Compare commits

..

1 Commits

Author SHA1 Message Date
20da4f44ef Enable the test for meshgrid + fix the implementation. 2023-10-25 13:38:42 +01:00
339 changed files with 3215 additions and 37581 deletions

View File

@ -1,7 +0,0 @@
version: 2
updates:
- package-ecosystem: "cargo"
directory: "/"
schedule:
interval: "weekly"
open-pull-requests-limit: 5

View File

@ -5,15 +5,47 @@ on:
pull_request:
jobs:
start-runner:
name: Start self-hosted EC2 runner
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
EC2_AMI_ID: ami-03cfed9ea28f4b002
EC2_INSTANCE_TYPE: g5.xlarge
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
EC2_SECURITY_GROUP: sg-030175c435ac141d6
outputs:
label: ${{ steps.start-ec2-runner.outputs.label }}
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Start EC2 runner
id: start-ec2-runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: start
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
ec2-image-id: ${{ env.EC2_AMI_ID }}
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
subnet-id: ${{ env.EC2_SUBNET_ID }}
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
aws-resource-tags: > # optional, requires additional permissions
[
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
]
test-cuda:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
options: --gpus 0
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
needs: start-runner # required to start the main job when the runner is ready
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
permissions:
contents: write
packages: write
@ -24,10 +56,32 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Install dependencies
run: apt-get update && apt install curl build-essential libssl-dev protobuf-compiler pkg-config -y
- name: Install Rust Stable
uses: actions-rust-lang/setup-rust-toolchain@v1
run: curl https://sh.rustup.rs -sSf | sh -s -- -y
- uses: Swatinem/rust-cache@v2
- run: apt-get update -y && apt-get install libssl-dev -y
- name: Test (cuda)
run: cargo test --features cuda
run: PATH=$PATH:/usr/local/cuda-11.8/bin/ /root/.cargo/bin/cargo test --features cuda
stop-runner:
name: Stop self-hosted EC2 runner
needs:
- start-runner
- test-cuda
runs-on: ubuntu-latest
env:
AWS_REGION: us-east-1
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Stop EC2 runner
uses: philschmid/philschmid-ec2-github-runner@main
with:
mode: stop
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
label: ${{ needs.start-runner.outputs.label }}
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}

Binary file not shown.

View File

@ -39,12 +39,6 @@ jobs:
path: ~/.cargo/registry
key: ${{ runner.os }}-cargo-registry-${{ hashFiles('**/Cargo.lock') }}
- name: Install Protoc
uses: arduino/setup-protoc@v2
with:
version: "25.0"
repo-token: ${{ secrets.GITHUB_TOKEN }}
- name: Install
working-directory: ./candle-pyo3
run: |
@ -52,7 +46,7 @@ jobs:
source .env/bin/activate
pip install -U pip
pip install pytest maturin black
python -m maturin develop -r --features onnx
python -m maturin develop -r
- name: Check style
working-directory: ./candle-pyo3

View File

@ -63,7 +63,7 @@ This documents the main changes to the `candle` crate.
[760](https://github.com/huggingface/candle/pull/760).
- Add the Segment-Anything Model (SAM) as an example
[773](https://github.com/huggingface/candle/pull/773).
- TinyViT backbone for the segment anything example
- TinyViT backbone for the segemnt anything example
[787](https://github.com/huggingface/candle/pull/787).
- Shape with holes support
[770](https://github.com/huggingface/candle/pull/770).

View File

@ -7,19 +7,20 @@ members = [
"candle-nn",
"candle-pyo3",
"candle-transformers",
"candle-wasm-examples/*",
"candle-wasm-examples/llama2-c",
"candle-wasm-examples/segment-anything",
"candle-wasm-examples/whisper",
"candle-wasm-examples/yolo",
"candle-wasm-examples/bert",
"candle-wasm-examples/phi",
"candle-wasm-examples/t5",
"candle-wasm-tests",
]
exclude = [
"candle-flash-attn",
"candle-kernels",
"candle-metal-kernels",
"candle-onnx",
]
exclude = ["candle-flash-attn", "candle-kernels"]
resolver = "2"
[workspace.package]
version = "0.4.0"
version = "0.3.0"
edition = "2021"
description = "Minimalist ML framework."
repository = "https://github.com/huggingface/candle"
@ -31,18 +32,9 @@ license = "MIT OR Apache-2.0"
accelerate-src = { version = "0.3.2" }
anyhow = { version = "1", features = ["backtrace"] }
byteorder = "1.4.3"
candle = { path = "./candle-core", package = "candle-core", version = "0.4.0" }
candle-datasets = { path = "./candle-datasets", version = "0.4.0" }
candle-flash-attn = { path = "./candle-flash-attn", version = "0.4.0" }
candle-kernels = { path = "./candle-kernels", version = "0.4.0" }
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.4.0" }
candle-nn = { path = "./candle-nn", version = "0.4.0" }
candle-onnx = { path = "./candle-onnx", version = "0.4.0" }
candle-transformers = { path = "./candle-transformers", version = "0.4.0" }
clap = { version = "4.2.4", features = ["derive"] }
criterion = { version = "0.5.1", default-features=false }
cudarc = { version = "0.10.0", features = ["f16"] }
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
cudarc = { version = "0.9.14", features = ["f16"] }
gemm = { version = "0.16.6", features = ["wasm-simd128-enable"] }
hf-hub = "0.3.0"
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
@ -50,27 +42,25 @@ imageproc = { version = "0.23.0", default-features = false }
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
libc = { version = "0.2.147" }
log = "0.4"
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
memmap2 = { version = "0.7.1", features = ["stable_deref_trait"] }
num_cpus = "1.15.0"
num-traits = "0.2.15"
parquet = { version = "50.0.0" }
parquet = { version = "45.0.0" }
rand = "0.8.5"
rand_distr = "0.4.3"
rayon = "1.7.0"
rusttype = { version = "0.9", default-features = false }
safetensors = "0.4.1"
safetensors = "0.3.1"
serde = { version = "1.0.171", features = ["derive"] }
serde_plain = "1.0.2"
serde_json = "1.0.99"
thiserror = "1"
tokenizers = { version = "0.15.0", default-features = false }
tokenizers = { version = "0.13.4", default-features = false }
tracing = "0.1.37"
tracing-chrome = "0.7.1"
tracing-subscriber = "0.3.7"
wav = "1.0.0"
yoke = { version = "0.7.2", features = ["derive"] }
zip = { version = "0.6.6", default-features = false }
metal = { version = "0.27.0", features = ["mps"]}
[profile.release-with-debug]
inherits = "release"

