11,14 @@ license = "MIT OR Apache-2.0"
|
||||
readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../candle-core", features = ["cuda"], version = "0.3.3", package = "candle-core" }
|
||||
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.4.0" }
|
||||
half = { version = "2.3.1", features = ["num-traits"] }
|
||||
|
||||
[build-dependencies]
|
||||
bindgen_cuda = "0.1.1"
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
num_cpus = "1.15.0"
|
||||
rayon = "1.7.0"
|
||||
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
candle-nn = { path = "../candle-nn", version = "0.3.3", features = ["cuda"] }
|
||||
candle-nn = { path = "../candle-nn", features = ["cuda"] }
|
||||
|
@ -2,44 +2,32 @@
|
||||
// The cuda build time is very long so one can set the CANDLE_FLASH_ATTN_BUILD_DIR environment
|
||||
// variable in order to cache the compiled artifacts and avoid recompiling too often.
|
||||
use anyhow::{Context, Result};
|
||||
use rayon::prelude::*;
|
||||
use std::path::PathBuf;
|
||||
use std::str::FromStr;
|
||||
|
||||
const KERNEL_FILES: [&str; 17] = [
|
||||
"flash_api.cu",
|
||||
"flash_fwd_hdim128_fp16_sm80.cu",
|
||||
"flash_fwd_hdim160_fp16_sm80.cu",
|
||||
"flash_fwd_hdim192_fp16_sm80.cu",
|
||||
"flash_fwd_hdim224_fp16_sm80.cu",
|
||||
"flash_fwd_hdim256_fp16_sm80.cu",
|
||||
"flash_fwd_hdim32_fp16_sm80.cu",
|
||||
"flash_fwd_hdim64_fp16_sm80.cu",
|
||||
"flash_fwd_hdim96_fp16_sm80.cu",
|
||||
"flash_fwd_hdim128_bf16_sm80.cu",
|
||||
"flash_fwd_hdim160_bf16_sm80.cu",
|
||||
"flash_fwd_hdim192_bf16_sm80.cu",
|
||||
"flash_fwd_hdim224_bf16_sm80.cu",
|
||||
"flash_fwd_hdim256_bf16_sm80.cu",
|
||||
"flash_fwd_hdim32_bf16_sm80.cu",
|
||||
"flash_fwd_hdim64_bf16_sm80.cu",
|
||||
"flash_fwd_hdim96_bf16_sm80.cu",
|
||||
"kernels/flash_api.cu",
|
||||
"kernels/flash_fwd_hdim128_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim160_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim192_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim224_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim256_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim32_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim64_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim96_fp16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim128_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim160_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim192_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim224_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim256_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim32_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim64_bf16_sm80.cu",
|
||||
"kernels/flash_fwd_hdim96_bf16_sm80.cu",
|
||||
];
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let num_cpus = std::env::var("RAYON_NUM_THREADS").map_or_else(
|
||||
|_| num_cpus::get_physical(),
|
||||
|s| usize::from_str(&s).unwrap(),
|
||||
);
|
||||
|
||||
rayon::ThreadPoolBuilder::new()
|
||||
.num_threads(num_cpus)
|
||||
.build_global()
|
||||
.unwrap();
|
||||
|
||||
println!("cargo:rerun-if-changed=build.rs");
|
||||
for kernel_file in KERNEL_FILES.iter() {
|
||||
println!("cargo:rerun-if-changed=kernels/{kernel_file}");
|
||||
println!("cargo:rerun-if-changed={kernel_file}");
|
||||
}
|
||||
println!("cargo:rerun-if-changed=kernels/flash_fwd_kernel.h");
|
||||
println!("cargo:rerun-if-changed=kernels/flash_fwd_launch_template.h");
|
||||
@ -66,223 +54,30 @@ fn main() -> Result<()> {
|
||||
))
|
||||
}
|
||||
};
|
||||
set_cuda_include_dir()?;
|
||||
|
||||
let ccbin_env = std::env::var("CANDLE_NVCC_CCBIN");
|
||||
println!("cargo:rerun-if-env-changed=CANDLE_NVCC_CCBIN");
|
||||
|
||||
let compute_cap = compute_cap()?;
|
||||
let kernels = KERNEL_FILES.iter().collect();
|
||||
let builder = bindgen_cuda::Builder::default()
|
||||
.kernel_paths(kernels)
|
||||
.out_dir(build_dir.clone())
|
||||
.arg("-std=c++17")
|
||||
.arg("-O3")
|
||||
.arg("-U__CUDA_NO_HALF_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_HALF_CONVERSIONS__")
|
||||
.arg("-U__CUDA_NO_HALF2_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_BFLOAT16_CONVERSIONS__")
|
||||
.arg("-Icutlass/include")
|
||||
.arg("--expt-relaxed-constexpr")
|
||||
.arg("--expt-extended-lambda")
|
||||
.arg("--use_fast_math")
|
||||
.arg("--verbose");
|
||||
|
||||
let out_file = build_dir.join("libflashattention.a");
|
||||
builder.build_lib(out_file);
|
||||
|
||||
let kernel_dir = PathBuf::from("kernels");
|
||||
let cu_files: Vec<_> = KERNEL_FILES
|
||||
.iter()
|
||||
.map(|f| {
|
||||
let mut obj_file = out_dir.join(f);
|
||||
obj_file.set_extension("o");
|
||||
(kernel_dir.join(f), obj_file)
|
||||
})
|
||||
.collect();
|
||||
let out_modified: Result<_, _> = out_file.metadata().and_then(|m| m.modified());
|
||||
let should_compile = if out_file.exists() {
|
||||
kernel_dir
|
||||
.read_dir()
|
||||
.expect("kernels folder should exist")
|
||||
.any(|entry| {
|
||||
if let (Ok(entry), Ok(out_modified)) = (entry, &out_modified) {
|
||||
let in_modified = entry.metadata().unwrap().modified().unwrap();
|
||||
in_modified.duration_since(*out_modified).is_ok()
|
||||
} else {
|
||||
true
|
||||
}
|
||||
})
|
||||
} else {
|
||||
true
|
||||
};
|
||||
if should_compile {
|
||||
cu_files
|
||||
.par_iter()
|
||||
.map(|(cu_file, obj_file)| {
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
command
|
||||
.arg("-std=c++17")
|
||||
.arg("-O3")
|
||||
.arg("-U__CUDA_NO_HALF_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_HALF_CONVERSIONS__")
|
||||
.arg("-U__CUDA_NO_HALF2_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_BFLOAT16_CONVERSIONS__")
|
||||
.arg(format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.arg("-c")
|
||||
.args(["-o", obj_file.to_str().unwrap()])
|
||||
.args(["--default-stream", "per-thread"])
|
||||
.arg("-Icutlass/include")
|
||||
.arg("--expt-relaxed-constexpr")
|
||||
.arg("--expt-extended-lambda")
|
||||
.arg("--use_fast_math")
|
||||
.arg("--verbose");
|
||||
if let Ok(ccbin_path) = &ccbin_env {
|
||||
command
|
||||
.arg("-allow-unsupported-compiler")
|
||||
.args(["-ccbin", ccbin_path]);
|
||||
}
|
||||
command.arg(cu_file);
|
||||
let output = command
|
||||
.spawn()
|
||||
.context("failed spawning nvcc")?
