Compare commits

..

1 Commits

Author SHA1 Message Date
03ad494fcd Tweak the basic example to show how to implement sort. 2023-11-30 08:01:42 +00:00
25 changed files with 629 additions and 2126 deletions

View File

@ -61,7 +61,7 @@ tracing-subscriber = "0.3.7"
wav = "1.0.0"
yoke = { version = "0.7.2", features = ["derive"] }
zip = { version = "0.6.6", default-features = false }
metal = { version = "0.27.0", features = ["mps"], package = "candle-metal" }
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
[profile.release-with-debug]
inherits = "release"

View File

@ -5,13 +5,43 @@ extern crate intel_mkl_src;
extern crate accelerate_src;
use anyhow::Result;
use candle_core::{Device, Tensor};
use candle::{CpuStorage, Device, Layout, Shape, Tensor};
use candle_core as candle;
struct ArgSort;
impl candle::CustomOp1 for ArgSort {
fn name(&self) -> &'static str {
"arg-sort"
}
fn cpu_fwd(
&self,
storage: &CpuStorage,
layout: &Layout,
) -> candle::Result<(CpuStorage, Shape)> {
if layout.shape().rank() != 1 {
candle::bail!(
"input should have a single dimension, got {:?}",
layout.shape()
)
}
let slice = storage.as_slice::<f32>()?;
let src = match layout.contiguous_offsets() {
None => candle::bail!("input has to be contiguous"),
Some((o1, o2)) => &slice[o1..o2],
};
let mut dst = (0..src.len() as u32).collect::<Vec<u32>>();
dst.sort_by(|&i, &j| src[i as usize].total_cmp(&src[j as usize]));
let storage = candle::WithDType::to_cpu_storage_owned(dst);
Ok((storage, layout.shape().clone()))
}
}
fn main() -> Result<()> {
let a = Tensor::new(&[[0.0f32, 1.0, 2.0], [3.0, 4.0, 5.0]], &Device::Cpu)?;
let b = Tensor::new(&[[88.0f32, 99.0]], &Device::Cpu)?;
let new_a = a.slice_scatter(&b, 1, 2)?;
assert_eq!(a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
assert_eq!(new_a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
let a = Tensor::new(&[0.0f32, 1.0, 3.0, 2.0, -12.0, 4.0, 3.5], &Device::Cpu)?;
let indices = a.apply_op1(ArgSort)?;
let a_sorted = a.gather(&indices, 0)?;
println!("{indices}");
println!("{a_sorted}");
Ok(())
}

File diff suppressed because it is too large Load Diff

View File

@ -1864,7 +1864,7 @@ impl Tensor {
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => {
// println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
Storage::Cpu(storage.to_cpu_storage()?)
}
(Storage::Cuda(storage), Device::Cuda(cuda)) => {

View File

@ -900,9 +900,7 @@ fn matmul(device: &Device) -> Result<()> {
let b = Tensor::from_slice(&data, (2, 2), device)?;
let c = a.matmul(&b)?;
let d = a.matmul(&c)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
assert_eq!(d.to_vec2::<f32>()?, &[[37.0, 54.0], [81.0, 118.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;

View File

@ -57,7 +57,6 @@ flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
nccl = ["cuda", "cudarc/nccl", "dep:half"]
onnx = ["candle-onnx"]
metal = ["candle/metal", "candle-nn/metal"]
[[example]]
name = "llama_multiprocess"

View File

@ -10,7 +10,7 @@ categories = ["science"]
license = "MIT OR Apache-2.0"
[dependencies]
metal = { version = "0.27.0", features = ["mps"], package="candle-metal" }
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
once_cell = "1.18.0"
thiserror = "1"
tracing = "0.1.37"

View File

@ -50,7 +50,6 @@ fn run_affine_bench<T: Clone>(device: &Device, kernels: &Kernels, v: &[T]) {
&device,
command_buffer,
&kernels,
"affine_float",
v.len(),
&input,
&mut output,

View File

@ -147,7 +147,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
kernel_name.to_string(),
v.len(),
iterations,
total_time,
@ -159,7 +159,7 @@ fn run_unary_bench<T: Clone>(
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
for kernel_name in &strided {
for kernel_name in strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
@ -187,7 +187,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
kernel_name.to_string(),
v.len(),
iterations,
total_time,