View File

@ -51,36 +51,23 @@ For more advanced examples, please have a look at the following section.
These online demos run entirely in your browser:
- [yolo](https://huggingface.co/spaces/lmz/candle-yolo): pose estimation and
object recognition.
- [whisper](https://huggingface.co/spaces/lmz/candle-whisper): speech recognition.
- [whisper](https://huggingface.co/spaces/lmz/candle-whisper): text to speech.
- [LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2): text generation.
- [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation.
- [Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
- [Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
- [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation.
- [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
We also provide a some command line based examples using state of the art models:
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
the SOLAR-10.7B variant.
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM.
- [Falcon](./candle-examples/examples/falcon/): general LLM.
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
- [Phi-v1 and Phi-v1.5](./candle-examples/examples/phi/): a 1.3b general LLM with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
pre-trained on 1T tokens of English and code datasets. Also supports
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
- [Mamba](./candle-examples/examples/mamba/): an inference only
implementation of the Mamba state space model.
pre-trained on 1T tokens of English and code datasets.
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
better performance than all publicly available 13b models as of 2023-09-28.
- [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of
experts 8x7b general LLM with better performance than a Llama 2 70B model with
much faster inference.
performance larger than all publicly available 13b models as of 2023-09-28.
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
- [RWKV v5](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
performance.
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
(English/Chinese) general LLMs with 6b and 34b parameters.
- [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of
the LLaMA model using the same quantization techniques as
[llama.cpp](https://github.com/ggerganov/llama.cpp).
@ -88,7 +75,7 @@ We also provide a some command line based examples using state of the art models
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/quantized/assets/aoc.gif" width="600">
- [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to
image generative model, support for the 1.5, 2.1, SDXL 1.0 and Turbo versions.
image generative model, support for the 1.5, 2.1, and SDXL 1.0 versions.
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg" width="200">
@ -108,19 +95,12 @@ We also provide a some command line based examples using state of the art models
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/): useful for sentence embeddings.
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
using self-supervision (can be used for imagenet classification, depth
evaluation, segmentation).
- [VGG](./candle-examples/examples/vgg/),
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
generate captions for an image.
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
dedicated submodels for hand-writing and printed recognition.
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
model, generates the translated text from the input text.
Run them using commands like:
```
@ -136,7 +116,7 @@ There are also some wasm examples for whisper and
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
[llama2](https://huggingface.co/spaces/lmz/candle-llama2),
[T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm),
[Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm),
[Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm),
[Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm).
For LLaMA2, run the following command to retrieve the weight files and start a
@ -153,20 +133,10 @@ And then head over to
<!--- ANCHOR: useful_libraries --->
## Useful External Resources
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): A
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): a
very detailed tutorial showing how to convert a PyTorch model to Candle.
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): Efficient and
ergonomic LoRA implementation for Candle. `candle-lora` has
out-of-the-box LoRA support for many models from Candle, which can be found
[here](https://github.com/EricLBuehler/candle-lora/tree/master/candle-lora-transformers/examples).
- [`optimisers`](https://github.com/KGrewal1/optimisers): A collection of optimisers
including SGD with momentum, AdaGrad, AdaDelta, AdaMax, NAdam, RAdam, and RMSprop.
- [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and
serving local LLMs including an OpenAI compatible API server.
- [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle.
- [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more.
- [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle.
- [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem.
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): a LoRA implementation
that conforms to the official `peft` implementation.
If you have an addition to this list, please submit a pull request.
@ -185,38 +155,23 @@ If you have an addition to this list, please submit a pull request.
- WASM support, run your models in a browser.
- Included models.
- Language Models.
- LLaMA v1 and v2 with variants such as SOLAR-10.7B.
- LLaMA v1 and v2.
- Falcon.
- StarCoder.
- Phi 1, 1.5, and 2.
- Mamba, Minimal Mamba
- Phi v1.5.
- Mistral 7b v0.1.
- Mixtral 8x7b v0.1.
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
- StableLM-3B-4E1T.
- Replit-code-v1.5-3B.
- T5.
- Bert.
- Yi-6B and Yi-34B.
- Qwen1.5.
- RWKV.
- Quantized LLMs.
- Llama 7b, 13b, 70b, as well as the chat and code variants.
- Mistral 7b, and 7b instruct.
- Mixtral 8x7b.
- Zephyr 7b a and b (Mistral-7b based).
- OpenChat 3.5 (Mistral-7b based).
- Text to text.
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
- Marian MT (Machine Translation).
- Whisper (multi-lingual support).
- Text to image.
- Stable Diffusion v1.5, v2.1, XL v1.0.
- Wurstchen v2.
- Image to text.
- BLIP.
- TrOCR.
- Computer Vision Models.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
ConvNeXTv2.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
@ -255,7 +210,6 @@ Cheatsheet:
- [candle-datasets](./candle-datasets/): Datasets and data loaders.
- [candle-transformers](./candle-transformers): transformers-related utilities.
- [candle-flash-attn](./candle-flash-attn): Flash attention v2 layer.
- [candle-onnx](./candle-onnx/): ONNX model evaluation.
## FAQ

View File

@ -11,11 +11,11 @@ readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
candle = { workspace = true }
candle-datasets = { workspace = true }
candle-nn = { workspace = true }
candle-transformers = { workspace = true }
candle-flash-attn = { workspace = true, optional = true }
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
candle-datasets = { path = "../candle-datasets", version = "0.3.0" }
candle-nn = { path = "../candle-nn", version = "0.3.0" }
candle-transformers = { path = "../candle-transformers", version = "0.3.0" }
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.0", optional = true }
safetensors = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }

View File

@ -28,7 +28,6 @@ let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap()
#[rustfmt::skip]
#[test]
fn book_hub_2() {
{
// ANCHOR: book_hub_2
use candle::Device;
use hf_hub::api::sync::Api;
@ -46,10 +45,9 @@ let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap()
assert_eq!(weights.len(), 206);
}
// #[rustfmt::skip]
// #[test]
// fn book_hub_3() {
{
#[rustfmt::skip]
#[test]
fn book_hub_3() {
// ANCHOR: book_hub_3
use candle::{DType, Device, Tensor};
use hf_hub::api::sync::Api;
@ -104,7 +102,6 @@ let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).un
assert_eq!(view.shape(), &[768, 768]);
assert_eq!(tp_tensor.dims(), &[192, 768]);
}
}
#[rustfmt::skip]
#[test]

View File

@ -12,9 +12,7 @@ readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
byteorder = { workspace = true }
candle-kernels = { workspace = true, optional = true }
candle-metal-kernels = { workspace = true, optional = true }
metal = { workspace = true, optional = true}
candle-kernels = { path = "../candle-kernels", version = "0.3.0", optional = true }
cudarc = { workspace = true, optional = true }
gemm = { workspace = true }
half = { workspace = true }
@ -34,8 +32,6 @@ zip = { workspace = true }
[dev-dependencies]
anyhow = { workspace = true }
clap = { workspace = true }
criterion = { workspace = true }
[features]
default = []
@ -43,8 +39,3 @@ cuda = ["cudarc", "dep:candle-kernels"]
cudnn = ["cuda", "cudarc/cudnn"]
mkl = ["dep:libc", "dep:intel-mkl-src"]
accelerate = ["dep:libc", "dep:accelerate-src"]
metal = ["dep:metal", "dep:candle-metal-kernels"]
[[bench]]
name = "bench_main"
harness = false

View File

@ -1,9 +0,0 @@
mod benchmarks;
use criterion::criterion_main;
criterion_main!(
benchmarks::affine::benches,
benchmarks::matmul::benches,
benchmarks::random::benches,
benchmarks::where_cond::benches
);

View File

@ -1,43 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor) {
a.affine(12.34, 56.78).unwrap();
}
fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let b = 1;
let m = 1024;
let k = 1024;
let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
let flops = b * m * k * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_affine_benchmark(c, &device, DType::F32, "affine_f32");
run_affine_benchmark(c, &device, DType::F16, "affine_f16");
run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,44 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor, b: &Tensor) {
a.matmul(&b.t().unwrap()).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device) {
let b = 1;
let m = 1;
let n = 2048;
let k = 2048;
let dtype = DType::F32;
let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap();
let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap();
let flops = b * m * n * k;
let mut group = c.benchmark_group(device.bench_name("matmul"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&lhs), black_box(&rhs));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_bench(c, &device);
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,66 +0,0 @@
pub(crate) mod affine;
pub(crate) mod matmul;
pub(crate) mod random;
pub(crate) mod where_cond;
use candle_core::{Device, Result};
pub(crate) trait BenchDevice {
fn sync(&self) -> Result<()>;
fn bench_name<S: Into<String>>(&self, name: S) -> String;
}
impl BenchDevice for Device {
fn sync(&self) -> Result<()> {
match self {
Device::Cpu => Ok(()),
Device::Cuda(device) => {
#[cfg(feature = "cuda")]
return Ok(device.synchronize()?);
#[cfg(not(feature = "cuda"))]
panic!("Cuda device without cuda feature enabled: {:?}", device)
}
Device::Metal(device) => {
#[cfg(feature = "metal")]
return Ok(device.wait_until_completed()?);
#[cfg(not(feature = "metal"))]
panic!("Metal device without metal feature enabled: {:?}", device)
}
}
}
fn bench_name<S: Into<String>>(&self, name: S) -> String {
match self {
Device::Cpu => {
let cpu_type = if cfg!(feature = "accelerate") {
"accelerate"
} else if cfg!(feature = "mkl") {
"mkl"
} else {
"cpu"
};
format!("{}_{}", cpu_type, name.into())
}
Device::Cuda(_) => format!("cuda_{}", name.into()),
Device::Metal(_) => format!("metal_{}", name.into()),
}
}
}
struct BenchDeviceHandler {
devices: Vec<Device>,
}
impl BenchDeviceHandler {
pub fn new() -> Result<Self> {
let mut devices = Vec::new();
if cfg!(feature = "metal") {
devices.push(Device::new_metal(0)?);
} else if cfg!(feature = "cuda") {
devices.push(Device::new_cuda(0)?);
}
devices.push(Device::Cpu);
Ok(Self { devices })
}
}

View File

@ -1,63 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn rand_uniform(a: &Tensor) {
a.rand_like(-1.0, 123.0).unwrap();
}
fn rand_normal(a: &Tensor) {
a.randn_like(100.0, 15.0).unwrap();
}
fn run_random_bench(c: &mut Criterion, device: &Device) {
let b = 1;
let rows = 2048;
let cols = 2048;
let dtype = DType::F32;
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
let flops = b * rows * cols * dtype.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name("random_uniform"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |benches| {
benches.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
rand_uniform(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
let mut group = c.benchmark_group(device.bench_name("random_normal"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |benches| {
benches.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
rand_normal(black_box(&tensor));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_random_bench(c, &device);
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,64 +0,0 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
a.where_cond(b, c).unwrap();
}
const fn create_cond_arr<const N: usize>() -> [u8; N] {
let mut arr = [0u8; N];
let mut i = 0;
while i < N {
arr[i] = (i % 2) as u8;
i += 1;
}
arr
}
const B: usize = 1;
const M: usize = 1024;
const K: usize = 1024;
const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(
black_box(&tensor),
black_box(&on_true),
black_box(&on_false),
);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let device = BenchDeviceHandler::new().unwrap();
for d in device.devices {
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -8,10 +8,11 @@ use anyhow::Result;
use candle_core::{Device, Tensor};
fn main() -> Result<()> {
let a = Tensor::new(&[[0.0f32, 1.0, 2.0], [3.0, 4.0, 5.0]], &Device::Cpu)?;
let b = Tensor::new(&[[88.0f32, 99.0]], &Device::Cpu)?;
let new_a = a.slice_scatter(&b, 1, 2)?;
assert_eq!(a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
assert_eq!(new_a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
let start = std::time::Instant::now();
let res = inp.conv2d(&w, 0, 1, 1, 1)?;
println!("{:?}", start.elapsed());
println!("{res:?}");
Ok(())
}

View File

@ -1,5 +1,5 @@
use candle_core::quantized::{gguf_file, GgmlDType, QTensor};
use candle_core::{Device, Result};
use candle_core::quantized::{gguf_file, k_quants, QTensor};
use candle_core::{Device, Result, Tensor};
use clap::{Parser, Subcommand, ValueEnum};
use rayon::prelude::*;
@ -11,7 +11,12 @@ enum QuantizationMode {
}
impl QuantizationMode {
fn quantize(&self, name: &str, tensor: QTensor, dtype: GgmlDType) -> Result<QTensor> {
fn quantize(
&self,
name: &str,
tensor: QTensor,
default: fn(&Tensor) -> Result<QTensor>,
) -> Result<QTensor> {
match self {
Self::Llama => {
// Same behavior as the llama.cpp quantization.
@ -19,9 +24,9 @@ impl QuantizationMode {
if should_quantize {
let tensor = tensor.dequantize(&Device::Cpu)?;
if name == "output.weight" {
QTensor::quantize(&tensor, GgmlDType::Q6K)
QTensor::quantize::<k_quants::BlockQ6K>(&tensor)
} else {
QTensor::quantize(&tensor, dtype)
default(&tensor)
}
} else {
Ok(tensor)
@ -55,27 +60,6 @@ enum Quantization {
F32,
}
impl Quantization {
fn dtype(&self) -> GgmlDType {
match self {
Quantization::Q4_0 => GgmlDType::Q4_0,
Quantization::Q4_1 => GgmlDType::Q4_1,
Quantization::Q5_0 => GgmlDType::Q5_0,
Quantization::Q5_1 => GgmlDType::Q5_1,
Quantization::Q8_0 => GgmlDType::Q8_0,
Quantization::Q8_1 => GgmlDType::Q8_1,
Quantization::Q2k => GgmlDType::Q2K,
Quantization::Q3k => GgmlDType::Q3K,
Quantization::Q4k => GgmlDType::Q4K,
Quantization::Q5k => GgmlDType::Q5K,
Quantization::Q6k => GgmlDType::Q6K,
Quantization::Q8k => GgmlDType::Q8K,
Quantization::F16 => GgmlDType::F16,
Quantization::F32 => GgmlDType::F32,
}
}
}
#[derive(ValueEnum, Debug, Clone)]
enum Format {
Safetensors,
@ -118,7 +102,7 @@ enum Command {
},
Quantize {
/// The input file(s), in safetensors format.
/// The input file, in gguf format.
in_file: Vec<std::path::PathBuf>,
/// The output file, in gguf format.
@ -133,15 +117,6 @@ enum Command {
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
mode: QuantizationMode,
},
Dequantize {
/// The input file, in gguf format.
in_file: std::path::PathBuf,
/// The output file, in safetensors format.
#[arg(long)]
out_file: std::path::PathBuf,
},
}
#[derive(Parser, Debug, Clone)]
@ -150,12 +125,7 @@ struct Args {
command: Command,
}
fn run_ls(
file: &std::path::PathBuf,
format: Option<Format>,
verbose: bool,
device: &Device,
) -> Result<()> {
fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> Result<()> {
let format = match format {
Some(format) => format,
None => match Format::infer(file) {
@ -196,7 +166,7 @@ fn run_ls(
}
}
Format::Pth => {
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose, None)?;
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose)?;
tensors.sort_by(|a, b| a.name.cmp(&b.name));
for tensor_info in tensors.iter() {
println!(
@ -221,7 +191,7 @@ fn run_ls(
}
Format::Ggml => {
let mut file = std::fs::File::open(file)?;
let content = candle_core::quantized::ggml_file::Content::read(&mut file, device)?;
let content = candle_core::quantized::ggml_file::Content::read(&mut file)?;
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
tensors.sort_by(|a, b| a.0.cmp(&b.0));
for (name, qtensor) in tensors.iter() {
@ -262,8 +232,37 @@ fn run_quantize_safetensors(
}
println!("tensors: {}", tensors.len());
let dtype = q.dtype();
let block_size = dtype.block_size();
let quantize_fn = match q {
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
Quantization::F16 => QTensor::quantize::<half::f16>,
Quantization::F32 => QTensor::quantize::<f32>,
};
let block_size = match q {
Quantization::Q4_0 => k_quants::QK4_0,
Quantization::Q4_1 => k_quants::QK4_1,
Quantization::Q5_0 => k_quants::QK5_0,
Quantization::Q5_1 => k_quants::QK5_1,
Quantization::Q8_0 => k_quants::QK8_0,
Quantization::Q8_1 => k_quants::QK8_1,
Quantization::Q2k
| Quantization::Q3k
| Quantization::Q4k
| Quantization::Q5k
| Quantization::Q6k
| Quantization::Q8k => k_quants::QK_K,
Quantization::F16 | Quantization::F32 => 1,
};
let qtensors = tensors
.into_par_iter()
@ -271,9 +270,9 @@ fn run_quantize_safetensors(
let should_quantize = tensor.rank() == 2 && tensor.dim(1)? % block_size == 0;
println!(" quantizing {name} {tensor:?} {should_quantize}");
let tensor = if should_quantize {
QTensor::quantize(&tensor, dtype)?
quantize_fn(&tensor)?
} else {
QTensor::quantize(&tensor, GgmlDType::F32)?
QTensor::quantize::<f32>(&tensor)?
};
Ok((name, tensor))
})
@ -286,29 +285,11 @@ fn run_quantize_safetensors(
Ok(())
}
fn run_dequantize(
in_file: std::path::PathBuf,
out_file: std::path::PathBuf,
device: &Device,
) -> Result<()> {
let mut in_file = std::fs::File::open(in_file)?;
let content = gguf_file::Content::read(&mut in_file)?;
let mut tensors = std::collections::HashMap::new();
for (tensor_name, _) in content.tensor_infos.iter() {
let tensor = content.tensor(&mut in_file, tensor_name, device)?;
let tensor = tensor.dequantize(device)?;
tensors.insert(tensor_name.to_string(), tensor);
}
candle_core::safetensors::save(&tensors, out_file)?;
Ok(())
}
fn run_quantize(
in_files: &[std::path::PathBuf],
out_file: std::path::PathBuf,
q: Quantization,
qmode: QuantizationMode,
device: &Device,
) -> Result<()> {
if in_files.is_empty() {
candle_core::bail!("no specified input files")
@ -334,15 +315,31 @@ fn run_quantize(
let content = gguf_file::Content::read(&mut in_)?;
println!("tensors: {}", content.tensor_infos.len());
let dtype = q.dtype();
let quantize_fn = match q {
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
Quantization::F16 => QTensor::quantize::<half::f16>,
Quantization::F32 => QTensor::quantize::<f32>,
};
let qtensors = content
.tensor_infos
.par_iter()
.map(|(name, _)| {
println!(" quantizing {name}");
let mut in_file = std::fs::File::open(&in_files[0])?;
let tensor = content.tensor(&mut in_file, name, device)?;
let tensor = qmode.quantize(name, tensor, dtype)?;
