Compare commits

..

8 Commits

40 changed files with 449 additions and 2282 deletions

View File

@ -51,7 +51,6 @@ rayon = "1.7.0"
rusttype = { version = "0.9", default-features = false }
safetensors = "0.3.1"
serde = { version = "1.0.171", features = ["derive"] }
serde_plain = "1.0.2"
serde_json = "1.0.99"
thiserror = "1"
tokenizers = { version = "0.13.4", default-features = false }

View File

@ -69,8 +69,6 @@ We also provide a some command line based examples using state of the art models
performance larger than all publicly available 13b models as of 2023-09-28.
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
(English/Chinese) general LLMs with 6b and 34b parameters.
- [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of
the LLaMA model using the same quantization techniques as
[llama.cpp](https://github.com/ggerganov/llama.cpp).
@ -176,9 +174,8 @@ If you have an addition to this list, please submit a pull request.
- StableLM-3B-4E1T.
- Replit-code-v1.5-3B.
- Bert.
- Yi-6B and Yi-34B.
- Text to text.
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
- T5 and its variants: FlanT5, MADLAD400 (translation), CoEdit (Grammar correction).
- Marian MT (Machine Translation).
- Whisper (multi-lingual support).
- Text to image.

View File

@ -4,10 +4,13 @@ use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
use candle_metal_kernels;
use candle_metal_kernels::Kernels;
use half::f16;
use core::mem;
use half::{bf16, f16};
use metal;
use metal::{Buffer, CommandBuffer, CommandQueue, HeapDescriptor, MTLResourceOptions, NSUInteger};
use std::sync::{Arc, RwLock};
use metal::mps::matrix::encode_gemm;
use metal::mps::Float32;
use metal::{Buffer, CommandQueue, MTLResourceOptions, NSUInteger};
use std::sync::Arc;
/// Metal related errors
#[derive(thiserror::Error, Debug)]
@ -35,8 +38,6 @@ impl From<String> for MetalError {
pub struct MetalDevice {
device: metal::Device,
command_queue: metal::CommandQueue,
heap: metal::Heap,
command_buffer: Arc<RwLock<metal::CommandBuffer>>,
kernels: Arc<candle_metal_kernels::Kernels>,
}
@ -55,6 +56,10 @@ impl std::ops::Deref for MetalDevice {
}
impl MetalDevice {
// pub fn metal_device(&self) -> &metal::DeviceRef {
// self.device.as_ref()
// }
pub fn id(&self) -> NSUInteger {
self.registry_id()
}
@ -63,35 +68,6 @@ impl MetalDevice {
&self.command_queue
}
pub fn command_buffer(&self) -> std::sync::RwLockReadGuard<CommandBuffer> {
self.command_buffer.read().unwrap()
}
pub fn commit_wait_until_completed(&self) {
let mut old = self.command_buffer.try_write().unwrap();
let status = old.status();
use metal::MTLCommandBufferStatus::{
Committed, Completed, Enqueued, Error, NotEnqueued, Scheduled,
};
// match old.status() {}
if old.status() == metal::MTLCommandBufferStatus::Completed {
return;
}
old.commit();
old.wait_until_completed();
// let count = old.retain_count();
// println!("Count {count:?}");
let command_buffer = self.command_queue.new_command_buffer().to_owned();
*old = command_buffer;
// let count = old.retain_count();
// // println!("Count after {count:?}");
// old.release();
// let count = old.retain_count();
// println!("Count after release {count:?}");
// self.command_buffer.replace_with(|_| command_buffer)
}
pub fn kernels(&self) -> &Kernels {
&self.kernels
}
@ -102,21 +78,9 @@ impl MetalDevice {
pub fn new_buffer(&self, element_count: usize, dtype: DType) -> Buffer {
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
// println!("Creating buffer {size}");
let buffer = self
.heap
.new_buffer(size, MTLResourceOptions::StorageModeShared)
.expect("New buffer");
// println!("{:?}", self.heap.used_size());
buffer
}
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Buffer {
let size = core::mem::size_of_val(data) as NSUInteger;
let option = metal::MTLResourceOptions::StorageModeShared;
// println!("Creating data buffer {size}");
// debug!("Allocate 1 - buffer size {size}");
self.device
.new_buffer_with_data(data.as_ptr() as *const core::ffi::c_void, size, option)
.new_buffer(size, MTLResourceOptions::StorageModeManaged)
}
}
@ -143,11 +107,11 @@ impl BackendStorage for MetalStorage {
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
self.device.commit_wait_until_completed();
// TODO Is this necessary
// self.buffer.synchronize();
match self.dtype {
DType::U8 => Ok(CpuStorage::U8(
self.buffer.read_to_vec(self.buffer.length() as usize),
self.buffer.read_to_vec(self.buffer.length() as usize / 1),
)),
DType::U32 => Ok(CpuStorage::U32(
self.buffer.read_to_vec(self.buffer.length() as usize / 4),
@ -177,52 +141,29 @@ impl BackendStorage for MetalStorage {
let el = shape.elem_count();
let dtype = self.dtype;
assert!(layout.is_contiguous());
assert_eq!(dtype, DType::F32);
let mut buffer = device.new_buffer(el, self.dtype);
let command_buffer = self.device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
let name = match self.dtype {
DType::F32 => "affine_float",
DType::F16 => "affine_half",
dtype => todo!("Affine {dtype:?}"),
};
candle_metal_kernels::call_affine(
&device.device,
&command_buffer,
&device.kernels,
name,
el,
&self.buffer,
&mut buffer,
mul as f32,
add as f32,
)
.unwrap();
} else {
let name = match self.dtype {
DType::F32 => "affine_float_strided",
DType::F16 => "affine_half_strided",
dtype => todo!("Affine {dtype:?}"),
};
candle_metal_kernels::call_affine_strided(
&device.device,
&command_buffer,
&device.kernels,
name,
layout.dims(),
&self.buffer,
layout.stride(),
layout.start_offset() * dtype.size_in_bytes(),
&mut buffer,
mul as f32,
add as f32,
)
.unwrap();
}
Ok(Self {
let command_buffer = self.device.command_queue.new_command_buffer();
candle_metal_kernels::call_affine(
&device.device,
&command_buffer,
&device.kernels,
el,
&self.buffer,
&mut buffer,
mul as f32,
add as f32,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
return Ok(Self {
buffer,
device: device.clone(),
dtype,
})
});
}
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
@ -234,10 +175,10 @@ impl BackendStorage for MetalStorage {
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
// debug!("TODO reduce_op {op:?} {sum_dims:?}");
assert!(sum_dims.len() == 1);
assert!(sum_dims[0] == layout.shape().rank() - 1);
assert!(layout.is_contiguous());
assert!(layout.start_offset() == 0);
let device = self.device.clone();
let src_stride = layout.stride();
let src_dims = layout.shape().dims();
@ -273,7 +214,7 @@ impl BackendStorage for MetalStorage {
}
let dtype = if return_index { DType::U32 } else { self.dtype };
let mut buffer = device.new_buffer(dst_el, dtype);
let command_buffer = self.device.command_buffer();
let command_buffer = self.device.command_queue.new_command_buffer();
candle_metal_kernels::call_reduce_contiguous(
&device.device,
&command_buffer,
@ -285,6 +226,8 @@ impl BackendStorage for MetalStorage {
&mut buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
command_buffer.wait_until_completed();
Ok(Self {
buffer,
@ -302,12 +245,10 @@ impl BackendStorage for MetalStorage {
let shape = layout.shape();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_buffer();
let command_buffer = device.command_queue.new_command_buffer();
if layout.is_contiguous() {
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::F32) => "cast_u32_f32",
(DType::F32, DType::F16) => "cast_f32_f16",
(DType::F16, DType::F32) => "cast_f16_f32",
(left, right) => todo!("to dtype {left:?} - {right:?}"),
};
candle_metal_kernels::call_cast_contiguous(
@ -321,26 +262,22 @@ impl BackendStorage for MetalStorage {
)
.map_err(MetalError::from)?;
} else {
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::F32) => "cast_u32_f32_strided",
(DType::F32, DType::F16) => "cast_f32_f16_strided",
(DType::F16, DType::F32) => "cast_f16_f32_strided",
(left, right) => todo!("to dtype {left:?} - {right:?}"),
};
candle_metal_kernels::call_cast_strided(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
layout.dims(),
&self.buffer,
layout.stride(),
layout.start_offset() * self.dtype.size_in_bytes(),
&mut buffer,
)
.map_err(MetalError::from)?;
todo!(
"TODO Implement the kernel calling cast {:?}-{:?}",
self.dtype,
dtype
);
}
command_buffer.commit();
command_buffer.wait_until_completed();
// command_buffer.wait_until_scheduled();
// debug!(
// "cast {:?} - {:?} - {:?}",
// dtype,
// self.buffer.length(),
// buffer.length()
// );
Ok(Self {
buffer,
device: device.clone(),
@ -354,96 +291,35 @@ impl BackendStorage for MetalStorage {
let shape = layout.shape();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
{
let command_buffer = device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
use candle_metal_kernels::unary::contiguous;
let command_buffer = device.command_queue.new_command_buffer();
if layout.is_contiguous() {
use candle_metal_kernels::unary::contiguous;
let kernel_name = match (B::KERNEL, dtype) {
("ucos", DType::F32) => contiguous::cos::FLOAT,
("usin", DType::F32) => contiguous::sin::FLOAT,
("usqr", DType::F32) => contiguous::sqr::FLOAT,
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
("uneg", DType::F32) => contiguous::neg::FLOAT,
("uexp", DType::F32) => contiguous::exp::FLOAT,
("ulog", DType::F32) => contiguous::log::FLOAT,
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
("uerf", DType::F32) => contiguous::erf::FLOAT,
("uceil", DType::F32) => contiguous::ceil::FLOAT,
("ufloor", DType::F32) => contiguous::floor::FLOAT,
("uround", DType::F32) => contiguous::round::FLOAT,
("ucos", DType::F16) => contiguous::cos::HALF,
("usin", DType::F16) => contiguous::sin::HALF,
("usqr", DType::F16) => contiguous::sqr::HALF,
("usqrt", DType::F16) => contiguous::sqrt::HALF,
("uneg", DType::F16) => contiguous::neg::HALF,
("uexp", DType::F16) => contiguous::exp::HALF,
("ulog", DType::F16) => contiguous::log::HALF,
("ugelu", DType::F16) => contiguous::gelu::HALF,
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
("uerf", DType::F16) => contiguous::erf::HALF,
("uceil", DType::F16) => contiguous::ceil::HALF,
("ufloor", DType::F16) => contiguous::floor::HALF,
("uround", DType::F16) => contiguous::round::HALF,
(name, dtype) => todo!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_unary_contiguous(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
el_count,
&self.buffer,
&mut buffer,
)
.map_err(MetalError::from)?;
} else {
use candle_metal_kernels::unary::strided;
let kernel_name = match (B::KERNEL, dtype) {
("ucos", DType::F32) => strided::cos::FLOAT,
("usin", DType::F32) => strided::sin::FLOAT,
("usqr", DType::F32) => strided::sqr::FLOAT,
("usqrt", DType::F32) => strided::sqrt::FLOAT,
("uneg", DType::F32) => strided::neg::FLOAT,
("uexp", DType::F32) => strided::exp::FLOAT,
("ulog", DType::F32) => strided::log::FLOAT,
("ugelu", DType::F32) => strided::gelu::FLOAT,
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
("uerf", DType::F32) => strided::erf::FLOAT,
("uceil", DType::F32) => strided::ceil::FLOAT,
("ufloor", DType::F32) => strided::floor::FLOAT,
("uround", DType::F32) => strided::round::FLOAT,
("ucos", DType::F16) => strided::cos::HALF,
("usin", DType::F16) => strided::sin::HALF,
("usqr", DType::F16) => strided::sqr::HALF,
("usqrt", DType::F16) => strided::sqrt::HALF,
("uneg", DType::F16) => strided::neg::HALF,
("uexp", DType::F16) => strided::exp::HALF,
("ulog", DType::F16) => strided::log::HALF,
("ugelu", DType::F16) => strided::gelu::HALF,
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
("uerf", DType::F16) => strided::erf::HALF,
("uceil", DType::F16) => strided::ceil::HALF,
("ufloor", DType::F16) => strided::floor::HALF,
("uround", DType::F16) => strided::round::HALF,
(name, dtype) => todo!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_unary_strided(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
layout.dims(),
&self.buffer,
layout.stride(),
layout.start_offset() * self.dtype.size_in_bytes(),
&mut buffer,
0,
)
.map_err(MetalError::from)?;
}
let kernel_name = match (B::KERNEL, dtype) {
("ucos", DType::F32) => contiguous::cos::FLOAT,
("usin", DType::F32) => contiguous::sin::FLOAT,
("usqr", DType::F32) => contiguous::sqr::FLOAT,
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
("uneg", DType::F32) => contiguous::neg::FLOAT,
("uexp", DType::F32) => contiguous::exp::FLOAT,
(name, dtype) => todo!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_unary_contiguous(
&device.device,
&command_buffer,
&device.kernels,
kernel_name,
el_count,
&self.buffer,