|
||||
.wait_with_output()?;
|
||||
if !output.status.success() {
|
||||
anyhow::bail!(
|
||||
"nvcc error while executing compiling: {:?}\n\n# stdout\n{:#}\n\n# stderr\n{:#}",
|
||||
&command,
|
||||
String::from_utf8_lossy(&output.stdout),
|
||||
String::from_utf8_lossy(&output.stderr)
|
||||
)
|
||||
}
|
||||
Ok(())
|
||||
})
|
||||
.collect::<Result<()>>()?;
|
||||
let obj_files = cu_files.iter().map(|c| c.1.clone()).collect::<Vec<_>>();
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
command
|
||||
.arg("--lib")
|
||||
.args(["-o", out_file.to_str().unwrap()])
|
||||
.args(obj_files);
|
||||
let output = command
|
||||
.spawn()
|
||||
.context("failed spawning nvcc")?
|
||||
.wait_with_output()?;
|
||||
if !output.status.success() {
|
||||
anyhow::bail!(
|
||||
"nvcc error while linking: {:?}\n\n# stdout\n{:#}\n\n# stderr\n{:#}",
|
||||
&command,
|
||||
String::from_utf8_lossy(&output.stdout),
|
||||
String::from_utf8_lossy(&output.stderr)
|
||||
)
|
||||
}
|
||||
}
|
||||
println!("cargo:rustc-link-search={}", build_dir.display());
|
||||
println!("cargo:rustc-link-lib=flashattention");
|
||||
println!("cargo:rustc-link-lib=dylib=cudart");
|
||||
println!("cargo:rustc-link-lib=dylib=stdc++");
|
||||
|
||||
/* laurent: I tried using the cc cuda integration as below but this lead to ptaxs never
|
||||
finishing to run for some reason. Calling nvcc manually worked fine.
|
||||
cc::Build::new()
|
||||
.cuda(true)
|
||||
.include("cutlass/include")
|
||||
.flag("--expt-relaxed-constexpr")
|
||||
.flag("--default-stream")
|
||||
.flag("per-thread")
|
||||
.flag(&format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.file("kernels/flash_fwd_hdim32_fp16_sm80.cu")
|
||||
.compile("flashattn");
|
||||
*/
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn set_cuda_include_dir() -> Result<()> {
|
||||
// NOTE: copied from cudarc build.rs.
|
||||
let env_vars = [
|
||||
"CUDA_PATH",
|
||||
"CUDA_ROOT",
|
||||
"CUDA_TOOLKIT_ROOT_DIR",
|
||||
"CUDNN_LIB",
|
||||
];
|
||||
let env_vars = env_vars
|
||||
.into_iter()
|
||||
.map(std::env::var)
|
||||
.filter_map(Result::ok)
|
||||
.map(Into::<PathBuf>::into);
|
||||
|
||||
let roots = [
|
||||
"/usr",
|
||||
"/usr/local/cuda",
|
||||
"/opt/cuda",
|
||||
"/usr/lib/cuda",
|
||||
"C:/Program Files/NVIDIA GPU Computing Toolkit",
|
||||
"C:/CUDA",
|
||||
];
|
||||
let roots = roots.into_iter().map(Into::<PathBuf>::into);
|
||||
let root = env_vars
|
||||
.chain(roots)
|
||||
.find(|path| path.join("include").join("cuda.h").is_file())
|
||||
.context("cannot find include/cuda.h")?;
|
||||
println!(
|
||||
"cargo:rustc-env=CUDA_INCLUDE_DIR={}",
|
||||
root.join("include").display()
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
fn compute_cap() -> Result<usize> {
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
|
||||
// Try to parse compute caps from env
|
||||
let mut compute_cap = if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={compute_cap_str}");
|
||||
compute_cap_str
|
||||
.parse::<usize>()
|
||||
.context("Could not parse compute cap")?
|
||||
} else {
|
||||
// Use nvidia-smi to get the current compute cap
|
||||
let out = std::process::Command::new("nvidia-smi")
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
|
||||
let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?;
|
||||
let mut lines = out.lines();
|
||||
assert_eq!(
|
||||
lines.next().context("missing line in stdout")?,
|
||||
"compute_cap"
|
||||
);
|
||||
let cap = lines
|
||||
.next()
|
||||
.context("missing line in stdout")?
|
||||
.replace('.', "");
|
||||
let cap = cap
|
||||
.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as int {cap}"))?;
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={cap}");
|
||||
cap
|
||||
};
|
||||
|
||||
// Grab available GPU codes from nvcc and select the highest one
|
||||
let (supported_nvcc_codes, max_nvcc_code) = {
|
||||
let out = std::process::Command::new("nvcc")
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
|
||||
let out = out.lines().collect::<Vec<&str>>();
|
||||
let mut codes = Vec::with_capacity(out.len());
|
||||
for code in out {
|
||||
let code = code.split('_').collect::<Vec<&str>>();
|
||||
if !code.is_empty() && code.contains(&"sm") {
|
||||
if let Ok(num) = code[1].parse::<usize>() {
|
||||
codes.push(num);
|
||||
}
|
||||
}
|
||||
}
|
||||
codes.sort();
|
||||
let max_nvcc_code = *codes.last().context("no gpu codes parsed from nvcc")?;
|
||||
(codes, max_nvcc_code)
|
||||
};
|
||||
|
||||
// Check that nvcc supports the asked compute caps
|
||||
if !supported_nvcc_codes.contains(&compute_cap) {
|
||||
anyhow::bail!(
|
||||
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {supported_nvcc_codes:?}."