let tensor = content.tensor(&mut in_file, name)?;
let tensor = qmode.quantize(name, tensor, quantize_fn)?;
Ok((name, tensor))
})
.collect::<Result<Vec<_>>>()?;
@ -362,7 +359,6 @@ fn run_quantize(
fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = Device::Cpu;
match args.command {
Command::Ls {
files,
@ -374,7 +370,7 @@ fn main() -> anyhow::Result<()> {
if multiple_files {
println!("--- {file:?} ---");
}
run_ls(file, format.clone(), verbose, &device)?
run_ls(file, format.clone(), verbose)?
}
}
Command::Quantize {
@ -382,8 +378,7 @@ fn main() -> anyhow::Result<()> {
out_file,
quantization,
mode,
} => run_quantize(&in_file, out_file, quantization, mode, &device)?,
Command::Dequantize { in_file, out_file } => run_dequantize(in_file, out_file, &device)?,
} => run_quantize(&in_file, out_file, quantization, mode)?,
}
Ok(())
}

View File

@ -380,16 +380,6 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_exp_inplace(y: &mut [f32]) {
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vd_exp_inplace(y: &mut [f64]) {
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
@ -412,28 +402,6 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
}
}
#[inline]
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vs_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
#[inline]
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vd_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
macro_rules! binary_op {
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
#[inline]

View File

@ -39,14 +39,6 @@ pub trait BackendStorage: Sized {
_params: &crate::conv::ParamsConv1D,
) -> Result<Self>;
fn conv_transpose1d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self>;
fn conv2d(
&self,
_l: &Layout,

View File

@ -15,17 +15,6 @@ fn broadcast_back(arg: &Tensor, node: &Tensor, reduced_dims: &[usize]) -> Result
}
}
thread_local! {
static CANDLE_GRAD_DO_NOT_DETACH: bool = {
match std::env::var("CANDLE_GRAD_DO_NOT_DETACH") {
Ok(s) => {
!s.is_empty() && s != "0"
},
Err(_) => false,
}
}
}
impl Tensor {
/// Return all the nodes that lead to this value in a topologically sorted vec, the first
/// elements having dependencies on the latter ones, e.g. the first element if any is the
@ -68,11 +57,6 @@ impl Tensor {
kernel: rhs,
..
}
| Op::ConvTranspose1D {
arg: lhs,
kernel: rhs,
..
}
| Op::Conv2D {
arg: lhs,
kernel: rhs,
@ -114,7 +98,7 @@ impl Tensor {
| Op::Unary(_node, UnaryOp::Round) => nodes,
Op::Reshape(node)
| Op::UpsampleNearest1D(node)
| Op::UpsampleNearest2D { arg: node, .. }
| Op::UpsampleNearest2D(node)
| Op::AvgPool2D { arg: node, .. }
| Op::MaxPool2D { arg: node, .. }
| Op::Copy(node)
@ -166,16 +150,10 @@ impl Tensor {
if node.is_variable() {
continue;
}
let grad = grads
.remove(node)
.expect("candle internal error - grad not populated");
// https://github.com/huggingface/candle/issues/1241
// Ideally, we would make these operations in place where possible to ensure that we
// do not have to allocate too often. Here we just call `.detach` to avoid computing
// the backprop graph of the backprop itself. This would be an issue for second order
// derivatives but these are out of scope at the moment.
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
let grad = if do_not_detach { grad } else { grad.detach() };
let grad = grads.remove(node).unwrap();
// TODO: We should perform all these operations in place (or at least not track the
// whole graph). The only drawback would be if we wanted to support grad of grad but
// this is out of scope.
if let Some(op) = node.op() {
match op {
Op::Binary(lhs, rhs, BinaryOp::Add) => {
@ -230,44 +208,7 @@ impl Tensor {
let f_grad = pred.where_cond(&zeros, &grad)?;
*f_sum_grad = f_sum_grad.add(&f_grad)?;
}
Op::Conv1D {
arg,
kernel,
padding,
stride,
dilation,
} => {
// The output height for conv_transpose1d is:
// (l_in - 1) * stride - 2 * padding + dilation * (k_size - 1) + out_padding + 1
let grad_l_in = grad.dim(2)?;
let k_size = kernel.dim(2)?;
let out_size =
(grad_l_in - 1) * stride + dilation * (k_size - 1) + 1 - 2 * padding;
let out_padding = arg.dim(2)? - out_size;
let grad_arg = grad.conv_transpose1d(
kernel,
*padding,
out_padding,
*stride,
*dilation,
)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
let grad_kernel = arg
.transpose(0, 1)?
.conv1d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0) = kernel.dims3()?;
let (_, _, g_k0) = grad_kernel.dims3()?;
let grad_kernel = if g_k0 != k0 {
grad_kernel.narrow(2, 0, k0)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::Conv1D { .. } => Err(Error::BackwardNotSupported { op: "conv1d" })?,
Op::Conv2D {
arg,
kernel,
@ -297,18 +238,8 @@ impl Tensor {
.conv2d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0, k1) = kernel.dims4()?;
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
op: "conv-transpose1d",
})?,
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
op: "conv-transpose2d",
})?,
@ -350,27 +281,9 @@ impl Tensor {
Op::UpsampleNearest1D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest1d",
})?,
Op::UpsampleNearest2D {
arg,
target_h,
target_w,
} => {
let (_n, c, h, w) = arg.dims4()?;
if target_h % h != 0 || target_w % w != 0 {
crate::bail!("backward not supported for non integer upscaling factors")
}
let scale_h = target_h / h;
let scale_w = target_w / w;
if scale_h != scale_w {
crate::bail!("backward not supported for non uniform upscaling factors")
};
let kernel =
Tensor::ones((c, 1, scale_h, scale_w), arg.dtype(), arg.device())?;
let conv_sum = grad.conv2d(&kernel, 0, scale_h, 1, c)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = conv_sum;
}
Op::UpsampleNearest2D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest2d",
})?,
Op::SliceScatter0(lhs, rhs, start_rhs) => {
let rhs_sum_grad = grads.or_insert(rhs)?;
let rhs_grad = grad.narrow(0, *start_rhs, rhs.dim(0)?)?;
@ -567,45 +480,16 @@ impl Tensor {
+ 0.5)?;
*sum_grad = sum_grad.add(&(&grad * gelu_grad)?)?
}
Op::Unary(arg, UnaryOp::Erf) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx erf(x) = 2/sqrt(pi) * e^(-x^2)
let erf_grad =
(2. / std::f64::consts::PI.sqrt()) * (arg.sqr()?.neg()?).exp()?;
*sum_grad = sum_grad.add(&(&grad * erf_grad)?)?
}
Op::Unary(arg, UnaryOp::GeluErf) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx gelu_erf(x) = 0.5 + 0.398942 e^(-x^2/2) x + 0.5 erf(x/sqrt(2))
let neg_half_square = (arg.sqr()?.neg()? / 2.)?;
let scaled_exp_arg = (0.398942 * neg_half_square.exp()? * arg)?;
let arg_scaled_sqrt = (arg / 2f64.sqrt())?;
let erf_scaled_sqrt = (0.5 * arg_scaled_sqrt.erf()?)?;
let gelu_erf_grad = (0.5 + scaled_exp_arg + erf_scaled_sqrt)?;
*sum_grad = sum_grad.add(&(&grad * gelu_erf_grad)?)?;
Op::Unary(_, UnaryOp::Erf) => Err(Error::BackwardNotSupported { op: "erf" })?,
Op::Unary(_, UnaryOp::GeluErf) => {
Err(Error::BackwardNotSupported { op: "gelu-erf" })?
}
Op::Unary(arg, UnaryOp::Relu) => {
let sum_grad = grads.or_insert(arg)?;
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
}
Op::Unary(arg, UnaryOp::Silu) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
let sigmoid_arg = (*node / arg)?;
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
}
Op::Elu(arg, alpha) => {
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
let sum_grad = grads.or_insert(arg)?;
let zeros = arg.zeros_like()?;
let positive_mask = arg.gt(&zeros)?.to_dtype(arg.dtype())?;
let negative_mask = arg.le(&zeros)?.to_dtype(arg.dtype())?;
let negative_exp_mask = ((negative_mask * arg.exp())? * *alpha)?;
let combined_mask = (positive_mask + negative_exp_mask)?;
*sum_grad = sum_grad.add(&(grad * combined_mask)?)?
}
Op::Elu(..) => Err(Error::BackwardNotSupported { op: "elu" })?,
Op::Powf(arg, e) => {
let arg_grad = (&(grad * arg.powf(e - 1.)?)? * *e)?;
let sum_grad = grads.or_insert(arg)?;

View File

@ -25,33 +25,6 @@ impl ParamsConv1D {
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConvTranspose1D {
pub(crate) b_size: usize,
pub(crate) l_in: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) k_size: usize,
pub(crate) padding: usize,
pub(crate) output_padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConvTranspose1D {
pub(crate) fn l_out(&self) -> usize {
(self.l_in - 1) * self.stride - 2 * self.padding
+ self.dilation * (self.k_size - 1)
+ self.output_padding
+ 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
let l_out = self.l_out();
vec![self.b_size, self.c_out, l_out]
}
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum CudnnFwdAlgo {
ImplicitGemm,
@ -187,49 +160,6 @@ impl Tensor {
}
}
/// Applies a 1D transposed convolution over the input tensor.
pub fn conv_transpose1d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
) -> Result<Self> {
let (b_size, c_in, l_in) = self.dims3()?;
let (c_in_k, c_out, k_size) = kernel.dims3()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
let params = ParamsConvTranspose1D {
b_size,
l_in,
k_size,
c_out,
c_in,
padding,
output_padding,
stride,
dilation,
};
let storage = self.storage().conv_transpose1d(
self.layout(),
&kernel.storage(),
kernel.layout(),
&params,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
arg,
kernel,
padding: params.padding,
output_padding: params.output_padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
let storage =
self.storage()

View File

@ -804,11 +804,11 @@ impl<'a, I: IntDType> Map1 for Gather<'a, I> {
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
None => Err(Error::RequiresContiguous { op: "gather" })?,
};
let src = match src_l.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
None => Err(Error::RequiresContiguous { op: "gather" })?,
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
@ -857,7 +857,7 @@ impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
let src = match layout.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
None => Err(Error::RequiresContiguous { op: "index-select" })?,
};
let dim = self.dim;
let n_ids = match self.ids_l.dims() {
@ -913,7 +913,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
None => Err(Error::RequiresContiguous { op: "scatter-add" })?,
Some((o1, o2)) => &src[o1..o2],
};
@ -929,7 +929,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
None => Err(Error::RequiresContiguous { op: "gather" })?,
};
for left_i in 0..ids_left_len {
let start_ids_idx = left_i * ids_right_len * ids_dim_len;
@ -971,7 +971,7 @@ impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
None => Err(Error::RequiresContiguous { op: "index-add" })?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
@ -1256,74 +1256,6 @@ impl Map1 for Im2Col {
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
const OP: &'static str = "conv_transpose1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
// Output shape: [b_size, c_out, l_out].
let dst_elems = p.c_out * l_out * p.b_size;
let dst = vec![T::zero(); dst_elems];
let dst_s0 = p.c_out * l_out;
let dst_s1 = l_out;
let dst_s2 = 1;
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
let cont_s0 = p.l_in * p.c_in;
let cont_s1 = p.c_in;
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
for c_idx in 0..p.c_in {
let src_idx = b_idx * inp_s0 + c_idx * inp_s1 + l_idx * inp_s2;
let dst_idx = b_idx * cont_s0 + l_idx * cont_s1 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
for k_idx in 0..p.k_size {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let k_cont = (0..p.c_in)
.map(|c_in_idx| k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_idx * k_s2])
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
let out_idx = l_idx * p.stride + k_idx * p.dilation;
if out_idx < p.padding {
continue;
}
let out_idx = out_idx - p.padding;
if out_idx < l_out {
let inp_cont = &inp_cont[b_idx * cont_s0 + l_idx * cont_s1..];
let dst_idx = b_idx * dst_s0 + out_idx * dst_s2 + dst_c_idx * dst_s1;
let mut d = T::zero();
unsafe {
T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to
// parallelise the different tasks so no two threads can try to
// write at the same location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
})
}
Ok(dst)
}
}
struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
impl<'a> Map2 for Conv2D<'a> {
@ -2503,16 +2435,6 @@ impl BackendStorage for CpuStorage {
Ok(res_t)
}
fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
}
fn conv2d(
&self,
l: &Layout,
@ -2617,25 +2539,25 @@ impl BackendStorage for CpuStorage {
Self::U8(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
None => Err(Error::RequiresContiguous { op: "index-add" })?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::U32(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
None => Err(Error::RequiresContiguous { op: "index-add" })?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::I64(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
None => Err(Error::RequiresContiguous { op: "index-add" })?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add")),
}
}

View File

@ -1149,55 +1149,6 @@ impl<'a> Map2 for Conv2D<'a> {
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
inp_l: &Layout,
k: &CudaSlice<T>,
k_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
// Kernel shape: (c_in_k, c_out, l_k)
// Input shape: (b_size, c_in, l_in)
let p = &self.0;
let l_out = p.l_out();
let dst_el = p.c_out * l_out * p.b_size;
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(k_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose1d"), kernels::CONV)?;
let ds = if dims.len() == 3 {
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for conv_transpose1d {dims:?}")
};
let ds = dev.htod_copy(ds).w()?;
let params = (
el,
l_out,
p.stride,
p.padding,
p.output_padding,
p.dilation,
&ds,
inp,
k,
&out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
impl<'a> Map2 for ConvTranspose2D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
@ -1857,19 +1808,6 @@ impl BackendStorage for CudaStorage {
Ok(res_t)
}
fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
let device = self.device().clone();
let slice =
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
Ok(Self { slice, device })
}
#[cfg(not(feature = "cudnn"))]
fn conv2d(
&self,

View File

@ -8,14 +8,12 @@ use crate::{CpuStorage, DType, Result, Shape, Storage, WithDType};
pub enum DeviceLocation {
Cpu,
Cuda { gpu_id: usize },
Metal { gpu_id: usize },
}
#[derive(Debug, Clone)]
pub enum Device {
Cpu,
Cuda(crate::CudaDevice),
Metal(crate::MetalDevice),
}
pub trait NdArray {
@ -130,15 +128,10 @@ impl Device {
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
}
pub fn new_metal(ordinal: usize) -> Result<Self> {
Ok(Self::Metal(crate::MetalDevice::new(ordinal)?))
}
pub fn set_seed(&self, seed: u64) -> Result<()> {
match self {
Self::Cpu => CpuDevice.set_seed(seed),
Self::Cpu => crate::cpu_backend::CpuDevice.set_seed(seed),
Self::Cuda(c) => c.set_seed(seed),
Self::Metal(m) => m.set_seed(seed),
}
}
@ -146,7 +139,6 @@ impl Device {
match (self, rhs) {
(Self::Cpu, Self::Cpu) => true,
(Self::Cuda(lhs), Self::Cuda(rhs)) => lhs.same_device(rhs),
(Self::Metal(lhs), Self::Metal(rhs)) => lhs.same_device(rhs),
_ => false,
}
}
@ -155,20 +147,21 @@ impl Device {
match self {
Self::Cpu => DeviceLocation::Cpu,
Self::Cuda(device) => device.location(),
Device::Metal(device) => device.location(),
}
}
pub fn is_cpu(&self) -> bool {
matches!(self, Self::Cpu)
match self {
Self::Cpu => true,
Self::Cuda(_) => false,
}
}
pub fn is_cuda(&self) -> bool {
matches!(self, Self::Cuda(_))
}
pub fn is_metal(&self) -> bool {
matches!(self, Self::Metal(_))
match self {
Self::Cpu => false,
Self::Cuda(_) => true,
}
}
pub fn cuda_if_available(ordinal: usize) -> Result<Self> {
@ -192,18 +185,8 @@ impl Device {
Ok(Storage::Cpu(storage))
}
Device::Cuda(device) => {
// TODO: Remove the special case if we start supporting generating f16/bf16 directly.
if dtype == DType::F16 || dtype == DType::BF16 {
let storage = device.rand_uniform(shape, DType::F32, lo, up)?;
Storage::Cuda(storage).to_dtype(&crate::Layout::contiguous(shape), dtype)
} else {
let storage = device.rand_uniform(shape, dtype, lo, up)?;
Ok(Storage::Cuda(storage))
}
}
Device::Metal(device) => {
let storage = device.rand_uniform(shape, dtype, lo, up)?;
Ok(Storage::Metal(storage))
Ok(Storage::Cuda(storage))
}
}
}
@ -230,18 +213,8 @@ impl Device {
Ok(Storage::Cpu(storage))
}
Device::Cuda(device) => {
// TODO: Remove the special case if we start supporting generating f16/bf16 directly.
if dtype == DType::F16 || dtype == DType::BF16 {
let storage = device.rand_normal(shape, DType::F32, mean, std)?;
Storage::Cuda(storage).to_dtype(&crate::Layout::contiguous(shape), dtype)
} else {
let storage = device.rand_normal(shape, dtype, mean, std)?;
Ok(Storage::Cuda(storage))
}
}
Device::Metal(device) => {
let storage = device.rand_normal(shape, dtype, mean, std)?;
Ok(Storage::Metal(storage))
Ok(Storage::Cuda(storage))
}
}
}
@ -265,10 +238,6 @@ impl Device {
let storage = device.ones_impl(shape, dtype)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = device.ones_impl(shape, dtype)?;
Ok(Storage::Metal(storage))
}
}
}
@ -282,10 +251,6 @@ impl Device {
let storage = device.zeros_impl(shape, dtype)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = device.zeros_impl(shape, dtype)?;
Ok(Storage::Metal(storage))
}
}
}
@ -297,11 +262,6 @@ impl Device {
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = array.to_cpu_storage();
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Metal(storage))
}
}
}
@ -313,11 +273,6 @@ impl Device {
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Cuda(storage))
}
Device::Metal(device) => {
let storage = S::to_cpu_storage_owned(data);
let storage = device.storage_from_cpu_storage(&storage)?;
Ok(Storage::Metal(storage))
}
}
}
}

View File

@ -14,9 +14,6 @@ impl Tensor {
crate::DeviceLocation::Cuda { gpu_id } => {
format!(", cuda:{}", gpu_id)
}
crate::DeviceLocation::Metal { gpu_id } => {
format!(", metal:{}", gpu_id)
}
};
write!(f, "Tensor[")?;
@ -479,9 +476,6 @@ impl std::fmt::Display for Tensor {
crate::DeviceLocation::Cuda { gpu_id } => {
format!(", cuda:{}", gpu_id)
}
crate::DeviceLocation::Metal { gpu_id } => {
format!(", metal:{}", gpu_id)
}
};
write!(

View File

@ -79,16 +79,6 @@ impl crate::backend::BackendStorage for CudaStorage {
Err(Error::NotCompiledWithCudaSupport)
}
fn conv_transpose1d(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
fn conv2d(
&self,
_: &Layout,

View File

@ -1,223 +0,0 @@
#![allow(dead_code)]
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
#[derive(Debug, Clone)]
pub struct MetalDevice;
#[derive(Debug)]
pub struct MetalStorage;
#[derive(thiserror::Error, Debug)]
pub enum MetalError {
#[error("{0}")]
Message(String),
}
impl From<String> for MetalError {
fn from(e: String) -> Self {
MetalError::Message(e)
}
}
macro_rules! fail {
() => {
unimplemented!("metal support has not been enabled, add `metal` feature to enable.")
};
}
impl crate::backend::BackendStorage for MetalStorage {
type Device = MetalDevice;
fn try_clone(&self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn dtype(&self) -> DType {
fail!()
}
fn device(&self) -> &Self::Device {
fail!()
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv1d(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &crate::conv::ParamsConv1D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv_transpose1d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv2d(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &crate::conv::ParamsConv2D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv_transpose2d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn scatter_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn index_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn matmul(
&self,
_: &Self,
_: (usize, usize, usize, usize),
_: &Layout,
_: &Layout,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
}
impl crate::backend::BackendDevice for MetalDevice {
type Storage = MetalStorage;
fn new(_: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn set_seed(&self, _: u64) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn location(&self) -> crate::DeviceLocation {
