mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00
Compare commits
1 Commits
metal4.7-m
...
sort
Author | SHA1 | Date | |
---|---|---|---|
03ad494fcd |
@ -61,7 +61,7 @@ tracing-subscriber = "0.3.7"
|
||||
wav = "1.0.0"
|
||||
yoke = { version = "0.7.2", features = ["derive"] }
|
||||
zip = { version = "0.6.6", default-features = false }
|
||||
metal = { version = "0.27.0", features = ["mps"], package = "candle-metal" }
|
||||
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
|
||||
|
||||
[profile.release-with-debug]
|
||||
inherits = "release"
|
||||
|
@ -5,13 +5,43 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Tensor};
|
||||
use candle::{CpuStorage, Device, Layout, Shape, Tensor};
|
||||
use candle_core as candle;
|
||||
|
||||
struct ArgSort;
|
||||
impl candle::CustomOp1 for ArgSort {
|
||||
fn name(&self) -> &'static str {
|
||||
"arg-sort"
|
||||
}
|
||||
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
storage: &CpuStorage,
|
||||
layout: &Layout,
|
||||
) -> candle::Result<(CpuStorage, Shape)> {
|
||||
if layout.shape().rank() != 1 {
|
||||
candle::bail!(
|
||||
"input should have a single dimension, got {:?}",
|
||||
layout.shape()
|
||||
)
|
||||
}
|
||||
let slice = storage.as_slice::<f32>()?;
|
||||
let src = match layout.contiguous_offsets() {
|
||||
None => candle::bail!("input has to be contiguous"),
|
||||
Some((o1, o2)) => &slice[o1..o2],
|
||||
};
|
||||
let mut dst = (0..src.len() as u32).collect::<Vec<u32>>();
|
||||
dst.sort_by(|&i, &j| src[i as usize].total_cmp(&src[j as usize]));
|
||||
let storage = candle::WithDType::to_cpu_storage_owned(dst);
|
||||
Ok((storage, layout.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let a = Tensor::new(&[[0.0f32, 1.0, 2.0], [3.0, 4.0, 5.0]], &Device::Cpu)?;
|
||||
let b = Tensor::new(&[[88.0f32, 99.0]], &Device::Cpu)?;
|
||||
let new_a = a.slice_scatter(&b, 1, 2)?;
|
||||
assert_eq!(a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
|
||||
assert_eq!(new_a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
|
||||
let a = Tensor::new(&[0.0f32, 1.0, 3.0, 2.0, -12.0, 4.0, 3.5], &Device::Cpu)?;
|
||||
let indices = a.apply_op1(ArgSort)?;
|
||||
let a_sorted = a.gather(&indices, 0)?;
|
||||
println!("{indices}");
|
||||
println!("{a_sorted}");
|
||||
Ok(())
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1864,7 +1864,7 @@ impl Tensor {
|
||||
}
|
||||
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
|
||||
(Storage::Metal(storage), Device::Cpu) => {
|
||||
// println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
|
||||
println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
|
||||
Storage::Cpu(storage.to_cpu_storage()?)
|
||||
}
|
||||
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
|
||||
|
@ -900,9 +900,7 @@ fn matmul(device: &Device) -> Result<()> {
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
let d = a.matmul(&c)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
assert_eq!(d.to_vec2::<f32>()?, &[[37.0, 54.0], [81.0, 118.0]]);
|
||||
|
||||
let data = vec![1.0f32, 2.0];
|
||||
let a = Tensor::from_slice(&data, (2, 1), device)?;
|
||||
|
@ -57,7 +57,6 @@ flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
|
||||
nccl = ["cuda", "cudarc/nccl", "dep:half"]
|
||||
onnx = ["candle-onnx"]
|
||||
metal = ["candle/metal", "candle-nn/metal"]
|
||||
|
||||
[[example]]
|
||||
name = "llama_multiprocess"
|
||||
|
@ -10,7 +10,7 @@ categories = ["science"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
|
||||
[dependencies]
|
||||
metal = { version = "0.27.0", features = ["mps"], package="candle-metal" }
|
||||
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
|
||||
once_cell = "1.18.0"
|
||||
thiserror = "1"
|
||||
tracing = "0.1.37"
|
||||
|
@ -50,7 +50,6 @@ fn run_affine_bench<T: Clone>(device: &Device, kernels: &Kernels, v: &[T]) {
|
||||
&device,
|
||||
command_buffer,
|
||||
&kernels,
|
||||
"affine_float",
|
||||
v.len(),
|
||||
&input,
|
||||
&mut output,
|
@ -147,7 +147,7 @@ fn run_unary_bench<T: Clone>(
|
||||
println!(
|
||||
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
|
||||
type_name::<T>().split("::").last().unwrap(),
|
||||
kernel_name.0,
|
||||
kernel_name.to_string(),
|
||||
v.len(),
|
||||
iterations,
|
||||
total_time,
|
||||
@ -159,7 +159,7 @@ fn run_unary_bench<T: Clone>(
|
||||
let shape = vec![2, 5_000];
|
||||
let strides = vec![2, 1];
|
||||
let offset = 0;
|
||||
for kernel_name in &strided {
|
||||
for kernel_name in strided {
|
||||
let total_time = autoreleasepool(|| {
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let start = Instant::now();
|
||||
@ -187,7 +187,7 @@ fn run_unary_bench<T: Clone>(
|
||||
println!(
|
||||
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
|
||||
type_name::<T>().split("::").last().unwrap(),
|
||||
kernel_name.0,
|
||||
kernel_name.to_string(),
|
||||
v.len(),
|
||||
iterations,
|
||||
total_time,
|
@ -29,96 +29,15 @@ kernel void FN_NAME( \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[id] = TYPENAME(float(input[id]) * mul + add); \
|
||||
const TYPENAME m = TYPENAME(mul); \
|
||||
const TYPENAME a = TYPENAME(add); \
|
||||
output[id] = input[id] * m + a; \
|
||||
} \
|
||||
kernel void FN_NAME##_strided( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
constant float &mul, \
|
||||
constant float &add, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint id [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[id] = TYPENAME(float(input[get_strided_index(id, num_dims, dims, strides)]) * mul + add); \
|
||||
}
|
||||
|
||||
#define POWF(FN_NAME, TYPENAME) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
constant float &mul, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint id [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
|
||||
} \
|
||||
kernel void FN_NAME##_strided( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
constant float &mul, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint id [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
|
||||
}
|
||||
|
||||
#define ELU(FN_NAME, TYPENAME) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
constant float &mul, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint id [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