|
||||
);
|
||||
}
|
||||
if compute_cap > max_nvcc_code {
|
||||
anyhow::bail!(
|
||||
"CUDA compute cap {compute_cap} is higher than the highest gpu code from nvcc {max_nvcc_code}"
|
||||
);
|
||||
}
|
||||
|
||||
Ok(compute_cap)
|
||||
}
|
||||
|
62
candle-flash-attn/kernels/alibi.h
Normal file
62
candle-flash-attn/kernels/alibi.h
Normal file
@ -0,0 +1,62 @@
|
||||
#include <cmath>
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/array.h>
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
namespace flash {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <bool Is_causal, typename Engine, typename Layout>
|
||||
inline __device__ void apply_alibi(Tensor<Engine, Layout> &tensor,
|
||||
const int col_idx_offset_,
|
||||
const int max_seqlen_k,
|
||||
const int row_idx_offset,
|
||||
const int max_seqlen_q,
|
||||
const int warp_row_stride,
|
||||
const float alibi_slope) {
|
||||
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
|
||||
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
||||
const int lane_id = threadIdx.x % 32;
|
||||
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
||||
if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows
|
||||
#pragma unroll
|
||||
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
||||
const int col_idx_base = col_idx_offset + nj * 8;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
||||
const int col_idx = col_idx_base + j;
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
||||
tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // Bias depends on both row_idx and col_idx
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
|
||||
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < size<0, 0>(tensor); ++i) {
|
||||
const int row_idx = row_idx_base + i * 8;
|
||||
#pragma unroll
|
||||
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
||||
const int col_idx_base = col_idx_offset + nj * 8;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
||||
const int col_idx = col_idx_base + j;
|
||||
tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace flash
|
@ -14,9 +14,12 @@ struct BlockInfo {
|
||||
template<typename Params>
|
||||
__device__ BlockInfo(const Params ¶ms, const int bidb)
|
||||
: sum_s_q(!Varlen || params.cu_seqlens_q == nullptr ? -1 : params.cu_seqlens_q[bidb])
|
||||
, sum_s_k(!Varlen || params.cu_seqlens_k == nullptr ? -1 : params.cu_seqlens_k[bidb])
|
||||
, sum_s_k(!Varlen || params.cu_seqlens_k == nullptr || !params.is_seqlens_k_cumulative ? -1 : params.cu_seqlens_k[bidb])
|
||||
, actual_seqlen_q(!Varlen || params.cu_seqlens_q == nullptr ? params.seqlen_q : params.cu_seqlens_q[bidb + 1] - sum_s_q)
|
||||
, actual_seqlen_k(!Varlen || params.cu_seqlens_k == nullptr ? params.seqlen_k : params.cu_seqlens_k[bidb + 1] - sum_s_k)
|
||||
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
|
||||
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
|
||||
, seqlen_k_cache(!Varlen || params.cu_seqlens_k == nullptr ? params.seqlen_k : (params.is_seqlens_k_cumulative ? params.cu_seqlens_k[bidb + 1] - sum_s_k : params.cu_seqlens_k[bidb]))
|
||||
, actual_seqlen_k(params.seqused_k ? params.seqused_k[bidb] : seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew))
|
||||
{
|
||||
}
|
||||
|
||||
@ -32,8 +35,10 @@ struct BlockInfo {
|
||||
|
||||
const int sum_s_q;
|
||||
const int sum_s_k;
|
||||
const uint32_t actual_seqlen_q;
|
||||
const uint32_t actual_seqlen_k;
|
||||
const int actual_seqlen_q;
|
||||
// We have to have seqlen_k_cache declared before actual_seqlen_k, otherwise actual_seqlen_k is set to 0.
|
||||
const int seqlen_k_cache;
|
||||
const int actual_seqlen_k;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -7,15 +7,6 @@
|
||||
#include <cuda.h>
|
||||
#include <vector>
|
||||
|
||||
// #ifdef OLD_GENERATOR_PATH
|
||||
// #include <ATen/CUDAGeneratorImpl.h>
|
||||
// #else
|
||||
// #include <ATen/cuda/CUDAGeneratorImpl.h>
|
||||
// #endif
|
||||
//
|
||||
// #include <ATen/cuda/CUDAGraphsUtils.cuh>
|
||||
|
||||
|
||||
constexpr int TOTAL_DIM = 0;
|
||||
constexpr int H_DIM = 1;
|
||||
constexpr int D_DIM = 2;
|
||||
@ -53,6 +44,7 @@ struct Flash_fwd_params : public Qkv_params {
|
||||
|
||||
// The O matrix (output).
|
||||
void * __restrict__ o_ptr;
|
||||
void * __restrict__ oaccum_ptr;
|
||||
|
||||
// The stride between rows of O.
|
||||
index_t o_batch_stride;
|
||||
@ -64,9 +56,10 @@ struct Flash_fwd_params : public Qkv_params {
|
||||
|
||||
// The pointer to the softmax sum.
|
||||
void * __restrict__ softmax_lse_ptr;
|
||||
void * __restrict__ softmax_lseaccum_ptr;
|
||||
|
||||
// The dimensions.
|
||||
int b, seqlen_q, seqlen_k, d, seqlen_q_rounded, seqlen_k_rounded, d_rounded;
|
||||
int b, seqlen_q, seqlen_k, seqlen_knew, d, seqlen_q_rounded, seqlen_k_rounded, d_rounded, rotary_dim;
|
||||
|
||||
// The scaling factors for the kernel.
|
||||
float scale_softmax;
|
||||
@ -76,8 +69,30 @@ struct Flash_fwd_params : public Qkv_params {
|
||||
int * __restrict__ cu_seqlens_q;
|
||||
int * __restrict__ cu_seqlens_k;
|
||||
|
||||
// If provided, the actual length of each k sequence.
|
||||
int * __restrict__ seqused_k;
|
||||
|
||||
int *__restrict__ blockmask;
|
||||
|
||||
// The K_new and V_new matrices.
|
||||
void * __restrict__ knew_ptr;
|
||||
void * __restrict__ vnew_ptr;
|
||||
|
||||
// The stride between rows of the Q, K and V matrices.
|
||||
index_t knew_batch_stride;
|
||||
index_t vnew_batch_stride;
|
||||
index_t knew_row_stride;
|
||||
index_t vnew_row_stride;
|
||||
index_t knew_head_stride;
|
||||
index_t vnew_head_stride;
|
||||
|
||||
// The cos and sin matrices for rotary embedding.
|
||||
void * __restrict__ rotary_cos_ptr;
|
||||
void * __restrict__ rotary_sin_ptr;
|
||||
|
||||
// The indices to index into the KV cache.
|
||||
int *__restrict__ cache_batch_idx;
|
||||
|
||||
// The dropout probability (probability of keeping an activation).