&mut buffer,
)
.map_err(MetalError::from)?;
} else {
todo!("TODO Implement the kernel calling {}", B::KERNEL);
}
command_buffer.commit();
command_buffer.wait_until_completed();
Ok(Self {
buffer,
device: device.clone(),
@ -462,10 +338,8 @@ impl BackendStorage for MetalStorage {
let shape = lhs_l.shape();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_buffer();
if (lhs_l.is_contiguous() && lhs_l.start_offset() == 0)
&& (rhs_l.is_contiguous() && rhs_l.start_offset() == 0)
{
let command_buffer = device.command_queue.new_command_buffer();
if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
use candle_metal_kernels::binary::contiguous;
let kernel_name = match (B::KERNEL, dtype) {
@ -477,14 +351,6 @@ impl BackendStorage for MetalStorage {
("bmul", DType::F32) => contiguous::mul::FLOAT,
("div", DType::F32) => contiguous::div::FLOAT,
("bdiv", DType::F32) => contiguous::div::FLOAT,
("add", DType::F16) => contiguous::add::HALF,
("badd", DType::F16) => contiguous::add::HALF,
("sub", DType::F16) => contiguous::sub::HALF,
("bsub", DType::F16) => contiguous::sub::HALF,
("mul", DType::F16) => contiguous::mul::HALF,
("bmul", DType::F16) => contiguous::mul::HALF,
("div", DType::F16) => contiguous::div::HALF,
("bdiv", DType::F16) => contiguous::div::HALF,
(name, dtype) => todo!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_binary_contiguous(
@ -506,10 +372,6 @@ impl BackendStorage for MetalStorage {
("bsub", DType::F32) => strided::sub::FLOAT,
("bmul", DType::F32) => strided::mul::FLOAT,
("bdiv", DType::F32) => strided::div::FLOAT,
("badd", DType::F16) => strided::add::HALF,
("bsub", DType::F16) => strided::sub::HALF,
("bmul", DType::F16) => strided::mul::HALF,
("bdiv", DType::F16) => strided::div::HALF,
(name, dtype) => todo!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_binary_strided(
@ -519,15 +381,18 @@ impl BackendStorage for MetalStorage {
kernel_name,
lhs_l.dims(),
&self.buffer,
lhs_l.stride(),
lhs_l.start_offset() * self.dtype.size_in_bytes(),
&lhs_l.stride(),
lhs_l.start_offset(),
&rhs.buffer,
rhs_l.stride(),
rhs_l.start_offset() * rhs.dtype.size_in_bytes(),
&rhs_l.stride(),
rhs_l.start_offset(),
&mut buffer,
)
.map_err(MetalError::from)?;
}
command_buffer.commit();
command_buffer.wait_until_completed();
Ok(Self {
buffer,
device: device.clone(),
@ -549,25 +414,24 @@ impl BackendStorage for MetalStorage {
let el = shape.elem_count();
let dtype = t.dtype;
let mut buffer = self.device.new_buffer(el, dtype);
let command_buffer = self.device.command_buffer();
let command_buffer = self.device.command_queue.new_command_buffer();
candle_metal_kernels::call_where_cond_strided(
&device.device,
&command_buffer,
&device.kernels,
"where_u8_f32",
dims,
&dims,
&self.buffer,
(
layout.stride(),
layout.start_offset() * self.dtype.size_in_bytes(),
),
(layout.stride(), layout.start_offset()),
&t.buffer,
(&t_l.stride(), t_l.start_offset() * t.dtype.size_in_bytes()),
(&t_l.stride(), t_l.start_offset()),
&f.buffer,
(&f_l.stride(), f_l.start_offset() * f.dtype.size_in_bytes()),
(&f_l.stride(), f_l.start_offset()),
&mut buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
command_buffer.wait_until_completed();
Ok(Self {
buffer,
device,
@ -649,9 +513,7 @@ impl BackendStorage for MetalStorage {
fn index_select(&self, ids: &Self, src_l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
assert!(src_l.is_contiguous());
assert!(src_l.start_offset() == 0);
assert!(ids_l.is_contiguous());
assert!(ids_l.start_offset() == 0);
let left_size: usize = src_l.dims()[..dim].iter().product();
let right_size: usize = src_l.dims()[dim + 1..].iter().product();
let ids_el = ids_l.shape().elem_count();
@ -659,12 +521,13 @@ impl BackendStorage for MetalStorage {
let dtype = self.dtype;
let device = self.device();
let mut buffer = device.new_buffer(dst_el, dtype);
let out = self.to_cpu_storage().unwrap();
let name = match (ids.dtype, self.dtype) {
(DType::U32, DType::F32) => "is_u32_f32",
(DType::U32, DType::F16) => "is_u32_f16",
(left, right) => todo!("index select metal {left:?} {right:?}"),
};
let command_buffer = self.device.command_buffer();
let command_buffer = self.device.command_queue.new_command_buffer();
// println!("INDEX SELECT");
candle_metal_kernels::call_index_select(
&device.device,
&command_buffer,
@ -678,6 +541,8 @@ impl BackendStorage for MetalStorage {
&mut buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
command_buffer.wait_until_completed();
Ok(Self {
buffer,
device: device.clone(),
@ -706,18 +571,8 @@ impl BackendStorage for MetalStorage {
) -> Result<Self> {
// Create descriptors
use metal::mps::matrix::*;
let (type_id, size) = match self.dtype {
DType::F32 => (
metal::mps::MPS_FLOATBIT_ENCODING | 32,
core::mem::size_of::<f32>() as NSUInteger,
),
DType::F16 => (
metal::mps::MPS_FLOATBIT_ENCODING | 16,
core::mem::size_of::<f16>() as NSUInteger,
),
dtype => todo!("Dtype for matmul {dtype:?} is not supported"),
};
let type_id = metal::mps::MPS_FLOATBIT_ENCODING | 32;
let size = core::mem::size_of::<f32>() as NSUInteger;
let elem_count = b * m * n;
@ -750,26 +605,7 @@ impl BackendStorage for MetalStorage {
mnk: (m, n, k),
})?
};
let stride_left: u64 = match lhs_stride[..lhs_stride.len() - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?,
} as u64;
let stride_right: u64 = match rhs_stride[..rhs_stride.len() - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?,
} as u64;
// println!("{transpose_left} {transpose_right}");
let b = b as NSUInteger;
let m = m as NSUInteger;
@ -788,64 +624,56 @@ impl BackendStorage for MetalStorage {
};
let result_descriptor = MatrixDescriptor::init_single(m, n, n * size, type_id);
// Create matrix objects
let left_matrix = Matrix::init_with_buffer_descriptor(&self.buffer, &left_descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
let right_matrix = Matrix::init_with_buffer_descriptor(&rhs.buffer, &right_descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
let out_buffer = self.device.new_buffer(elem_count, self.dtype);
let result_matrix = Matrix::init_with_buffer_descriptor(&out_buffer, &result_descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
{
let command_buffer = self.device.command_buffer();
for bi in 0..b {
// Create matrix objects
let left_matrix = Matrix::init_with_buffer_descriptor(
&self.buffer,
(bi * stride_left + lhs_l.start_offset() as u64) * size,
&left_descriptor,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
let right_matrix = Matrix::init_with_buffer_descriptor(
&rhs.buffer,
(bi * stride_right + rhs_l.start_offset() as u64) * size,
&right_descriptor,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
let alpha = 1.0f64;
let beta = 0.0f64;
// Create kernel
let matrix_multiplication = MatrixMultiplication::init(
&self.device,
transpose_left,
transpose_right,
m,
n,
k,
alpha,
beta,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
let result_matrix = Matrix::init_with_buffer_descriptor(
&out_buffer,
bi * m * n * size,
&result_descriptor,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
matrix_multiplication.set_batch_size(b);
let alpha = 1.0f64;
let beta = 0.0f64;
// Create kernel
let matrix_multiplication = MatrixMultiplication::init(
&self.device,
transpose_left,
transpose_right,
m,
n,
k,
alpha,
beta,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
// Encode kernel to command buffer
let command_buffer = self.device.command_queue.new_command_buffer();
matrix_multiplication.encode_to_command_buffer(
command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
command_buffer.commit();
command_buffer.wait_until_completed();
// Encode kernel to command buffer
matrix_multiplication.encode_to_command_buffer(
&command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
}
}
// let left = self.buffer.read_to_vec::<f32>(10);
// let right = rhs.buffer.read_to_vec::<f32>(10);
// let out = out_buffer.read_to_vec::<f32>(40);
// todo!("Out {left:?} {right:?} {out:?}");
Ok(Self {
buffer: out_buffer,
@ -860,12 +688,11 @@ impl BackendStorage for MetalStorage {
if el_count == 0 {
return Ok(());
}
let command_buffer = self.device.command_buffer();
let command_buffer = self.device.command_queue.new_command_buffer();
let kernel_name = match self.dtype {
DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT,
DType::F16 => candle_metal_kernels::unary::strided::copy::HALF,
DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT,
DType::U32 => candle_metal_kernels::unary::strided::copy::U32,
dtype => todo!("copy_strided not implemented for {dtype:?}"),
};
candle_metal_kernels::call_unary_strided(
@ -875,12 +702,16 @@ impl BackendStorage for MetalStorage {
kernel_name,
src_l.dims(),
&self.buffer,
src_l.stride(),
src_l.start_offset() * self.dtype.size_in_bytes(),
&src_l.stride(),
src_l.start_offset(),
&mut dst.buffer,
dst_offset * dst.dtype.size_in_bytes(),
dst_offset,
)
.map_err(MetalError::from)?;
command_buffer.commit();
command_buffer.wait_until_completed();
// todo!("Output {:?}", dst.buffer.read_to_vec::<f32>(10));
// }
Ok(())
}
}
@ -905,22 +736,24 @@ impl BackendDevice for MetalDevice {
fn new(ordinal: usize) -> Result<Self> {
let device = metal::Device::all().swap_remove(ordinal);
let command_queue = device.new_command_queue();
// let capture = metal::CaptureManager::shared();
// let descriptor = metal::CaptureDescriptor::new();
// descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
// descriptor.set_capture_device(&device);
// let mut dir = std::env::current_dir()?;
// dir.push("out.gputrace");
// descriptor.set_output_url(dir);
let descriptor = HeapDescriptor::new();
let mut size =
device.heap_buffer_size_and_align(100_000_000, MTLResourceOptions::StorageModeShared);
size.size += (size.size & (size.align - 1)) + size.align;
descriptor.set_size(size.size);
descriptor.set_storage_mode(metal::MTLStorageMode::Shared);
let heap = device.new_heap(&descriptor);
let command_buffer = Arc::new(RwLock::new(command_queue.new_command_buffer().to_owned()));
// capture
// .start_capture(&descriptor)
// .map_err(MetalError::from)?;
let command_queue = device.new_command_queue();
// let command_buffer = _command_queue.new_owned_command_buffer();
let kernels = Arc::new(Kernels::new());
Ok(Self {
device,
heap,
command_queue,
command_buffer,
// command_buffer,
kernels,
})
}
@ -940,12 +773,9 @@ impl BackendDevice for MetalDevice {
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> {
let buffer = self.new_buffer(shape.elem_count(), dtype);
Ok(MetalStorage {
buffer,
device: self.clone(),
dtype,
})
// TODO Is there a faster way ?
let cpu_storage = crate::cpu_backend::CpuDevice.zeros_impl(shape, dtype)?;
self.storage_from_cpu_storage(&cpu_storage)
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
@ -955,15 +785,47 @@ impl BackendDevice for MetalDevice {
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
let option = metal::MTLResourceOptions::StorageModeManaged;
let buffer = match storage {
CpuStorage::U8(storage) => self.new_buffer_with_data(storage),
CpuStorage::U32(storage) => self.new_buffer_with_data(storage),
CpuStorage::I64(storage) => self.new_buffer_with_data(storage),
CpuStorage::BF16(storage) => self.new_buffer_with_data(storage),
CpuStorage::F16(storage) => self.new_buffer_with_data(storage),
CpuStorage::F32(storage) => self.new_buffer_with_data(storage),
CpuStorage::F64(storage) => self.new_buffer_with_data(storage),
CpuStorage::U8(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<u8>()) as NSUInteger,
option,
),
CpuStorage::U32(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<u32>()) as NSUInteger,
option,
),
CpuStorage::I64(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<i64>()) as NSUInteger,
option,
),
CpuStorage::BF16(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<bf16>()) as NSUInteger,
option,
),
CpuStorage::F16(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<f16>()) as NSUInteger,
option,
),
CpuStorage::F32(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<f32>()) as NSUInteger,
option,
),
CpuStorage::F64(storage) => self.device.new_buffer_with_data(
storage.as_ptr() as *const core::ffi::c_void,
(storage.len() * mem::size_of::<f64>()) as NSUInteger,
option,
),
};
// TODO is that necessary ?
// buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
// debug!("Allocate 2 - buffer size {}", buffer.length());
Ok(Self::Storage {
buffer,
device: self.clone(),