const TYPENAME x = input[id]; \
|
||||
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
|
||||
} \
|
||||
kernel void FN_NAME##_strided( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
constant float &mul, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint id [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (id >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
|
||||
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
|
||||
} \
|
||||
|
||||
|
||||
AFFINE(affine_float, float)
|
||||
AFFINE(affine_half, half)
|
||||
POWF(powf_float, float)
|
||||
POWF(powf_half, half)
|
||||
ELU(elu_float, float)
|
||||
ELU(elu_half, half)
|
||||
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
AFFINE(affine_bfloat, bfloat);
|
||||
POWF(powf_bfloat, bfloat);
|
||||
ELU(elu_bfloat, bfloat);
|
||||
#endif
|
||||
|
@ -23,12 +23,12 @@ kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint tid [[ thread_position_in_grid ]] \
|
||||
uint thread_position_in_grid [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (tid >= dim) { \
|
||||
if (thread_position_in_grid >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[tid] = RIGHT_TYPENAME(input[tid]); \
|
||||
output[thread_position_in_grid] = RIGHT_TYPENAME(input[thread_position_in_grid]); \
|
||||
} \
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
@ -37,19 +37,15 @@ kernel void FN_NAME_STRIDED( \
|
||||
constant size_t *strides, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint tid [[ thread_position_in_grid ]] \
|
||||
uint i [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (tid >= dim) { \
|
||||
if (i >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[tid] = RIGHT_TYPENAME(input[get_strided_index(tid, num_dims, dims, strides)]); \
|
||||
output[i] = RIGHT_TYPENAME(input[get_strided_index(i, num_dims, dims, strides)]); \
|
||||
} \
|
||||
|
||||
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
|
||||
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
|
||||
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
|
||||
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
|
||||
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
|
||||
CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
#endif
|
||||
|
@ -16,16 +16,16 @@ kernel void NAME( \
|
||||
if (gid >= dst_size) { \
|
||||
return; \
|
||||
} \
|
||||
const size_t id_i = (gid / right_size) % ids_size; \
|
||||
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
|
||||
const size_t id_i = gid / right_size / left_size; \
|
||||
const size_t right_rank_i = gid % right_size; \
|
||||
const size_t left_rank_i = gid / right_size / ids_size; \
|
||||
const size_t left_rank_i = gid % left_size; \
|
||||
/* \
|
||||
// Force prevent out of bounds indexing \
|
||||
// since there doesn't seem to be a good way to force crash \
|
||||
// No need to check for zero we're only allowing unsized. \
|
||||
*/ \
|
||||
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i; \
|
||||
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
|
||||
const size_t src_i = ((input_i * right_size) + right_rank_i) * left_size + left_rank_i; \
|
||||
output[gid] = input[src_i]; \
|
||||
}
|
||||
|
||||
@ -75,7 +75,6 @@ kernel void FN_NAME( \
|
||||
|
||||
|
||||
INDEX_OP(is_u32_f32, uint, float)
|
||||
INDEX_OP(is_u32_f16, uint, half)
|
||||
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -1,8 +1,6 @@
|
||||
#include <metal_stdlib>
|
||||
using namespace metal;
|
||||
|
||||
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
@ -18,21 +16,21 @@ METAL_FUNC uint get_strided_index(
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
constant int THREADGROUP_SIZE = 2048;
|
||||
constant int THREADGROUP_SIZE = 256;
|
||||
|
||||
# define REDUCE(FN, NAME, T) \
|
||||
# define REDUCE(FN, NAME, TYPENAME) \
|
||||
kernel void NAME( \
|
||||
constant size_t &src_numel, \
|
||||
constant size_t &el_to_sum_per_block, \
|
||||
device const T *src, \
|
||||
device T *dst, \
|
||||
device const TYPENAME *src, \
|
||||
device TYPENAME *dst, \
|
||||
uint id [[ thread_position_in_grid ]], \
|
||||
uint tid [[ thread_index_in_threadgroup ]], \
|
||||
uint dst_id [[ threadgroup_position_in_grid ]], \
|
||||
uint block_dim [[ threads_per_threadgroup ]] \
|
||||
uint blockDim [[ threads_per_threadgroup ]] \
|
||||
) { \
|
||||
\
|
||||
threadgroup T shared_memory[THREADGROUP_SIZE]; \
|
||||
threadgroup float shared_memory[THREADGROUP_SIZE]; \
|
||||
\
|
||||
shared_memory[tid] = 0; \
|
||||
/* \
|
||||
@ -47,10 +45,10 @@ kernel void NAME( \
|
||||
// TODO: Fast version for the contiguous case. \
|
||||
// size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
|
||||
*/ \
|
||||
T x = shared_memory[tid]; \
|
||||
T y = src[idx]; \
|
||||
TYPENAME x = shared_memory[tid]; \
|
||||
TYPENAME y = src[idx]; \
|
||||
shared_memory[tid] = FN; \
|
||||
idx += block_dim; \
|
||||
idx += blockDim; \
|
||||
} \
|
||||
\
|
||||
threadgroup_barrier(mem_flags::mem_none); \
|
||||
@ -58,10 +56,10 @@ kernel void NAME( \
|
||||
/* \
|
||||
// reduction in shared memory \
|
||||
*/ \
|
||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
||||
for (uint s = blockDim / 2; s > 0; s >>= 1) { \
|
||||
if (tid < s) { \
|
||||
T x = shared_memory[tid]; \
|
||||
T y = shared_memory[tid + s]; \
|
||||
TYPENAME x = shared_memory[tid]; \
|
||||
TYPENAME y = shared_memory[tid + s]; \
|
||||
shared_memory[tid] = FN; \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_none); \
|
||||
@ -70,80 +68,72 @@ kernel void NAME( \
|
||||
dst[dst_id] = shared_memory[0]; \
|
||||
} \
|
||||
|
||||
kernel void softmax_float(
|
||||
constant size_t &src_numel,
|
||||
constant size_t &el_to_sum_per_block,
|
||||
device const float *src,
|
||||
device float *dst,
|
||||
uint id [[ thread_position_in_grid ]],
|
||||
uint tid [[ thread_index_in_threadgroup ]],
|
||||
uint dst_id [[ threadgroup_position_in_grid ]],
|
||||
uint blockDim [[ threads_per_threadgroup ]]
|
||||
) {
|
||||
|
||||
threadgroup float shared_memory[THREADGROUP_SIZE];
|
||||
|
||||
shared_memory[tid] = -INFINITY;
|
||||
// Elements summed in this block range from dst_id * el_to_sum_per_block
|
||||
// to (dst_id + 1) * el_to_sum_per_block.