View File

@ -29,96 +29,15 @@ kernel void FN_NAME( \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(float(input[id]) * mul + add); \
const TYPENAME m = TYPENAME(mul); \
const TYPENAME a = TYPENAME(add); \
output[id] = input[id] * m + a; \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
constant float &add, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(float(input[get_strided_index(id, num_dims, dims, strides)]) * mul + add); \
}
#define POWF(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
}
#define ELU(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[id]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
AFFINE(affine_float, float)
AFFINE(affine_half, half)
POWF(powf_float, float)
POWF(powf_half, half)
ELU(elu_float, float)
ELU(elu_half, half)
#if __METAL_VERSION__ >= 310
AFFINE(affine_bfloat, bfloat);
POWF(powf_bfloat, bfloat);
ELU(elu_bfloat, bfloat);
#endif

View File

@ -23,12 +23,12 @@ kernel void FN_NAME( \
constant size_t &dim, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
uint thread_position_in_grid [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
if (thread_position_in_grid >= dim) { \
return; \
} \
output[tid] = RIGHT_TYPENAME(input[tid]); \
output[thread_position_in_grid] = RIGHT_TYPENAME(input[thread_position_in_grid]); \
} \
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
@ -37,19 +37,15 @@ kernel void FN_NAME_STRIDED( \
constant size_t *strides, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
uint tid [[ thread_position_in_grid ]] \
uint i [[ thread_position_in_grid ]] \
) { \
if (tid >= dim) { \
if (i >= dim) { \
return; \
} \
output[tid] = RIGHT_TYPENAME(input[get_strided_index(tid, num_dims, dims, strides)]); \
output[i] = RIGHT_TYPENAME(input[get_strided_index(i, num_dims, dims, strides)]); \
} \
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
#if __METAL_VERSION__ >= 310
#endif

View File

@ -16,16 +16,16 @@ kernel void NAME( \
if (gid >= dst_size) { \
return; \
} \
const size_t id_i = (gid / right_size) % ids_size; \
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
const size_t id_i = gid / right_size / left_size; \
const size_t right_rank_i = gid % right_size; \
const size_t left_rank_i = gid / right_size / ids_size; \
const size_t left_rank_i = gid % left_size; \
/* \
// Force prevent out of bounds indexing \
// since there doesn't seem to be a good way to force crash \
// No need to check for zero we're only allowing unsized. \
*/ \
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i; \
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
const size_t src_i = ((input_i * right_size) + right_rank_i) * left_size + left_rank_i; \
output[gid] = input[src_i]; \
}
@ -75,7 +75,6 @@ kernel void FN_NAME( \
INDEX_OP(is_u32_f32, uint, float)
INDEX_OP(is_u32_f16, uint, half)
#if __METAL_VERSION__ >= 310