View File

@ -593,8 +593,7 @@ unary_op!(Recip, "recip", v, v.recip());
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
/// Tanh based approximation of the `gelu` operation
/// GeluErf is the more precise one.
/// `gelu` operation
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
impl UnaryOpT for Gelu {
const NAME: &'static str = "gelu";

View File

@ -157,6 +157,8 @@ pub(crate) fn from_storage<S: Into<Shape>>(
) -> Tensor {
let dtype = storage.dtype();
let device = storage.device();
let shape = shape.into();
// println!("{:?} {storage:?}", shape);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
@ -166,7 +168,11 @@ pub(crate) fn from_storage<S: Into<Shape>>(
dtype,
device,
};
Tensor(Arc::new(tensor_))
let result = Tensor(Arc::new(tensor_));
// todo!(" from_storage");
// let result = result.to_device(&Device::Cpu).unwrap();
// todo!(" {result}");
result
}
impl Tensor {
@ -856,20 +862,6 @@ impl Tensor {
self.sum_impl(mean_dims, false)? * scale
}
/// Returns the unbiased variance over the selected dimension.
pub fn var_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
let mean = self.mean_keepdim(dim)?;
let squares = self.broadcast_sub(&mean)?.sqr()?;
squares.sum_impl(dim, true)? / (self.dim(dim)? - 1) as f64
}
/// Returns the unbiased variance over the selected dimension.
pub fn var<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
self.var_keepdim(dim)?.squeeze(dim)
}
/// Gathers the maximum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn max_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
@ -1863,10 +1855,7 @@ impl Tensor {
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => {
println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
Storage::Cpu(storage.to_cpu_storage()?)
}
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.

View File

@ -4,7 +4,7 @@ use crate::{Result, Tensor};
macro_rules! test_device {
// TODO: Switch to generating the two last arguments automatically once concat_idents is
// stable. https://github.com/rust-lang/rust/issues/29599
($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => {
($fn_name: ident, $test_cpu: ident, $test_cuda: ident) => {
#[test]
fn $test_cpu() -> Result<()> {
$fn_name(&Device::Cpu)
@ -15,12 +15,6 @@ macro_rules! test_device {
fn $test_cuda() -> Result<()> {
$fn_name(&Device::new_cuda(0)?)
}
#[cfg(feature = "metal")]
#[test]
fn $test_metal() -> Result<()> {
$fn_name(&Device::new_metal(0)?)
}
};
}

View File

@ -563,35 +563,14 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
Ok(())
}
test_device!(conv1d, conv1d_cpu, conv1d_gpu, conv1d_metal);
test_device!(
conv1d_small,
conv1d_small_cpu,
conv1d_small_gpu,
conv1d_small_metal
);
test_device!(conv2d, conv2d_cpu, conv2d_gpu, conv2d_metal);
test_device!(conv1d, conv1d_cpu, conv1d_gpu);
test_device!(conv1d_small, conv1d_small_cpu, conv1d_small_gpu);
test_device!(conv2d, conv2d_cpu, conv2d_gpu);
test_device!(
conv2d_non_square,
conv2d_non_square_cpu,
conv2d_non_square_gpu,
conv2d_non_square_metal
);
test_device!(
conv2d_small,
conv2d_small_cpu,
conv2d_small_gpu,
conv2d_small_metal
);
test_device!(
conv2d_smaller,
conv2d_smaller_cpu,
conv2d_smaller_gpu,
conv2d_smaller_metal
);
test_device!(
conv2d_grad,
conv2d_grad_cpu,
conv2d_grad_gpu,
conv2_grad_metal
conv2d_non_square_gpu
);
test_device!(conv2d_small, conv2d_small_cpu, conv2d_small_gpu);
test_device!(conv2d_smaller, conv2d_smaller_cpu, conv2d_smaller_gpu);
test_device!(conv2d_grad, conv2d_grad_cpu, conv2d_grad_gpu);

View File

@ -315,29 +315,9 @@ fn binary_grad(device: &Device) -> Result<()> {
Ok(())
}
test_device!(
simple_grad,
simple_grad_cpu,
simple_grad_gpu,
simple_grad_metal
);
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu, sum_grad_metal);
test_device!(
matmul_grad,
matmul_grad_cpu,
matmul_grad_gpu,
matmul_grad_metal
);
test_device!(
grad_descent,
grad_descent_cpu,
grad_descent_gpu,
grad_descent_metal
);
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu, unary_grad_metal);
test_device!(
binary_grad,
binary_grad_cpu,
binary_grad_gpu,
binary_grad_metal
);
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu);
test_device!(binary_grad, binary_grad_cpu, binary_grad_gpu);

View File

@ -49,7 +49,7 @@ fn contiguous(device: &Device) -> Result<()> {
Ok(())
}
test_device!(contiguous, contiguous_cpu, contiguous_gpu, contiguous_metal);
test_device!(contiguous, contiguous_cpu, contiguous_gpu);
#[test]
fn strided_blocks() -> Result<()> {

View File

@ -98,17 +98,15 @@ fn upsample_nearest2d(dev: &Device) -> Result<()> {
Ok(())
}
test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu, avg_pool2d_metal);
test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu);
test_device!(
avg_pool2d_pytorch,
avg_pool2d_pytorch_cpu,
avg_pool2d_pytorch_gpu,
avg_pool2d_pytorch_metal
avg_pool2d_pytorch_gpu
);
test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu, max_pool2d_metal);
test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu);
test_device!(
upsample_nearest2d,
upsample_nearest2d_cpu,
upsample_nearest2d_gpu,
upsample_nearest2d_metal
upsample_nearest2d_gpu
);