|
||||
size_t start_idx = dst_id * el_to_sum_per_block;
|
||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
|
||||
size_t idx = start_idx + tid;
|
||||
|
||||
while (idx < stop_idx) {
|
||||
// TODO: Fast version for the contiguous case.
|
||||
shared_memory[tid] = max(shared_memory[tid], src[idx]);
|
||||
idx += blockDim;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// reduction in shared memory
|
||||
for (uint s = blockDim / 2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
shared_memory[tid] = max(shared_memory[tid], shared_memory[tid + s]);
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
}
|
||||
|
||||
float max = shared_memory[0];
|
||||
|
||||
shared_memory[tid] = 0;
|
||||
|
||||
// Restart
|
||||
idx = start_idx + tid;
|
||||
while (idx < stop_idx) {
|
||||
// TODO: Fast version for the contiguous case.
|
||||
const float val = exp(src[idx] - max);
|
||||
dst[idx] = val;
|
||||
shared_memory[tid] += val;
|
||||
idx += blockDim;
|
||||
}
|
||||
// reduction in shared memory
|
||||
for (uint s = blockDim / 2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
shared_memory[tid] += shared_memory[tid + s];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
}
|
||||
|
||||
const float inv_acc = 1/shared_memory[0];
|
||||
idx = start_idx + tid;
|
||||
while (idx < stop_idx) {
|
||||
dst[idx] *= inv_acc;
|
||||
idx += blockDim;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
REDUCE(x + y, fast_sum_float, float)
|
||||
REDUCE(x * y, fast_mul_float, float)
|
||||
REDUCE(max(x, y), fast_max_float, float)
|
||||
|
||||
#define SOFTMAX(NAME, T) \
|
||||
kernel void NAME( \
|
||||
constant size_t &src_numel, \
|
||||
constant size_t &el_to_sum_per_block, \
|
||||
device const T *src, \
|
||||
device T *dst, \
|
||||
\
|
||||
uint id [[ thread_position_in_grid ]], \
|
||||
uint tid [[ thread_index_in_threadgroup ]], \
|
||||
uint dst_id [[ threadgroup_position_in_grid ]], \
|
||||
uint block_dim [[ threads_per_threadgroup ]] \
|
||||
) { \
|
||||
threadgroup float shared_memory[THREADGROUP_SIZE]; \
|
||||
shared_memory[tid] = -INFINITY; \
|
||||
size_t start_idx = dst_id * el_to_sum_per_block; \
|
||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
|
||||
size_t idx = start_idx + tid; \
|
||||
\
|
||||
\
|
||||
float tmp = -INFINITY; \
|
||||
while (idx < stop_idx) { \
|
||||
tmp = MAX(tmp, float(src[idx])); \
|
||||
idx += block_dim; \
|
||||
} \
|
||||
shared_memory[tid] = tmp; \
|
||||
\
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
\
|
||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
||||
if (tid < s) { \
|
||||
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
} \
|
||||
\
|
||||
/* wait for shared_memory[0] to be filled */ \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
\
|
||||
float _max = shared_memory[0]; \
|
||||
\
|
||||
/* prevent tid=0 from overwriting _max before other threads have written it */ \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
shared_memory[tid] = 0; \
|
||||
\
|
||||
idx = start_idx + tid; \
|
||||
while (idx < stop_idx) { \
|
||||
const float val = exp(float(src[idx]) - _max); \
|
||||
dst[idx] = T(val); \
|
||||
shared_memory[tid] += val; \
|
||||
idx += block_dim; \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
||||
if (tid < s) { \
|
||||
shared_memory[tid] += shared_memory[tid + s]; \
|
||||
} \
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||
} \
|
||||
\
|
||||
const T inv_acc = T(1.0/shared_memory[0]); \
|
||||
idx = start_idx + tid; \
|
||||
while (idx < stop_idx) { \
|
||||
dst[idx] *= inv_acc; \
|
||||
idx += block_dim; \
|
||||
} \
|
||||
} \
|
||||
|
||||
SOFTMAX(softmax_float, float)
|
||||
SOFTMAX(softmax_half, half)
|
||||
#if __METAL_VERSION__ >= 310
|
||||
SOFTMAX(softmax_bfloat, bfloat)
|
||||
#endif
|
||||
|
@ -32,9 +32,6 @@ kernel void FN_NAME( \
|
||||
device TYPENAME *out ,\
|
||||
uint i [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
if (i >= numel){ \
|
||||
return; \
|
||||
} \
|
||||
uint strided_i = get_strided_index(i, num_dims, dims, strides); \
|
||||
uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \
|
||||
uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \
|
||||
|
@ -1,209 +0,0 @@
|
||||
|
||||
import Metal
|
||||
import MetalPerformanceShadersGraph
|
||||
|
||||
|
||||
|
||||
let type = MTLDataType.float;
|
||||
let dataType = type;
|
||||
var B = 2;
|
||||
var M = 2;
|
||||
var N = 2;
|
||||
var K = 2;
|
||||
var A_trans = false;
|
||||
var B_trans = false;
|
||||
var D_trans = false;
|
||||
var alpha = Float(1.0);
|
||||
var beta = Float(0.0);
|
||||
var batched = B > 1;
|
||||
var fused_activation = false;
|
||||
var fused_bias = false;
|
||||
let constants = MTLFunctionConstantValues()
|
||||
constants.setConstantValue(&M, type: .uint, index: 0)
|
||||
constants.setConstantValue(&N, type: .uint, index: 1)
|
||||
constants.setConstantValue(&K, type: .uint, index: 2)
|
||||
constants.setConstantValue(&A_trans, type: .bool, index: 10)
|
||||
constants.setConstantValue(&B_trans, type: .bool, index: 11)
|
||||
constants.setConstantValue(&D_trans, type: .bool, index: 13)
|
||||
constants.setConstantValue(&alpha, type: .float, index: 20)
|
||||
constants.setConstantValue(&beta, type: .float, index: 21)
|
||||
constants.setConstantValue(&batched, type: .bool, index: 100)
|
||||
constants.setConstantValue(&fused_activation, type: .bool, index: 101)
|
||||
constants.setConstantValue(&fused_bias, type: .bool, index: 50001)
|
||||
|
||||
|
||||
var M_simd = UInt16(16)
|
||||
var N_simd = UInt16(16)
|
||||
var K_simd = UInt16(32)
|
||||
var M_splits = UInt16(2)
|
||||
var N_splits = UInt16(2)
|
||||
constants.setConstantValue(&M_simd, type: .ushort, index: 200)
|
||||
constants.setConstantValue(&N_simd, type: .ushort, index: 201)
|
||||
constants.setConstantValue(&K_simd, type: .ushort, index: 202)
|
||||
constants.setConstantValue(&M_splits, type: .ushort, index: 210)
|
||||
constants.setConstantValue(&N_splits, type: .ushort, index: 211)
|
||||
|
||||
let M_group = M_simd * M_splits
|
||||
let N_group = N_simd * N_splits
|
||||
|
||||
// Satisfy Metal API validation.