|
||||
float p_dropout;
|
||||
// uint32_t p_dropout_in_uint;
|
||||
@ -88,11 +103,22 @@ struct Flash_fwd_params : public Qkv_params {
|
||||
float rp_dropout;
|
||||
float scale_softmax_rp_dropout;
|
||||
|
||||
// Random state.
|
||||
// at::PhiloxCudaState philox_args;
|
||||
// Local window size
|
||||
int window_size_left, window_size_right;
|
||||
|
||||
bool is_bf16;
|
||||
bool is_causal;
|
||||
|
||||
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
|
||||
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
|
||||
bool is_seqlens_k_cumulative;
|
||||
|
||||
bool is_rotary_interleaved;
|
||||
|
||||
int num_splits; // For split-KV version
|
||||
|
||||
void * __restrict__ alibi_slopes_ptr;
|
||||
index_t alibi_slopes_batch_stride;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -132,10 +158,14 @@ struct Flash_bwd_params : public Flash_fwd_params {
|
||||
|
||||
// The pointer to the softmax d sum.
|
||||
void *__restrict__ dsoftmax_sum;
|
||||
|
||||
bool deterministic;
|
||||
index_t dq_accum_split_stride;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T, int Headdim> void run_mha_fwd_(Flash_fwd_params ¶ms, cudaStream_t stream);
|
||||
template<typename T, int Headdim> void run_mha_fwd_splitkv_dispatch(Flash_fwd_params ¶ms, cudaStream_t stream);
|
||||
|
||||
template<typename T, int Headdim> void run_mha_bwd_(Flash_bwd_params ¶ms, cudaStream_t stream, const bool configure);
|
||||
|
@ -1,17 +1,15 @@
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// FWD_HEADDIM_SWITCH(params.d, [&] {
|
||||
// run_mha_fwd_<cutlass::half_t, kHeadDim>(params, stream);
|
||||
// });
|
||||
// }
|
||||
|
||||
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
FP16_SWITCH(!params.is_bf16, [&] {
|
||||
FWD_HEADDIM_SWITCH(params.d, [&] {
|
||||
run_mha_fwd_<elem_type, kHeadDim>(params, stream);
|
||||
});
|
||||
});
|
||||
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) {
|
||||
FP16_SWITCH(!params.is_bf16, [&] {
|
||||
FWD_HEADDIM_SWITCH(params.d, [&] {
|
||||
// if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0
|
||||
run_mha_fwd_<elem_type, kHeadDim>(params, stream);
|
||||
// } else {
|
||||
// run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream);
|
||||
// }
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
extern "C" void run_mha(
|
||||
@ -20,6 +18,7 @@ extern "C" void run_mha(
|
||||
void *v_ptr,
|
||||
void *o_ptr,
|
||||
void *softmax_lse_ptr,
|
||||
void *alibi_slopes_ptr,
|
||||
|
||||
int32_t *cu_seqlens_q_ptr,
|
||||
int32_t *cu_seqlens_k_ptr,
|
||||
@ -28,6 +27,7 @@ extern "C" void run_mha(
|
||||
uint32_t k_batch_stride,
|
||||
uint32_t v_batch_stride,
|
||||
uint32_t o_batch_stride,
|
||||
uint32_t alibi_slopes_batch_stride,
|
||||
|
||||
uint32_t q_row_stride,
|
||||
uint32_t k_row_stride,
|
||||
@ -51,8 +51,11 @@ extern "C" void run_mha(
|
||||
uint32_t seqlen_q_rounded,
|
||||
uint32_t seqlen_k_rounded,
|
||||
|
||||
int is_bf16,
|
||||
int is_causal,
|
||||
int is_bf16
|
||||
|
||||
int window_size_left,
|
||||
int window_size_right
|
||||
) {
|
||||
Flash_fwd_params params;
|
||||
// Reset the parameters
|
||||
@ -65,12 +68,14 @@ extern "C" void run_mha(
|
||||
params.o_ptr = o_ptr;
|
||||
|
||||
params.softmax_lse_ptr = softmax_lse_ptr;
|
||||
params.alibi_slopes_ptr = alibi_slopes_ptr;
|
||||
|
||||
// All stride are in elements, not bytes.
|
||||
params.q_batch_stride = q_batch_stride;
|
||||
params.k_batch_stride = k_batch_stride;
|
||||
params.v_batch_stride = v_batch_stride;
|
||||
params.o_batch_stride = o_batch_stride;
|
||||
params.alibi_slopes_batch_stride = alibi_slopes_batch_stride;
|
||||
|
||||
params.q_row_stride = q_row_stride;
|
||||
params.k_row_stride = k_row_stride;
|
||||
@ -92,7 +97,6 @@ extern "C" void run_mha(
|
||||
params.seqlen_k_rounded = seqlen_k_rounded;
|
||||
params.d = d;
|
||||
params.d_rounded = d_rounded;
|
||||
params.is_causal = is_causal;
|
||||
|
||||
// Set the different scale values.
|
||||
params.scale_softmax = softmax_scale;
|
||||
@ -106,6 +110,14 @@ extern "C" void run_mha(
|
||||
params.cu_seqlens_q = cu_seqlens_q_ptr;
|
||||
params.cu_seqlens_k = cu_seqlens_k_ptr;
|
||||
params.p_ptr = nullptr; // used for `return_softmax`.
|
||||
params.seqused_k = nullptr;
|
||||
|
||||
params.is_causal = is_causal;
|
||||
params.window_size_left = window_size_left;
|
||||
params.window_size_right = window_size_right;
|
||||
|
||||
params.is_seqlens_k_cumulative = true;
|
||||
params.num_splits = 1;
|
||||
|
||||
cudaStream_t stream = 0; // Use the default stream.