fail!()
}
fn same_device(&self, _: &Self) -> bool {
fail!()
}
fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
}

View File

@ -1,4 +1,4 @@
use crate::{DType, DeviceLocation, Layout, MetalError, Shape};
use crate::{DType, DeviceLocation, Layout, Shape};
#[derive(Debug, Clone)]
pub struct MatMulUnexpectedStriding {
@ -152,9 +152,6 @@ pub enum Error {
#[error("the candle crate has not been built with cuda support")]
NotCompiledWithCudaSupport,
#[error("the candle crate has not been built with metal support")]
NotCompiledWithMetalSupport,
#[error("cannot find tensor {path}")]
CannotFindTensor { path: String },
@ -162,9 +159,6 @@ pub enum Error {
#[error(transparent)]
Cuda(Box<dyn std::error::Error + Send + Sync>),
#[error("Metal error {0}")]
Metal(#[from] MetalError),
#[error(transparent)]
TryFromIntError(#[from] core::num::TryFromIntError),

View File

@ -64,7 +64,7 @@ impl Tensor {
#[derive(Debug)]
/// Generic structure used to index a slice of the tensor
pub enum TensorIndexer {
/// This selects the elements for which an index has some specific value.
/// This selects the elemnts for which an index has some specific value.
Select(usize),
/// This is a regular slice, purely indexing a chunk of the tensor
Narrow(Bound<usize>, Bound<usize>),
@ -104,31 +104,37 @@ impl From<&Tensor> for TensorIndexer {
}
}
trait RB: RangeBounds<usize> {}
impl RB for Range<usize> {}
impl RB for RangeFrom<usize> {}
impl RB for RangeFull {}
impl RB for RangeInclusive<usize> {}
impl RB for RangeTo<usize> {}
impl RB for RangeToInclusive<usize> {}
macro_rules! impl_from_range {
($range_type:ty) => {
impl From<$range_type> for TensorIndexer {
fn from(range: $range_type) -> Self {
use std::ops::Bound::*;
impl<T: RB> From<T> for TensorIndexer {
fn from(range: T) -> Self {
use std::ops::Bound::*;
let start = match range.start_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
let end = match range.end_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
TensorIndexer::Narrow(start, end)
}
let start = match range.start_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
let end = match range.end_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
TensorIndexer::Narrow(start, end)
}
}
};
}
impl_from_range!(Range<usize>);
impl_from_range!(RangeFrom<usize>);
impl_from_range!(RangeFull);
impl_from_range!(RangeInclusive<usize>);
impl_from_range!(RangeTo<usize>);
impl_from_range!(RangeToInclusive<usize>);
/// Trait used to implement multiple signatures for ease of use of the slicing
/// of a tensor
pub trait IndexOp<T> {

View File

@ -49,12 +49,9 @@ mod device;
pub mod display;
mod dtype;
mod dummy_cuda_backend;
mod dummy_metal_backend;
pub mod error;
mod indexer;
pub mod layout;
#[cfg(feature = "metal")]
pub mod metal_backend;
#[cfg(feature = "mkl")]
mod mkl;
pub mod npy;
@ -72,7 +69,7 @@ pub mod utils;
mod variable;
pub use cpu_backend::CpuStorage;
pub use device::{Device, DeviceLocation, NdArray};
pub use device::{Device, DeviceLocation};
pub use dtype::{DType, FloatDType, IntDType, WithDType};
pub use error::{Error, Result};
pub use indexer::IndexOp;
@ -90,12 +87,6 @@ pub use cuda_backend::{CudaDevice, CudaStorage};
#[cfg(not(feature = "cuda"))]
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
#[cfg(feature = "metal")]
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
#[cfg(not(feature = "metal"))]
pub use dummy_metal_backend::{MetalDevice, MetalError, MetalStorage};
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
@ -123,20 +114,14 @@ pub trait Module {
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
}
impl Module for quantized::QMatMul {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.forward(xs)
}
}
impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self(xs)
}
}
// A trait defining a module with forward method using a single tensor argument and a flag to
// separate the training and evaluation behaviors.
pub trait ModuleT {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
}
impl<M: Module> ModuleT for M {
fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> {
self.forward(xs)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -333,16 +333,6 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vs_exp_inplace(y: &mut [f32]) {
unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vd_exp_inplace(y: &mut [f64]) {
unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
}
#[inline]
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
@ -365,28 +355,6 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
}
}
#[inline]
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vs_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
#[inline]
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vd_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
macro_rules! binary_op {
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
#[inline]

View File

@ -1,5 +1,5 @@
#![allow(clippy::redundant_closure_call)]
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
use crate::{CpuStorage, CudaStorage, Layout, Result, Shape, Tensor};
use half::{bf16, f16};
use num_traits::float::Float;
@ -61,7 +61,6 @@ pub enum UnaryOp {
GeluErf,
Erf,
Relu,
Silu,
Tanh,
Floor,
Ceil,
@ -91,16 +90,6 @@ pub enum Op {
dilation: usize,
},
#[allow(dead_code)]
ConvTranspose1D {
arg: Tensor,
kernel: Tensor,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
},
#[allow(dead_code)]
Conv2D {
arg: Tensor,
@ -133,11 +122,7 @@ pub enum Op {
},
UpsampleNearest1D(Tensor),
UpsampleNearest2D {
arg: Tensor,
target_h: usize,
target_w: usize,
},
UpsampleNearest2D(Tensor),
Cat(Vec<Tensor>, usize),
@ -189,18 +174,6 @@ pub trait CustomOp1 {
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_storage: &MetalStorage,
_layout: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
/// This function takes as argument the argument `arg` used in the forward pass, the result
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
/// The function should return the gradient of the argument.
@ -236,20 +209,6 @@ pub trait CustomOp2 {
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
@ -292,22 +251,6 @@ pub trait CustomOp3 {
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
@ -391,7 +334,6 @@ pub(crate) struct Gelu;
pub(crate) struct GeluErf;
pub(crate) struct Erf;
pub(crate) struct Relu;
pub(crate) struct Silu;
pub(crate) struct Tanh;
pub(crate) struct Floor;
pub(crate) struct Ceil;
@ -594,13 +536,13 @@ unary_op!(Log, "log", v, v.ln(), vs_ln, vd_ln);
unary_op!(Sin, "sin", v, v.sin(), vs_sin, vd_sin);
unary_op!(Cos, "cos", v, v.cos(), vs_cos, vd_cos);
unary_op!(Tanh, "tanh", v, v.tanh(), vs_tanh, vd_tanh);
unary_op!(Abs, "abs", v, v.abs());
unary_op!(Neg, "neg", v, -v);
unary_op!(Recip, "recip", v, v.recip());
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
/// Tanh based approximation of the `gelu` operation
/// GeluErf is the more precise one.
/// `gelu` operation
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
impl UnaryOpT for Gelu {
const NAME: &'static str = "gelu";
@ -690,8 +632,6 @@ impl UnaryOpT for Gelu {
}
}
/// `erf` operation
/// <https://en.wikipedia.org/wiki/Error_function>
impl UnaryOpT for Erf {
const NAME: &'static str = "erf";
const KERNEL: &'static str = "uerf";
@ -726,111 +666,6 @@ impl UnaryOpT for Erf {
}
}
/// Silu operation
impl UnaryOpT for Silu {
const NAME: &'static str = "silu";
const V: Self = Silu;
#[inline(always)]
fn bf16(v: bf16) -> bf16 {
v / (bf16::ONE + (-v).exp())
}
#[inline(always)]
fn f16(v: f16) -> f16 {
v / (f16::ONE + (-v).exp())
}
#[inline(always)]
fn f32(v: f32) -> f32 {
v / (1.0 + (-v).exp())
}
#[inline(always)]
fn f64(v: f64) -> f64 {
v / (1.0 + (-v).exp())
}
#[inline(always)]
fn u8(_: u8) -> u8 {
0
}
#[inline(always)]
fn u32(_: u32) -> u32 {
0
}
#[inline(always)]
fn i64(_: i64) -> i64 {
0
}
const KERNEL: &'static str = "usilu";
#[cfg(feature = "mkl")]
const F32_VEC: bool = true;
#[cfg(feature = "mkl")]
#[inline(always)]
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
crate::mkl::vs_silu(xs, ys)
}
#[cfg(feature = "mkl")]
const F64_VEC: bool = true;
#[cfg(feature = "mkl")]
#[inline(always)]
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
crate::mkl::vd_silu(xs, ys)
}
#[cfg(feature = "accelerate")]
const F32_VEC: bool = true;
#[cfg(feature = "accelerate")]
#[inline(always)]
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
crate::accelerate::vs_silu(xs, ys)
}
#[cfg(feature = "accelerate")]
const F64_VEC: bool = true;
#[cfg(feature = "accelerate")]
#[inline(always)]
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
crate::accelerate::vd_silu(xs, ys)
}
}
impl UnaryOpT for Abs {
const NAME: &'static str = "abs";
const KERNEL: &'static str = "uabs";
const V: Self = Abs;
#[inline(always)]
fn bf16(v: bf16) -> bf16 {
v.abs()
}
#[inline(always)]
fn f16(v: f16) -> f16 {
v.abs()
}
#[inline(always)]
fn f32(v: f32) -> f32 {
v.abs()
}
#[inline(always)]
fn f64(v: f64) -> f64 {
v.abs()
}
#[inline(always)]
fn u8(v: u8) -> u8 {
v
}
#[inline(always)]
fn u32(v: u32) -> u32 {
v
}
#[inline(always)]
fn i64(v: i64) -> i64 {
v.abs()
}
}
impl UnaryOpT for Ceil {
const NAME: &'static str = "ceil";
const KERNEL: &'static str = "uceil";
@ -1052,10 +887,6 @@ impl BackpropOp {
};
Self(op)
}
pub(crate) fn is_none(&self) -> bool {
self.0.is_none()
}
}
impl std::ops::Deref for BackpropOp {

View File

@ -217,13 +217,6 @@ impl Object {
let args = args.remove(1);
(callable, args)
}
Object::Class {
module_name,
class_name,
} if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
let mut args = args.tuple()?;
args.remove(0).reduce()?
}
_ => (callable, args),
};
match callable {
@ -234,11 +227,13 @@ impl Object {
_ => return Ok(None),
};
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
let mut path = dir_name.to_path_buf();
path.push(file_path);
Ok(Some(TensorInfo {
name,
dtype,
layout,
path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
path: path.to_string_lossy().into_owned(),
storage_size,
}))
}
@ -350,10 +345,8 @@ impl Stack {
module_name,
class_name,
} => {
if module_name == "collections"
&& (class_name == "OrderedDict" || class_name == "defaultdict")
{
// TODO: have a separate ordered dict and a separate default dict.
if module_name == "collections" && class_name == "OrderedDict" {
// TODO: have a separate ordered dict.
Some(Object::Dict(vec![]))
} else {
None
@ -634,16 +627,9 @@ pub struct TensorInfo {
pub storage_size: usize,
}
/// Read the tensor info from a .pth file.
///
/// # Arguments
/// * `file` - The path to the .pth file.
/// * `verbose` - Whether to print debug information.
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
file: P,
verbose: bool,
key: Option<&str>,
) -> Result<Vec<TensorInfo>> {
let file = std::fs::File::open(file)?;
let zip_reader = std::io::BufReader::new(file);
@ -665,9 +651,8 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
stack.read_loop(&mut reader)?;
let obj = stack.finalize()?;
if VERBOSE || verbose {
println!("{obj:#?}");
println!("{obj:?}");
}
let obj = match obj {
Object::Build { callable, args } => match *callable {
Object::Reduce { callable, args: _ } => match *callable {
@ -681,24 +666,6 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
},
obj => obj,
};
// If key is provided, then we need to extract the state_dict from the object.
let obj = if let Some(key) = key {
if let Object::Dict(key_values) = obj {
key_values
.into_iter()
.find(|(k, _)| *k == Object::Unicode(key.to_owned()))
.map(|(_, v)| v)
.ok_or_else(|| E::Msg(format!("key {key} not found")))?
} else {
obj
}
} else {
obj
};
// If the object is a dict, then we can extract the tensor info from it.
// NOTE: We are assuming that the `obj` is state_dict by this stage.
if let Object::Dict(key_values) = obj {
for (name, value) in key_values.into_iter() {
match value.into_tensor_info(name, &dir_name) {
@ -721,8 +688,8 @@ pub struct PthTensors {
}
impl PthTensors {
pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
let tensor_infos = tensor_infos
.into_iter()
.map(|ti| (ti.name.to_string(), ti))
@ -736,7 +703,6 @@ impl PthTensors {
}
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
use std::io::Read;
let tensor_info = match self.tensor_infos.get(name) {
None => return Ok(None),
Some(tensor_info) => tensor_info,
@ -745,56 +711,27 @@ impl PthTensors {
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
let mut zip = zip::ZipArchive::new(zip_reader)?;
let mut reader = zip.by_name(&tensor_info.path)?;
let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
let rank = tensor_info.layout.shape().rank();
// Reading the data is a bit tricky as it can be strided, for now only support the basic
// case and when the tensor is fortran contiguous.
if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
// Reading the data is a bit tricky as it can be strided, use an offset, etc.
// For now only support the basic case.
if tensor_info.layout.start_offset() != 0 || !tensor_info.layout.is_contiguous() {
crate::bail!(
"cannot retrieve non-contiguous tensors {:?}",
tensor_info.layout
)
}
let start_offset = tensor_info.layout.start_offset();
if start_offset > 0 {
std::io::copy(
&mut reader.by_ref().take(start_offset as u64),
&mut std::io::sink(),
)?;
}
let tensor = Tensor::from_reader(
tensor_info.layout.shape().clone(),
tensor_info.dtype,
&mut reader,
)?;
if rank > 1 && is_fortran_contiguous {
// Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
let tensor = tensor.reshape(shape_reversed)?;
// Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
let tensor = tensor.permute(dim_indeces_reversed)?;
Ok(Some(tensor))
} else {
Ok(Some(tensor))
}
Ok(Some(tensor))
}
}
/// Read all the tensors from a PyTorch pth file with a given key.
///
/// # Arguments
/// * `path` - Path to the pth file.
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
/// contains multiple objects and the state_dict is the one we are interested in.
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
path: P,
key: Option<&str>,
) -> Result<Vec<(String, Tensor)>> {
let pth = PthTensors::new(path, key)?;
/// Read all the tensors from a PyTorch pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
let pth = PthTensors::new(path)?;
let tensor_names = pth.tensor_infos.keys();
let mut tensors = Vec::with_capacity(tensor_names.len());
for name in tensor_names {
@ -804,11 +741,3 @@ pub fn read_all_with_key<P: AsRef<std::path::Path>>(
}
Ok(tensors)
}
/// Read all the tensors from a PyTorch pth file.
///
/// # Arguments
/// * `path` - Path to the pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
read_all_with_key(path, None)
}

View File

@ -50,9 +50,14 @@ pub(crate) unsafe fn mul_sum_i8_pairs_float(x: __m256i, y: __m256i) -> __m256 {
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
let nb = n / qk;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
}
unsafe {
let mut acc = _mm256_setzero_ps();
for (x, y) in xs.iter().zip(ys.iter()) {
@ -353,7 +358,7 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
q3 = q3.add(32);
// Prepare low and high bits
// We hardcode the shifts here to avoid loading them into a separate register
// We hardcode the shifts here to avoid loading them into a seperate register
let q3l_0 = _mm256_and_si256(q3bits, m3);
let q3h_0 = if j == 0 {
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
@ -586,7 +591,7 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
q5 = q5.add(32);
//Similar to q3k we hardcode the shifts here to avoid loading them into a separate register
//Similar to q3k we hardcode the shifts here to avoid loading them into a seperate register
let q5l_0 = _mm256_and_si256(q5bits, m4);
let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
let q5l_0_right_shift = match j {

View File

@ -1,43 +0,0 @@
#![allow(unused)]
use super::GgmlDType;
use crate::{Error, MetalDevice, MetalStorage, Result};
pub struct QMetalStorage {
dtype: GgmlDType,
device: MetalDevice,
}
impl QMetalStorage {
pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &MetalDevice {
&self.device
}
pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
pub fn storage_size_in_bytes(&self) -> usize {
0
}
pub fn fwd(
&self,
_self_shape: &crate::Shape,
_storage: &MetalStorage,
_layout: &crate::Layout,
) -> Result<(MetalStorage, crate::Shape)> {
Err(Error::NotCompiledWithMetalSupport)
}
}

View File

@ -1,9 +1,7 @@
//! Support for the GGML file format.
#[cfg(feature = "metal")]
use super::metal::load_quantized_metal;
use super::{k_quants, GgmlDType, QStorage};
use crate::{Device, Result};
use super::{k_quants, GgmlDType};
use crate::Result;
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
@ -123,22 +121,11 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
raw_data: &[u8],
size_in_bytes: usize,
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let raw_data_ptr = raw_data.as_ptr();
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
let data: QStorage = match device {
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
#[cfg(feature = "metal")]
Device::Metal(metal) => load_quantized_metal(metal, data)?,
#[cfg(not(feature = "metal"))]
Device::Metal(_metal) => {
crate::bail!("Metal backend requires `metal` feature")
}
device => unimplemented!("Implement quantized tensor for device {device:?}"),
};
super::QTensor::new(data, dims)
super::QTensor::new(data.to_vec(), dims)
}
/// Creates a [Tensor] from a raw GGML tensor.
@ -146,50 +133,29 @@ pub fn qtensor_from_ggml(
ggml_dtype: GgmlDType,
raw_data: &[u8],
dims: Vec<usize>,
device: &Device,
) -> Result<super::QTensor> {
let tensor_elems = dims.iter().product::<usize>();
let block_size = ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
let blck_size = ggml_dtype.blck_size();
if tensor_elems % blck_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
)
}
let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();
let size_in_bytes = tensor_elems / blck_size * ggml_dtype.type_size();
match ggml_dtype {
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
GgmlDType::Q4_0 => {
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4_1 => {
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_0 => {
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5_1 => {
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q8_0 => {
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q2K => {
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q3K => {
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q4K => {
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q5K => {
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::Q6K => {
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
}
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims),
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims),
GgmlDType::Q4_0 => from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q4_1 => from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims),
GgmlDType::Q5_0 => from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q5_1 => from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims),
GgmlDType::Q8_0 => from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims),
GgmlDType::Q2K => from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims),
GgmlDType::Q3K => from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims),
GgmlDType::Q4K => from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims),
GgmlDType::Q5K => from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims),
GgmlDType::Q6K => from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims),
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
}
}
@ -197,7 +163,6 @@ pub fn qtensor_from_ggml(
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
reader: &mut R,
magic: VersionedMagic,
device: &Device,
) -> Result<(String, super::QTensor)> {
let n_dims = reader.read_u32::<LittleEndian>()?;
let name_len = reader.read_u32::<LittleEndian>()?;
@ -218,11 +183,11 @@ fn read_one_tensor<R: std::io::Seek + std::io::Read>(
}
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
// TODO: Mmap version to avoid copying the data around?