|
||||
#if DEBUG
|
||||
do {
|
||||
var garbage: SIMD4<UInt64> = .zero
|
||||
constants.setConstantValue(&garbage, type: .bool, index: 102)
|
||||
constants.setConstantValue(&garbage, type: .bool, index: 103)
|
||||
constants.setConstantValue(&garbage, type: .bool, index: 113)
|
||||
constants.setConstantValue(&garbage, type: .bool, index: 50000)
|
||||
}
|
||||
#endif
|
||||
|
||||
let device = MTLCopyAllDevices().first!
|
||||
device.shouldMaximizeConcurrentCompilation = true
|
||||
|
||||
var libraryURL = URL.init(string: "/Users/nicolas/src/candle/candle-metal-kernels/")!;
|
||||
libraryURL.append(component: "src")
|
||||
libraryURL.append(component: "libMetalFlashAttention.metallib")
|
||||
let library = try! device.makeLibrary(URL: libraryURL)
|
||||
|
||||
var name: String
|
||||
switch dataType {
|
||||
case .half: name = "hgemm"
|
||||
case .float: name = "sgemm"
|
||||
default: fatalError()
|
||||
}
|
||||
let function = try! library.makeFunction(
|
||||
name: name, constantValues: constants)
|
||||
|
||||
let A_block_length = M_group * K_simd
|
||||
let B_block_length = K_simd * N_group
|
||||
|
||||
var blockElements = A_block_length + B_block_length;
|
||||
if (M % 8 != 0) && (N % 8 != 0) {
|
||||
let C_block_length = M_group * N_group;
|
||||
blockElements = max(C_block_length, blockElements)
|
||||
}
|
||||
if fused_bias {
|
||||
if D_trans {
|
||||
blockElements = max(blockElements, M_group)
|
||||
} else {
|
||||
blockElements = max(blockElements, N_group)
|
||||
}
|
||||
}
|
||||
// let blockBytes = blockElements * UInt16(dataType.size)
|
||||
let elementSize = 4
|
||||
let blockBytes = blockElements * UInt16(elementSize)
|
||||
|
||||
func ceilDivide(target: Int, granularity: UInt16) -> Int {
|
||||
(target + Int(granularity) - 1) / Int(granularity)
|
||||
}
|
||||
var gridSize = MTLSize(
|
||||
width: ceilDivide(target: N, granularity: N_group),
|
||||
height: ceilDivide(target: M, granularity: M_group),
|
||||
depth: 1)
|
||||
let groupSize = MTLSize(
|
||||
width: Int(32 * M_splits * N_splits),
|
||||
height: 1,
|
||||
depth: 1)
|
||||
|
||||
let commandQueue = device.makeCommandQueue()!
|
||||
|
||||
let threadgroupMemoryLength = blockBytes;
|
||||
|
||||
let rowsA = M;
|
||||
let columnsA = K;
|
||||
let rowsB = K;
|
||||
let columnsB = N;
|
||||
let rowsC = M;
|
||||
let columnsC = N;
|
||||
var arrayA = [Float](repeating: 0, count: B * rowsA * columnsA)
|
||||
|
||||
var arrayB = [Float](repeating: 0, count: B * rowsB * columnsB)
|
||||
|
||||
var arrayC = [Float](repeating: 0, count: B * rowsC * columnsC)
|
||||
var arrayD = [Float](repeating: 0, count: B * rowsC * columnsC)
|
||||
for i in 0..<arrayA.count {
|
||||
arrayA[i] = Float(i)
|
||||
}
|
||||
|
||||
for i in 0..<arrayB.count {
|
||||
arrayB[i] = Float(i)
|
||||
}
|
||||
|
||||
let bufferA = device.makeBuffer(bytes: arrayA, length: B * rowsA * columnsA * MemoryLayout<Float>.stride, options: [])!
|
||||
|
||||
let bufferB = device.makeBuffer(bytes: arrayB, length: B * rowsB * columnsB * MemoryLayout<Float>.stride, options: [])!
|
||||
|
||||
let bufferC = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])!
|
||||
let bufferD = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])!
|
||||
|
||||
|
||||
let pipeline = try device.makeComputePipelineState(function: function)
|
||||
|
||||
func call(bufferA: MTLBuffer, bufferB: MTLBuffer, bufferC: MTLBuffer){
|
||||
let encoder = commandBuffer.makeComputeCommandEncoder(dispatchType: MTLDispatchType.serial)!