|
||||
run_mha_fwd(params, stream);
|
||||
|
@ -1,19 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::bfloat16_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::bfloat16_t;
|
||||
// if (params.p_dropout == 1.f) {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 64, 4, false, false, elem_type>, false>(params, stream);
|
||||
// } else {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 32, 4, false, false, elem_type>, true>(params, stream);
|
||||
// }
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim128<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,32 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// if (params.p_dropout == 1.f) {
|
||||
// // Using 8 warps (128 x 128 and 256 x 64) is 28% slower for seqlen=2k
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 64, 4, false, false, elem_type>, false>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 64, 4, true, false, elem_type>, false>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 64, 4, false, true, elem_type>, false>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 64, 4, true, true, elem_type>, false>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 32, 4, false, false, elem_type>, false>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 64, 64, 4, false, false, elem_type>, false>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 64, 128, 4, false, false, elem_type>, false>(params, stream);
|
||||
// // 1st ones are good for H100, A100
|
||||
// // 2nd one is good for A6000 bc we get slightly better occupancy
|
||||
// } else {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 32, 4, false, false, elem_type>, true>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 32, 4, true, false, elem_type>, true>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<128, 128, 32, 4, true, true, elem_type>, true>(params, stream);
|
||||
// // 1st one is good for H100, A100, A6000
|
||||
// }
|
||||
// }
|
||||
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 128>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim128<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,17 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::bfloat16_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::bfloat16_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 32, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// });
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim160<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,27 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 32, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 32, 4, false, true, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 64, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<160, 64, 64, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 64, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<160, 64, 128, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<160, 64, 64, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 64, 8, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<160, 128, 128, 8, false, elem_type>>(params, stream);
|
||||
// // For A6000, no-causal, 1st is fastest. causal, 4th is fastest.
|
||||
// // For A100, H100, 1st is fastest.
|
||||
// });
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 160>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim160<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,16 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::bfloat16_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::bfloat16_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<192, 64, 64, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// });
|
||||
// }
|
||||
template<> void run_mha_fwd_<cutlass::bfloat16_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim192<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
|
@ -1,27 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<192, 64, 64, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<192, 128, 32, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<192, 64, 32, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// // This one is slightly faster for causal?
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<192, 128, 64, 8, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<192, 128, 32, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<192, 128, 64, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<192, 64, 128, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<192, 128, 128, 8, false, elem_type>>(params, stream);
|
||||
// });
|
||||
// // For A100 H100, 1st is faster with dropout, 3rd is faster without dropout
|
||||
// // For A6000, 1st is faster when causal, 3rd is faster when not causal
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 192>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim192<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
template<> void run_mha_fwd_<cutlass::bfloat16_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim224<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
template<> void run_mha_fwd_<cutlass::half_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 224>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim224<cutlass::half_t>(params, stream);
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
template<> void run_mha_fwd_<cutlass::bfloat16_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim256<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
template<> void run_mha_fwd_<cutlass::half_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 256>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim256<cutlass::half_t>(params, stream);
|
||||
}
|
||||
|
@ -1,10 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 32>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim32<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,23 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 32>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<32, 128, 128, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// // For dropout there might be a lot of register spilling?
|
||||
// // These two are very slow due to register spilling
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<32, 256, 128, 4, false, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<32, 128, 256, 4, false, elem_type>>(params, stream);
|
||||
// // This one is slightly slower
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<32, 256, 64, 4, false, elem_type>>(params, stream);
|
||||
// });
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 32>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim32<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,19 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::bfloat16_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::bfloat16_t;
|
||||
// if (params.p_dropout == 1.f) {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, true, false, elem_type>, false>(params, stream);
|
||||
// } else {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, false, false, elem_type>, true>(params, stream);
|
||||
// }
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim64<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,26 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// if (params.p_dropout == 1.f) {
|
||||
// // Using 8 warps is 18% slower for seqlen=2k, 2 warps is 5% slower
|
||||
// // Using block size (64 x 256) is 27% slower for seqlen=2k
|
||||
// // Using block size (256 x 64) is 85% slower for seqlen=2k, because of register spilling
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 128, 4, false, false, elem_type>, false>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, true, false, elem_type>, false>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, true, true, elem_type>, false>(params, stream);
|
||||
// } else {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, false, false, elem_type>, true>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, true, true, elem_type>, true>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<64, 128, 64, 4, true, false, elem_type>, true>(params, stream);
|
||||
// }
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim64<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,17 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::bfloat16_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::bfloat16_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 64, 4, true, false, elem_type>, Is_dropout>(params, stream);
|
||||
// });
|
||||
// }
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::bfloat16_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim96<cutlass::bfloat16_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -1,23 +1,10 @@
|
||||
// Copyright (c) 2023, Tri Dao.
|
||||
|
||||
// Splitting the different head dimensions to different files to speed up compilation.
|
||||
// This file is auto-generated. See "generate_kernels.py"
|
||||
|
||||
#include "flash_fwd_launch_template.h"
|
||||
|
||||
// template<>
|
||||
// void run_mha_fwd_<cutlass::half_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// using elem_type = cutlass::half_t;
|
||||
// BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 64, 4, true, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 64, 4, true, true, elem_type>, Is_dropout>(params, stream);
|
||||
// // This 3rd one is good for H100, and A100, A6000
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 64, 4, false, false, elem_type>, Is_dropout>(params, stream);
|
||||
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 64, 4, false, true, elem_type>, Is_dropout>(params, stream);
|
||||
// // These two are always slower
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 128, 4, true, elem_type>>(params, stream);
|
||||
// // run_flash_fwd<Flash_fwd_kernel_traits<96, 64, 128, 4, true, elem_type>>(params, stream);
|
||||
// });
|
||||
// }
|
||||
template<> void run_mha_fwd_<cutlass::half_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
template<>
|
||||
void run_mha_fwd_<cutlass::half_t, 96>(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
run_mha_fwd_hdim96<cutlass::half_t>(params, stream);
|
||||
}
|
||||
}
|
||||
|
@ -4,20 +4,18 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <cute/algorithm/copy.hpp>
|
||||
#include <cute/algorithm/gemm.hpp>
|
||||
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/array.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
#include <cutlass/numeric_conversion.h>
|
||||
|
||||
#include "block_info.h"
|
||||
#include "kernel_traits.h"
|
||||
#include "utils.h"
|
||||
#include "softmax.h"
|
||||
#include "philox.cuh"
|
||||
|
||||
#include "alibi.h"
|
||||
|
||||
namespace flash {
|
||||
|
||||
@ -25,49 +23,6 @@ using namespace cute;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <int MMA_M,
|
||||
class... Args,
|
||||
class TiledMMA>
|
||||
CUTE_HOST_DEVICE
|
||||
auto
|
||||
make_tiled_copy_A_warpcontiguousM(Copy_Atom<Args...> const& copy_atom,
|
||||
TiledMMA const& tiled_mma) {
|
||||
using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
|
||||
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
||||
constexpr int AtomShape_M = decltype(size<0>(AtomShape_MNK{}))::value;
|
||||
constexpr int kNWarps = decltype(size<0>(TileShape_MNK{}))::value / AtomShape_M;
|
||||
constexpr int MMAStride_M = MMA_M * AtomShape_M;
|
||||
auto t = make_tile(Layout<Shape<Int<AtomShape_M>, Int<kNWarps>>,
|
||||
Stride<_1, Int<MMAStride_M>> >{},
|
||||
make_layout(size<2>(TileShape_MNK{})));
|
||||
// if (cute::thread0()) {printf("make_tiled_copy_A_warpcontiguousM "); print(t); printf("\n"); }
|
||||
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutA_TV(), t);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <int MMA_M,
|
||||
class... Args,
|
||||
class TiledMMA>
|
||||
CUTE_HOST_DEVICE
|
||||
auto
|
||||
make_tiled_copy_C_warpcontiguousM(Copy_Atom<Args...> const& copy_atom,
|
||||
TiledMMA const& tiled_mma) {
|
||||
using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
|
||||
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
||||
constexpr int AtomShape_M = decltype(size<0>(AtomShape_MNK{}))::value;
|
||||
constexpr int kNWarps = decltype(size<0>(TileShape_MNK{}))::value / AtomShape_M;
|
||||
constexpr int MMAStride_M = MMA_M * AtomShape_M;
|
||||
auto t = make_tile(Layout<Shape<Int<AtomShape_M>, Int<kNWarps>>,
|
||||
Stride<_1, Int<MMAStride_M>> >{},
|
||||
// TODO: Shouldn't this be size<1>?