let mut raw_data = vec![0u8; size_in_bytes];
reader.read_exact(&mut raw_data)?;
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
match qtensor_from_ggml(ggml_dtype, &raw_data, dims) {
Ok(tensor) => Ok((name, tensor)),
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
}
@ -233,14 +198,10 @@ pub struct Content {
pub hparams: HParams,
pub vocab: Vocab,
pub tensors: HashMap<String, super::QTensor>,
pub device: Device,
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(
reader: &mut R,
device: &Device,
) -> Result<Content> {
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Content> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
reader.seek(std::io::SeekFrom::Start(0))?;
@ -250,16 +211,14 @@ impl Content {
let mut tensors = HashMap::new();
while reader.stream_position()? != last_position {
let (name, tensor) = read_one_tensor(reader, magic, device)?;
let (name, tensor) = read_one_tensor(reader, magic)?;
tensors.insert(name, tensor);
}
let device = device.clone();
Ok(Self {
magic,
hparams,
vocab,
tensors,
device,
})
}

View File

@ -3,7 +3,7 @@
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
use super::{GgmlDType, QTensor};
use crate::{Device, Result};
use crate::Result;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::collections::HashMap;
@ -29,7 +29,6 @@ impl TryFrom<u32> for Magic {
pub enum VersionedMagic {
GgufV1,
GgufV2,
GgufV3,
}
impl VersionedMagic {
@ -40,8 +39,7 @@ impl VersionedMagic {
let versioned_magic = match (magic, version) {
(Magic::Gguf, 1) => Self::GgufV1,
(Magic::Gguf, 2) => Self::GgufV2,
(Magic::Gguf, 3) => Self::GgufV3,
_ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
@ -59,25 +57,19 @@ impl TensorInfo {
&self,
reader: &mut R,
tensor_data_offset: u64,
device: &Device,
) -> Result<QTensor> {
let tensor_elems = self.shape.elem_count();
let block_size = self.ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
let blck_size = self.ggml_dtype.blck_size();
if tensor_elems % blck_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
)
}
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
let size_in_bytes = tensor_elems / blck_size * self.ggml_dtype.type_size();
let mut raw_data = vec![0u8; size_in_bytes];
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
reader.read_exact(&mut raw_data)?;
super::ggml_file::qtensor_from_ggml(
self.ggml_dtype,
&raw_data,
self.shape.dims().to_vec(),
device,
)
super::ggml_file::qtensor_from_ggml(self.ggml_dtype, &raw_data, self.shape.dims().to_vec())
}
}
@ -92,9 +84,7 @@ pub struct Content {
fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
};
let mut v = vec![0u8; len];
reader.read_exact(&mut v)?;
@ -294,9 +284,7 @@ impl Value {
let value_type = ValueType::from_u32(value_type)?;
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
};
let mut vs = Vec::with_capacity(len);
for _ in 0..len {
@ -393,15 +381,11 @@ impl Content {
let tensor_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
};
let metadata_kv_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
};
let mut metadata = HashMap::new();
@ -423,7 +407,7 @@ impl Content {
reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
}
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
VersionedMagic::GgufV2 => {
let mut dimensions = vec![0; n_dimensions as usize];
reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
@ -466,13 +450,12 @@ impl Content {
&self,
reader: &mut R,
name: &str,
device: &Device,
) -> Result<QTensor> {
let tensor_info = match self.tensor_infos.get(name) {
Some(tensor_info) => tensor_info,
None => crate::bail!("cannot find tensor info for {name}"),
None => crate::bail!("cannot find tensor-infor for {name}"),
};
tensor_info.read(reader, self.tensor_data_offset, device)
tensor_info.read(reader, self.tensor_data_offset)
}
}
@ -524,9 +507,10 @@ pub fn write<W: std::io::Seek + std::io::Write>(
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
)
}
let data = tensor.data()?;
let size_in_bytes = data.len();
w.write_all(&data)?;
let data_ptr = tensor.as_ptr();
let size_in_bytes = tensor.storage_size_in_bytes();
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
w.write_all(data)?;
let padding = 31 - (31 + size_in_bytes) % 32;
w.write_all(&vec![0u8; padding])?;
}

View File

@ -236,9 +236,14 @@ impl GgmlType for BlockQ4_0 {
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_0;
let nb = n / qk;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
}
// Generic implementation.
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
@ -1545,13 +1550,13 @@ impl GgmlType for BlockQ5K {
let d2 = d * sc as f32;
let m2 = min * m as f32;
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
let to_add = if qh & u1 != 0 { 16 } else { 1 };
y[ys_index] = d1 * ((ql & 0xF) + to_add) as f32 - m1;
ys_index += 1;
}
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
let to_add = if qh & u2 != 0 { 16 } else { 1 };
y[ys_index] = d2 * ((ql >> 4) + to_add) as f32 - m2;
ys_index += 1;
}
is += 2;

View File

@ -1,234 +0,0 @@
use super::{GgmlDType, QStorage};
use crate::backend::BackendStorage;
use crate::{DType, MetalDevice, MetalStorage, Result, Shape};
use metal::Buffer;
use std::sync::Arc;
pub struct QMetalStorage {
dtype: GgmlDType,
device: MetalDevice,
buffer: Arc<Buffer>,
}
impl QMetalStorage {
pub fn zeros(device: &MetalDevice, elem_count: usize, dtype: GgmlDType) -> Result<Self> {
let size = elem_count * dtype.type_size() / dtype.block_size();
let buffer = device.allocate_zeros(size)?;
Ok(Self {
buffer,
device: device.clone(),
dtype,
})
}
pub fn dtype(&self) -> GgmlDType {
self.dtype
}
pub fn device(&self) -> &MetalDevice {
&self.device
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
let command_buffer = self.device.command_buffer()?;
command_buffer.set_label("to_cpu");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("blit_to_cpu");
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
blit.end_encoding();
self.device.wait_until_completed()?;
let mut out = vec![0.0; elem_count];
match self.dtype {
GgmlDType::F32 => {
let vec: Vec<f32> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
f32::to_float(&vec, &mut out)?;
}
GgmlDType::F16 => {
let vec: Vec<half::f16> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
half::f16::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_0 => {
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q4_1 => {
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_0 => {
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q5_1 => {
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_0 => {
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
}
GgmlDType::Q8_1 => {
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, elem_count);
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
}
GgmlDType::Q2K => {
let vec: Vec<crate::quantized::BlockQ2K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
}
GgmlDType::Q3K => {
let vec: Vec<crate::quantized::BlockQ3K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
}
GgmlDType::Q4K => {
let vec: Vec<crate::quantized::BlockQ4K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
}
GgmlDType::Q5K => {
let vec: Vec<crate::quantized::BlockQ5K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
}
GgmlDType::Q6K => {
let vec: Vec<crate::quantized::BlockQ6K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
}
GgmlDType::Q8K => {
let vec: Vec<crate::quantized::BlockQ8K> =
read_to_vec(&buffer, elem_count / self.dtype.block_size());
use crate::quantized::k_quants::GgmlType;
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
}
}
let buffer = self.device.new_buffer_with_data(&out)?;
Ok(MetalStorage::new(buffer, self.device.clone(), DType::F32))
}
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
// Quantization only happens on CPU for now.
let src = src.to_cpu::<f32>()?;
let elem_count = src.len();
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
let mut qcpu_storage = crate::Device::Cpu.qzeros(elem_count, self.dtype)?;
qcpu_storage.quantize(&src)?;
let buffer = self.device.new_buffer_with_data(&qcpu_storage.data()?)?;
self.buffer = buffer;
Ok(())
}
pub fn storage_size_in_bytes(&self) -> usize {
self.buffer.length() as usize
}
pub fn fwd(
&self,
self_shape: &Shape,
storage: &MetalStorage,
layout: &crate::Layout,
) -> Result<(MetalStorage, Shape)> {
use crate::MetalError;
if !layout.is_contiguous() {
crate::bail!("input tensor is not contiguous {layout:?}")
}
let src_shape = layout.shape();
// self is transposed so n is first then k.
if src_shape.rank() < 2 {
crate::bail!("input tensor has only one dimension {layout:?}")
}
let (n, k) = self_shape.dims2()?;
let mut dst_shape = src_shape.dims().to_vec();
let (b, m) = match dst_shape.len() {
3 => (dst_shape[0], dst_shape[1]),
2 => (1, dst_shape[0]),
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
};
let last_k = dst_shape.pop().unwrap();
if last_k != k {
crate::bail!("input tensor {layout:?} incompatible with {:?}", self_shape)
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
let device = storage.device().clone();
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
let command_buffer = device.command_buffer()?;
candle_metal_kernels::call_quantized_matmul_t(
device.device(),
&command_buffer,
device.kernels(),
self.dtype.into(),
(b, m, n, k),
storage.buffer(),
layout.start_offset() * storage.dtype().size_in_bytes(),
&self.buffer,
&dst,
)
.map_err(MetalError::from)?;
let dst_storage = crate::MetalStorage::new(dst, device, DType::F32);
Ok((dst_storage, dst_shape))
}
}
pub fn load_quantized_metal<T: super::GgmlType + Send + Sync + 'static>(
device: &MetalDevice,
data: &[T],
) -> Result<QStorage> {
let buffer = device.new_buffer_with_data(data)?;
let device = device.clone();
Ok(QStorage::Metal(QMetalStorage {
dtype: T::DTYPE,
device,
buffer,
}))
}
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
let ptr = buffer.contents() as *const T;
assert!(!ptr.is_null());
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
slice.to_vec()
}
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
fn from(value: GgmlDType) -> Self {
match value {
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
}
}
}

View File

@ -1,118 +1,23 @@
use crate::{CpuStorage, Device, Result, Shape, Storage, Tensor};
use k_quants::*;
use std::borrow::Cow;
use crate::{Device, Result, Shape, Tensor};
#[cfg(target_feature = "avx")]
pub mod avx;
mod dummy_metal;
pub mod ggml_file;
pub mod gguf_file;
pub mod k_quants;
#[cfg(feature = "metal")]
pub mod metal;
#[cfg(not(feature = "metal"))]
mod metal {
pub use super::dummy_metal::*;
}
#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(target_feature = "simd128")]
pub mod simd128;
pub mod utils;
use half::f16;
pub use k_quants::GgmlType;
pub struct QTensor {
storage: QStorage,
data: Box<dyn QuantizedType>,
shape: Shape,
}
impl Device {
fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
match self {
Device::Cpu => {
let storage = dtype.cpu_zeros(elem_count);
Ok(QStorage::Cpu(storage))
}
Device::Metal(metal) => {
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
Ok(QStorage::Metal(storage))
}
Device::Cuda(_cuda) => {
crate::bail!("Cuda ggml quantization not supported");
}
}
}
}
pub enum QStorage {
Cpu(Box<dyn QuantizedType>),
Metal(metal::QMetalStorage),
}
impl QStorage {
fn block_size(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.block_size(),
QStorage::Metal(storage) => storage.dtype().block_size(),
}
}
fn dtype(&self) -> GgmlDType {
match self {
QStorage::Cpu(storage) => storage.dtype(),
QStorage::Metal(storage) => storage.dtype(),
}
}
fn device(&self) -> Device {
match self {
QStorage::Cpu(_storage) => Device::Cpu,
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
}
}
fn size_in_bytes(&self) -> usize {
match self {
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
}
}
fn quantize(&mut self, src: &Storage) -> Result<()> {
match (self, src) {
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
storage.from_float(src.as_slice::<f32>()?)?;
}
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
_ => crate::bail!("Invalid dequantize storage locations do not match"),
}
Ok(())
}
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
match self {
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
}
}
fn data(&self) -> Result<Cow<[u8]>> {
match self {
QStorage::Cpu(storage) => {
let data_ptr = storage.as_ptr();
let size_in_bytes = storage.storage_size_in_bytes();
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
Ok(Cow::from(data))
}
QStorage::Metal(_storage) => {
crate::bail!("not implemented");
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GgmlDType {
F32,
@ -172,25 +77,6 @@ impl GgmlDType {
}
}
/// The block dtype
pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
match self {
Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
}
}
/// The type size for blocks in bytes.
pub fn type_size(&self) -> usize {
use k_quants::*;
@ -214,7 +100,7 @@ impl GgmlDType {
}
/// The block size, i.e. the number of elements stored in each block.
pub fn block_size(&self) -> usize {
pub fn blck_size(&self) -> usize {
match self {
Self::F32 => 1,
Self::F16 => 1,
@ -233,13 +119,9 @@ impl GgmlDType {
pub trait QuantizedType: Send + Sync {
fn dtype(&self) -> GgmlDType;
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
fn to_float(&self, ys: &mut [f32]) -> Result<()>;
fn storage_size_in_bytes(&self) -> usize;
fn as_ptr(&self) -> *const u8;
fn block_size(&self) -> usize;
#[allow(clippy::wrong_self_convention)]
fn from_float(&mut self, xs: &[f32]) -> Result<()>;
fn size(&self) -> usize;
}
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
@ -247,26 +129,12 @@ impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
}
fn size(&self) -> usize {
self.len() * core::mem::size_of::<T>()
}
fn from_float(&mut self, xs: &[f32]) -> Result<()> {
T::from_float(xs, self)
}
fn dtype(&self) -> GgmlDType {
T::DTYPE
}
fn block_size(&self) -> usize {
T::BLCK_SIZE
}
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
let mut ys = vec![0.0f32; elem_count];
T::to_float(self.as_slice(), &mut ys)?;
Ok(CpuStorage::F32(ys))
fn to_float(&self, ys: &mut [f32]) -> Result<()> {
T::to_float(self.as_slice(), ys)
}
fn storage_size_in_bytes(&self) -> usize {
@ -284,53 +152,56 @@ impl std::fmt::Debug for QTensor {
}
}
fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
fn check_shape<T: k_quants::GgmlType>(shape: &Shape) -> Result<()> {
let dims = shape.dims();
if dims.is_empty() {
crate::bail!("scalar tensor cannot be quantized {shape:?}")
}
if dims[dims.len() - 1] % block_size != 0 {
if dims[dims.len() - 1] % T::BLCK_SIZE != 0 {
crate::bail!(
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
block_size
T::BLCK_SIZE
)
}
Ok(())
}
impl QTensor {
pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
data: Vec<T>,
shape: S,
) -> Result<Self> {
let shape = shape.into();
check_shape(&shape, storage.block_size())?;
Ok(Self { storage, shape })
check_shape::<T>(&shape)?;
Ok(Self {
data: Box::new(data),
shape,
})
}
pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
let shape = src.shape();
let block_size = dtype.block_size();
check_shape(shape, block_size)?;
let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
let elem_count = shape.elem_count();
if elem_count % block_size != 0 {
check_shape::<T>(shape)?;
let src = src
.to_dtype(crate::DType::F32)?
.flatten_all()?
.to_vec1::<f32>()?;
if src.len() % T::BLCK_SIZE != 0 {
crate::bail!(
"tensor size ({shape:?}) is not divisible by block size {}",
block_size
T::BLCK_SIZE
)
}
let mut storage = src.device().qzeros(elem_count, dtype)?;
storage.quantize(&src.storage())?;
let mut data = vec![T::zeros(); src.len() / T::BLCK_SIZE];
T::from_float(&src, &mut data)?;
Ok(Self {
storage,
data: Box::new(data),
shape: shape.clone(),
})
}
pub fn dtype(&self) -> GgmlDType {
self.storage.dtype()
}
pub fn device(&self) -> Device {
self.storage.device()
self.data.dtype()
}
pub fn rank(&self) -> usize {
@ -342,19 +213,21 @@ impl QTensor {
}
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
let storage = self.storage.dequantize(self.shape.elem_count())?;
let none = crate::op::BackpropOp::none();
let is_variable = false;
crate::tensor::from_storage(storage, self.shape.clone(), none, is_variable)
.to_device(device)
let mut f32_data = vec![0f32; self.shape.elem_count()];
self.data.to_float(&mut f32_data)?;
Tensor::from_vec(f32_data, &self.shape, device)
}
pub fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
self.data.matmul_t(mkn, lhs, dst)
}
pub fn storage_size_in_bytes(&self) -> usize {
self.storage.size_in_bytes()
self.data.storage_size_in_bytes()
}
pub fn data(&self) -> Result<Cow<'_, [u8]>> {
self.storage.data()
pub fn as_ptr(&self) -> *const u8 {
self.data.as_ptr()
}
}
@ -421,33 +294,21 @@ impl crate::CustomOp1 for QTensor {
}
dst_shape.push(n);
let dst_shape = Shape::from(dst_shape);
#[allow(clippy::infallible_destructuring_match)]
let self_storage = match &self.storage {
QStorage::Cpu(storage) => storage,
QStorage::Metal(_) => crate::bail!("Invalid storage"),
};
let slice = storage.as_slice::<f32>()?;
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
let storage = storage.as_slice::<f32>()?;
let storage =
&storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
self.matmul_t(
(dst_shape.elem_count() / n, k, n),
storage,
&mut dst_storage,
)?;
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
}
fn metal_fwd(
&self,
storage: &crate::MetalStorage,
layout: &crate::Layout,
) -> Result<(crate::MetalStorage, Shape)> {
let self_storage = match &self.storage {
QStorage::Metal(metal) => metal,
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
};
self_storage.fwd(&self.shape, storage, layout)
}
}
impl crate::Module for QMatMul {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
impl QMatMul {
pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Self::QTensor(t) => xs.apply_op1_no_bwd(t.as_ref()),
Self::Tensor(w) => {

View File

@ -12,14 +12,6 @@ use core::arch::arm::*;
#[cfg(target_arch = "aarch64")]
use core::arch::aarch64::*;
#[inline(always)]
unsafe fn vdotq_s32(a: int8x16_t, b: int8x16_t) -> int32x4_t {
// TODO: dotprod
let p0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
let p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))
}
#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
let qk = QK8_0;
@ -27,39 +19,71 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
}
unsafe {
let mut sumv0 = vdupq_n_f32(0.0f32);
for i in 0..nb {
let mut sumv1 = vdupq_n_f32(0.0f32);
for i in (0..nb).step_by(2) {
let x0 = &xs[i];
let x1 = &xs[i + 1];
let y0 = &ys[i];
let y1 = &ys[i + 1];
let m4b = vdupq_n_u8(0x0F);
let s8b = vdupq_n_s8(0x8);
let v0_0 = vld1q_u8(x0.qs.as_ptr());
let v0_1 = vld1q_u8(x1.qs.as_ptr());
// 4-bit -> 8-bit
let v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
let v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
let v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
let v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// sub 8
let v0_0ls = vsubq_s8(v0_0l, s8b);
let v0_0hs = vsubq_s8(v0_0h, s8b);
let v0_1ls = vsubq_s8(v0_1l, s8b);
let v0_1hs = vsubq_s8(v0_1h, s8b);
// load y
let v1_0l = vld1q_s8(y0.qs.as_ptr());
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
let v1_1l = vld1q_s8(y1.qs.as_ptr());
let v1_1h = vld1q_s8(y1.qs.as_ptr().add(16));
// TODO: Support dotprod when it's available outside of nightly.
let pl0l = vmull_s8(vget_low_s8(v0_0ls), vget_low_s8(v1_0l));
let pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
let ph0l = vmull_s8(vget_low_s8(v0_0hs), vget_low_s8(v1_0h));
let ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
let pl1l = vmull_s8(vget_low_s8(v0_1ls), vget_low_s8(v1_1l));
let pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
let ph1l = vmull_s8(vget_low_s8(v0_1hs), vget_low_s8(v1_1h));
let ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
let pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
let ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
let pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
let ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
let pl0 = vdotq_s32(v0_0ls, v1_0l);
let ph0 = vdotq_s32(v0_0hs, v1_0h);
sumv0 = vmlaq_n_f32(
sumv0,
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
x0.d.to_f32() * y0.d.to_f32(),
);
sumv1 = vmlaq_n_f32(
sumv1,
vcvtq_f32_s32(vaddq_s32(pl1, ph1)),
x1.d.to_f32() * y1.d.to_f32(),
);
}
Ok(vaddvq_f32(sumv0))
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
}
}
@ -70,29 +94,57 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / QK8_0;
if nb % 2 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
}
unsafe {
let mut sumv0 = vdupq_n_f32(0.0f32);
for i in 0..nb {
let mut sumv1 = vdupq_n_f32(0.0f32);
for i in (0..nb).step_by(2) {
let x0 = &xs[i];
let x1 = &xs[i + 1];
let y0 = &ys[i];
let y1 = &ys[i + 1];
let x0_0 = vld1q_s8(x0.qs.as_ptr());
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
let x1_0 = vld1q_s8(x1.qs.as_ptr());
let x1_1 = vld1q_s8(x1.qs.as_ptr().add(16));
// load y
let y0_0 = vld1q_s8(y0.qs.as_ptr());
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
let y1_0 = vld1q_s8(y1.qs.as_ptr());
let y1_1 = vld1q_s8(y1.qs.as_ptr().add(16));
let p0 = vdotq_s32(x0_0, y0_0);
let p1 = vdotq_s32(x0_1, y0_1);
// TODO dotprod once this is the intrinsics are.
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
let p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
let p1_0 = vmull_s8(vget_low_s8(x1_0), vget_low_s8(y1_0));
let p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
let p1_2 = vmull_s8(vget_low_s8(x1_1), vget_low_s8(y1_1));
let p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
let p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
let p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
sumv0 = vmlaq_n_f32(
sumv0,
vcvtq_f32_s32(vaddq_s32(p0, p1)),
x0.d.to_f32() * y0.d.to_f32(),
);
sumv1 = vmlaq_n_f32(
sumv1,
vcvtq_f32_s32(vaddq_s32(p2, p3)),
x1.d.to_f32() * y1.d.to_f32(),
);
}
Ok(vaddvq_f32(sumv0))
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
}
}
@ -113,7 +165,10 @@ pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Res
for i in (0..QK_K).step_by(16) {
let xs = vld1q_s8(xs.add(i));
let ys = vld1q_s8(ys.add(i));
let xy = vdotq_s32(xs, ys);
let xy_lo = vmull_s8(vget_low_s8(xs), vget_low_s8(ys));
let xy_up = vmull_s8(vget_high_s8(xs), vget_high_s8(ys));
let xy = vaddq_s32(vpaddlq_s16(xy_lo), vpaddlq_s16(xy_up));
sum_i = vaddq_s32(sum_i, xy)
}
sumf += vaddvq_s32(sum_i) as f32 * scale
@ -183,16 +238,30 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
scale = scale.add(2);
let q8bytes = vld1q_s8_x4(q8);
@ -212,16 +281,29 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
// TODO: dotprod case.
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
scale = scale.add(2);
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
);
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
scale = scale.add(2);
}
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
@ -298,14 +380,28 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
let p0 = vdotq_s32(q5bytes_0, q8bytes.0);
let p1 = vdotq_s32(q5bytes_1, q8bytes.1);
sumi += vaddvq_s32(vaddq_s32(p0, p1)) * *scales as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q5bytes_0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q5bytes_1), vget_high_s8(q8bytes.1)),
);
sumi += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * *scales as i32;
scales = scales.add(1);
let p2 = vdotq_s32(q5bytes_2, q8bytes.2);
let p3 = vdotq_s32(q5bytes_3, q8bytes.3);
sumi += vaddvq_s32(vaddq_s32(p2, p3)) * *scales as i32;
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_2), vget_low_s8(q8bytes.2)),
vmull_s8(vget_high_s8(q5bytes_2), vget_high_s8(q8bytes.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q5bytes_3), vget_low_s8(q8bytes.3)),
vmull_s8(vget_high_s8(q5bytes_3), vget_high_s8(q8bytes.3)),
);
sumi += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * *scales as i32;
scales = scales.add(1);
}
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
@ -368,15 +464,22 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
for j in 0..QK_K / 64 {
let q4bits = vld1q_u8_x2(q4);
q4 = q4.add(32);
// TODO: dotprod
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
let q4bytes = int8x16x2_t(
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
);
let p0 = vdotq_s32(q4bytes.0, q8bytes.0);
let p1 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi1 += vaddvq_s32(vaddq_s32(p0, p1)) * scales[2 * j] as i32;
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
);
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * scales[2 * j] as i32;
let q8bytes = vld1q_s8_x2(q8);
q8 = q8.add(32);
@ -384,9 +487,15 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
);
let p2 = vdotq_s32(q4bytes.0, q8bytes.0);
let p3 = vdotq_s32(q4bytes.1, q8bytes.1);
sumi2 += vaddvq_s32(vaddq_s32(p2, p3)) * scales[2 * j + 1] as i32;
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
);
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * scales[2 * j + 1] as i32;
}
sumf += d * (sumi1 + sumi2) as f32;
}
@ -464,14 +573,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_1.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_1.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_1.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_1.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_1.0)),
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_1.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_1.1)),
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_1.1)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_1.2)),
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_1.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_1.3)),
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_1.3)),
);
isum += vaddvq_s16(p0) as i32 * *scale as i32
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
scale = scale.add(4);
let q3h_0 = vbicq_u8(m2, qhbits.0);
@ -496,14 +618,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
vreinterpretq_s8_u8(q3h_3),
);
let p0 = vdotq_s32(q3bytes_0, q8bytes_2.0);
let p1 = vdotq_s32(q3bytes_1, q8bytes_2.1);
let p2 = vdotq_s32(q3bytes_2, q8bytes_2.2);
let p3 = vdotq_s32(q3bytes_3, q8bytes_2.3);
isum += vaddvq_s32(p0) * *scale as i32
+ vaddvq_s32(p1) * *scale.add(1) as i32
+ vaddvq_s32(p2) * *scale.add(2) as i32
+ vaddvq_s32(p3) * *scale.add(3) as i32;
// TODO: dotprod
let p0 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_2.0)),
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_2.0)),
);
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_2.1)),
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_2.1)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_2.2)),
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_2.2)),
);
let p3 = vaddq_s16(
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_2.3)),
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_2.3)),
);
isum += vaddvq_s16(p0) as i32 * *scale as i32
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
scale = scale.add(4);
if j == 0 {
@ -561,6 +696,7 @@ pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Res
let mut is = 0usize;
// TODO: dotprod
for _j in 0..QK_K / 128 {
let q2bits = vld1q_u8_x2(q2);
q2 = q2.add(32);
@ -607,7 +743,14 @@ unsafe fn multiply_accum_with_scale(
q2bytes: int8x16x2_t,
q8bytes: int8x16x2_t,
) -> i32 {
let p1 = vdotq_s32(q2bytes.0, q8bytes.0);
let p2 = vdotq_s32(q2bytes.1, q8bytes.1);
vaddvq_s32(p1) * aux[is + index] as i32 + vaddvq_s32(p2) * aux[is + 1 + index] as i32
let p1 = vaddq_s16(
vmull_s8(vget_low_s8(q2bytes.0), vget_low_s8(q8bytes.0)),
vmull_s8(vget_high_s8(q2bytes.0), vget_high_s8(q8bytes.0)),
);
let p2 = vaddq_s16(
vmull_s8(vget_low_s8(q2bytes.1), vget_low_s8(q8bytes.1)),
vmull_s8(vget_high_s8(q2bytes.1), vget_high_s8(q8bytes.1)),
);
vaddvq_s16(p1) as i32 * aux[is + index] as i32
+ vaddvq_s16(p2) as i32 * aux[is + 1 + index] as i32
}

View File

@ -11,6 +11,10 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / QK8_0;
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
}
unsafe {
let mut acc = f32x4_splat(0.0f32);
for (x, y) in xs.iter().zip(ys.iter()) {
@ -57,6 +61,10 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / QK8_0;
if nb % 2 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
}
unsafe {
let mut acc = f32x4_splat(0.0f32);
for (x, y) in xs.iter().zip(ys.iter()) {

View File

@ -203,7 +203,7 @@ impl Shape {
/// Check whether the two shapes are compatible for broadcast, and if it is the case return the
/// broadcasted shape. This is to be used for binary pointwise ops.
pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
pub(crate) fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
let lhs = self;
let lhs_dims = lhs.dims();
let rhs_dims = rhs.dims();
@ -478,6 +478,23 @@ extract_dims!(
(usize, usize, usize, usize, usize)
);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
}
pub trait ShapeWithOneHole {
fn into_shape(self, el_count: usize) -> Result<Shape>;
}
@ -610,20 +627,3 @@ impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
Ok((d1, d2, d3, d4, d).into())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
}

View File

@ -1,6 +1,6 @@
use crate::backend::BackendStorage;
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, Result, Shape};
// We do not want to implement Clone on Storage as cloning may fail because of
// out of memory. Instead try_clone should be used.
@ -8,7 +8,6 @@ use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage,
pub enum Storage {
Cpu(CpuStorage),
Cuda(CudaStorage),
Metal(MetalStorage),
}
impl Storage {
@ -19,10 +18,6 @@ impl Storage {
let storage = storage.try_clone(layout)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.try_clone(layout)?;
Ok(Self::Metal(storage))
}
}
}
@ -30,7 +25,6 @@ impl Storage {
match self {
Self::Cpu(_) => Device::Cpu,
Self::Cuda(storage) => Device::Cuda(storage.device().clone()),
Self::Metal(storage) => Device::Metal(storage.device().clone()),
}
}
@ -38,7 +32,6 @@ impl Storage {
match self {
Self::Cpu(storage) => storage.dtype(),
Self::Cuda(storage) => storage.dtype(),
Self::Metal(storage) => storage.dtype(),
}
}
@ -72,10 +65,6 @@ impl Storage {
let storage = storage.affine(layout, mul, add)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.affine(layout, mul, add)?;
Ok(Self::Metal(storage))
}
}
}
@ -89,10 +78,6 @@ impl Storage {
let storage = storage.powf(layout, alpha)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.powf(layout, alpha)?;
Ok(Self::Metal(storage))
}
}
}
@ -106,10 +91,6 @@ impl Storage {
let storage = storage.elu(layout, alpha)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.elu(layout, alpha)?;
Ok(Self::Metal(storage))
}
}
}
@ -131,10 +112,6 @@ impl Storage {
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(lhs), Self::Metal(rhs)) => {
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
Ok(Self::Metal(storage))
}
(lhs, rhs) => {
// Should not happen because of the same device check above but we're defensive
// anyway.
@ -158,10 +135,6 @@ impl Storage {
let storage = storage.reduce_op(op, layout, s)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.reduce_op(op, layout, s)?;
Ok(Self::Metal(storage))
}
}
}
@ -175,10 +148,6 @@ impl Storage {
let storage = storage.to_dtype(layout, dtype)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.to_dtype(layout, dtype)?;
Ok(Self::Metal(storage))
}
}
}
@ -192,10 +161,6 @@ impl Storage {
let (storage, shape) = c.cuda_fwd(storage, l)?;
Ok((Self::Cuda(storage), shape))
}
Self::Metal(storage) => {
let (storage, shape) = c.metal_fwd(storage, l)?;
Ok((Self::Metal(storage), shape))
}
}
}
@ -216,10 +181,6 @@ impl Storage {
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2)?;
Ok((Self::Cuda(s), shape))
}
(Self::Metal(s1), Self::Metal(s2)) => {
let (s, shape) = c.metal_fwd(s1, l1, s2, l2)?;
Ok((Self::Metal(s), shape))
}
_ => unreachable!(),
}
}
@ -244,10 +205,6 @@ impl Storage {
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2, s3, l3)?;
Ok((Self::Cuda(s), shape))
}
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
let (s, shape) = c.metal_fwd(s1, l1, s2, l2, s3, l3)?;
Ok((Self::Metal(s), shape))
}
_ => unreachable!(),
}
}
@ -262,10 +219,6 @@ impl Storage {
let storage = storage.unary_impl::<B>(layout)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.unary_impl::<B>(layout)?;
Ok(Self::Metal(storage))
}
}
}
@ -286,10 +239,6 @@ impl Storage {
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(lhs), Self::Metal(rhs)) => {
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
Ok(Self::Metal(storage))
}
(lhs, rhs) => {
// Should not happen because of the same device check above but we're defensive
// anyway.
@ -321,10 +270,6 @@ impl Storage {
let s = inp.conv1d(l, kernel, kernel_l, params)?;
Ok(Self::Cuda(s))
}
(Storage::Metal(inp), Storage::Metal(kernel)) => {
let s = inp.conv1d(l, kernel, kernel_l, params)?;
Ok(Self::Metal(s))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -334,33 +279,6 @@ impl Storage {
}
}
pub(crate) fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
self.same_device(kernel, "conv-transpose1d")?;
self.same_dtype(kernel, "conv-transpose1d")?;
match (self, &kernel) {
(Storage::Cpu(inp), Storage::Cpu(kernel)) => {
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
Ok(Self::Cpu(s))
}
(Storage::Cuda(inp), Storage::Cuda(kernel)) => {
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
Ok(Self::Cuda(s))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
op: "conv-transpose1d",
}
.bt()),
}
}
pub(crate) fn conv2d(
&self,
l: &Layout,
@ -379,10 +297,6 @@ impl Storage {
let s = inp.conv2d(l, kernel, kernel_l, params)?;
Ok(Self::Cuda(s))
}
(Storage::Metal(inp), Storage::Metal(kernel)) => {
let s = inp.conv2d(l, kernel, kernel_l, params)?;
Ok(Self::Metal(s))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -410,10 +324,6 @@ impl Storage {
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
Ok(Self::Cuda(s))
}
(Storage::Metal(inp), Storage::Metal(kernel)) => {
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
Ok(Self::Metal(s))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -438,10 +348,6 @@ impl Storage {
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
Ok(Self::Metal(storage))
}
}
}
@ -460,10 +366,6 @@ impl Storage {
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
Ok(Self::Metal(storage))
}
}
}
@ -477,10 +379,6 @@ impl Storage {
let storage = storage.upsample_nearest1d(layout, sz)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.upsample_nearest1d(layout, sz)?;
Ok(Self::Metal(storage))
}
}
}
@ -494,10 +392,6 @@ impl Storage {
let storage = storage.upsample_nearest2d(layout, h, w)?;
Ok(Self::Cuda(storage))
}
Self::Metal(storage) => {
let storage = storage.upsample_nearest2d(layout, h, w)?;
Ok(Self::Metal(storage))
}
}
}
@ -521,10 +415,6 @@ impl Storage {
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(cond), Self::Metal(t), Self::Metal(f)) => {
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
Ok(Self::Metal(storage))
}
(_, lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -551,10 +441,6 @@ impl Storage {
let storage = s.gather(l, indexes, indexes_l, d)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(s), Self::Metal(indexes)) => {
let storage = s.gather(l, indexes, indexes_l, d)?;
Ok(Self::Metal(storage))
}
_ => unreachable!(),
}
}
@ -579,10 +465,6 @@ impl Storage {
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
Ok(Self::Metal(storage))
}
_ => unreachable!(),
}
}
@ -607,10 +489,6 @@ impl Storage {
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
Ok(Self::Metal(storage))
}
_ => unreachable!(),
}
}
@ -632,10 +510,6 @@ impl Storage {
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(lhs), Self::Metal(rhs)) => {
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
Ok(Self::Metal(storage))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -663,10 +537,6 @@ impl Storage {
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
Ok(Self::Cuda(storage))
}
(Self::Metal(lhs), Self::Metal(rhs)) => {
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
Ok(Self::Metal(storage))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
@ -686,9 +556,6 @@ impl Storage {
match (self, dst) {
(Self::Cpu(src), Self::Cpu(dst)) => src.copy_strided_src(dst, dst_offset, src_l),
(Self::Cuda(src), Self::Cuda(dst)) => Ok(src.copy_strided_src(dst, dst_offset, src_l)?),
(Self::Metal(src), Self::Metal(dst)) => {
Ok(src.copy_strided_src(dst, dst_offset, src_l)?)
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),

View File

@ -1,4 +1,4 @@
//! Tensors are N-dimensional matrixes of elements using a single data type.
//! Tensors are N-dimenional matrixes of elements using a single data type.
#![allow(clippy::redundant_closure_call)]
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{
@ -6,7 +6,7 @@ use crate::op::{
};
use crate::scalar::TensorOrScalar;
use crate::shape::{Dim, Dims};
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
use crate::{storage::Storage, DType, Device, Error, Layout, Result, Shape};
use std::sync::{Arc, RwLock};
/// Unique identifier for tensors.
@ -361,16 +361,6 @@ impl Tensor {
Self::new_impl(array, shape, device, false)
}
/// Returns a new tensor with all the elements having the same specified value. Note that
/// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed.
pub fn full<D: crate::WithDType, S: Into<Shape>>(
value: D,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(vec![value], (), device, false)?.broadcast_as(shape)
}
/// Creates a new 1D tensor from an iterator.
pub fn from_iter<D: crate::WithDType>(
iter: impl IntoIterator<Item = D>,
@ -395,21 +385,11 @@ impl Tensor {
step: D,
device: &Device,
) -> Result<Self> {
if D::is_zero(&step) {
bail!("step cannot be zero")
}
let mut data = vec![];
let mut current = start;
if step >= D::zero() {
while current < end {
data.push(current);
current += step;
}
} else {
while current > end {
data.push(current);
current += step;
}
while current < end {
data.push(current);
current += step;
}
let len = data.len();
Self::from_vec_impl(data, len, device, false)
@ -487,12 +467,6 @@ impl Tensor {
broadcast_binary_op!(broadcast_div, div);
broadcast_binary_op!(broadcast_maximum, maximum);
broadcast_binary_op!(broadcast_minimum, minimum);
broadcast_binary_op!(broadcast_eq, eq);
broadcast_binary_op!(broadcast_ne, ne);
broadcast_binary_op!(broadcast_lt, lt);
broadcast_binary_op!(broadcast_le, le);
broadcast_binary_op!(broadcast_gt, gt);
broadcast_binary_op!(broadcast_ge, ge);
unary_op!(recip, Recip);
unary_op!(neg, Neg);
@ -508,7 +482,6 @@ impl Tensor {
unary_op!(gelu_erf, GeluErf);
unary_op!(erf, Erf);
unary_op!(relu, Relu);
unary_op!(silu, Silu);
unary_op!(ceil, Ceil);
unary_op!(floor, Floor);
unary_op!(round, Round);
@ -540,7 +513,6 @@ impl Tensor {
match &*self.storage() {
Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
@ -680,7 +652,7 @@ impl Tensor {
}
/// Split a tensor into the specified number of chunks, this may return less chunks than
/// specified.
/// specificed.
pub fn chunk<D: Dim>(&self, chunks: usize, dim: D) -> Result<Vec<Self>> {
let dim = dim.to_index(self.shape(), "chunk")?;
let size = self.dim(dim)?;
@ -805,35 +777,6 @@ impl Tensor {
}
}
/// Roll the tensor input along the given dimension.
/// Elements that are shifted beyond the last position are re-introduced at the first position.
///
/// ```rust
/// # use candle_core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]);
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(-1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self>
where
D: Dim + Clone,
{
let dim = dim.to_index(self.shape(), "roll")?;
let dim_size = self.dim(dim)?;
let shift = shift.rem_euclid(dim_size as i32) as usize;
if shift == 0 {
Ok(self.clone())
} else {
let a = self.narrow(dim, 0, dim_size - shift)?;
let b = self.narrow(dim, dim_size - shift, shift)?;
Tensor::cat(&[&b, &a], dim)
}
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions.