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,6 @@
#include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
@ -18,21 +16,21 @@ METAL_FUNC uint get_strided_index(
return strided_i;
}
constant int THREADGROUP_SIZE = 2048;
constant int THREADGROUP_SIZE = 256;
# define REDUCE(FN, NAME, T) \
# define REDUCE(FN, NAME, TYPENAME) \
kernel void NAME( \
constant size_t &src_numel, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device T *dst, \
device const TYPENAME *src, \
device TYPENAME *dst, \
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
uint blockDim [[ threads_per_threadgroup ]] \
) { \
\
threadgroup T shared_memory[THREADGROUP_SIZE]; \
threadgroup float shared_memory[THREADGROUP_SIZE]; \
\
shared_memory[tid] = 0; \
/* \
@ -47,10 +45,10 @@ kernel void NAME( \
// TODO: Fast version for the contiguous case. \
// size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
*/ \
T x = shared_memory[tid]; \
T y = src[idx]; \
TYPENAME x = shared_memory[tid]; \
TYPENAME y = src[idx]; \
shared_memory[tid] = FN; \
idx += block_dim; \
idx += blockDim; \
} \
\
threadgroup_barrier(mem_flags::mem_none); \
@ -58,10 +56,10 @@ kernel void NAME( \
/* \
// reduction in shared memory \
*/ \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
for (uint s = blockDim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
T x = shared_memory[tid]; \
T y = shared_memory[tid + s]; \
TYPENAME x = shared_memory[tid]; \
TYPENAME y = shared_memory[tid + s]; \
shared_memory[tid] = FN; \
} \
threadgroup_barrier(mem_flags::mem_none); \
@ -70,80 +68,72 @@ kernel void NAME( \
dst[dst_id] = shared_memory[0]; \
} \
kernel void softmax_float(
constant size_t &src_numel,
constant size_t &el_to_sum_per_block,
device const float *src,
device float *dst,
uint id [[ thread_position_in_grid ]],
uint tid [[ thread_index_in_threadgroup ]],
uint dst_id [[ threadgroup_position_in_grid ]],
uint blockDim [[ threads_per_threadgroup ]]
) {
threadgroup float shared_memory[THREADGROUP_SIZE];
shared_memory[tid] = -INFINITY;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
shared_memory[tid] = max(shared_memory[tid], src[idx]);
idx += blockDim;
}
threadgroup_barrier(mem_flags::mem_none);
// reduction in shared memory
for (uint s = blockDim / 2; s > 0; s >>= 1) {
if (tid < s) {
shared_memory[tid] = max(shared_memory[tid], shared_memory[tid + s]);
}
threadgroup_barrier(mem_flags::mem_none);
}
float max = shared_memory[0];
shared_memory[tid] = 0;
// Restart
idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
const float val = exp(src[idx] - max);
dst[idx] = val;
shared_memory[tid] += val;
idx += blockDim;
}
// reduction in shared memory
for (uint s = blockDim / 2; s > 0; s >>= 1) {
if (tid < s) {
shared_memory[tid] += shared_memory[tid + s];
}
threadgroup_barrier(mem_flags::mem_none);
}
const float inv_acc = 1/shared_memory[0];
idx = start_idx + tid;
while (idx < stop_idx) {
dst[idx] *= inv_acc;
idx += blockDim;
}
}
REDUCE(x + y, fast_sum_float, float)
REDUCE(x * y, fast_mul_float, float)
REDUCE(max(x, y), fast_max_float, float)
#define SOFTMAX(NAME, T) \
kernel void NAME( \
constant size_t &src_numel, \
constant size_t &el_to_sum_per_block, \
device const T *src, \
device T *dst, \
\
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
uint block_dim [[ threads_per_threadgroup ]] \
) { \
threadgroup float shared_memory[THREADGROUP_SIZE]; \
shared_memory[tid] = -INFINITY; \
size_t start_idx = dst_id * el_to_sum_per_block; \
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
size_t idx = start_idx + tid; \
\
\
float tmp = -INFINITY; \
while (idx < stop_idx) { \
tmp = MAX(tmp, float(src[idx])); \
idx += block_dim; \
} \
shared_memory[tid] = tmp; \
\
threadgroup_barrier(mem_flags::mem_threadgroup); \
\
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
} \
\
/* wait for shared_memory[0] to be filled */ \
threadgroup_barrier(mem_flags::mem_threadgroup); \
\
float _max = shared_memory[0]; \
\
/* prevent tid=0 from overwriting _max before other threads have written it */ \
threadgroup_barrier(mem_flags::mem_threadgroup); \
shared_memory[tid] = 0; \
\
idx = start_idx + tid; \
while (idx < stop_idx) { \
const float val = exp(float(src[idx]) - _max); \
dst[idx] = T(val); \
shared_memory[tid] += val; \
idx += block_dim; \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
shared_memory[tid] += shared_memory[tid + s]; \
} \
threadgroup_barrier(mem_flags::mem_threadgroup); \
} \
\
const T inv_acc = T(1.0/shared_memory[0]); \
idx = start_idx + tid; \
while (idx < stop_idx) { \
dst[idx] *= inv_acc; \
idx += block_dim; \
} \
} \
SOFTMAX(softmax_float, float)
SOFTMAX(softmax_half, half)
#if __METAL_VERSION__ >= 310
SOFTMAX(softmax_bfloat, bfloat)
#endif

View File

@ -32,9 +32,6 @@ kernel void FN_NAME( \
device TYPENAME *out ,\
uint i [[ thread_position_in_grid ]] \
) { \
if (i >= numel){ \
return; \
} \
uint strided_i = get_strided_index(i, num_dims, dims, strides); \
uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \
uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \

View File

@ -1,209 +0,0 @@
import Metal
import MetalPerformanceShadersGraph
let type = MTLDataType.float;
let dataType = type;
var B = 2;
var M = 2;
var N = 2;
var K = 2;
var A_trans = false;
var B_trans = false;
var D_trans = false;
var alpha = Float(1.0);
var beta = Float(0.0);
var batched = B > 1;
var fused_activation = false;
var fused_bias = false;
let constants = MTLFunctionConstantValues()
constants.setConstantValue(&M, type: .uint, index: 0)
constants.setConstantValue(&N, type: .uint, index: 1)
constants.setConstantValue(&K, type: .uint, index: 2)
constants.setConstantValue(&A_trans, type: .bool, index: 10)
constants.setConstantValue(&B_trans, type: .bool, index: 11)
constants.setConstantValue(&D_trans, type: .bool, index: 13)
constants.setConstantValue(&alpha, type: .float, index: 20)
constants.setConstantValue(&beta, type: .float, index: 21)
constants.setConstantValue(&batched, type: .bool, index: 100)
constants.setConstantValue(&fused_activation, type: .bool, index: 101)
constants.setConstantValue(&fused_bias, type: .bool, index: 50001)
var M_simd = UInt16(16)
var N_simd = UInt16(16)
var K_simd = UInt16(32)
var M_splits = UInt16(2)
var N_splits = UInt16(2)
constants.setConstantValue(&M_simd, type: .ushort, index: 200)
constants.setConstantValue(&N_simd, type: .ushort, index: 201)
constants.setConstantValue(&K_simd, type: .ushort, index: 202)
constants.setConstantValue(&M_splits, type: .ushort, index: 210)
constants.setConstantValue(&N_splits, type: .ushort, index: 211)
let M_group = M_simd * M_splits
let N_group = N_simd * N_splits
// Satisfy Metal API validation.
#if DEBUG
do {
var garbage: SIMD4<UInt64> = .zero
constants.setConstantValue(&garbage, type: .bool, index: 102)
constants.setConstantValue(&garbage, type: .bool, index: 103)
constants.setConstantValue(&garbage, type: .bool, index: 113)
constants.setConstantValue(&garbage, type: .bool, index: 50000)
}
#endif
let device = MTLCopyAllDevices().first!
device.shouldMaximizeConcurrentCompilation = true
var libraryURL = URL.init(string: "/Users/nicolas/src/candle/candle-metal-kernels/")!;
libraryURL.append(component: "src")
libraryURL.append(component: "libMetalFlashAttention.metallib")
let library = try! device.makeLibrary(URL: libraryURL)
var name: String
switch dataType {
case .half: name = "hgemm"
case .float: name = "sgemm"
default: fatalError()
}
let function = try! library.makeFunction(
name: name, constantValues: constants)
let A_block_length = M_group * K_simd
let B_block_length = K_simd * N_group
var blockElements = A_block_length + B_block_length;
if (M % 8 != 0) && (N % 8 != 0) {
let C_block_length = M_group * N_group;
blockElements = max(C_block_length, blockElements)
}
if fused_bias {
if D_trans {
blockElements = max(blockElements, M_group)
} else {
blockElements = max(blockElements, N_group)
}
}
// let blockBytes = blockElements * UInt16(dataType.size)
let elementSize = 4
let blockBytes = blockElements * UInt16(elementSize)
func ceilDivide(target: Int, granularity: UInt16) -> Int {
(target + Int(granularity) - 1) / Int(granularity)
}
var gridSize = MTLSize(
width: ceilDivide(target: N, granularity: N_group),
height: ceilDivide(target: M, granularity: M_group),
depth: 1)
let groupSize = MTLSize(
width: Int(32 * M_splits * N_splits),
height: 1,
depth: 1)
let commandQueue = device.makeCommandQueue()!
let threadgroupMemoryLength = blockBytes;
let rowsA = M;
let columnsA = K;
let rowsB = K;
let columnsB = N;
let rowsC = M;
let columnsC = N;
var arrayA = [Float](repeating: 0, count: B * rowsA * columnsA)
var arrayB = [Float](repeating: 0, count: B * rowsB * columnsB)
var arrayC = [Float](repeating: 0, count: B * rowsC * columnsC)
var arrayD = [Float](repeating: 0, count: B * rowsC * columnsC)
for i in 0..<arrayA.count {
arrayA[i] = Float(i)
}
for i in 0..<arrayB.count {
arrayB[i] = Float(i)
}
let bufferA = device.makeBuffer(bytes: arrayA, length: B * rowsA * columnsA * MemoryLayout<Float>.stride, options: [])!
let bufferB = device.makeBuffer(bytes: arrayB, length: B * rowsB * columnsB * MemoryLayout<Float>.stride, options: [])!
let bufferC = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])!
let bufferD = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])!
let pipeline = try device.makeComputePipelineState(function: function)
func call(bufferA: MTLBuffer, bufferB: MTLBuffer, bufferC: MTLBuffer){
let encoder = commandBuffer.makeComputeCommandEncoder(dispatchType: MTLDispatchType.serial)!
encoder.setComputePipelineState(pipeline)
encoder.setThreadgroupMemoryLength(Int(threadgroupMemoryLength), index: 0)
encoder.setBuffer(bufferA, offset: 0, index: 0)
encoder.setBuffer(bufferB, offset: 0, index: 1)
encoder.setBuffer(bufferC, offset: 0, index: 2)
let gridZ: Int = B
if batched{
func byteStride(shape: [Int]) -> Int {
let rank = shape.count
var output = elementSize * shape[rank - 2] * shape[rank - 1]
if shape.dropLast(2).reduce(1, *) == 1 {
output = 0
}
return output
}
let byteStrideA = M*K*elementSize
let byteStrideB = N*K*elementSize
let byteStrideC = M*N*elementSize
let byteStrideD = 0
withUnsafeTemporaryAllocation(
of: SIMD4<UInt64>.self, capacity: gridZ
) { buffer in
for i in 0..<buffer.count {
buffer[i] = SIMD4(
UInt64(truncatingIfNeeded: i * byteStrideA),
UInt64(truncatingIfNeeded: i * byteStrideB),
UInt64(truncatingIfNeeded: i * byteStrideC),
UInt64(truncatingIfNeeded: i * byteStrideD))
}
let bufferLength = buffer.count * MemoryLayout<SIMD4<UInt64>>.stride
assert(MemoryLayout<SIMD4<UInt64>>.stride == 8 * 4)
encoder.setBytes(buffer.baseAddress!, length: bufferLength, index: 10)
}
}
gridSize.depth = gridZ
encoder.dispatchThreadgroups(
gridSize, threadsPerThreadgroup: groupSize
)
encoder.endEncoding()
}
var commandBuffer = commandQueue.makeCommandBuffer()!
call(bufferA:bufferA, bufferB:bufferB, bufferC:bufferC)
commandBuffer.commit()
commandBuffer = commandQueue.makeCommandBuffer()!
commandBuffer.encodeWaitForEvent(event, value: 2)
call(bufferA:bufferA, bufferB:bufferC, bufferC:bufferD)
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
var contents = bufferC.contents();
var count = B * rowsA * columnsB;
var typedPointer = contents.bindMemory(to: Float.self, capacity: count)
var bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
print("First matmul is OK", Array(bufferedPointer))
contents = bufferD.contents();
count = B * rowsA * columnsB;
typedPointer = contents.bindMemory(to: Float.self, capacity: count)
bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
print("This should be filled", Array(bufferedPointer))