|
||||
make_layout(size<2>(TileShape_MNK{})));
|
||||
// if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousM "); print(t); printf("\n"); }
|
||||
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1, typename Tensor2>
|
||||
inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, Tensor1 &scores_sum,
|
||||
Tensor2 &acc_o, float softmax_scale_log2) {
|
||||
@ -77,7 +32,7 @@ inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, T
|
||||
flash::reduce_sum(scores, scores_sum);
|
||||
} else {
|
||||
Tensor scores_max_prev = make_fragment_like(scores_max);
|
||||
copy(scores_max, scores_max_prev);
|
||||
cute::copy(scores_max, scores_max_prev);
|
||||
flash::template reduce_max</*zero_init=*/false>(scores, scores_max);
|
||||
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
|
||||
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
|
||||
@ -103,23 +58,22 @@ inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, T
|
||||
|
||||
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename TiledCopy>
|
||||
inline __device__ void write_softmax_to_gmem(
|
||||
Tensor<Engine0, Layout0> const &tOrP, Tensor<Engine1, Layout1> &tPgP, TiledCopy gmem_thr_copy_P
|
||||
Tensor<Engine0, Layout0> const &tOrP, Tensor<Engine1, Layout1> &tPgP, TiledCopy gmem_tiled_copy_P
|
||||
) {
|
||||
// Reshape tOrP from (8, MMA_M, MMA_N) to (8, MMA_M * MMA_N)
|
||||
Layout l = tOrP.layout();
|
||||
Tensor tPrP = make_tensor(tOrP.data(), make_layout(get<0>(l), make_layout(get<1>(l), get<2>(l))));
|
||||
CUTE_STATIC_ASSERT_V(size<2>(tPgP) == _1{});
|
||||
// TODO(laurent): reactivate the following
|
||||
// CUTE_STATIC_ASSERT_V(size<1>(tPrP) == size<1>(tPgP));
|
||||
CUTE_STATIC_ASSERT_V(size<1>(tPrP) == size<1>(tPgP));
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<1>(tPrP); ++mi) {
|
||||
copy(gmem_thr_copy_P, tPrP(_, mi), tPgP(_, mi, 0));
|
||||
cute::copy(gmem_tiled_copy_P, tPrP(_, mi), tPgP(_, mi, 0));
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, bool Return_softmax, typename Params>
|
||||
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
|
||||
inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bidb, const int bidh, const int m_block) {
|
||||
|
||||
using Element = typename Kernel_traits::Element;
|
||||
@ -138,16 +92,65 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
constexpr int kNWarps = Kernel_traits::kNWarps;
|
||||
constexpr int MMA_M = kBlockM / decltype(size<0>(typename Kernel_traits::TiledMma::TiledShape_MNK{}))::value;
|
||||
|
||||
const BlockInfo</*Varlen=*/!Is_even_N> binfo(params, bidb);
|
||||
if (m_block * kBlockM >= binfo.actual_seqlen_q || binfo.actual_seqlen_k == 0) return;
|
||||
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
|
||||
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
|
||||
|
||||
const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
|
||||
int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
|
||||
if (Is_causal) {
|
||||
n_block_max = std::min(n_block_max, cute::ceil_div((m_block + 1) * kBlockM, kBlockN));
|
||||
if (Is_causal || Is_local) {
|
||||
n_block_max = std::min(n_block_max,
|
||||
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
|
||||
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
|
||||
// printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
|
||||
// }
|
||||
}
|
||||
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
|
||||
// Otherwise we might read OOB elements from gK and gV.
|
||||
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
|
||||
// Save seed and offset for backward. If we don't have this here, the 0-th thread block might
|
||||
// exit early and no one saves the rng state.