|
||||
encoder.setComputePipelineState(pipeline)
|
||||
encoder.setThreadgroupMemoryLength(Int(threadgroupMemoryLength), index: 0)
|
||||
|
||||
encoder.setBuffer(bufferA, offset: 0, index: 0)
|
||||
encoder.setBuffer(bufferB, offset: 0, index: 1)
|
||||
encoder.setBuffer(bufferC, offset: 0, index: 2)
|
||||
let gridZ: Int = B
|
||||
if batched{
|
||||
func byteStride(shape: [Int]) -> Int {
|
||||
let rank = shape.count
|
||||
var output = elementSize * shape[rank - 2] * shape[rank - 1]
|
||||
if shape.dropLast(2).reduce(1, *) == 1 {
|
||||
output = 0
|
||||
}
|
||||
return output
|
||||
}
|
||||
let byteStrideA = M*K*elementSize
|
||||
let byteStrideB = N*K*elementSize
|
||||
let byteStrideC = M*N*elementSize
|
||||
|
||||
let byteStrideD = 0
|
||||
withUnsafeTemporaryAllocation(
|
||||
of: SIMD4<UInt64>.self, capacity: gridZ
|
||||
) { buffer in
|
||||
for i in 0..<buffer.count {
|
||||
buffer[i] = SIMD4(
|
||||
UInt64(truncatingIfNeeded: i * byteStrideA),
|
||||
UInt64(truncatingIfNeeded: i * byteStrideB),
|
||||
UInt64(truncatingIfNeeded: i * byteStrideC),
|
||||
UInt64(truncatingIfNeeded: i * byteStrideD))
|
||||
}
|
||||
|
||||
let bufferLength = buffer.count * MemoryLayout<SIMD4<UInt64>>.stride
|
||||
assert(MemoryLayout<SIMD4<UInt64>>.stride == 8 * 4)
|
||||
encoder.setBytes(buffer.baseAddress!, length: bufferLength, index: 10)
|
||||
}
|
||||
}
|
||||
gridSize.depth = gridZ
|
||||
|
||||
|
||||
encoder.dispatchThreadgroups(
|
||||
gridSize, threadsPerThreadgroup: groupSize
|
||||
)
|
||||
encoder.endEncoding()
|
||||
}
|
||||
|
||||
var commandBuffer = commandQueue.makeCommandBuffer()!
|
||||
call(bufferA:bufferA, bufferB:bufferB, bufferC:bufferC)
|
||||
commandBuffer.commit()
|
||||
commandBuffer = commandQueue.makeCommandBuffer()!
|
||||
commandBuffer.encodeWaitForEvent(event, value: 2)
|
||||
call(bufferA:bufferA, bufferB:bufferC, bufferC:bufferD)
|
||||
commandBuffer.commit()
|
||||
|
||||
commandBuffer.waitUntilCompleted()
|
||||
var contents = bufferC.contents();
|
||||
var count = B * rowsA * columnsB;
|
||||
var typedPointer = contents.bindMemory(to: Float.self, capacity: count)
|
||||
var bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
|
||||
print("First matmul is OK", Array(bufferedPointer))
|
||||
|
||||
contents = bufferD.contents();
|
||||
count = B * rowsA * columnsB;
|
||||
typedPointer = contents.bindMemory(to: Float.self, capacity: count)
|
||||
bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
|
||||
print("This should be filled", Array(bufferedPointer))
|
@ -1,14 +1,7 @@
|
||||
use super::*;
|
||||
use half::{bf16, f16};
|
||||
use half::f16;
|
||||
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
|
||||
|
||||
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
||||
let ptr = buffer.contents() as *const T;
|
||||
assert!(!ptr.is_null());
|
||||
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
|
||||
slice.to_vec()
|
||||
}
|
||||
|
||||
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let ptr = data.as_ptr() as *const core::ffi::c_void;
|
||||
@ -30,19 +23,13 @@ fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> {
|
||||
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
|
||||
}
|
||||
|
||||
fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
|
||||
}
|
||||
|
||||
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = new_buffer(&device, v);
|
||||
let output = new_buffer(&device, v);
|
||||
let mut output = new_buffer(&device, v);
|
||||
call_unary_contiguous(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -50,24 +37,23 @@ fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
||||
name,
|
||||
v.len(),
|
||||
&input,
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
read_to_vec(&output, v.len())
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let left = new_buffer(&device, x);
|
||||
let right = new_buffer(&device, y);
|
||||
let output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
|
||||
let mut output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
|
||||
call_binary_contiguous(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -76,12 +62,12 @@ fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> V
|
||||
x.len(),
|
||||
&left,
|
||||
&right,
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
read_to_vec(&output, x.len())
|
||||
output.read_to_vec::<T>(x.len())
|
||||
}
|
||||
|
||||
fn run_strided<T: Clone>(
|
||||
@ -95,9 +81,8 @@ fn run_strided<T: Clone>(
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = new_buffer(&device, v);
|
||||
let output = new_buffer(&device, v);
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let mut output = new_buffer(&device, v);
|
||||
let kernels = Kernels::new();
|
||||
call_unary_strided(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -107,13 +92,13 @@ fn run_strided<T: Clone>(
|
||||
&input,
|
||||
strides,
|
||||
offset,
|
||||
&output,
|
||||
&mut output,
|
||||
0,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
read_to_vec(&output, v.len())
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -215,25 +200,6 @@ fn cos_strided_random() {
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn gelu_f16() {
|
||||
let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]
|
||||
.iter()
|
||||
.map(|v| f16::from_f32(*v))
|
||||
.collect();
|
||||
let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0];
|
||||
let results = run(&v, unary::contiguous::gelu::HALF);
|
||||
assert_eq!(approx_f16(results, 2), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn gelu_f32() {
|
||||
let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0];
|
||||
let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0];
|
||||
let results = run(&v, unary::contiguous::gelu::FLOAT);
|
||||
assert_eq!(approx(results, 3), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn binary_add_f32() {
|
||||
let left = vec![1.0f32, 2.0, 3.0];
|
||||
@ -250,14 +216,11 @@ fn binary_add_f32() {
|
||||
|
||||
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = new_buffer(&device, v);
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let size = (v.len() * std::mem::size_of::<U>()) as u64;
|
||||
let output = device.new_buffer(size, options);
|
||||
let mut output = new_buffer(&device, v);
|
||||
|
||||