View File

@ -1,14 +1,7 @@
use super::*;
use half::{bf16, f16};
use half::f16;
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
let ptr = buffer.contents() as *const T;
assert!(!ptr.is_null());
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
slice.to_vec()
}
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
let options = MTLResourceOptions::StorageModeManaged;
let ptr = data.as_ptr() as *const core::ffi::c_void;
@ -30,19 +23,13 @@ fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> {
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
}
fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
let b = 10f32.powi(digits);
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
}
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let mut output = new_buffer(&device, v);
call_unary_contiguous(
&device,
command_buffer,
@ -50,24 +37,23 @@ fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
name,
v.len(),
&input,
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
output.read_to_vec::<T>(v.len())
}
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let left = new_buffer(&device, x);
let right = new_buffer(&device, y);
let output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
let mut output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
call_binary_contiguous(
&device,
command_buffer,
@ -76,12 +62,12 @@ fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> V
x.len(),
&left,
&right,
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, x.len())
output.read_to_vec::<T>(x.len())
}
fn run_strided<T: Clone>(
@ -95,9 +81,8 @@ fn run_strided<T: Clone>(
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let mut output = new_buffer(&device, v);
let kernels = Kernels::new();
call_unary_strided(
&device,
command_buffer,
@ -107,13 +92,13 @@ fn run_strided<T: Clone>(
&input,
strides,
offset,
&output,
&mut output,
0,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
output.read_to_vec::<T>(v.len())
}
#[test]
@ -215,25 +200,6 @@ fn cos_strided_random() {
);
}
#[test]
fn gelu_f16() {
let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::HALF);
assert_eq!(approx_f16(results, 2), expected);
}
#[test]
fn gelu_f32() {
let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0];
let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::FLOAT);
assert_eq!(approx(results, 3), expected);
}
#[test]
fn binary_add_f32() {
let left = vec![1.0f32, 2.0, 3.0];
@ -250,14 +216,11 @@ fn binary_add_f32() {
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let options = MTLResourceOptions::StorageModeManaged;
let size = (v.len() * std::mem::size_of::<U>()) as u64;
let output = device.new_buffer(size, options);
let mut output = new_buffer(&device, v);
call_cast_contiguous(
&device,
@ -266,13 +229,12 @@ fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
name,
v.len(),
&input,
0,
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
output.read_to_vec::<U>(v.len())
}
#[test]
@ -283,28 +245,21 @@ fn cast_u32_f32() {
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
let v = vec![1.0f32, 2.0, 3.0];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results, vec![1.0f32, 2.0, 3.0]);
let v = vec![1.0f32; 10_000];
let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
let results: Vec<f32> = cast(&input, "cast_f16_f32");
assert_eq!(results.len(), 10_000);
assert_eq!(&results[..10], vec![1.0f32; 10]);
assert_eq!(results, vec![1.0f32; 10_000]);
let results = run(&v, unary::contiguous::cos::FLOAT);
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
}
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let mut output = new_buffer(&device, v);
let size = v.len();
@ -312,10 +267,9 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
&device,
command_buffer,
&kernels,
"affine_float",
size,
&input,
&output,
&mut output,
mul as f32,
add as f32,
)
@ -323,44 +277,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
}
fn run_affine_strided<T: Clone>(
v: &[T],
shape: &[usize],
strides: &[usize],
mul: f64,
add: f64,
) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
call_affine_strided(
&device,
command_buffer,
&kernels,
"affine_float_strided",
shape,
&input,
strides,
0,
&output,
mul as f32,
add as f32,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
let len: usize = shape.iter().product();
read_to_vec(&output, len)
output.read_to_vec::<T>(v.len())
}
#[test]
@ -378,18 +295,6 @@ fn affine() {
assert_eq!(result, vec![2.6; 40_000]);
}
#[test]
fn affine_strided() {
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
let mul = 1.5;
let add = 1.1;
let shape = [4];
let strides = [2];
let result = run_affine_strided(&input, &shape, &strides, mul, add);
// 1 on 2
assert_eq!(result, vec![2.6, 5.6, 8.6, 11.6]);
}
#[test]
fn index_select() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
@ -408,26 +313,7 @@ fn index_select() {
result,
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
}
#[test]
fn index_select_f16() {
let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
.into_iter()
.map(|x| f16::from_f32(x))
.collect();
let shape = [5, 2];
let ids = [0u32, 4, 2];
let dim = 0;
let result = run_index_select(&embedding, &shape, &ids, dim);
assert_eq!(
approx_f16(result, 4),
vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
);
}
#[test]
fn index_select_dim1() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [5, 2];
let ids = [0u32, 1, 0];
@ -435,7 +321,7 @@ fn index_select_dim1() {
let result = run_index_select(&embedding, &shape, &ids, dim);
assert_eq!(
result,
vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0]