View File

@ -180,22 +180,6 @@ fn transpose(device: &Device) -> Result<()> {
Ok(())
}
fn var(device: &Device) -> Result<()> {
// Values taken from https://pytorch.org/docs/stable/generated/torch.var.html
let data = &[
[0.2035f32, 1.2959, 1.8101, -0.4644],
[1.5027, -0.3270, 0.5905, 0.6538],
[-1.5745, 1.3330, -0.5596, -0.6548],
[0.1264, -0.5080, 1.6420, 0.1992],
];
let tensor = Tensor::new(data, device)?;
assert_eq!(
test_utils::to_vec2_round(&tensor.var_keepdim(1)?, 4)?,
&[[1.0631], [0.559], [1.4893], [0.8258]]
);
Ok(())
}
fn sum(device: &Device) -> Result<()> {
let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
let tensor = Tensor::new(data, device)?;
@ -1070,60 +1054,34 @@ fn randn(device: &Device) -> Result<()> {
Ok(())
}
test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal);
test_device!(ones, ones_cpu, ones_gpu, ones_metal);
test_device!(arange, arange_cpu, arange_gpu, arange_metal);
test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal);
test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal);
test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal);
test_device!(cat, cat_cpu, cat_gpu, cat_metal);
test_device!(sum, sum_cpu, sum_gpu, sum_metal);
test_device!(min, min_cpu, min_gpu, min_metal);
test_device!(max, max_cpu, max_gpu, max_metal);
test_device!(argmax, argmax_cpu, argmax_gpu, argmax_metal);
test_device!(argmin, argmin_cpu, argmin_gpu, argmin_metal);
test_device!(transpose, transpose_cpu, transpose_gpu, transpose_metal);
test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(
broadcasting,
broadcasting_cpu,
broadcasting_gpu,
broadcasting_metal
);
test_device!(
index_select,
index_select_cpu,
index_select_gpu,
index_select_metal
);
test_device!(index_add, index_add_cpu, index_add_gpu, index_add_metal);
test_device!(gather, gather_cpu, gather_gpu, gather_metal);
test_device!(
scatter_add,
scatter_add_cpu,
scatter_add_gpu,
scatter_add_metal
);
test_device!(
slice_scatter,
slice_scatter_cpu,
slice_scatter_gpu,
slice_scatter_metal
);
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
test_device!(var, var_cpu, var_gpu, var_metal);
test_device!(zeros, zeros_cpu, zeros_gpu);
test_device!(ones, ones_cpu, ones_gpu);
test_device!(arange, arange_cpu, arange_gpu);
test_device!(add_mul, add_mul_cpu, add_mul_gpu);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu);
test_device!(narrow, narrow_cpu, narrow_gpu);
test_device!(broadcast, broadcast_cpu, broadcast_gpu);
test_device!(cat, cat_cpu, cat_gpu);
test_device!(sum, sum_cpu, sum_gpu);
test_device!(min, min_cpu, min_gpu);
test_device!(max, max_cpu, max_gpu);
test_device!(argmax, argmax_cpu, argmax_gpu);
test_device!(argmin, argmin_cpu, argmin_gpu);
test_device!(transpose, transpose_cpu, transpose_gpu);
test_device!(unary_op, unary_op_cpu, unary_op_gpu);
test_device!(binary_op, binary_op_cpu, binary_op_gpu);
test_device!(embeddings, embeddings_cpu, embeddings_gpu);
test_device!(cmp, cmp_cpu, cmp_gpu);
test_device!(matmul, matmul_cpu, matmul_gpu);
test_device!(broadcast_matmul, broadcast_matmul_cpu, broadcast_matmul_gpu);
test_device!(broadcasting, broadcasting_cpu, broadcasting_gpu);
test_device!(index_select, index_select_cpu, index_select_gpu);
test_device!(index_add, index_add_cpu, index_add_gpu);
test_device!(gather, gather_cpu, gather_gpu);
test_device!(scatter_add, scatter_add_cpu, scatter_add_gpu);
test_device!(slice_scatter, slice_scatter_cpu, slice_scatter_gpu);
test_device!(randn, randn_cpu, randn_gpu);
test_device!(clamp, clamp_cpu, clamp_gpu);
// There was originally a bug on the CPU implementation for randn
// https://github.com/huggingface/candle/issues/381

View File

@ -329,14 +329,18 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
.get_ids()
.to_vec();
println!("{tokens:?}");
let start_gen = std::time::Instant::now();
for index in 0.. {
for index in 0..1 {
if tokens.len() >= config.seq_len {
break;
}
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
// println!("Input {}", input);
// println!("Input {}", input.to_device(&candle::Device::Cpu)?);
let logits = model.forward(&input, index_pos)?;
let logits = logits.i((0, logits.dim(1)? - 1))?;
let logits = if common_args.repeat_penalty == 1. || tokens.is_empty() {

View File

@ -325,11 +325,10 @@ fn main() -> anyhow::Result<()> {
};
let mut pre_prompt_tokens = vec![];
for prompt_index in 0.. {
loop {
let prompt_str = match &prompt {
Prompt::One(prompt) => prompt.clone(),
Prompt::Interactive | Prompt::Chat => {
let is_interactive = matches!(prompt, Prompt::Interactive);
print!("> ");
std::io::stdout().flush()?;
let mut prompt = String::new();
@ -341,11 +340,7 @@ fn main() -> anyhow::Result<()> {
}
}
if args.which.is_zephyr() {
if prompt_index == 0 || is_interactive {
format!("<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>",)
} else {
format!("<|user|>\n{prompt}</s>\n<|assistant|>")
}
format!("<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>")
} else if args.which.is_mistral() {
format!("[INST] {prompt} [/INST]")
} else {