|
||||
// if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
|
||||
// auto seeds = at::cuda::philox::unpack(params.philox_args);
|
||||
// params.rng_state[0] = std::get<0>(seeds);
|
||||
// params.rng_state[1] = std::get<1>(seeds);
|
||||
// params.rng_state[0] = 0;
|
||||
// params.rng_state[1] = 0;
|
||||
// }
|
||||
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
||||
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
||||
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
|
||||
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
|
||||
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
||||
make_stride(params.o_row_stride, _1{}));
|
||||
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
||||
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
||||
|
||||
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
|
||||
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
|
||||
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
|
||||
Tensor tOrO = make_tensor<Element>(shape(tOgO));
|
||||
clear(tOrO);
|
||||
// Construct identity layout for sO
|
||||
Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
||||
// Repeat the partitioning with identity layouts
|
||||
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
|
||||
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
|
||||
if (!Is_even_K) {
|
||||
#pragma unroll
|
||||
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
||||
}
|
||||
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
||||
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
||||
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
||||
);
|
||||
#pragma unroll
|
||||
for (int m = 0; m < size<1>(tOgO); ++m) {
|
||||
const int row = get<0>(tOcO(0, m, 0));
|
||||
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
|
||||
}
|
||||
return;
|
||||
}
|
||||
// if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
|
||||
|
||||
// We iterate over the blocks in reverse order. This is because the last block is the only one
|
||||
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
|
||||
@ -185,8 +188,10 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
|
||||
Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
|
||||
|
||||
auto gmem_thr_copy_QKV = typename Kernel_traits::GmemTiledCopyQKV{}.get_thread_slice(tidx);
|
||||
auto gmem_thr_copy_P = typename Kernel_traits::GmemTiledCopyP{}.get_thread_slice(tidx);
|
||||
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
|
||||
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
|
||||
typename Kernel_traits::GmemTiledCopyP gmem_tiled_copy_P;
|
||||
auto gmem_thr_copy_P = gmem_tiled_copy_P.get_thread_slice(tidx);
|
||||
|
||||
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
|
||||
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
|
||||
@ -208,16 +213,18 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
// Copy Atom retiling
|
||||
//
|
||||
|
||||
auto smem_thr_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma).get_thread_slice(tidx);
|
||||
// auto smem_thr_copy_Q = make_tiled_copy_A_warpcontiguousM<MMA_M>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma).get_thread_slice(tidx);
|
||||
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
||||
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
|
||||
// if (cute::thread0()) {smem_thr_copy_Q.print_all();}
|
||||
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
|
||||
// if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}
|
||||
|
||||
auto smem_thr_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma).get_thread_slice(tidx);
|
||||
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
||||
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
|
||||
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
|
||||
|
||||
auto smem_thr_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma).get_thread_slice(tidx);
|
||||
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
|
||||
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
|
||||
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
|
||||
|
||||
// TODO: this might need to change if we change the mma instruction in SM70
|
||||
@ -268,8 +275,8 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
|
||||
Tensor tQrQ = make_fragment_like(tQgQ);
|
||||
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
|
||||
flash::copy</*Is_even_MN=*/false, Is_even_K>(gmem_thr_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
|
||||
binfo.actual_seqlen_q - m_block * kBlockM);
|
||||
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
|
||||
binfo.actual_seqlen_q - m_block * kBlockM);
|
||||
if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }
|
||||
|
||||
// // Copy rmem to smem
|
||||
@ -285,14 +292,14 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
__syncthreads();
|
||||
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
|
||||
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
|
||||
copy(smem_thr_copy_Q, tSsQ, tSrQ_copy_view);
|
||||
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
int n_block = n_block_max - 1;
|
||||
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
|
||||
flash::copy<Is_even_N, Is_even_K>(gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
|
||||
binfo.actual_seqlen_k - n_block * kBlockN);
|
||||
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
|
||||
binfo.actual_seqlen_k - n_block * kBlockN);
|
||||
cute::cp_async_fence();
|
||||
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
|
||||
// __syncthreads();
|
||||
@ -302,7 +309,7 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
__syncthreads();
|
||||
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
|
||||
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
|
||||
copy(smem_thr_copy_Q, tSsQ, tSrQ_copy_view);
|
||||
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
|
||||
}
|
||||
|
||||
// auto seeds = at::cuda::philox::unpack(params.philox_args);
|
||||
@ -313,13 +320,19 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
|
||||
clear(acc_o);
|
||||
|
||||
float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
|
||||
|
||||
// For performance reason, we separate out two kinds of iterations:
|
||||
// those that need masking on S, and those that don't.
|
||||
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
|
||||
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
|
||||
// We will have at least 1 "masking" iteration.
|
||||
|
||||
constexpr int n_masking_steps = Is_causal ? cute::ceil_div(kBlockM, kBlockN) : 1;
|
||||
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
|
||||
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
|
||||
constexpr int n_masking_steps = (!Is_causal && !Is_local)
|
||||
? 1
|
||||
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
|
||||
#pragma unroll
|
||||
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
|
||||
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
||||
@ -330,28 +343,42 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
// Advance gV
|
||||
if (masking_step > 0) {
|
||||
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
||||
} else {
|
||||
// Clear the smem tiles to account for predicated off loads
|
||||
flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
|
||||
gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
||||
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
||||
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
||||
);
|
||||
}
|
||||
cute::cp_async_fence();
|
||||
|
||||
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
|
||||
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_thr_copy_Q, smem_thr_copy_K
|
||||
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
||||
smem_thr_copy_Q, smem_thr_copy_K
|
||||
);
|
||||
// if (cute::thread0()) { print(acc_s); }
|
||||
|
||||
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
||||
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
|
||||
// if (cute::thread0()) { print(scores); }
|
||||
// if (cute::thread0()) { print_tensor(scores); }
|
||||
// We don't put the masking before the matmul S = Q K^T because we don't clear sK
|
||||
// for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
|
||||
// can produce Inf / NaN.
|
||||
if (!Is_causal) {
|
||||
if (!Is_even_N) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
|
||||
|
||||
if (Has_alibi) {
|
||||
flash::apply_alibi<Is_causal>(
|
||||
scores,
|
||||
n_block * kBlockN,
|
||||
binfo.actual_seqlen_k,
|
||||
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
|
||||
binfo.actual_seqlen_q,
|
||||
kNWarps * 16,
|
||||
alibi_slope
|
||||
);
|
||||
}
|
||||
|
||||
if (!Is_causal && !Is_local) {
|
||||
if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
|
||||
} else {
|
||||
// Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
|
||||
// Tensor taccScS = thr_mma.partition_C(caccS); // (MMA,MMA_M,MMA_N)
|
||||
@ -364,20 +391,24 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
// Idk why it's get<1> and not get<0> of the stride.
|
||||
// if (cute::thread0()) { print(idx_row.layout()); print(stride<1>(idx_row)); printf("stride = %d \n", get<1>(stride<1>(idx_row))); }
|
||||
// I can't get the stride from idx_row
|
||||
flash::apply_mask_causal(scores, n_block * kBlockN, binfo.actual_seqlen_k,
|
||||
// m_block * kBlockM + get<0>(idx_row(0)),
|
||||
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
|
||||
kNWarps * 16);
|
||||
// m_block * kBlockM + (tidx / 32) * 16, kNWarps * 16);
|
||||
// m_block * kBlockM + (tidx / 32) * (kBlockM / kNWarps), 16);
|
||||
flash::apply_mask_local</*HasWSLeft=*/Is_local>(
|
||||
scores, n_block * kBlockN, binfo.actual_seqlen_k,
|
||||
// m_block * kBlockM + get<0>(idx_row(0)),
|
||||
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
|
||||
binfo.actual_seqlen_q, kNWarps * 16,
|
||||
params.window_size_left, params.window_size_right
|
||||
// m_block * kBlockM + (tidx / 32) * 16, kNWarps * 16
|
||||
// m_block * kBlockM + (tidx / 32) * (kBlockM / kNWarps), 16
|
||||
);
|
||||
// if (cute::thread0()) { print_tensor(scores); }
|
||||
}
|
||||
|
||||
flash::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
if (n_block > 0) {
|
||||
if (n_block > n_block_min) {
|
||||
// Advance gK
|
||||
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
||||
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
||||
// isn't right and we get race conditions.