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
}
@ -455,34 +341,27 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let dst_el = ids.len() * left_size * right_size;
let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
let mut dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
let name = match core::mem::size_of::<T>() {
4 => "is_u32_f32",
2 => "is_u32_f16",
_ => unimplemented!(),
};
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
call_index_select(
&device,
&command_buffer,
&kernels,
name,
"is_u32_f32",
shape,
ids.len(),
dim,
&embeddings_buffer,
&ids_buffer,
&dst_buffer,
&mut dst_buffer,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&dst_buffer, dst_el)
dst_buffer.read_to_vec::<T>(dst_el)
}
#[test]
@ -548,7 +427,7 @@ fn index_add() {
let expected = vec![
2.0, 3.0, 4.0, 1.0, 1.0, 1.0, 8.0, 9.0, 10.0, 1.0, 1.0, 1.0, 5.0, 6.0, 7.0,
];
let result: Vec<f32> = read_to_vec(&outputs_buffer, right.len());
let result = outputs_buffer.read_to_vec::<f32>(right.len());
assert_eq!(result, expected);
}
@ -560,20 +439,19 @@ fn cos_f16() {
.collect();
let results = run(&v, unary::contiguous::cos::HALF);
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]);
assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]);
assert_eq!(approx_f16(results, 4), vec![0.5405, -0.4163, -0.9902]);
assert_eq!(approx_f16(expected, 4), vec![0.5405, -0.4163, -0.9902]);
}
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let options = MTLResourceOptions::StorageModeManaged;
let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
let mut output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
call_reduce_contiguous(
&device,
command_buffer,
@ -582,24 +460,22 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
v.len(),
out_length,
&input,
0,
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, out_length)
output.read_to_vec::<T>(out_length)
}
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
let mut output = new_buffer(&device, v);
call_last_softmax(
&device,
command_buffer,
@ -608,13 +484,13 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
v.len(),
last_dim,
&input,
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, v.len())
output.read_to_vec::<T>(v.len())
}
#[test]
@ -645,24 +521,6 @@ fn softmax() {
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
);
let last_dim = 4096;
let n = 200;
let mut v = vec![0.0; n * last_dim];
for i in 0..n {
v[i * last_dim] = 20.0;
}
let results = run_softmax(&v, last_dim, "softmax_float");
let results = approx(results, 4);
println!("{results:?}");
assert_eq!(
results.iter().map(|&s| s.round() as usize).sum::<usize>(),
n
);
assert_eq!(results[0], 1.0);
assert_eq!(results[1], 0.0);
assert_eq!(results[last_dim], 1.0);
assert_eq!(results[2 * last_dim], 1.0);
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_float");
@ -678,28 +536,6 @@ fn softmax() {
approx(results, 4),
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
);
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_half");
assert_eq!(
approx_f16(results, 4),
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
);
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
.iter()
.map(|v| bf16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
let results = run_softmax(&v, last_dim, "softmax_bfloat");
assert_eq!(
approx_bf16(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
);
}
fn run_where_cond<I: Clone, T: Clone>(
@ -713,8 +549,7 @@ fn run_where_cond<I: Clone, T: Clone>(
name: &'static str,
) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
@ -736,7 +571,7 @@ fn run_where_cond<I: Clone, T: Clone>(
options,
);
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
let mut output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_where_cond_strided(
&device,
command_buffer,
@ -749,13 +584,13 @@ fn run_where_cond<I: Clone, T: Clone>(
(&left_stride, left_offset),
&right,
(&cond_stride, cond_offset),
&output,
&mut output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, length)
output.read_to_vec::<T>(length)
}
#[test]
@ -779,93 +614,3 @@ fn where_cond() {
);
assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]);
}
fn run_gemm<T: Clone>(
(b, m, n, k): (usize, usize, usize, usize),
lhs: &[T],
lhs_stride: Vec<usize>,
lhs_offset: usize,
rhs: &[T],
rhs_stride: Vec<usize>,
rhs_offset: usize,
) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let lhs = device.new_buffer_with_data(
lhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(lhs) as u64,
options,
);
let rhs = device.new_buffer_with_data(
rhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(rhs) as u64,
options,
);
let length = b * m * n;
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_gemm(
&device,
command_buffer,
&kernels,
"sgemm",
(b, m, n, k),
&lhs_stride,
lhs_offset,
&lhs,
&rhs_stride,
rhs_offset,
&rhs,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, length)
}
#[test]
fn gemm() {
let (b, m, n, k) = (1, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!(
approx(results, 4),
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
);
let (b, m, n, k) = (2, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!(
approx(results, 4),
vec![
20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0,
518.0, 548.0, 578.0
]
);
// OFFSET
let (b, m, n, k) = (2, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
// Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32
let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4);
assert_eq!(
approx(results, 4),
vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0]
);
}