View File

@ -9,8 +9,6 @@ $ cargo run --example t5 --release -- --model-id "t5-small" --prompt "translate
9 tokens generated (2.42 token/s)
```
Variants such as [flan-t5](https://huggingface.co/google/flan-t5-small), [flan-ul2](https://huggingface.co/google/flan-ul2) (with `--revision "refs/pr/25"`), and [Co-EdIT](https://huggingface.co/grammarly/coedit-large) are also supported.
## Translation with [MADLAD-400](https://arxiv.org/abs/2309.04662)
MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.
@ -24,7 +22,7 @@ cargo run --example t5 --release -- \
Wie geht es dir, mein Freund?
```
## Sentence embedding example
## Sentence embedding example:
```bash
$ cargo run --example t5 --release -- --model-id "t5-small" --prompt "A beautiful candle."

View File

@ -104,17 +104,6 @@ impl T5ModelBuilder {
api.get("model-00004-of-00005.safetensors")?,
api.get("model-00005-of-00005.safetensors")?,
]
} else if model_id == "google/flan-ul2" {
vec![
api.get("model-00001-of-00008.safetensors")?,
api.get("model-00002-of-00008.safetensors")?,
api.get("model-00003-of-00008.safetensors")?,
api.get("model-00004-of-00008.safetensors")?,
api.get("model-00005-of-00008.safetensors")?,
api.get("model-00006-of-00008.safetensors")?,
api.get("model-00007-of-00008.safetensors")?,
api.get("model-00008-of-00008.safetensors")?,
]
} else {
vec![api.get("model.safetensors")?]
};

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

View File

@ -1,154 +0,0 @@
use image::{DynamicImage, ImageBuffer};
use serde::Deserialize;
use std::collections::HashMap;
use candle::{DType, Device, Result, Tensor};
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct ProcessorConfig {
do_resize: bool,
height: u32,
width: u32,
do_rescale: bool,
do_normalize: bool,
image_mean: Vec<f32>,
image_std: Vec<f32>,
}
impl Default for ProcessorConfig {
fn default() -> Self {
Self {
do_resize: true,
height: 384,
width: 384,
do_rescale: true,
do_normalize: true,
image_mean: vec![0.5, 0.5, 0.5],
image_std: vec![0.5, 0.5, 0.5],
}
}
}
pub struct ViTImageProcessor {
do_resize: bool,
height: u32,
width: u32,
do_normalize: bool,
image_mean: Vec<f32>,
image_std: Vec<f32>,
}
impl ViTImageProcessor {
pub fn new(config: &ProcessorConfig) -> Self {
Self {
do_resize: config.do_resize,
height: config.height,
width: config.width,
do_normalize: config.do_normalize,
image_mean: config.image_mean.clone(),
image_std: config.image_std.clone(),
}
}
pub fn preprocess(&self, images: Vec<&str>) -> Result<Tensor> {
let height = self.height as usize;
let width = self.width as usize;
let channels = 3;
let images = self.load_images(images)?;
let resized_images: Vec<DynamicImage> = if self.do_resize {
images
.iter()
.map(|image| self.resize(image.clone(), None).unwrap())
.collect()
} else {
images
};
let normalized_images: Vec<Tensor> = if self.do_normalize {
resized_images
.iter()
.map(|image| self.normalize(image.clone(), None, None).unwrap())
.collect()
} else {
let resized_images: Vec<ImageBuffer<image::Rgb<u8>, Vec<u8>>> =
resized_images.iter().map(|image| image.to_rgb8()).collect();
let data = resized_images
.into_iter()
.map(|image| image.into_raw())
.collect::<Vec<Vec<u8>>>();
data.iter()
.map(|image| {
Tensor::from_vec(image.clone(), (height, width, channels), &Device::Cpu)
.unwrap()
.permute((2, 0, 1))
.unwrap()
})
.collect::<Vec<Tensor>>()
};
Tensor::stack(&normalized_images, 0)
}
fn resize(
&self,
image: image::DynamicImage,
size: Option<HashMap<String, u32>>,
) -> Result<image::DynamicImage> {
let (height, width) = match &size {
Some(size) => (size.get("height").unwrap(), size.get("width").unwrap()),
None => (&self.height, &self.width),
};
let resized_image =
image.resize_exact(*width, *height, image::imageops::FilterType::Triangle);
Ok(resized_image)
}
fn normalize(
&self,
image: image::DynamicImage,
mean: Option<Vec<f32>>,
std: Option<Vec<f32>>,
) -> Result<Tensor> {
let mean = match mean {
Some(mean) => mean,
None => self.image_mean.clone(),
};
let std = match std {
Some(std) => std,
None => self.image_std.clone(),
};
let mean = Tensor::from_vec(mean, (3, 1, 1), &Device::Cpu)?;
let std = Tensor::from_vec(std, (3, 1, 1), &Device::Cpu)?;
let image = image.to_rgb8();
let data = image.into_raw();
let height = self.height as usize;
let width = self.width as usize;
let channels = 3;
let data =
Tensor::from_vec(data, &[height, width, channels], &Device::Cpu)?.permute((2, 0, 1))?;
(data.to_dtype(DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
pub fn load_images(&self, image_path: Vec<&str>) -> Result<Vec<image::DynamicImage>> {
let mut images: Vec<image::DynamicImage> = Vec::new();
for path in image_path {
let img = image::io::Reader::open(path)?.decode().unwrap();
images.push(img);
}
Ok(images)
}
}

View File

@ -1,132 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::trocr;
use tokenizers::Tokenizer;
mod image_processor;
#[derive(Clone, Debug, Copy, ValueEnum)]
enum Which {
Base,
Large,
}
#[derive(Parser, Debug)]
struct Args {
#[arg(long)]
model: Option<String>,
/// Choose the variant of the model to run.
#[arg(long, default_value = "base")]
which: Which,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Text to be translated
#[arg(long)]
image: String,
}
pub fn main() -> anyhow::Result<()> {
use hf_hub::api::sync::Api;
let args = Args::parse();
let tokenizer_dec = {
let tokenizer = Api::new()?
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
.get("tokenizer.json")?;
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec);
let device = candle_examples::device(args.cpu)?;
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => match args.which {
Which::Base => Api::new()?
.repo(hf_hub::Repo::with_revision(
"microsoft/trocr-base-handwritten".to_string(),
hf_hub::RepoType::Model,
"refs/pr/3".to_string(),
))
.get("model.safetensors")?,
Which::Large => Api::new()?
.repo(hf_hub::Repo::with_revision(
"microsoft/trocr-large-handwritten".to_string(),
hf_hub::RepoType::Model,
"refs/pr/6".to_string(),
))
.get("model.safetensors")?,
},
};
println!("model: {:?}", model);
unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }
};
let encoder_config = match args.which {
Which::Base => candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten(),
Which::Large => {
candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten()
}
};
let decoder_config = trocr::TrOCRConfig::default();
let mut model = trocr::TrOCRModel::new(&encoder_config, &decoder_config, vb)?;
let config = image_processor::ProcessorConfig::default();
let processor = image_processor::ViTImageProcessor::new(&config);
let image = vec![args.image.as_str()];
let image = processor.preprocess(image)?;
let encoder_xs = model.encoder().forward(&image)?;
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let mut token_ids: Vec<u32> = vec![decoder_config.decoder_start_token_id];
for index in 0..1000 {
let context_size = if index >= 1 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
if token == decoder_config.eos_token_id {
break;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}

View File

@ -1,16 +0,0 @@
# candle-trocr
`TrOCR` is a transformer OCR Model. In this example it is used to
transcribe image text. See the associated [model
card](https://huggingface.co/microsoft/trocr-base-printed) for details on
the model itself.
## Running an example
```bash
cargo run --example trocr --release -- --which base --cpu --image assets/trocr.png
```
```
<s> industry , Mr. Brown commented icily . " Let us have a</s>
```

View File

@ -1,268 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::yi::{Config, Model};
use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
#[value(name = "6b")]
L6b,
#[value(name = "34b")]
L34b,
}
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("</s>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 100)]
sample_len: usize,
#[arg(long, default_value = "01-ai/Yi-6B")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
/// The model size to use.
#[arg(long, default_value = "6b")]
which: Which,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => match args.which {
Which::L6b => vec![
repo.get("model-00001-of-00002.safetensors")?,
repo.get("model-00002-of-00002.safetensors")?,
],
Which::L34b => vec![
repo.get("model-00001-of-00007.safetensors")?,
repo.get("model-00002-of-00007.safetensors")?,
repo.get("model-00003-of-00007.safetensors")?,
repo.get("model-00004-of-00007.safetensors")?,
repo.get("model-00005-of-00007.safetensors")?,
repo.get("model-00006-of-00007.safetensors")?,
repo.get("model-00007-of-00007.safetensors")?,
],
},
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = match args.which {
Which::L6b => Config::config_6b(),
Which::L34b => Config::config_34b(),
};
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -233,8 +233,8 @@ impl FlashAttnVarLen {
let (seqlens_q, seqlens_q_layout) = self.seqlens_q.storage_and_layout();
let seqlens_q = match &*seqlens_q {
candle::Storage::Cpu(_) => candle::bail!("seqlens_q must be a cuda tensor"),
candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
_ => candle::bail!("seqlens_q must be a cuda tensor"),
};
let seqlens_q = match seqlens_q_layout.contiguous_offsets() {
Some((o1, o2)) => seqlens_q.slice(o1..o2),
@ -243,8 +243,8 @@ impl FlashAttnVarLen {
let (seqlens_k, seqlens_k_layout) = self.seqlens_k.storage_and_layout();
let seqlens_k = match &*seqlens_k {
candle::Storage::Cpu(_) => candle::bail!("seqlens_k must be a cuda tensor"),
candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
_ => candle::bail!("seqlens_k must be a cuda tensor"),
};
let seqlens_k = match seqlens_k_layout.contiguous_offsets() {
Some((o1, o2)) => seqlens_k.slice(o1..o2),

View File

@ -50,7 +50,6 @@ fn run_affine_bench<T: Clone>(device: &Device, kernels: &Kernels, v: &[T]) {
&device,
command_buffer,
&kernels,
"affine_float",
v.len(),
&input,
&mut output,

View File

@ -147,7 +147,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
kernel_name.to_string(),
v.len(),
iterations,
total_time,
@ -159,7 +159,7 @@ fn run_unary_bench<T: Clone>(
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
for kernel_name in &strided {
for kernel_name in strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
@ -187,7 +187,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
kernel_name.to_string(),
v.len(),
iterations,
total_time,

View File

@ -33,24 +33,6 @@ kernel void FN_NAME( \
const TYPENAME a = TYPENAME(add); \
output[id] = input[id] * m + a; \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
constant float &add, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME m = TYPENAME(mul); \
const TYPENAME a = TYPENAME(add); \
output[id] = input[get_strided_index(id, num_dims, dims, strides)] * m + a; \
} \
AFFINE(affine_float, float)
AFFINE(affine_half, half)

View File

@ -46,8 +46,6 @@ kernel void FN_NAME_STRIDED( \
} \
CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
#if __METAL_VERSION__ >= 310
#endif

View File

@ -16,16 +16,16 @@ kernel void NAME( \
if (gid >= dst_size) { \
return; \
} \
const size_t id_i = (gid / right_size) % ids_size; \
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
const size_t id_i = gid / right_size / left_size; \
const size_t right_rank_i = gid % right_size; \
const size_t left_rank_i = gid / right_size / ids_size; \
const size_t left_rank_i = gid % left_size; \
/* \
// Force prevent out of bounds indexing \
// since there doesn't seem to be a good way to force crash \
// No need to check for zero we're only allowing unsized. \
*/ \
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i; \
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
const size_t src_i = ((input_i * right_size) + right_rank_i) * left_size + left_rank_i; \
output[gid] = input[src_i]; \
}