call_cast_contiguous(
|
||||
&device,
|
||||
@ -266,13 +229,12 @@ fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
||||
name,
|
||||
v.len(),
|
||||
&input,
|
||||
0,
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
read_to_vec(&output, v.len())
|
||||
output.read_to_vec::<U>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -283,28 +245,21 @@ fn cast_u32_f32() {
|
||||
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
|
||||
let v = vec![1.0f32, 2.0, 3.0];
|
||||
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
|
||||
let results: Vec<f32> = cast(&input, "cast_f16_f32");
|
||||
assert_eq!(results, vec![1.0f32, 2.0, 3.0]);
|
||||
|
||||
let v = vec![1.0f32; 10_000];
|
||||
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
|
||||
let results: Vec<f32> = cast(&input, "cast_f16_f32");
|
||||
assert_eq!(results.len(), 10_000);
|
||||
assert_eq!(&results[..10], vec![1.0f32; 10]);
|
||||
assert_eq!(results, vec![1.0f32; 10_000]);
|
||||
let results = run(&v, unary::contiguous::cos::FLOAT);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
|
||||
let input = new_buffer(&device, v);
|
||||
let output = new_buffer(&device, v);
|
||||
let mut output = new_buffer(&device, v);
|
||||
|
||||
let size = v.len();
|
||||
|
||||
@ -312,10 +267,9 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
||||
&device,
|
||||
command_buffer,
|
||||
&kernels,
|
||||
"affine_float",
|
||||
size,
|
||||
&input,
|
||||
&output,
|
||||
&mut output,
|
||||
mul as f32,
|
||||
add as f32,
|
||||
)
|
||||
@ -323,44 +277,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&output, v.len())
|
||||
}
|
||||
|
||||
fn run_affine_strided<T: Clone>(
|
||||
v: &[T],
|
||||
shape: &[usize],
|
||||
strides: &[usize],
|
||||
mul: f64,
|
||||
add: f64,
|
||||
) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
|
||||
let input = new_buffer(&device, v);
|
||||
let output = new_buffer(&device, v);
|
||||
|
||||
call_affine_strided(
|
||||
&device,
|
||||
command_buffer,
|
||||
&kernels,
|
||||
"affine_float_strided",
|
||||
shape,
|
||||
&input,
|
||||
strides,
|
||||
0,
|
||||
&output,
|
||||
mul as f32,
|
||||
add as f32,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
let len: usize = shape.iter().product();
|
||||
read_to_vec(&output, len)
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -378,18 +295,6 @@ fn affine() {
|
||||
assert_eq!(result, vec![2.6; 40_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn affine_strided() {
|
||||
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
|
||||
let mul = 1.5;
|
||||
let add = 1.1;
|
||||
let shape = [4];
|
||||
let strides = [2];
|
||||
let result = run_affine_strided(&input, &shape, &strides, mul, add);
|
||||
// 1 on 2
|
||||
assert_eq!(result, vec![2.6, 5.6, 8.6, 11.6]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn index_select() {
|
||||
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
|
||||
@ -408,26 +313,7 @@ fn index_select() {
|
||||
result,
|
||||
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn index_select_f16() {
|
||||
let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
|
||||
.into_iter()
|
||||
.map(|x| f16::from_f32(x))
|
||||
.collect();
|
||||
let shape = [5, 2];
|
||||
let ids = [0u32, 4, 2];
|
||||
let dim = 0;
|
||||
let result = run_index_select(&embedding, &shape, &ids, dim);
|
||||
assert_eq!(
|
||||
approx_f16(result, 4),
|
||||
vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn index_select_dim1() {
|
||||
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
|
||||
let shape = [5, 2];
|
||||
let ids = [0u32, 1, 0];
|
||||
@ -435,7 +321,7 @@ fn index_select_dim1() {
|
||||
let result = run_index_select(&embedding, &shape, &ids, dim);
|
||||
assert_eq!(
|
||||
result,
|
||||
vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0]
|
||||
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
|
||||
);
|
||||
}
|
||||
|
||||
@ -455,34 +341,27 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
|
||||
let left_size: usize = shape[..dim].iter().product();
|
||||
let right_size: usize = shape[dim + 1..].iter().product();
|
||||
let dst_el = ids.len() * left_size * right_size;
|
||||
let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
|
||||
let mut dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
|
||||
|
||||
let name = match core::mem::size_of::<T>() {
|
||||
4 => "is_u32_f32",
|
||||
2 => "is_u32_f16",
|
||||
_ => unimplemented!(),
|
||||
};
|
||||
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
call_index_select(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
"is_u32_f32",
|
||||
shape,
|
||||
ids.len(),
|
||||
dim,
|
||||
&embeddings_buffer,
|
||||
&ids_buffer,
|
||||
&dst_buffer,
|
||||
&mut dst_buffer,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&dst_buffer, dst_el)
|
||||
dst_buffer.read_to_vec::<T>(dst_el)
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -548,7 +427,7 @@ fn index_add() {
|
||||
let expected = vec![
|
||||
2.0, 3.0, 4.0, 1.0, 1.0, 1.0, 8.0, 9.0, 10.0, 1.0, 1.0, 1.0, 5.0, 6.0, 7.0,
|
||||
];
|
||||
let result: Vec<f32> = read_to_vec(&outputs_buffer, right.len());
|
||||
let result = outputs_buffer.read_to_vec::<f32>(right.len());
|
||||
assert_eq!(result, expected);
|
||||
}
|
||||
|
||||
@ -560,20 +439,19 @@ fn cos_f16() {
|
||||
.collect();
|
||||
let results = run(&v, unary::contiguous::cos::HALF);
|
||||
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
|
||||
assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]);
|
||||
assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]);
|
||||
assert_eq!(approx_f16(results, 4), vec![0.5405, -0.4163, -0.9902]);
|
||||
assert_eq!(approx_f16(expected, 4), vec![0.5405, -0.4163, -0.9902]);
|
||||
}
|
||||
|
||||
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = new_buffer(&device, v);
|
||||
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
|
||||
let mut output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
|
||||
call_reduce_contiguous(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -582,24 +460,22 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
|
||||
v.len(),
|
||||
out_length,
|
||||
&input,
|
||||
0,
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&output, out_length)
|
||||