///
@ -896,20 +839,6 @@ impl Tensor {
self.sum_impl(mean_dims, false)? * scale
}
/// Returns the unbiased variance over the selected dimension.
pub fn var_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
let mean = self.mean_keepdim(dim)?;
let squares = self.broadcast_sub(&mean)?.sqr()?;
squares.sum_impl(dim, true)? / (self.dim(dim)? - 1) as f64
}
/// Returns the unbiased variance over the selected dimension.
pub fn var<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
self.var_keepdim(dim)?.squeeze(dim)
}
/// Gathers the maximum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn max_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
@ -1034,11 +963,7 @@ impl Tensor {
/// tensor also has four dimensions, `(batch, channels, target_h, target_w)`.
pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest2D {
arg,
target_h,
target_w,
});
let op = BackpropOp::new1(self, Op::UpsampleNearest2D);
let storage = self
.storage()
.upsample_nearest2d(self.layout(), target_h, target_w)?;
@ -1071,9 +996,6 @@ impl Tensor {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
@ -1109,9 +1031,6 @@ impl Tensor {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
@ -1267,16 +1186,14 @@ impl Tensor {
op: "scatter-add (self, src)",
lhs: self.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
})?
}
if indexes.dims() != source.dims() {
Err(Error::ShapeMismatchBinaryOp {
op: "scatter-add (indexes, src)",
lhs: indexes.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
})?
}
let storage = self.storage().scatter_add(
self.layout(),
@ -1348,8 +1265,7 @@ impl Tensor {
op: "slice-scatter (self, src)",
lhs: self.shape().clone(),
rhs: src.shape().clone(),
}
.bt())?
})?
}
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
self.storage()
@ -1383,8 +1299,7 @@ impl Tensor {
op: "index-add (self, source)",
lhs: self.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
})?
}
// The number of element in indexes must match the dimension on which the add is
// performed on the source tensor (and the index values from `indexes` are taken from
@ -1395,8 +1310,7 @@ impl Tensor {
op: "index-add (ids, source))",
lhs: indexes.shape().clone(),
rhs: source.shape().clone(),
}
.bt())?
})?
}
let storage = self.storage().index_add(
self.layout(),
@ -1444,8 +1358,7 @@ impl Tensor {
op: "gather",
lhs: self.shape().clone(),
rhs: indexes.shape().clone(),
}
.bt())?
})?
}
let storage =
self.storage()
@ -1519,7 +1432,6 @@ impl Tensor {
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
@ -1550,7 +1462,6 @@ impl Tensor {
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
@ -1591,7 +1502,6 @@ impl Tensor {
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
@ -1834,7 +1744,7 @@ impl Tensor {
let is_permutation =
dims.len() == self.rank() && (0..dims.len()).all(|i| dims.contains(&i));
if !is_permutation {
bail!(
crate::bail!(
"dimension mismatch in permute, tensor {:?}, dims: {:?}",
self.dims(),
dims
@ -1881,23 +1791,17 @@ impl Tensor {
/// Returns a new tensor detached from the current graph, gradient are not propagated through
/// this new node. The storage of this tensor is shared with the initial tensor.
///
/// If the tensor is already detached from the computation graph, the same tensor is returned.
pub fn detach(&self) -> Tensor {
if self.op.is_none() && !self.is_variable {
self.clone()
} else {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.clone(),
op: BackpropOp::none(),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Tensor(Arc::new(tensor_))
}
pub fn detach(&self) -> Result<Tensor> {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.clone(),
op: BackpropOp::none(),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// If the target device is the same as the tensor device, only a shallow copy is performed.
@ -1909,11 +1813,7 @@ impl Tensor {
(Storage::Cpu(storage), Device::Cuda(cuda)) => {
Storage::Cuda(cuda.storage_from_cpu_storage(storage)?)
}
(Storage::Cpu(storage), Device::Metal(metal)) => {
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.
@ -1921,9 +1821,6 @@ impl Tensor {
Storage::Cuda(cuda.storage_from_cpu_storage(&cpu_storage)?)
}
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
_ => {
bail!("not implemented yet")
}
};
let op = BackpropOp::new1(self, Op::ToDevice);
let tensor_ = Tensor_ {
@ -2329,7 +2226,7 @@ impl Tensor {
if left == 0 && right == 0 {
Ok(self.clone())
} else if self.elem_count() == 0 {
bail!("cannot use pad_with_same on an empty tensor")
crate::bail!("cannot use pad_with_same on an empty tensor")
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
@ -2368,11 +2265,6 @@ impl Tensor {
m.forward(self)
}
/// Run the `forward` method of `m` on `self`.
pub fn apply_t<M: crate::ModuleT>(&self, m: &M, train: bool) -> Result<Self> {
m.forward_t(self, train)
}
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap()
}
@ -2487,142 +2379,6 @@ impl Tensor {
) -> Result<Self> {
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
}
/// Normalize a 'relative' axis value: positive values are kept, negative
/// values means counting the dimensions from the back.
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
let rank = self.rank() as i64;
if rank <= axis {
bail!("axis {axis} is too large, tensor rank {rank}")
} else if 0 <= axis {
Ok(axis as usize)
} else {
let naxis = rank + axis;
if naxis < 0 {
bail!("axis {axis} is too small, tensor rank {rank}")
}
Ok(naxis as usize)
}
}
/// Returns a lower triangular matrix of ones of size n by n.
pub fn tril2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.le(&t2)?.to_dtype(dtype)
}
/// Returns an upper triangular matrix of ones of size n by n.
pub fn triu2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.ge(&t2)?.to_dtype(dtype)
}
/// Returns a matrix with a diagonal of ones of size n by n.
pub fn eye(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.eq(&t2)?.to_dtype(dtype)
}
/// Returns the cumulative sum of elements of the input tensor summed over the specified
/// dimension.
///
/// This operation is most efficient when dim is the last dimension of the tensor.
pub fn cumsum<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "cumsum")?;
let rank = self.rank();
if rank == 0 {
return Ok(self.clone());
}
let n_axis = self.dim(dim)?;
let triu = Tensor::triu2(n_axis, self.dtype(), self.device())?;
if rank == 1 {
self.unsqueeze(0)?.matmul(&triu)?.squeeze(0)
} else {
let last = rank - 1;
let t = self.transpose(dim, last)?;
let t = t.broadcast_matmul(&triu)?;
t.transpose(dim, last)
}
}
/// Returns a copy of `self` where the values within `ranges` have been replaced with the
/// content of `src`.
pub fn slice_assign<D: std::ops::RangeBounds<usize>>(
&self,
ranges: &[D],
src: &Tensor,
) -> Result<Self> {
let src_dims = src.dims();
let self_dims = self.dims();
if self_dims.len() != src_dims.len() {
bail!(
"slice-assign requires input with the same rank {} <> {}",
self_dims.len(),
src_dims.len()
)
}
if self_dims.len() != ranges.len() {
bail!(
"slice-assign requires input with the same rank as there are ranges {} <> {}",
self_dims.len(),
ranges.len()
)
}
let mut src = src.clone();
let mut mask = Self::ones(src.shape(), DType::U8, src.device())?;
for (i, range) in ranges.iter().enumerate() {
let start_included = match range.start_bound() {
std::ops::Bound::Unbounded => 0,
std::ops::Bound::Included(v) => *v,
std::ops::Bound::Excluded(v) => *v + 1,
};
let end_excluded = match range.end_bound() {
std::ops::Bound::Unbounded => self_dims[i],
std::ops::Bound::Included(v) => *v + 1,
std::ops::Bound::Excluded(v) => *v,
};
if end_excluded <= start_included {
bail!("slice-assign: empty range for dim {i}, {start_included} {end_excluded}")
}
if self_dims[i] < end_excluded {
bail!(
"slice-assign: upper bound is out of range for dim {i}, {end_excluded} {}",
self_dims[i]
)
}
if end_excluded - start_included != src_dims[i] {
bail!(
"slice-assign: the range for dim {i} ({start_included}..{end_excluded}) does not match the size of src {}", src_dims[i]
)
}
src = src.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)?;
mask = mask.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)?
}
mask.where_cond(/* on_true= */ &src, /* on_false= */ self)
}
/// Returns log(sum(exp(tensor), dim)).
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
let exp = self.exp()?;
let sum = exp.sum(sum_dims)?;
sum.log()
}
/// Pointwise pow operation.
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.mul(&self.log()?)?.exp()
}
/// Broadcasting version of `pow`.
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.broadcast_mul(&self.log()?)?.exp()
}
}
macro_rules! bin_trait {

View File

@ -4,7 +4,7 @@ use crate::{Result, Tensor};
macro_rules! test_device {
// TODO: Switch to generating the two last arguments automatically once concat_idents is
// stable. https://github.com/rust-lang/rust/issues/29599
($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => {
($fn_name: ident, $test_cpu: ident, $test_cuda: ident) => {
#[test]
fn $test_cpu() -> Result<()> {
$fn_name(&Device::Cpu)
@ -15,12 +15,6 @@ macro_rules! test_device {
fn $test_cuda() -> Result<()> {
$fn_name(&Device::new_cuda(0)?)
}
#[cfg(feature = "metal")]
#[test]
fn $test_metal() -> Result<()> {
$fn_name(&Device::new_metal(0)?)
}
};
}

View File

@ -23,10 +23,6 @@ pub fn cuda_is_available() -> bool {
cfg!(feature = "cuda")
}
pub fn metal_is_available() -> bool {
cfg!(feature = "metal")
}
pub fn with_avx() -> bool {
cfg!(target_feature = "avx")
}

View File

@ -107,10 +107,6 @@ impl Var {
Ok(Self(inner))
}
pub fn as_detached_tensor(&self) -> Tensor {
self.0.detach()
}
pub fn as_tensor(&self) -> &Tensor {
&self.0
}

View File

@ -13,11 +13,6 @@ res = torch.nn.functional.conv1d(t, w)
print(res.flatten())
res = torch.nn.functional.conv1d(t, w, padding=1)
print(res.flatten())
w_t = w.transpose(0, 1)
res = torch.nn.functional.conv_transpose1d(t, w_t)
print(res.shape)
print(res)
*/
fn conv1d(dev: &Device) -> Result<()> {
let t = Tensor::new(
@ -50,15 +45,6 @@ fn conv1d(dev: &Device) -> Result<()> {
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
);
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
assert_eq!(res.dims(), [1, 2, 7]);
assert_eq!(
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
[
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
4.7076, -5.9745, -0.8276, 1.621
],
);
Ok(())
}
@ -493,103 +479,17 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
]
]
);
// Replicate the issue from https://github.com/huggingface/candle/issues/1212
let res = t.i((.., .., 0..4, 0..4))?.conv2d(&w, 0, 2, 1, 1)?;
let loss = res.sqr()?.sum_all()?;
assert_eq!(test_utils::to_vec0_round(&loss, 2)?, 21.12f32);
let grads = loss.backward()?;
let grad_t = grads.get(&t).unwrap();
let grad_w = grads.get(&w).unwrap();
assert_eq!(grad_t.dims(), [1, 4, 5, 5]);
assert_eq!(grad_w.dims(), [2, 4, 3, 3]);
assert_eq!(
test_utils::to_vec3_round(&grad_t.i(0)?, 2)?,
[
[
[9.29, -7.03, 7.87, 0.0, 0.0],
[-1.8, -7.82, 5.9, 0.0, 0.0],
[-3.12, 4.49, 5.52, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]
],
[
[21.73, 3.39, 4.77, 0.0, 0.0],
[8.25, 3.73, 27.61, 0.0, 0.0],
[-20.55, -5.61, -2.77, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]
],
[
[-8.98, 9.91, -7.15, 0.0, 0.0],
[4.93, -0.33, 4.56, 0.0, 0.0],
[-6.7, -5.76, -8.05, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]
],
[
[23.54, 6.98, -10.0, 0.0, 0.0],
[9.65, 6.18, 18.72, 0.0, 0.0],
[3.29, -5.27, 0.79, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]
]
]
);
assert_eq!(
test_utils::to_vec3_round(&grad_w.i(0)?, 2)?,
[
[
[-3.47, 7.44, 0.66],
[12.89, -3.4, -9.29],
[-14.16, -0.83, 7.14]
],
[
[-3.23, 5.37, -3.02],
[-2.12, -11.24, 1.94],
[6.97, 7.2, 2.99]
],
[
[-4.04, -3.31, 4.87],
[-6.68, -5.68, 1.73],
[-5.54, 4.32, 0.52]
],
[[-4.72, 1.5, 4.72], [3.79, 4.04, 6.76], [-4.6, 5.8, 6.93]]
]
);
Ok(())
}
test_device!(conv1d, conv1d_cpu, conv1d_gpu, conv1d_metal);
test_device!(
conv1d_small,
conv1d_small_cpu,
conv1d_small_gpu,
conv1d_small_metal
);
test_device!(conv2d, conv2d_cpu, conv2d_gpu, conv2d_metal);
test_device!(conv1d, conv1d_cpu, conv1d_gpu);
test_device!(conv1d_small, conv1d_small_cpu, conv1d_small_gpu);
test_device!(conv2d, conv2d_cpu, conv2d_gpu);
test_device!(
conv2d_non_square,
conv2d_non_square_cpu,
conv2d_non_square_gpu,
conv2d_non_square_metal
);
test_device!(
conv2d_small,
conv2d_small_cpu,
conv2d_small_gpu,
conv2d_small_metal
);
test_device!(
conv2d_smaller,
conv2d_smaller_cpu,
conv2d_smaller_gpu,
conv2d_smaller_metal
);
test_device!(
conv2d_grad,
conv2d_grad_cpu,
conv2d_grad_gpu,
conv2_grad_metal
conv2d_non_square_gpu
);
test_device!(conv2d_small, conv2d_small_cpu, conv2d_small_gpu);
test_device!(conv2d_smaller, conv2d_smaller_cpu, conv2d_smaller_gpu);
test_device!(conv2d_grad, conv2d_grad_cpu, conv2d_grad_gpu);

View File

@ -205,244 +205,6 @@ fn unary_grad(device: &Device) -> Result<()> {
test_utils::to_vec1_round(grad_x, 4)?,
[1.0116, 1.0830, 1.0003, 0.6188],
);
// Testing compared to pytorch torch.erf
//
// import torch
// x = torch.tensor([3.0, 1.0, 4.0, 0.15], requires_grad=True)
// y = x.erf()
// print(y)
// loss = y.sum()
// loss.backward()
// print(x.grad)
let y = x.erf()?;
let grads = y.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(test_utils::to_vec1_round(&y, 4)?, [1.0, 0.8427, 1.0, 0.168]);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[0.0001, 0.4151, 0.0, 1.1033],
);
// Testing compared to pytorch nn.GELU(approximate = 'none')
//
// import torch
// import torch.nn.functional as F
// x = torch.tensor([3.0, 1.0, 4.0, 0.15], requires_grad=True)
// y = F.gelu(x, approximate='none')
// print(y)
// loss = y.sum()
// loss.backward()
// print(x.grad)
let y = x.gelu_erf()?;
let grads = y.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[2.9960, 0.8413, 3.9999, 0.0839]
);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[1.0119, 1.0833, 1.0005, 0.6188],
);
// Testing compared to pytorch elu
//
// import torch
// import torch.nn.functional as F
// x = torch.tensor([-1.0, 0.0, -2.0, 3.0], requires_grad=True)
// y = F.elu(x, alpha=2.0)
// print(y)
// loss = y.min
// loss = y.sum()
// loss.backward()
// print(x.grad)
let elu_x = Var::new(&[-1.0f32, 0., -2., 3.], device)?;
let y = elu_x.elu(2.)?;
let grads = y.backward()?;
let grad_x = grads.get(&elu_x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[-1.2642, 0.0000, -1.7293, 3.0000]
);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[0.7358, 2.0000, 0.2707, 1.0000]
);
// testing compared to pytorch nn.Silu()
let y = x.silu()?;
let grads = y.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec1_round(&y, 4)?,
[2.8577, 0.7311, 3.9281, 0.0806]
);
assert_eq!(
test_utils::to_vec1_round(grad_x, 4)?,
[1.0881, 0.9277, 1.0527, 0.5747],
);
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
let y = x.interpolate2d(6, 6)?.reshape(36)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04., 05., 06.,
07., 08., 09., 10., 11., 12.,
13., 14., 15., 16., 17., 18.,
19., 20., 21., 22., 23., 24.,
25., 26., 27., 28., 29., 30.,
31., 32., 33., 34., 35., 36.,
],
device,
)?;
// gradient should be
// row 1
// 1+2+7+8 = 18
// 3+4+9+10 = 26
// 5+6+11+12 = 34
// row 2
// 13+14+19+20 = 66
// 15+16+21+22 = 74
// 17+18+23+24 = 82
// row 3
// 25+26+31+32 = 114
// 27+28+33+34 = 122
// 29+30+35+36 = 130
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
[[18_f32, 26., 34.], [66., 74., 82.], [114., 122., 130.]]
);
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2.], [4., 5.]]]], device)?;
let y = x.interpolate2d(6, 6)?.reshape(36)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04., 05., 06.,
07., 08., 09., 10., 11., 12.,
13., 14., 15., 16., 17., 18.,
19., 20., 21., 22., 23., 24.,
25., 26., 27., 28., 29., 30.,
31., 32., 33., 34., 35., 36.,
],
device,
)?;
// gradient should be
// row 1
// 1+2+3+7+8+9+13+14+15 = 72
// 4+5+6+10+11+12+16+17+18 = 99
// row 2
// 19+20+21+25+26+27+31+32+33 = 234
// 22+23+24+28+29+30+34+35+36 = 243
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
[[72_f32, 99.], [234., 261.]]
);
// manually checked: see comments
let x = Var::new(&[[[[1f32, 2.], [4., 5.]], [[6f32, 7.], [8., 9.]]]], device)?;
let y = x.interpolate2d(4, 4)?.reshape(32)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04.,
05., 06., 07., 08.,
09., 10., 11., 12.,
13., 14., 15., 16.,
17., 18., 19., 20.,
21., 22., 23., 24.,
25., 26., 27., 28.,
29., 30., 31., 32.
],
device,
)?;
// gradient should be
// m1r1
// 1+2+5+6=14
// 3+4+7+8=22
// m1r2
// 9+10+13+14=46
// 11+12+15+16=54
// m2r1
// 17+18+21+22=78
// 19+20+23+24=86
// m2r2
// 25+26+29+30=110
// 27+28+31+32=118
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
);
// manually checked: see comments
let x = Var::new(
&[[[[1f32, 2.], [4., 5.]]], [[[6f32, 7.], [8., 9.]]]],
device,
)?;
let y = x.interpolate2d(4, 4)?.reshape(32)?;
#[rustfmt::skip]
let z = Tensor::new(
&[
1_f32, 02., 03., 04.,
05., 06., 07., 08.,
09., 10., 11., 12.,
13., 14., 15., 16.,
17., 18., 19., 20.,
21., 22., 23., 24.,
25., 26., 27., 28.,
29., 30., 31., 32.
],
device,
)?;
// gradient should be
// m1r1
// 1+2+5+6=14
// 3+4+7+8=22
// m1r2
// 9+10+13+14=46
// 11+12+15+16=54
// m2r1
// 17+18+21+22=78
// 19+20+23+24=86
// m2r2
// 25+26+29+30=110
// 27+28+31+32=118
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
let grads = loss.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
);
Ok(())
}
@ -488,29 +250,9 @@ fn binary_grad(device: &Device) -> Result<()> {
Ok(())
}
test_device!(
simple_grad,
simple_grad_cpu,
simple_grad_gpu,
simple_grad_metal
);
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu, sum_grad_metal);
test_device!(
matmul_grad,
matmul_grad_cpu,
matmul_grad_gpu,
matmul_grad_metal
);
test_device!(
grad_descent,
grad_descent_cpu,
grad_descent_gpu,
grad_descent_metal
);
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu, unary_grad_metal);
test_device!(
binary_grad,
binary_grad_cpu,
binary_grad_gpu,
binary_grad_metal
);
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu);
test_device!(binary_grad, binary_grad_cpu, binary_grad_gpu);

View File

@ -91,32 +91,3 @@ fn index_3d() -> Result<()> {
assert_eq!(tensor.i((1, .., 3))?.to_vec1::<u32>()?, &[15, 19, 23]);
Ok(())
}
#[test]
fn slice_assign() -> Result<()> {
let dev = Device::Cpu;
let tensor = Tensor::arange(0u32, 4 * 5, &dev)?.reshape((4, 5))?;
let src = Tensor::arange(0u32, 2 * 3, &dev)?.reshape((3, 2))?;
let out = tensor.slice_assign(&[1..4, 3..5], &src)?;
assert_eq!(
out.to_vec2::<u32>()?,
&[
[0, 1, 2, 3, 4],
[5, 6, 7, 0, 1],
[10, 11, 12, 2, 3],
[15, 16, 17, 4, 5]
]
);
let out = tensor.slice_assign(&[0..3, 0..2], &src)?;
assert_eq!(
out.to_vec2::<u32>()?,
&[
[0, 1, 2, 3, 4],
[2, 3, 7, 8, 9],
[4, 5, 12, 13, 14],
[15, 16, 17, 18, 19]
]
);
Ok(())
}

View File

@ -49,7 +49,7 @@ fn contiguous(device: &Device) -> Result<()> {
Ok(())
}
test_device!(contiguous, contiguous_cpu, contiguous_gpu, contiguous_metal);
test_device!(contiguous, contiguous_cpu, contiguous_gpu);
#[test]
fn strided_blocks() -> Result<()> {

View File

@ -98,17 +98,15 @@ fn upsample_nearest2d(dev: &Device) -> Result<()> {
Ok(())
}
test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu, avg_pool2d_metal);
test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu);
test_device!(
avg_pool2d_pytorch,
avg_pool2d_pytorch_cpu,
avg_pool2d_pytorch_gpu,
avg_pool2d_pytorch_metal
avg_pool2d_pytorch_gpu
);
test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu, max_pool2d_metal);
test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu);
test_device!(
upsample_nearest2d,
upsample_nearest2d_cpu,
upsample_nearest2d_gpu,
upsample_nearest2d_metal
upsample_nearest2d_gpu
);

View File

@ -1,37 +0,0 @@
import torch
from collections import OrderedDict
# Write a trivial tensor to a pt file
a= torch.tensor([[1,2,3,4], [5,6,7,8]])
o = OrderedDict()
o["test"] = a
# Write a trivial tensor to a pt file
torch.save(o, "test.pt")
############################################################################################################