@ -75,7 +75,6 @@ kernel void FN_NAME( \
INDEX_OP(is_u32_f32, uint, float)
INDEX_OP(is_u32_f16, uint, half)
#if __METAL_VERSION__ >= 310

View File

@ -1,7 +1,7 @@
#![allow(clippy::too_many_arguments)]
use metal::{
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, Library, MTLSize,
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineDescriptor,
ComputePipelineState, Device, Function, Library, MTLSize,
};
use std::collections::HashMap;
use std::ffi::c_void;
@ -60,8 +60,8 @@ impl<T> EncoderParam for &[T] {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
core::mem::size_of_val(data) as u64,
data.as_ptr() as *const c_void,
(core::mem::size_of::<T>() * data.len()) as u64,
data.as_ptr() as *const T as *const c_void,
);
}
}
@ -112,7 +112,13 @@ macro_rules! ops{
($($name:ident),+) => {
pub mod contiguous {
pub struct Kernel(pub &'static str);
#[derive(Clone, Copy)]
pub struct Kernel(pub(crate) &'static str);
impl std::fmt::Display for Kernel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
$(
pub mod $name {
use super::Kernel;
@ -121,17 +127,16 @@ macro_rules! ops{
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_float");
pub const HALF: Kernel = Kernel("copy_half");
pub const BFLOAT: Kernel = Kernel("copy_bfloat");
pub const U32: Kernel = Kernel("copy_u32");
}
}
pub mod strided {
pub struct Kernel(pub &'static str);
#[derive(Clone, Copy)]
pub struct Kernel(pub(crate) &'static str);
impl std::fmt::Display for Kernel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
$(
pub mod $name {
use super::Kernel;
@ -140,19 +145,12 @@ macro_rules! ops{
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat_strided"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_float_strided");
pub const HALF: Kernel = Kernel("copy_half_strided");
pub const BFLOAT: Kernel = Kernel("copy_bfloat_strided");
pub const U32: Kernel = Kernel("copy_u32_strided");
}
}
};
}
pub mod unary {
ops!(cos, sin, exp, sqr, sqrt, neg, log, gelu, ceil, floor, round, erf, gelu_erf);
ops!(cos, sin, exp, sqr, sqrt, neg, copy);
}
pub mod binary {
ops!(add, sub, mul, div);
@ -172,12 +170,8 @@ pub enum MetalKernelError {
LockError(String),
#[error("Error while loading library: {0}")]
LoadLibraryError(String),
#[error("Error while loading function: {0:?}")]
#[error("Error while loading function: {0}")]
LoadFunctionError(String),
#[error("Failed to create compute function")]
FailedToCreateComputeFunction,
#[error("Failed to create pipeline")]
FailedToCreatePipeline(String),
}
impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
@ -188,22 +182,19 @@ impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
type KernelMap<T> = HashMap<&'static str, T>;
type Libraries = HashMap<Source, Library>;
type Pipelines = KernelMap<ComputePipelineState>;
type Functions = KernelMap<Function>;
#[derive(Debug, Default)]
pub struct Kernels {
libraries: RwLock<Libraries>,
pipelines: RwLock<Pipelines>,
funcs: RwLock<Functions>,
}
impl Kernels {
pub fn new() -> Self {
let libraries = RwLock::new(Libraries::new());
let pipelines = RwLock::new(Pipelines::new());
Self {
libraries,
pipelines,
}
let funcs = RwLock::new(Functions::new());
Self { libraries, funcs }
}
// pub fn init(device: &Device) -> Result<Self, MetalKernelError> {
@ -250,43 +241,22 @@ impl Kernels {
}
}
fn load_function(
pub fn load_function(
&self,
device: &Device,
source: Source,
name: &'static str,
) -> Result<Function, MetalKernelError> {
let func = self
.load_library(device, source)?
.get_function(name, None)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func)
// let mut funcs = self.funcs.write()?;
// if let Some(func) = funcs.get(name) {
// Ok(func.clone())
// } else {
// funcs.insert(name, func.clone());
// Ok(func)
// }
}
pub fn load_pipeline(
&self,
device: &Device,
source: Source,
name: &'static str,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
if let Some(pipeline) = pipelines.get(name) {
Ok(pipeline.clone())
let mut funcs = self.funcs.write()?;
if let Some(func) = funcs.get(name) {
Ok(func.clone())
} else {
let func = self.load_function(device, source, name)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert(name, pipeline.clone());
Ok(pipeline)
let func = self
.load_library(device, source)?
.get_function(name, None)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
funcs.insert(name, func.clone());
Ok(func)
}
}
}
@ -300,7 +270,18 @@ pub fn call_unary_contiguous(
input: &Buffer,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
// println!("Kernel {:?}", kernel_name.0);
// assert_eq!(input.length(), output.length());
let func = kernels.load_function(device, Source::Unary, kernel_name.0)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -323,7 +304,15 @@ pub fn call_unary_strided(
output: &mut Buffer,
output_offset: usize,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let func = kernels.load_function(device, Source::Unary, name.0)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
@ -360,7 +349,17 @@ pub fn call_binary_contiguous(
right: &Buffer,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, kernel_name.0)?;
// println!("Kernel {:?}", kernel_name.0);
// assert_eq!(input.length(), output.length());
let func = kernels.load_function(device, Source::Binary, kernel_name.0)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -388,7 +387,15 @@ pub fn call_binary_strided(
right_offset: usize,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, name.0)?;
let func = kernels.load_function(device, Source::Binary, name.0)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
@ -427,7 +434,17 @@ pub fn call_cast_contiguous(
input: &Buffer,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
// println!("Kernel {:?}", kernel_name.0);
// assert_eq!(input.length(), output.length());
let func = kernels.load_function(device, Source::Cast, kernel_name)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -441,38 +458,6 @@ pub fn call_cast_contiguous(
Ok(())
}
pub fn call_cast_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
shape: &[usize],
input: &Buffer,
input_strides: &[usize],
input_offset: usize,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
// println!("Kernel {:?}", kernel_name.0);
// assert_eq!(input.length(), output.length());
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(length, shape, input_strides, (input, input_offset), output)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_reduce_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
@ -483,7 +468,16 @@ pub fn call_reduce_contiguous(
input: &Buffer,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let func = kernels.load_function(device, Source::Reduce, kernel_name)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
@ -524,7 +518,16 @@ pub fn call_last_softmax(
input: &Buffer,
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let func = kernels.load_function(device, Source::Reduce, kernel_name)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -560,14 +563,21 @@ pub fn call_affine(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &mut Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let func = kernels.load_function(device, Source::Affine, "affine_float")?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -580,45 +590,6 @@ pub fn call_affine(
Ok(())
}
pub fn call_affine_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &mut Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
add,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_where_cond_strided(
device: &Device,
command_buffer: &CommandBufferRef,
@ -633,7 +604,15 @@ pub fn call_where_cond_strided(
(right_stride, right_offset): (&[usize], usize),
output: &mut Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Ternary, name)?;
let func = kernels.load_function(device, Source::Ternary, name)?;
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor.set_compute_function(Some(&func));
let pipeline = device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@ -681,7 +660,10 @@ pub fn call_index_select(
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let func = kernels.load_function(device, Source::Indexing, name)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.unwrap();
let encoder = command_buffer.new_compute_command_encoder();
@ -980,7 +962,6 @@ mod tests {
&device,
command_buffer,
&kernels,
"affine_float",
size,
&input,
&mut output,
@ -994,43 +975,6 @@ mod tests {
output.read_to_vec::<T>(v.len())
}
fn run_affine_strided<T: Clone>(
v: &[T],
shape: &[usize],
strides: &[usize],
mul: f64,
add: f64,
) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let mut output = new_buffer(&device, v);
let size = v.len();
call_affine_strided(
&device,
command_buffer,
&kernels,
"affine_float",
shape,
&input,
strides,
0,
&mut output,
mul as f32,
add as f32,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
output.read_to_vec::<T>(v.len())
}
#[test]
fn affine() {
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
@ -1046,16 +990,6 @@ mod tests {
assert_eq!(result, vec![2.6; 40_000]);
}
// #[test]
// fn affine_strided() {
// let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
// let mul = 1.5;
// let add = 1.1;
// let result = run_affine_(&input, mul, add);
// assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]);
// }
#[test]
fn index_select() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
@ -1074,10 +1008,7 @@ mod tests {
result,
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
}
#[test]
fn index_select_dim1() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [5, 2];
let ids = [0u32, 1, 0];
@ -1085,7 +1016,7 @@ mod tests {
let result = run_index_select(&embedding, &shape, &ids, dim);
assert_eq!(
result,
vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0]
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
}
@ -1133,7 +1064,6 @@ mod tests {
let device = Device::system_default().expect("no device found");
let options = CompileOptions::new();
options.set_fast_math_enabled(true);
let library = device.new_library_with_source(INDEXING, &options).unwrap();
let left = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];

View File

@ -1,7 +1,4 @@
#include <metal_stdlib>
#include <metal_math>
#
using namespace metal;
METAL_FUNC uint get_strided_index(
uint idx,
@ -20,39 +17,10 @@ METAL_FUNC uint get_strided_index(
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
template <typename T> METAL_FUNC T neg(T in){ return -in; }
template <typename T> METAL_FUNC T erf(T in){
float x = (float) in;
// constants
float a1 = 0.254829592;
float a2 = -0.284496736;
float a3 = 1.421413741;
float a4 = -1.453152027;
float a5 = 1.061405429;
float p = 0.3275911;
// Save the sign of x
int sign = 1;
if (x < 0)
sign = -1;
x = fabs(x);
// A&S formula 7.1.26
float t = 1.0/(1.0 + p*x);
float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
return T(sign*y);
}
template <typename T> METAL_FUNC T id(T in){ return in; }
template <typename T> METAL_FUNC T gelu_erf(T x){ return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2); }
template <typename T> METAL_FUNC T gelu(T x){
T x_sq = x * x;
T x_cube = x_sq * x;
T alpha = x + static_cast<T>(0.044715) * x_cube;
T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha);
return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta)));
}
using namespace metal;
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
@ -95,17 +63,8 @@ UNARY_OP(sqr)
UNARY_OP(sqrt)
UNARY_OP(neg)
UNARY_OP(exp)
UNARY_OP(log)
UNARY_OP(gelu)
UNARY_OP(ceil)
UNARY_OP(floor)
UNARY_OP(round)
UNARY_OP(gelu_erf)
UNARY_OP(erf)
UNARY(id, float, copy_float, copy_float_strided)
UNARY(id, half, copy_half, copy_half_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
#if __METAL_VERSION__ >= 310
BFLOAT_UNARY_OP(cos)
@ -114,13 +73,6 @@ BFLOAT_UNARY_OP(sqr)