View File

@ -1,7 +1,4 @@
#include <metal_stdlib>
#include <metal_math>
#
using namespace metal;
METAL_FUNC uint get_strided_index(
uint idx,
@ -20,44 +17,10 @@ METAL_FUNC uint get_strided_index(
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
template <typename T> METAL_FUNC T neg(T in){ return -in; }
template <typename T> METAL_FUNC T erf(T in){
float x = (float) in;
// constants
float a1 = 0.254829592;
float a2 = -0.284496736;
float a3 = 1.421413741;
float a4 = -1.453152027;
float a5 = 1.061405429;
float p = 0.3275911;
// Save the sign of x
int sign = 1;
if (x < 0)
sign = -1;
x = fabs(x);
// A&S formula 7.1.26
float t = 1.0/(1.0 + p*x);
float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
return T(sign*y);
}
template <typename T> METAL_FUNC T id(T in) { return in; }
template <typename T> METAL_FUNC T gelu_erf(T x) {
return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2);
}
template <typename T> METAL_FUNC T gelu(T x) {
if (x > 5) {
return x;
}
T x_sq = x * x;
T x_cube = x_sq * x;
T alpha = x + static_cast<T>(0.044715) * x_cube;
T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha);
return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta)));
}
template <typename T> METAL_FUNC T id(T in){ return in; }
using namespace metal;
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
@ -69,7 +32,7 @@ kernel void FN_NAME( \
if (thread_position_in_grid >= dim) { \
return; \
} \
output[thread_position_in_grid] = TYPENAME(FN(float(input[thread_position_in_grid]))); \
output[thread_position_in_grid] = TYPENAME(FN(input[thread_position_in_grid])); \
}\
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
@ -83,7 +46,7 @@ kernel void FN_NAME_STRIDED( \
if (thread_position_in_grid >= dim) { \
return; \
} \
output[thread_position_in_grid] = TYPENAME(FN(float(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)]))); \
output[thread_position_in_grid] = TYPENAME(FN(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)])); \
}
#define UNARY_OP(NAME) \
@ -101,17 +64,8 @@ UNARY_OP(sqrt)
UNARY_OP(neg)
UNARY_OP(exp)
UNARY_OP(log)
UNARY_OP(gelu)
UNARY_OP(ceil)
UNARY_OP(floor)
UNARY_OP(round)
UNARY_OP(gelu_erf)
UNARY_OP(erf)
UNARY_OP(tanh)
UNARY(id, float, copy_float, copy_float_strided)
UNARY(id, half, copy_half, copy_half_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
#if __METAL_VERSION__ >= 310
BFLOAT_UNARY_OP(cos)
@ -121,13 +75,6 @@ BFLOAT_UNARY_OP(sqrt)
BFLOAT_UNARY_OP(neg)
BFLOAT_UNARY_OP(exp)
BFLOAT_UNARY_OP(log)
BFLOAT_UNARY_OP(gelu)
BFLOAT_UNARY_OP(ceil)
BFLOAT_UNARY_OP(floor)
BFLOAT_UNARY_OP(round)
BFLOAT_UNARY_OP(gelu_erf)
BFLOAT_UNARY_OP(erf)
BFLOAT_UNARY_OP(tanh)
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
#endif