output.read_to_vec::<T>(out_length)
|
||||
}
|
||||
|
||||
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = new_buffer(&device, v);
|
||||
let output = new_buffer(&device, v);
|
||||
let mut output = new_buffer(&device, v);
|
||||
call_last_softmax(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -608,13 +484,13 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
|
||||
v.len(),
|
||||
last_dim,
|
||||
&input,
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&output, v.len())
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -645,24 +521,6 @@ fn softmax() {
|
||||
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
|
||||
);
|
||||
|
||||
let last_dim = 4096;
|
||||
let n = 200;
|
||||
let mut v = vec![0.0; n * last_dim];
|
||||
for i in 0..n {
|
||||
v[i * last_dim] = 20.0;
|
||||
}
|
||||
let results = run_softmax(&v, last_dim, "softmax_float");
|
||||
let results = approx(results, 4);
|
||||
println!("{results:?}");
|
||||
assert_eq!(
|
||||
results.iter().map(|&s| s.round() as usize).sum::<usize>(),
|
||||
n
|
||||
);
|
||||
assert_eq!(results[0], 1.0);
|
||||
assert_eq!(results[1], 0.0);
|
||||
assert_eq!(results[last_dim], 1.0);
|
||||
assert_eq!(results[2 * last_dim], 1.0);
|
||||
|
||||
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
|
||||
let last_dim = 6;
|
||||
let results = run_softmax(&v, last_dim, "softmax_float");
|
||||
@ -678,28 +536,6 @@ fn softmax() {
|
||||
approx(results, 4),
|
||||
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
|
||||
);
|
||||
|
||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
|
||||
.iter()
|
||||
.map(|v| f16::from_f32(*v))
|
||||
.collect::<Vec<_>>();
|
||||
let last_dim = 6;
|
||||
let results = run_softmax(&v, last_dim, "softmax_half");
|
||||
assert_eq!(
|
||||
approx_f16(results, 4),
|
||||
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
|
||||
);
|
||||
|
||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
|
||||
.iter()
|
||||
.map(|v| bf16::from_f32(*v))
|
||||
.collect::<Vec<_>>();
|
||||
let last_dim = 6;
|
||||
let results = run_softmax(&v, last_dim, "softmax_bfloat");
|
||||
assert_eq!(
|
||||
approx_bf16(results, 4),
|
||||
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
|
||||
);
|
||||
}
|
||||
|
||||
fn run_where_cond<I: Clone, T: Clone>(
|
||||
@ -713,8 +549,7 @@ fn run_where_cond<I: Clone, T: Clone>(
|
||||
name: &'static str,
|
||||
) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
@ -736,7 +571,7 @@ fn run_where_cond<I: Clone, T: Clone>(
|
||||
options,
|
||||
);
|
||||
|
||||
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
|
||||
let mut output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
|
||||
call_where_cond_strided(
|
||||
&device,
|
||||
command_buffer,
|
||||
@ -749,13 +584,13 @@ fn run_where_cond<I: Clone, T: Clone>(
|
||||
(&left_stride, left_offset),
|
||||
&right,
|
||||
(&cond_stride, cond_offset),
|
||||
&output,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&output, length)
|
||||
output.read_to_vec::<T>(length)
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -779,93 +614,3 @@ fn where_cond() {
|
||||
);
|
||||
assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]);
|
||||
}
|
||||
|
||||
fn run_gemm<T: Clone>(
|
||||
(b, m, n, k): (usize, usize, usize, usize),
|
||||
lhs: &[T],
|
||||
lhs_stride: Vec<usize>,
|
||||
lhs_offset: usize,
|
||||
rhs: &[T],
|
||||
rhs_stride: Vec<usize>,
|
||||
rhs_offset: usize,
|
||||
) -> Vec<T> {
|
||||
let device = device();
|
||||
let fence = device.new_fence();
|
||||
let kernels = Kernels::new(fence);
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
|
||||
let lhs = device.new_buffer_with_data(
|
||||
lhs.as_ptr() as *const core::ffi::c_void,
|
||||
std::mem::size_of_val(lhs) as u64,
|
||||
options,
|
||||
);
|
||||
let rhs = device.new_buffer_with_data(
|
||||
rhs.as_ptr() as *const core::ffi::c_void,
|
||||
std::mem::size_of_val(rhs) as u64,
|
||||
options,
|
||||
);
|
||||
let length = b * m * n;
|
||||
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
|
||||
call_gemm(
|
||||
&device,
|
||||
command_buffer,
|
||||
&kernels,
|
||||
"sgemm",
|
||||
(b, m, n, k),
|
||||
&lhs_stride,
|
||||
lhs_offset,
|
||||
&lhs,
|
||||
&rhs_stride,
|
||||
rhs_offset,
|
||||
&rhs,
|
||||
&output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
read_to_vec(&output, length)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn gemm() {
|
||||
let (b, m, n, k) = (1, 2, 4, 3);
|
||||
let lhs_stride = vec![m * k, k, 1];
|
||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
||||
let rhs_stride = vec![n * k, n, 1];
|
||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
||||
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
|
||||
);
|
||||
|
||||
let (b, m, n, k) = (2, 2, 4, 3);
|
||||
let lhs_stride = vec![m * k, k, 1];
|
||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
||||
let rhs_stride = vec![n * k, n, 1];
|
||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
||||
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![
|
||||
20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0,
|
||||
518.0, 548.0, 578.0
|
||||
]
|
||||
);
|
||||
|
||||
// OFFSET
|
||||
let (b, m, n, k) = (2, 2, 4, 3);
|
||||
let lhs_stride = vec![m * k, k, 1];
|
||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
||||
let rhs_stride = vec![n * k, n, 1];
|
||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
||||
// Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32
|
||||
let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4);
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0]
|
||||
);
|
||||
}
|
||||
|
@ -1,7 +1,4 @@
|
||||
#include <metal_stdlib>
|
||||
#include <metal_math>
|
||||
#
|
||||
using namespace metal;
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
@ -20,44 +17,10 @@ METAL_FUNC uint get_strided_index(
|
||||
|
||||
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
|
||||
template <typename T> METAL_FUNC T neg(T in){ return -in; }
|
||||
template <typename T> METAL_FUNC T erf(T in){
|
||||
float x = (float) in;
|
||||
// constants
|
||||
float a1 = 0.254829592;
|
||||
float a2 = -0.284496736;
|
||||
float a3 = 1.421413741;
|
||||
float a4 = -1.453152027;
|
||||
float a5 = 1.061405429;
|
||||
float p = 0.3275911;
|