BFLOAT_UNARY_OP(sqrt)
BFLOAT_UNARY_OP(neg)
BFLOAT_UNARY_OP(exp)
BFLOAT_UNARY_OP(log)
BFLOAT_UNARY_OP(gelu)
BFLOAT_UNARY_OP(ceil)
BFLOAT_UNARY_OP(floor)
BFLOAT_UNARY_OP(round)
BFLOAT_UNARY_OP(gelu_erf)
BFLOAT_UNARY_OP(erf)
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
#endif

View File

@ -6,6 +6,7 @@ use serde::Deserialize;
pub enum Activation {
#[default]
Gelu,
#[serde(rename = "gated-gelu")]
NewGelu,
Relu,
Relu2,

View File

@ -9,6 +9,7 @@ pub struct Embedding {
impl Embedding {
pub fn new(embeddings: Tensor, hidden_size: usize) -> Self {
// todo!("Embedding {embeddings}");
Self {
embeddings,
hidden_size,

View File

@ -21,7 +21,6 @@ rand = { workspace = true }
rayon = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }
serde_plain = { workspace = true }
tracing = { workspace = true }
wav = { workspace = true }

View File

@ -156,6 +156,7 @@ impl CausalSelfAttention {
let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?;
let x0 = x.narrow(D::Minus1, 0, 1)?;
let x1 = x.narrow(D::Minus1, 1, 1)?;
todo!("X {x1}");
let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?;
@ -173,6 +174,7 @@ impl CausalSelfAttention {
let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
let q = self.apply_rotary_emb(&q, index_pos)?;
todo!("X {q}");
let mut k = self.apply_rotary_emb(&k, index_pos)?;
if self.cache.use_kv_cache {
@ -295,6 +297,7 @@ impl Block {
let residual = x;
let x = self.rms_1.forward(x)?;
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
todo!("---X {}", x);
let residual = &x;
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
Ok(x)
@ -327,6 +330,7 @@ impl Llama {
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, _seq_len) = x.dims2()?;
let mut x = self.wte.forward(x)?;
//println!("Embeddings {}", self.wte.embeddings());
for (block_idx, block) in self.blocks.iter().enumerate() {
x = block.forward(&x, index_pos, block_idx)?;
}

View File

@ -29,10 +29,8 @@ pub mod segment_anything;
pub mod stable_diffusion;
pub mod stable_lm;
pub mod t5;
pub mod trocr;
pub mod vgg;
pub mod vit;
pub mod whisper;
pub mod with_tracing;
pub mod wuerstchen;
pub mod yi;

View File

@ -1,7 +1,6 @@
// T5 Text Model, quantized version
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
use crate::models::t5::{deserialize_feed_forward_proj_activation, ActivationWithOptionalGating};
use crate::models::with_tracing::QMatMul;
use crate::quantized_nn::Embedding;
pub use crate::quantized_var_builder::VarBuilder;
@ -55,8 +54,8 @@ pub struct Config {
dropout_rate: f64,
layer_norm_epsilon: f64,
initializer_factor: f64,
#[serde(default, deserialize_with = "deserialize_feed_forward_proj_activation")]
pub feed_forward_proj: ActivationWithOptionalGating,
#[serde(default)]
feed_forward_proj: Activation,
#[serde(default = "default_tie_word_embeddings")]
tie_word_embeddings: bool,
#[serde(default = "default_is_decoder")]
@ -84,10 +83,7 @@ impl Default for Config {
dropout_rate: 0.1,
layer_norm_epsilon: 1e-6,
initializer_factor: 1.0,
feed_forward_proj: ActivationWithOptionalGating {
gated: false,
activation: Activation::Relu,
},
feed_forward_proj: Activation::Relu,
tie_word_embeddings: true,
is_decoder: false,
is_encoder_decoder: true,
@ -180,7 +176,7 @@ impl T5DenseGatedActDense {
wi_0,
wi_1,
wo,
act: cfg.feed_forward_proj.activation,
act: Activation::NewGelu,
span: tracing::span!(tracing::Level::TRACE, "dense-gated-act-dense"),
})
}
@ -209,7 +205,7 @@ impl T5LayerFF {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
let (dense_act, gated_dense_act) = if cfg.feed_forward_proj.gated {
let (dense_act, gated_dense_act) = if cfg.feed_forward_proj == Activation::NewGelu {
(
None,
Some(T5DenseGatedActDense::load(vb.pp("DenseReluDense"), cfg)?),

View File

@ -37,37 +37,6 @@ fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor>
Ok(m)
}
#[derive(Debug, Deserialize, Default, Clone, PartialEq)]
pub struct ActivationWithOptionalGating {
pub gated: bool,
pub activation: candle_nn::Activation,
}
pub fn deserialize_feed_forward_proj_activation<'de, D>(
deserializer: D,
) -> std::result::Result<ActivationWithOptionalGating, D::Error>
where
D: serde::de::Deserializer<'de>,
{
match String::deserialize(deserializer)?.as_str() {
"gated-gelu" => Ok(ActivationWithOptionalGating {
gated: true,
activation: candle_nn::Activation::NewGelu,
}),
"gated-silu" => Ok(ActivationWithOptionalGating {
gated: true,
activation: candle_nn::Activation::Silu,
}),
buf => {
let activation = serde_plain::from_str(buf).map_err(serde::de::Error::custom)?;
Ok(ActivationWithOptionalGating {
gated: false,
activation,
})
}
}
}
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
vocab_size: usize,
@ -83,8 +52,8 @@ pub struct Config {
dropout_rate: f64,
layer_norm_epsilon: f64,
initializer_factor: f64,
#[serde(default, deserialize_with = "deserialize_feed_forward_proj_activation")]
feed_forward_proj: ActivationWithOptionalGating,
#[serde(default)]
feed_forward_proj: Activation,
#[serde(default = "default_tie_word_embeddings")]
tie_word_embeddings: bool,
#[serde(default = "default_is_decoder")]
@ -112,10 +81,7 @@ impl Default for Config {
dropout_rate: 0.1,
layer_norm_epsilon: 1e-6,
initializer_factor: 1.0,
feed_forward_proj: ActivationWithOptionalGating {
gated: false,
activation: Activation::Relu,
},
feed_forward_proj: Activation::Relu,
tie_word_embeddings: true,
is_decoder: false,
is_encoder_decoder: true,
@ -136,10 +102,7 @@ impl Config {
d_model: 768,
dropout_rate: 0.1,
eos_token_id: 1,
feed_forward_proj: ActivationWithOptionalGating {
gated: false,
activation: Activation::Relu,
},
feed_forward_proj: Activation::Relu,
tie_word_embeddings: true,
initializer_factor: 1.0,
is_decoder: false,
@ -239,7 +202,7 @@ impl T5DenseGatedActDense {
wi_0,
wi_1,
wo,
act: cfg.feed_forward_proj.activation,
act: Activation::NewGelu,
span: tracing::span!(tracing::Level::TRACE, "dense-gated-act-dense"),
})
}
@ -268,7 +231,7 @@ impl T5LayerFF {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
let (dense_act, gated_dense_act) = if cfg.feed_forward_proj.gated {
let (dense_act, gated_dense_act) = if cfg.feed_forward_proj == Activation::NewGelu {
(
None,
Some(T5DenseGatedActDense::load(vb.pp("DenseReluDense"), cfg)?),
@ -462,7 +425,7 @@ impl T5Attention {
self.relative_attention_max_distance as f32
/ max_exact as f32,
) * (num_buckets - max_exact) as f32;
u32::min(max_exact + b as u32, num_buckets - 1)
max_exact + b as u32
}
})
.collect::<Vec<u32>>()

View File

@ -1,434 +0,0 @@
use crate::models::vit::{Config, Embeddings, Encoder};
use candle::{Result, Tensor};
use candle_nn::{
embedding, layer_norm, linear_no_bias, Embedding, LayerNorm, Linear, Module, VarBuilder,
};
use serde::Deserialize;
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct TrOCRConfig {
pub vocab_size: usize,
pub d_model: usize,
pub hidden_size: usize,
pub decoder_layers: usize,
pub decoder_attention_heads: usize,
pub decoder_ffn_dim: usize,
pub activation_function: candle_nn::Activation,
pub max_position_embeddings: usize,
pub dropout: f64,
pub attention_dropout: f64,
pub activation_dropout: f64,
pub decoder_start_token_id: u32,
pub init_std: f64,
pub decoder_layerdrop: f64,
pub use_cache: bool,
pub scale_embedding: bool,
pub use_learned_position_embeddings: bool,
pub layernorm_embedding: bool,
pub pad_token_id: usize,
pub bos_token_id: usize,
pub eos_token_id: u32,
pub num_attention_heads: usize,
pub decoder_vocab_size: Option<usize>,
}
impl Default for TrOCRConfig {
fn default() -> Self {
Self {
vocab_size: 50265,
d_model: 1024,
hidden_size: 768,
decoder_layers: 12,
decoder_attention_heads: 16,
decoder_ffn_dim: 4096,
activation_function: candle_nn::Activation::Gelu,
max_position_embeddings: 512,
dropout: 0.1,
attention_dropout: 0.0,
activation_dropout: 0.0,
decoder_start_token_id: 2,
init_std: 0.02,
decoder_layerdrop: 0.0,
use_cache: true,
scale_embedding: false,
use_learned_position_embeddings: true,
layernorm_embedding: true,
pad_token_id: 1,
bos_token_id: 0,
eos_token_id: 2,
num_attention_heads: 12,
decoder_vocab_size: Some(50265),
}
}
}
#[derive(Debug, Clone)]
struct TrOCRLearnedPositionalEmbedding {
offset: usize,
weights: Embedding,
}
impl TrOCRLearnedPositionalEmbedding {
fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
let offset: usize = 2;
let num_embeddings = cfg.max_position_embeddings;
let embedding_dim = cfg.d_model;
let weights = embedding(num_embeddings + offset, embedding_dim, vb)?;
Ok(Self { offset, weights })
}
fn forward(&mut self, input_ids: &Tensor, past_key_values_length: u32) -> Result<Tensor> {
let (b_sz, seq_len) = input_ids.dims2()?;
let mut positions = Tensor::arange(
past_key_values_length,
seq_len as u32 + past_key_values_length,
input_ids.device(),
)?
.expand((b_sz, seq_len))?;
positions =
positions.broadcast_add(&Tensor::new(self.offset as u32, input_ids.device())?)?;
self.weights.forward(&positions)
}
}
#[derive(Debug, Clone)]
struct TrOCRAttention {
head_dim: usize,
num_heads: usize,
is_decoder: bool,
scaling: f64,
k_proj: Linear,
v_proj: Linear,
q_proj: Linear,
out_proj: Linear,
kv_cache: Option<(Tensor, Tensor)>,
}
impl TrOCRAttention {
fn load(
vb: VarBuilder,
cfg: &TrOCRConfig,
kdim: Option<usize>,
vdim: Option<usize>,
) -> Result<Self> {
let embed_dim = cfg.d_model;
let num_heads = cfg.decoder_attention_heads;
let head_dim = embed_dim / num_heads;
let kdim = kdim.unwrap_or(embed_dim);
let vdim = vdim.unwrap_or(embed_dim);
let k_proj = linear_no_bias(kdim, embed_dim, vb.pp("k_proj"))?;
let v_proj = linear_no_bias(vdim, embed_dim, vb.pp("v_proj"))?;
let q_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("q_proj"))?;
let out_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("out_proj"))?;
Ok(Self {
head_dim,
num_heads,
is_decoder: true,
scaling: 1. / (head_dim as f64).sqrt(),
k_proj,
v_proj,
q_proj,
out_proj,
kv_cache: None,
})
}
fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
tensor
.reshape((bsz, (), self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(
&mut self,
xs: &Tensor,
kv_states: Option<&Tensor>,
attn_mask: Option<&Tensor>,
) -> Result<Tensor> {
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
let (key_states, value_states) = match kv_states {
None => {
let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
if self.is_decoder {
let kv_states = match &self.kv_cache {
None => (key_states, value_states),
Some((p_key_states, p_value_states)) => {
let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some(kv_states.clone());
kv_states
} else {
(key_states, value_states)
}
}
Some(kv_states) => {
let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
(key_states, value_states)
}
};
let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
let key_states = key_states.reshape(proj_shape)?;
let value_states = value_states.reshape(proj_shape)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
let attn_weights = match attn_mask {
None => attn_weights,
Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
};
let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_probs.matmul(&value_states)?;
attn_output
.reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
.transpose(1, 2)?
.reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
.apply(&self.out_proj)
}
}
#[derive(Debug, Clone)]
struct TrOCRDecoderLayer {
self_attn: TrOCRAttention,
activation_fn: candle_nn::Activation,
self_attn_layer_norm: LayerNorm,
encoder_attn: TrOCRAttention,
encoder_attn_layer_norm: LayerNorm,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl TrOCRDecoderLayer {
fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
let embed_dim = cfg.d_model;
let self_attn = TrOCRAttention::load(vb.pp("self_attn"), cfg, None, None)?;
let self_attn_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("self_attn_layer_norm"))?;