View File

@ -19,8 +19,6 @@ num-traits = { workspace = true }
rayon = { workspace = true }
safetensors = { workspace = true }
serde = { workspace = true }
metal = { workspace = true, optional = true }
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
[dev-dependencies]
anyhow = { workspace = true }
@ -31,4 +29,3 @@ default = []
accelerate = ["dep:accelerate-src", "candle/accelerate"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]
metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]

View File

@ -201,46 +201,6 @@ impl candle::CustomOp1 for SoftmaxLastDim {
};
Ok((dst, layout.shape().clone()))
}
#[cfg(feature = "metal")]
fn metal_fwd(
&self,
storage: &candle::MetalStorage,
layout: &Layout,
) -> Result<(candle::MetalStorage, Shape)> {
use candle::{backend::BackendStorage, DType};
let device = storage.device();
let command_buffer = device.command_buffer();
let kernels = device.kernels();
let name = match storage.dtype() {
DType::F32 => "softmax_float",
DType::F16 => "softmax_half",
DType::BF16 => "softmax_bfloat",
dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
};
let n = layout.stride().len();
if !(layout.is_contiguous() && layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
candle::bail!("Non contiguous softmax-last-dim is not implemented");
}
let last_dim = layout.dims()[layout.shape().rank() - 1];
let elem_count = layout.shape().elem_count();
let mut output = device.new_buffer(elem_count, storage.dtype(), "softmax");
candle_metal_kernels::call_last_softmax(
device.metal_device(),
&command_buffer,
&kernels,
name,
elem_count,
last_dim,
storage.buffer(),
&mut output,
)
.unwrap();
let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
Ok((newstorage, layout.shape().clone()))
}
}
pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {

View File

@ -31,4 +31,3 @@ accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate"]
cuda = ["candle/cuda", "candle-nn/cuda"]
flash-attn = ["cuda", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl"]
metal = ["candle/metal", "candle-nn/metal"]

View File

@ -142,9 +142,10 @@ impl RotaryEmbedding {
.to_dtype(DType::F32)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
let sin = freqs.sin()?;
let cos = freqs.cos()?;
Ok(Self { sin, cos })
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
fn apply_rotary_emb_qkv(
@ -407,38 +408,3 @@ impl MixFormerSequentialForCausalLM {
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_rotary() {
let dev = Device::new_metal(0).unwrap();
for i in 0..10000 {
let dim = 8;
let max_seq_len = 12;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), &dev).unwrap();
let t = Tensor::arange(0u32, max_seq_len as u32, &dev)
.unwrap()
.to_dtype(DType::F32)
.unwrap()
.reshape((max_seq_len, 1))
.unwrap();
let x: f32 = t.i((1, 0)).unwrap().to_scalar().unwrap();
assert_eq!(x, 1.0);
let x: f32 = inv_freq.i((0, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.1);
let freqs = t.matmul(&inv_freq).unwrap();
let x: f32 = freqs.i((1, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.1);
let sin = freqs.sin().unwrap().contiguous().unwrap();
let x: f32 = sin.i((1, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.099833414);
}
}
}