|
||||
cute::cp_async_fence();
|
||||
@ -385,24 +416,24 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
|
||||
// TODO: when we have key_padding_mask we'll need to Check_inf
|
||||
masking_step == 0
|
||||
? softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
|
||||
: softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
|
||||
? softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
|
||||
: softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
|
||||
|
||||
// Convert scores from fp32 to fp16/bf16
|
||||
Tensor rP = flash::convert_type<Element>(scores);
|
||||
// Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
|
||||
// if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
|
||||
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
||||
uint32_t block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
||||
uint32_t block_col_idx = n_block * (kBlockN / 32);
|
||||
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
||||
int block_col_idx = n_block * (kBlockN / 32);
|
||||
if (Return_softmax) {
|
||||
Tensor tOrP_copy = make_fragment_like(tOrP);
|
||||
copy(tOrP, tOrP_copy);
|
||||
cute::copy(tOrP, tOrP_copy);
|
||||
flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
||||
tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
|
||||
block_row_idx, block_col_idx, kNWarps
|
||||
);
|
||||
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_thr_copy_P);
|
||||
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
|
||||
tPgP.data() = tPgP.data() + (-kBlockN);
|
||||
}
|
||||
if (Is_dropout) {
|
||||
@ -411,37 +442,38 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
}
|
||||
// if (cute::thread0()) { print(tOrP); }
|
||||
|
||||
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_thr_copy_V);
|
||||
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
||||
// if (cute::thread0()) { print(scores); }
|
||||
|
||||
// This check is at the end of the loop since we always have at least 1 iteration
|
||||
if (n_masking_steps > 1 && n_block <= 0) {
|
||||
if (n_masking_steps > 1 && n_block <= n_block_min) {
|
||||
--n_block;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// These are the iterations where we don't need masking on S
|
||||
for (; n_block >= 0; --n_block) {
|
||||
for (; n_block >= n_block_min; --n_block) {
|
||||
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
||||
clear(acc_s);
|
||||
flash::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
// Advance gV
|
||||
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
||||
cute::cp_async_fence();
|
||||
|
||||
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
|
||||
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_thr_copy_Q, smem_thr_copy_K
|
||||
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
||||
smem_thr_copy_Q, smem_thr_copy_K
|
||||
);
|
||||
|
||||
flash::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
if (n_block > 0) {
|
||||
if (n_block > n_block_min) {
|
||||
// Advance gK
|
||||
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
||||
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
||||
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
||||
// isn't right and we get race conditions.
|
||||
cute::cp_async_fence();
|
||||
@ -449,22 +481,44 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
|
||||
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
||||
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
|
||||
softmax_rescale_o</*Is_first=*/false>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
|
||||
|
||||
if (Has_alibi) {
|
||||
flash::apply_alibi<Is_causal>(
|
||||
scores,
|
||||
n_block * kBlockN,
|
||||
binfo.actual_seqlen_k,
|
||||
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
|
||||
binfo.actual_seqlen_q,
|
||||
kNWarps * 16,
|
||||
alibi_slope
|
||||
);
|
||||
}
|
||||
|
||||
if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
|
||||
flash::apply_mask_local(
|
||||
scores, n_block * kBlockN, binfo.actual_seqlen_k,
|
||||
m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
|
||||
binfo.actual_seqlen_q, kNWarps * 16,
|
||||
params.window_size_left, params.window_size_right
|
||||
);
|
||||
}
|
||||
|
||||
softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
|
||||
|
||||
Tensor rP = flash::convert_type<Element>(scores);
|
||||
// Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
|
||||
// if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
|
||||
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
||||
uint32_t block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
||||
uint32_t block_col_idx = n_block * (kBlockN / 32);
|
||||
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
||||
int block_col_idx = n_block * (kBlockN / 32);
|
||||
if (Return_softmax) {
|
||||
Tensor tOrP_copy = make_fragment_like(tOrP);
|
||||
copy(tOrP, tOrP_copy);
|
||||
cute::copy(tOrP, tOrP_copy);
|
||||
flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
||||
tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
|
||||
block_row_idx, block_col_idx, kNWarps
|
||||
);
|
||||
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_thr_copy_P);
|
||||
flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
|
||||
tPgP.data() = tPgP.data() + (-kBlockN);
|
||||
}
|
||||
if (Is_dropout) {
|
||||
@ -472,7 +526,7 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
block_row_idx, block_col_idx, kNWarps);
|
||||
}
|
||||
|
||||
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_thr_copy_V);
|
||||
flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
||||
}
|
||||
|
||||
// Epilogue
|
||||
@ -496,15 +550,15 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
Tensor rO = flash::convert_type<Element>(acc_o);
|
||||
Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
|
||||
// Partition sO to match the accumulator partitioning
|
||||
auto smem_thr_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma).get_thread_slice(tidx);
|
||||
// auto smem_thr_copy_O = make_tiled_copy_C_warpcontiguousM<MMA_M>(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma).get_thread_slice(tidx);
|
||||
auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
|
||||
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
|
||||
Tensor taccOrO = smem_thr_copy_O.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
|
||||
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
||||
|
||||
// sO has the same size as sQ, so we don't need to sync here.
|
||||
if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }
|
||||
|
||||
copy(smem_thr_copy_O, taccOrO, taccOsO);
|
||||
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
|
||||
|
||||
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
||||
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
||||
@ -515,14 +569,15 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
||||
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
||||
|
||||
auto gmem_thr_copy_O = typename Kernel_traits::GmemTiledCopyO{}.get_thread_slice(tidx);
|
||||
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
|
||||
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
|
||||
Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
||||
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
Tensor tOrO = make_tensor<Element>(shape(tOgO));
|
||||
copy(gmem_thr_copy_O, tOsO, tOrO);
|
||||
cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
|
||||
|
||||
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
||||
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
|
||||
@ -548,14 +603,15 @@ inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bi
|
||||
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
||||
}
|
||||
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
||||
flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
||||
gmem_thr_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
||||
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
||||
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, bool Return_softmax, typename Params>
|
||||
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
|
||||
inline __device__ void compute_attn(const Params ¶ms) {
|
||||
const int m_block = blockIdx.x;
|
||||
// The block index for the batch.
|
||||
@ -571,7 +627,7 @@ inline __device__ void compute_attn(const Params ¶ms) {
|
||||
// the attention matrix. This way, as long as we have the batch, head, and the location of
|
||||
// the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.
|
||||
|
||||
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
|
||||
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user