let encoder_attn = TrOCRAttention::load(
vb.pp("encoder_attn"),
cfg,
Some(cfg.hidden_size),
Some(cfg.hidden_size),
)?;
let encoder_attn_layer_norm =
layer_norm(embed_dim, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
let fc1 = linear_no_bias(embed_dim, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear_no_bias(cfg.decoder_ffn_dim, embed_dim, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("final_layer_norm"))?;
let activation_fn = candle_nn::Activation::Gelu;
Ok(Self {
self_attn,
activation_fn,
self_attn_layer_norm,
encoder_attn,
encoder_attn_layer_norm,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Tensor,
encoder_hidden_states: Option<&Tensor>,
) -> Result<Tensor> {
let residual = xs.clone();
let xs = self.self_attn.forward(xs, None, Some(attention_mask))?;
let xs = (xs + residual)?;
let mut xs = self.self_attn_layer_norm.forward(&xs)?;
if let Some(encoder_hidden_states) = &encoder_hidden_states {
let residual = xs.clone();
let encoder_attention_mask = attention_mask.clone(); // TODO
xs = self.encoder_attn.forward(
&xs,
Some(encoder_hidden_states),
Some(&encoder_attention_mask),
)?;
xs = (xs + residual)?;
xs = self.encoder_attn_layer_norm.forward(&xs)?
}
let residual = xs.clone();
let xs = self.fc1.forward(&xs)?;
let xs = self.activation_fn.forward(&xs)?;
let xs = self.fc2.forward(&xs)?;
let xs = (xs + residual)?;
let xs = self.final_layer_norm.forward(&xs)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRDecoder {
layers: Vec<TrOCRDecoderLayer>,
embed_scale: Option<f64>,
embed_tokens: Embedding,
embed_positions: TrOCRLearnedPositionalEmbedding,
}
impl TrOCRDecoder {
fn new(cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("decoder.model.decoder");
let embed_tokens = embedding(cfg.vocab_size, cfg.d_model, vb.pp("embed_tokens"))?;
let embed_positions = TrOCRLearnedPositionalEmbedding::load(vb.pp("embed_positions"), cfg)?;
let mut layers = Vec::with_capacity(cfg.decoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.decoder_layers {
let layer = TrOCRDecoderLayer::load(vb_l.pp(idx), cfg)?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
layers,
embed_scale,
embed_tokens,
embed_positions,
})
}
pub fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let embed_pos = self.embed_positions.forward(xs, past_kv_len as u32)?;
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attn_mask, encoder_xs)?;
}
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCREncoder {
embeddings: Embeddings,
encoder: Encoder,
layernorm: LayerNorm,
}
impl TrOCREncoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_v = vb.pp("encoder");
let embeddings = Embeddings::new(cfg, false, vb_v.pp("embeddings"))?;
let encoder = Encoder::new(cfg, vb_v.pp("encoder"))?;
let layernorm = layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb_v.pp("layernorm"))?;
Ok(Self {
embeddings,
encoder,
layernorm,
})
}
pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let embedding_output = self.embeddings.forward(xs, None, false)?;
let encoder_outputs = self.encoder.forward(&embedding_output)?;
self.layernorm.forward(&encoder_outputs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRForCausalLM {
decoder: TrOCRDecoder,
output_projection: Linear,
}
impl TrOCRForCausalLM {
pub fn new(decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let decoder = TrOCRDecoder::new(decoder_cfg, vb.clone())?;
let output_projection =
candle_nn::Linear::new(decoder.embed_tokens.embeddings().clone(), None);
Ok(Self {
decoder,
output_projection,
})
}
pub fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let xs = self
.decoder
.forward(xs, encoder_xs, past_kv_len, attn_mask)?;
let xs = xs.apply(&self.output_projection)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRModel {
encoder: TrOCREncoder,
decoder: TrOCRForCausalLM,
}
impl TrOCRModel {
pub fn new(encoder_cfg: &Config, decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let encoder = TrOCREncoder::new(encoder_cfg, vb.clone())?;
let decoder = TrOCRForCausalLM::new(decoder_cfg, vb)?;
Ok(Self { encoder, decoder })
}
pub fn encoder(&mut self) -> &mut TrOCREncoder {
&mut self.encoder
}
pub fn decoder(&mut self) -> &mut TrOCRForCausalLM {
&mut self.decoder
}
pub fn decode(
&mut self,
xs: &Tensor,
encoder_xs: &Tensor,
past_kv_len: usize,
) -> Result<Tensor> {
let seq_len = xs.dim(1)?;
let mask: Vec<_> = (0..seq_len)
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
self.decoder
.forward(xs, Some(encoder_xs), past_kv_len, &mask)
}
}

View File

@ -6,16 +6,16 @@ use candle_nn::{layer_norm, LayerNorm, VarBuilder};
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/configuration_vit.py
#[derive(Debug, Clone)]
pub struct Config {
pub hidden_size: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub intermediate_size: usize,
pub hidden_act: candle_nn::Activation,
pub layer_norm_eps: f64,
pub image_size: usize,
pub patch_size: usize,
pub num_channels: usize,
pub qkv_bias: bool,
hidden_size: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
intermediate_size: usize,
hidden_act: candle_nn::Activation,
layer_norm_eps: f64,
image_size: usize,
patch_size: usize,
num_channels: usize,
qkv_bias: bool,
}
impl Config {
@ -34,21 +34,6 @@ impl Config {
qkv_bias: true,
}
}
pub fn microsoft_trocr_base_handwritten() -> Self {
Self {
hidden_size: 768,
num_hidden_layers: 12,
num_attention_heads: 12,
intermediate_size: 3072,
hidden_act: candle_nn::Activation::Gelu,
layer_norm_eps: 1e-12,
image_size: 384,
patch_size: 16,
num_channels: 3,
qkv_bias: false,
}
}
}
#[derive(Debug, Clone)]
@ -91,7 +76,7 @@ impl Module for PatchEmbeddings {
}
#[derive(Debug, Clone)]
pub struct Embeddings {
struct Embeddings {
cls_token: Tensor,
mask_token: Option<Tensor>,
patch_embeddings: PatchEmbeddings,
@ -100,7 +85,7 @@ pub struct Embeddings {
}
impl Embeddings {
pub fn new(cfg: &Config, use_mask_token: bool, vb: VarBuilder) -> Result<Self> {
fn new(cfg: &Config, use_mask_token: bool, vb: VarBuilder) -> Result<Self> {
let hidden_size = cfg.hidden_size;
let cls_token = vb.get((1, 1, hidden_size), "cls_token")?;
let mask_token = if use_mask_token {
@ -130,7 +115,7 @@ impl Embeddings {
todo!()
}
pub fn forward(
fn forward(
&self,
pixel_values: &Tensor,
bool_masked_pos: Option<&Tensor>,
@ -339,12 +324,12 @@ impl Module for Layer {
}
#[derive(Debug, Clone)]
pub struct Encoder {
struct Encoder {
layers: Vec<Layer>,
}
impl Encoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("layer");
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
for i in 0..cfg.num_hidden_layers {

View File

@ -1,377 +0,0 @@
/// https://huggingface.co/01-ai/Yi-6B/blob/main/modeling_yi.py
use crate::models::with_tracing::{linear_no_bias, Linear};
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
use std::sync::Arc;
#[derive(Debug, Clone, PartialEq)]
pub struct Config {
pub(crate) vocab_size: usize,
pub(crate) hidden_size: usize,
pub(crate) intermediate_size: usize,
pub(crate) num_hidden_layers: usize,
pub(crate) num_attention_heads: usize,
pub(crate) num_key_value_heads: usize,
pub(crate) hidden_act: Activation,
pub(crate) max_position_embeddings: usize,
pub(crate) rms_norm_eps: f64,
pub(crate) rope_theta: f64,
}
impl Config {
pub fn config_6b() -> Self {
Self {
vocab_size: 64000,
hidden_size: 4096,
intermediate_size: 11008,
num_hidden_layers: 32,
num_attention_heads: 32,
num_key_value_heads: 4,
hidden_act: Activation::Silu,
max_position_embeddings: 4096,
rms_norm_eps: 1e-5,
rope_theta: 5_000_000.,
}
}
pub fn config_34b() -> Self {
Self {
vocab_size: 64000,
hidden_size: 7168,
intermediate_size: 20480,
num_hidden_layers: 60,
num_attention_heads: 56,
num_key_value_heads: 8,
hidden_act: Activation::Silu,
max_position_embeddings: 4096,
rms_norm_eps: 1e-5,
rope_theta: 5_000_000.,
}
}
}
#[derive(Debug, Clone)]
struct RmsNorm {
inner: candle_nn::RmsNorm,
span: tracing::Span,
}
impl RmsNorm {
fn new(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
let inner = candle_nn::rms_norm(size, eps, vb)?;
Ok(Self { inner, span })
}
}
impl Module for RmsNorm {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(x)
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
let last_dim = xs.dim(D::Minus1)?;
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
}
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.hidden_size / cfg.num_attention_heads;
let max_seq_len = cfg.max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
seqlen_offset: usize,
) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
gate_proj: Linear,
up_proj: Linear,
down_proj: Linear,
act_fn: Activation,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let intermediate_sz = cfg.intermediate_size;
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn: cfg.hidden_act,
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
let rhs = xs.apply(&self.up_proj)?;
(lhs * rhs)?.apply(&self.down_proj)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
hidden_size: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
}
impl Attention {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads;
let num_kv_groups = num_heads / num_kv_heads;
let head_dim = hidden_sz / num_heads;
let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
num_heads,
num_kv_heads,
num_kv_groups,
head_dim,
hidden_size: hidden_sz,
rotary_emb,
kv_cache: None,
})
}
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
let n_rep = self.num_kv_groups;
if n_rep == 1 {
Ok(xs)
} else {
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
xs.unsqueeze(2)?
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
}
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (b_sz, q_len, _) = xs.dims3()?;
let query_states = self.q_proj.forward(xs)?;
let key_states = self.k_proj.forward(xs)?;
let value_states = self.v_proj.forward(xs)?;
let query_states = query_states
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let key_states = key_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let value_states = value_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let (query_states, key_states) =
self.rotary_emb
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
let key_states = self.repeat_kv(key_states)?;
let value_states = self.repeat_kv(value_states)?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.hidden_size))?
.apply(&self.o_proj)
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
mlp: MLP,
ln1: RmsNorm,
ln2: RmsNorm,
}
impl DecoderLayer {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let ln1 = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("ln1"))?;
let ln2 = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("ln2"))?;
Ok(Self {
self_attn,
mlp,
ln1,
ln2,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let residual = xs;
let xs = self.ln1.forward(xs)?;
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = xs.apply(&self.ln2)?.apply(&self.mlp)?;
residual + xs
}
}
#[derive(Debug, Clone)]
pub struct Model {
embed_tokens: candle_nn::Embedding,
layers: Vec<DecoderLayer>,
norm: RmsNorm,
lm_head: Linear,
device: Device,
dtype: DType,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
fn prepare_decoder_attention_mask(
&self,
b_size: usize,
tgt_len: usize,
seqlen_offset: usize,
) -> Result<Tensor> {
// Sliding window mask?
let mask: Vec<_> = (0..tgt_len)
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
let mask = if seqlen_offset > 0 {
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
.to_dtype(self.dtype)
}
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (b_size, seq_len) = input_ids.dims2()?;
let attention_mask = if seq_len <= 1 {
None
} else {
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
Some(mask)
};
let mut xs = self.embed_tokens.forward(input_ids)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}
}