||||
|
||||
// Save the sign of x
|
||||
int sign = 1;
|
||||
if (x < 0)
|
||||
sign = -1;
|
||||
x = fabs(x);
|
||||
|
||||
// A&S formula 7.1.26
|
||||
float t = 1.0/(1.0 + p*x);
|
||||
float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
|
||||
|
||||
return T(sign*y);
|
||||
}
|
||||
template <typename T> METAL_FUNC T id(T in) { return in; }
|
||||
template <typename T> METAL_FUNC T gelu_erf(T x) {
|
||||
return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2);
|
||||
}
|
||||
template <typename T> METAL_FUNC T gelu(T x) {
|
||||
if (x > 5) {
|
||||
return x;
|
||||
}
|
||||
T x_sq = x * x;
|
||||
T x_cube = x_sq * x;
|
||||
T alpha = x + static_cast<T>(0.044715) * x_cube;
|
||||
T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha);
|
||||
return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta)));
|
||||
}
|
||||
template <typename T> METAL_FUNC T id(T in){ return in; }
|
||||
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
|
||||
kernel void FN_NAME( \
|
||||
@ -69,7 +32,7 @@ kernel void FN_NAME( \
|
||||
if (thread_position_in_grid >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[thread_position_in_grid] = TYPENAME(FN(float(input[thread_position_in_grid]))); \
|
||||
output[thread_position_in_grid] = TYPENAME(FN(input[thread_position_in_grid])); \
|
||||
}\
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
@ -83,7 +46,7 @@ kernel void FN_NAME_STRIDED( \
|
||||
if (thread_position_in_grid >= dim) { \
|
||||
return; \
|
||||
} \
|
||||
output[thread_position_in_grid] = TYPENAME(FN(float(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)]))); \
|
||||
output[thread_position_in_grid] = TYPENAME(FN(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)])); \
|
||||
}
|
||||
|
||||
#define UNARY_OP(NAME) \
|
||||
@ -101,17 +64,8 @@ UNARY_OP(sqrt)
|
||||
UNARY_OP(neg)
|
||||
UNARY_OP(exp)
|
||||
UNARY_OP(log)
|
||||
UNARY_OP(gelu)
|
||||
UNARY_OP(ceil)
|
||||
UNARY_OP(floor)
|
||||
UNARY_OP(round)
|
||||
UNARY_OP(gelu_erf)
|
||||
UNARY_OP(erf)
|
||||
UNARY_OP(tanh)
|
||||
UNARY(id, float, copy_float, copy_float_strided)
|
||||
UNARY(id, half, copy_half, copy_half_strided)
|
||||
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
|
||||
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
BFLOAT_UNARY_OP(cos)
|
||||
@ -121,13 +75,6 @@ BFLOAT_UNARY_OP(sqrt)
|
||||
BFLOAT_UNARY_OP(neg)
|
||||
BFLOAT_UNARY_OP(exp)
|
||||
BFLOAT_UNARY_OP(log)
|
||||
BFLOAT_UNARY_OP(gelu)
|
||||
BFLOAT_UNARY_OP(ceil)
|
||||
BFLOAT_UNARY_OP(floor)
|
||||
BFLOAT_UNARY_OP(round)
|
||||
BFLOAT_UNARY_OP(gelu_erf)
|
||||
BFLOAT_UNARY_OP(erf)
|
||||
BFLOAT_UNARY_OP(tanh)
|
||||
|
||||
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
|
||||
#endif
|
||||
|
@ -19,8 +19,6 @@ num-traits = { workspace = true }
|
||||
rayon = { workspace = true }
|
||||
safetensors = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
metal = { workspace = true, optional = true }
|
||||
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
@ -31,4 +29,3 @@ default = []
|
||||
accelerate = ["dep:accelerate-src", "candle/accelerate"]
|
||||
cuda = ["candle/cuda"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl"]
|
||||
metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]
|
||||
|
@ -201,46 +201,6 @@ impl candle::CustomOp1 for SoftmaxLastDim {
|
||||
};
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &candle::MetalStorage,
|
||||
layout: &Layout,
|
||||
) -> Result<(candle::MetalStorage, Shape)> {
|
||||
use candle::{backend::BackendStorage, DType};
|
||||
let device = storage.device();
|
||||
let command_buffer = device.command_buffer();
|
||||
let kernels = device.kernels();
|
||||
let name = match storage.dtype() {
|
||||
DType::F32 => "softmax_float",
|
||||
DType::F16 => "softmax_half",
|
||||
DType::BF16 => "softmax_bfloat",
|
||||
dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
|
||||
};
|
||||
|
||||
let n = layout.stride().len();
|
||||
if !(layout.is_contiguous() && layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
|
||||
candle::bail!("Non contiguous softmax-last-dim is not implemented");
|
||||
}
|
||||
|
||||
let last_dim = layout.dims()[layout.shape().rank() - 1];
|
||||
let elem_count = layout.shape().elem_count();
|
||||
let mut output = device.new_buffer(elem_count, storage.dtype(), "softmax");
|
||||
candle_metal_kernels::call_last_softmax(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
elem_count,
|
||||
last_dim,
|
||||
storage.buffer(),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
|
||||
Ok((newstorage, layout.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {
|
||||
|
@ -31,4 +31,3 @@ accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate"]
|
||||
cuda = ["candle/cuda", "candle-nn/cuda"]
|
||||
flash-attn = ["cuda", "dep:candle-flash-attn"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl"]
|
||||
metal = ["candle/metal", "candle-nn/metal"]
|
||||
|
@ -142,9 +142,10 @@ impl RotaryEmbedding {
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
let sin = freqs.sin()?;
|
||||
let cos = freqs.cos()?;
|
||||
Ok(Self { sin, cos })
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
fn apply_rotary_emb_qkv(
|
||||
@ -407,38 +408,3 @@ impl MixFormerSequentialForCausalLM {
|
||||
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
#[test]
|
||||
fn test_rotary() {
|
||||
let dev = Device::new_metal(0).unwrap();
|
||||
for i in 0..10000 {
|
||||
let dim = 8;
|
||||
let max_seq_len = 12;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), &dev).unwrap();
|
||||
let t = Tensor::arange(0u32, max_seq_len as u32, &dev)
|
||||
.unwrap()
|
||||
.to_dtype(DType::F32)
|
||||
.unwrap()
|
||||
.reshape((max_seq_len, 1))
|
||||
.unwrap();
|
||||
let x: f32 = t.i((1, 0)).unwrap().to_scalar().unwrap();
|
||||
assert_eq!(x, 1.0);
|
||||
let x: f32 = inv_freq.i((0, 1)).unwrap().to_scalar().unwrap();
|
||||
assert_eq!(x, 0.1);
|
||||
let freqs = t.matmul(&inv_freq).unwrap();
|
||||
let x: f32 = freqs.i((1, 1)).unwrap().to_scalar().unwrap();
|
||||
assert_eq!(x, 0.1);
|
||||
let sin = freqs.sin().unwrap().contiguous().unwrap();
|
||||
let x: f32 = sin.i((1, 1)).unwrap().to_scalar().unwrap();
|
||||
assert_eq!(x, 0.099833414);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user