# Write a trivial tensor to a pt file with a key
torch.save({"model_state_dict": o}, "test_with_key.pt")
############################################################################################################
# Create a tensor with fortran contiguous memory layout
import numpy as np
# Step 1: Create a 3D NumPy array with Fortran order using a range of numbers
# For example, creating a 2x3x4 array
array_fortran = np.asfortranarray(np.arange(1, 2*3*4 + 1).reshape(2, 3, 4))
# Verify the memory order
print("Is Fortran contiguous (F order):", array_fortran.flags['F_CONTIGUOUS']) # Should be True
print("Is C contiguous (C order):", array_fortran.flags['C_CONTIGUOUS']) # Should be False
# Step 2: Convert the NumPy array to a PyTorch tensor
tensor_fortran = torch.from_numpy(array_fortran)
# Verify the tensor layout
print("Tensor stride:", tensor_fortran.stride()) # Stride will reflect the Fortran memory layout
# Step 3: Save the PyTorch tensor to a .pth file
torch.save({"tensor_fortran": tensor_fortran}, 'fortran_tensor_3d.pth')
print("3D Tensor saved with Fortran layout.")

View File

@ -1,31 +0,0 @@
/// Regression test for pth files not loading on Windows.
#[test]
fn test_pth() {
let tensors = candle_core::pickle::PthTensors::new("tests/test.pt", None).unwrap();
tensors.get("test").unwrap().unwrap();
}
#[test]
fn test_pth_with_key() {
let tensors =
candle_core::pickle::PthTensors::new("tests/test_with_key.pt", Some("model_state_dict"))
.unwrap();
tensors.get("test").unwrap().unwrap();
}
#[test]
fn test_pth_fortran_congiguous() {
let tensors =
candle_core::pickle::PthTensors::new("tests/fortran_tensor_3d.pth", None).unwrap();
let tensor = tensors.get("tensor_fortran").unwrap().unwrap();
assert_eq!(tensor.dims3().unwrap(), (2, 3, 4));
assert_eq!(
tensor.to_vec3::<i64>().unwrap(),
[
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]
]
);
}

View File

@ -1,9 +1,7 @@
use candle_core::{
bail,
quantized::{self, GgmlDType},
test_device,
test_utils::to_vec2_round,
Device, Module, Result, Tensor,
Device, Result, Tensor,
};
use quantized::{k_quants, GgmlType};
use rand::prelude::*;
@ -15,48 +13,16 @@ const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075;
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040;
const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02;
fn test_matmul(
device: &Device,
(b, m, n, k): (usize, usize, usize, usize),
dtype: GgmlDType,
) -> Result<()> {
let lhs = (0..(m * k))
.map(|v| v as f32 / (m * k) as f32)
.collect::<Vec<_>>();
let rhs = (0..(k * n))
.map(|v| v as f32 / (n * k) as f32)
.collect::<Vec<_>>();
let lhs = Tensor::from_slice(&lhs, (m, k), device)?;
let rhs = Tensor::from_slice(&rhs, (k, n), device)?;
let mm = lhs.matmul(&rhs)?;
let qtensor = quantized::QTensor::quantize(&rhs.t()?, dtype)?;
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
let res = matmul.forward(&lhs)?;
let error: f32 = ((&mm - &res)?.abs()? / &mm.abs()?)?
.sum_all()?
.to_scalar()?;
let error = error / (b * m * n) as f32;
assert!(
error <= 0.02,
"Error {error} is too big. \nExpected:\n {mm} \nFound:\n {res}\n for {dtype:?}"
);
Ok(())
}
fn quantized_matmul(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
#[test]
fn quantized_matmul() -> Result<()> {
let cpu = &Device::Cpu;
let (m, k, n) = (3, 64, 4);
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
let mut dst = vec![42.; 3 * 4];
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
assert_eq!(
@ -66,7 +32,6 @@ fn quantized_matmul(device: &Device) -> Result<()> {
341876.0, 994283.0, 1655709.0, 2301518.0
]
);
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
let mm = tensor_lhs.matmul(&tensor_rhs)?;
assert_eq!(
mm.to_vec2::<f32>()?,
@ -77,49 +42,35 @@ fn quantized_matmul(device: &Device) -> Result<()> {
]
);
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
let res = matmul.forward(&tensor_lhs)?;
match device {
Device::Metal(_) => assert_eq!(
to_vec2_round(&res, 0)?,
&[
[84946.0, 214126.0, 344757.0, 473798.0],
[213458.0, 604350.0, 1000469.0, 1387990.0],
[341970.0, 994574.0, 1656181.0, 2302182.0]
]
),
_ => assert_eq!(
to_vec2_round(&res, 0)?,
&[
[85120.0, 214562.0, 345455.0, 474748.0],
[213475.0, 604465.0, 1000686.0, 1388317.0],
[341876.0, 994283.0, 1655709.0, 2301518.0]
]
),
}
test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?;
assert_eq!(
to_vec2_round(&res, 0)?,
&[
[85120.0, 214562.0, 345455.0, 474748.0],
[213475.0, 604465.0, 1000686.0, 1388317.0],
[341876.0, 994283.0, 1655709.0, 2301518.0]
]
);
Ok(())
}
fn quantized_matmul_neg(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
#[test]
fn quantized_matmul_neg() -> Result<()> {
let cpu = &Device::Cpu;
let (m, k, n) = (3, 64, 4);
let lhs = (0..(m * k))
.map(|v| v as f32 - (m * k) as f32 / 2.0)
.collect::<Vec<_>>();
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
let mut dst = vec![42.; 3 * 4];
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
let rhs = (0..k * n)
.map(|v| v as f32 - (k * n) as f32 / 3.0)
.collect::<Vec<_>>();
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
assert_eq!(
@ -139,56 +90,32 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
]
);
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
let res = matmul.forward(&tensor_lhs)?;
match device {
Device::Metal(_) => assert_eq!(
to_vec2_round(&res, 0)?,
&[
[243666.0, -19714.0, -285433.0, -550453.0],
[23782.0, 21654.0, 19400.0, 18369.0],
[-196102.0, 63022.0, 324233.0, 587191.0]
]
),
_ => assert_eq!(
to_vec2_round(&res, 0)?,
&[
[243524.0, -19596.0, -285051.0, -549815.0],
[23777.0, 21651.0, 19398.0, 18367.0],
[-196472.0, 63012.0, 324585.0, 587902.0]
]
),
}
assert_eq!(
to_vec2_round(&res, 0)?,
&[
[243524.0, -19596.0, -285051.0, -549815.0],
[23777.0, 21651.0, 19398.0, 18367.0],
[-196472.0, 63012.0, 324585.0, 587902.0]
]
);
Ok(())
}
test_device!(
quantized_matmul,
quantized_matmul_cpu,
quantized_matmul_cuda,
quantized_matmul_metal
);
test_device!(
quantized_matmul_neg,
quantized_matmul_neg_cpu,
quantized_matmul_neg_cuda,
quantized_matmul_neg_metal
);
#[test]
fn quantize_q4_0() -> Result<()> {
use k_quants::BlockQ4_0;
fn quantize_q4_0(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?;
let dst = quant.dequantize(device)?;
let mut dst = vec![0f32; 32 * 4];
let mut quant = vec![BlockQ4_0::zeros(); 4];
BlockQ4_0::from_float(&src, &mut quant)?;
BlockQ4_0::to_float(&quant, dst.as_mut_slice())?;
assert_eq!(
dst.to_vec1::<f32>()?,
dst,
&[
-0.0, -0.0, 3.875, 3.875, 3.875, 3.875, 7.75, 7.75, 7.75, 7.75, 11.625, 11.625, 11.625,
11.625, 15.5, 15.5, 15.5, 15.5, 19.375, 19.375, 19.375, 19.375, 23.25, 23.25, 23.25,
@ -204,21 +131,21 @@ fn quantize_q4_0(device: &Device) -> Result<()> {
127.0, 127.0
]
);
ggml_quantization_error_test(GgmlDType::Q4_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ4_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q4_1(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
#[test]
fn quantize_q4_1() -> Result<()> {
use k_quants::BlockQ4_1;
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
let dst = quant.dequantize(device)?;
let mut dst = vec![0f32; 32 * 4];
let mut quant = vec![BlockQ4_1::zeros(); 4];
BlockQ4_1::from_float(&src, &mut quant)?;
BlockQ4_1::to_float(&quant, dst.as_mut_slice())?;
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
round_vector(&dst),
&[
0.0, 0.0, 2.066, 2.066, 4.133, 4.133, 6.199, 6.199, 8.266, 8.266, 10.332, 10.332,
12.398, 12.398, 14.465, 14.465, 16.531, 16.531, 18.598, 18.598, 20.664, 20.664, 22.73,
@ -234,21 +161,21 @@ fn quantize_q4_1(device: &Device) -> Result<()> {
118.73, 118.73, 120.797, 120.797, 122.863, 122.863, 124.93, 124.93, 126.996, 126.996
]
);
ggml_quantization_error_test(GgmlDType::Q4_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ4_1>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q5_0(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
#[test]
fn quantize_q5_0() -> Result<()> {
use k_quants::BlockQ5_0;
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
let dst = quant.dequantize(device)?;
let mut dst = vec![0f32; 32 * 4];
let mut quant = vec![BlockQ5_0::zeros(); 4];
BlockQ5_0::from_float(&src, &mut quant)?;
BlockQ5_0::to_float(&quant, dst.as_mut_slice())?;
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
round_vector(&dst),
&[
-0.0, 1.938, 1.938, 3.875, 3.875, 5.813, 5.813, 7.75, 7.75, 9.688, 9.688, 11.625,
11.625, 13.563, 13.563, 15.5, 15.5, 17.438, 17.438, 19.375, 19.375, 21.313, 21.313,
@ -264,21 +191,21 @@ fn quantize_q5_0(device: &Device) -> Result<()> {
119.063, 119.063, 119.063, 119.063, 127.0, 127.0, 127.0, 127.0
]
);
ggml_quantization_error_test(GgmlDType::Q5_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ5_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q5_1(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
#[test]
fn quantize_q5_1() -> Result<()> {
use k_quants::BlockQ5_1;
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
let dst = quant.dequantize(device)?;
let mut dst = vec![0f32; 32 * 4];
let mut quant = vec![BlockQ5_1::zeros(); 4];
BlockQ5_1::from_float(&src, &mut quant)?;
BlockQ5_1::to_float(&quant, dst.as_mut_slice())?;
assert_eq!(
round_vector(&dst.to_vec1::<f32>()?),
dst,
&[
0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
@ -292,11 +219,13 @@ fn quantize_q5_1(device: &Device) -> Result<()> {
124.0, 125.0, 126.0, 127.0
]
);
ggml_quantization_error_test(GgmlDType::Q5_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ5_1>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn get_test_vector2(bound: f32, size: usize, device: &Device) -> Result<Tensor> {
/// Generates a small test vector ranging from -`bound` to `bound` with `size` steps
fn get_test_vector(bound: f32, size: usize) -> (Vec<f32>, Vec<f32>) {
assert!(
size % crate::quantized::k_quants::QK_K == 0,
"size must be a multiple of {}",
@ -306,8 +235,10 @@ fn get_test_vector2(bound: f32, size: usize, device: &Device) -> Result<Tensor>
let src = (0..size)
.map(|v| (v as f32 - size as f32 / 2.) * bound / (size as f32 / 2.))
.collect::<Vec<_>>();
let dst = vec![0f32; size];
assert_eq!([src[0], src[size / 2]], [-bound, 0.0]);
Tensor::from_vec(src, (size,), device)
(src, dst)
}
/// Round a vector
@ -334,8 +265,7 @@ fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) {
}
}
/// Creates a vector similar to the ones used in GGML unit tests:
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
(0..GGML_TEST_SIZE)
.map(|i| 0.1 + 2.0 * (i as f32 + offset).cos())
@ -354,16 +284,14 @@ fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 {
sum / a.len() as f32
}
/// Similar to the GGML quantization unit test:
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f32) -> Result<()> {
/// Mirrores the GGML quanitzation unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
fn ggml_quantization_error_test<T: GgmlType>(max_error: f32) -> Result<()> {
let src = create_ggml_like_vector(0.0);
let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?);
let mut dst = vec![0.0; GGML_TEST_SIZE];
let _quant = quantize_roundtrip::<T>(src.as_slice(), dst.as_mut_slice())?;
let error = calculate_rmse(src.as_slice(), dst.as_slice());
if error > max_error {
bail!(
candle_core::bail!(
"Quantization error {} exceeds max error {}",
error,
max_error
@ -372,19 +300,19 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
Ok(())
}
fn quantize_q2k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q2K;
fn quantize_roundtrip<T: GgmlType>(src: &[f32], dst: &mut [f32]) -> Result<Vec<T>> {
let mut quant = vec![T::zeros(); src.len() / T::BLCK_SIZE];
T::from_float(src, &mut quant)?;
T::to_float(&quant, dst)?;
Ok(quant)
}
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q2k() -> Result<()> {
use k_quants::BlockQ2K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ2K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.1);
// Test some specific values
@ -398,30 +326,20 @@ fn quantize_q2k(device: &Device) -> Result<()> {
[-0.499, -0.366, -0.249, 0.0, 0.295, 0.492]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ2K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
ggml_quantization_error_test::<BlockQ2K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
Ok(())
}
fn quantize_q3k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q3K;
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q3k() -> Result<()> {
use k_quants::BlockQ3K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ3K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.03);
// Test some specific values
@ -435,30 +353,20 @@ fn quantize_q3k(device: &Device) -> Result<()> {
[-0.493, -0.37, -0.243, -0.0, 0.292, 0.492]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ3K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
ggml_quantization_error_test::<BlockQ3K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
Ok(())
}
fn quantize_q4k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q4K;
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q4k() -> Result<()> {
use k_quants::BlockQ4K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ4K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.017);
// Test some specific values
@ -472,31 +380,21 @@ fn quantize_q4k(device: &Device) -> Result<()> {
[-0.5, -0.373, -0.25, 0.0, 0.288, 0.498]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ4K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ4K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q5k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q5K;
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q5k() -> Result<()> {
use k_quants::BlockQ5K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.009);
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ5K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
// Test some specific values
assert_eq!(
@ -506,33 +404,24 @@ fn quantize_q5k(device: &Device) -> Result<()> {
let dst = round_vector(&dst);
assert_eq!(
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
[-0.5, -0.373, -0.25, 0.0, 0.279, 0.499]
[-0.499, -0.372, -0.249, 0.001, 0.279, 0.499]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ5K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ5K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q6k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q6K;
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q6k() -> Result<()> {
use k_quants::BlockQ6K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ6K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
// Test some specific values
@ -546,31 +435,22 @@ fn quantize_q6k(device: &Device) -> Result<()> {
[-0.497, -0.372, -0.25, -0.0, 0.284, 0.5]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ6K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ6K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
fn quantize_q8k(device: &Device) -> Result<()> {
// TODO Enable this later when we enable cuda.
if device.is_cuda() {
return Ok(());
}
let dtype = GgmlDType::Q8K;
let src = get_test_vector2(0.5, 1024, device)?;
let quant = quantized::QTensor::quantize(&src, dtype)?;
let dst = quant.dequantize(device)?;
#[test]
fn quantize_q8k() -> Result<()> {
use k_quants::BlockQ8K;
let src = src.to_vec1::<f32>()?;
let dst = dst.to_vec1::<f32>()?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
let (src, mut dst) = get_test_vector(0.5, 1024);
let _quant = quantize_roundtrip::<BlockQ8K>(src.as_slice(), dst.as_mut_slice())?;
compare_with_error(dst.as_slice(), src.as_slice(), 0.003);
// Test some specific values
assert_eq!(
@ -583,79 +463,15 @@ fn quantize_q8k(device: &Device) -> Result<()> {
[-0.5, -0.375, -0.25, -0.0, 0.281, 0.499]
);
let src_big = get_test_vector2(128.0, 1024, device)?;
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
let dst_big = quant_big.dequantize(device)?;
let src_big = src_big.to_vec1::<f32>()?;
let dst_big = dst_big.to_vec1::<f32>()?;
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
let _quant_big = quantize_roundtrip::<BlockQ8K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6);
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
ggml_quantization_error_test::<BlockQ8K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
test_device!(
quantize_q4_0,
quantize_q4_0_cpu,
quantize_q4_0_cuda,
quantize_q4_0_metal
);
test_device!(
quantize_q4_1,
quantize_q4_1_cpu,
quantize_q4_1_cuda,
quantize_q4_1_metal
);
test_device!(
quantize_q5_0,
quantize_q5_0_cpu,
quantize_q5_0_cuda,
quantize_q5_0_metal
);
test_device!(
quantize_q5_1,
quantize_q5_1_cpu,
quantize_q5_1_cuda,
quantize_q5_1_metal
);
test_device!(
quantize_q2k,
quantize_q2k_cpu,
quantize_q2k_cuda,
quantize_q2k_metal
);
test_device!(
quantize_q3k,
quantize_q3k_cpu,
quantize_q3k_cuda,
quantize_q3k_metal
);
test_device!(
quantize_q4k,
quantize_q4k_cpu,
quantize_q4k_cuda,
quantize_q4k_metal
);
test_device!(
quantize_q5k,
quantize_q5k_cpu,
quantize_q5k_cuda,
quantize_q5k_metal
);
test_device!(
quantize_q6k,
quantize_q6k_cpu,
quantize_q6k_cuda,
quantize_q6k_metal
);
test_device!(
quantize_q8k,
quantize_q8k_cpu,
quantize_q8k_cuda,
quantize_q8k_metal
);
/// Very simple dot product implementation
fn vec_dot_reference(a: &[f32], b: &[f32]) -> f32 {
a.iter().zip(b).map(|(a, b)| a * b).sum()
@ -671,66 +487,54 @@ fn ggml_reference_matmul_error(dtype: GgmlDType) -> Result<f32> {
GgmlDType::Q5K => 0.000740,
GgmlDType::Q6K => 0.000952,
GgmlDType::Q4_0 => 0.001143,
GgmlDType::Q4_1 => 0.008,
GgmlDType::Q4_1 => 0.007784,
GgmlDType::Q5_0 => 0.001353,
GgmlDType::Q5_1 => 0.00149,
GgmlDType::Q5_1 => 0.001363,
GgmlDType::Q8_0 => 0.000092,
// Not from the ggml repo.
GgmlDType::Q8K => 0.00065,
_ => bail!("No GGML results for quantization type {dtype:?}",),
_ => candle_core::bail!("No GGML results for quantization type {dtype:?}",),
};
Ok(err)
}
/// Similar to the GGML matmul unit test:
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
/// Mirrores the GGML matmul unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
let a = create_ggml_like_vector(0.0);
let b = create_ggml_like_vector(1.0);
ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 1.0)?;
// Another example that is more likely to trigger the overflow reported in #1526
let a = (0..GGML_TEST_SIZE)
.map(|i| i as f32 / GGML_TEST_SIZE as f32)
.collect::<Vec<_>>();
let b = (0..GGML_TEST_SIZE)
.map(|i| i as f32 / GGML_TEST_SIZE as f32)
.collect::<Vec<_>>();
ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 2.0)?;
Ok(())
}
fn ggml_matmul_error_test_<T: GgmlType>(a: &[f32], b: &[f32], err_m: f32) -> Result<()> {
let length = a.len();
let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE];
let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE];
T::from_float(a, &mut a_quant)?;
T::VecDotType::from_float(b, &mut b_quant)?;
T::from_float(&a, &mut a_quant)?;
T::VecDotType::from_float(&b, &mut b_quant)?;
let result = T::vec_dot(length, &a_quant, &b_quant)?;
let result_unopt = T::vec_dot_unopt(length, &a_quant, &b_quant)?;
let reference_result = vec_dot_reference(a, b);
let reference_result = vec_dot_reference(&a, &b);
if (result - result_unopt).abs() / length as f32 > 1e-6 {
bail!(
candle_core::bail!(
"the opt and unopt vec-dot returned different values, opt {result}, unopt {result_unopt}"
)
}
let error = (result - reference_result).abs() / length as f32;
let ggml_error = ggml_reference_matmul_error(T::DTYPE)? * err_m;
let ggml_error = ggml_reference_matmul_error(T::DTYPE)?;
if !error.is_finite() || error > GGML_MAX_DOT_PRODUCT_ERROR {
bail!("Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",);
candle_core::bail!(
"Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",
);
}
// We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML
// => we use a slightly higher error threshold
const ERROR_LENIENCY: f32 = 0.00001;
if error - ERROR_LENIENCY > ggml_error {
bail!(
candle_core::bail!(
"Dot product error {} exceeds ggml reference error {}",
error,
ggml_error
@ -739,16 +543,6 @@ fn ggml_matmul_error_test_<T: GgmlType>(a: &[f32], b: &[f32], err_m: f32) -> Res
Ok(())
}
#[test]
fn quantized_mm() -> Result<()> {
ggml_matmul_error_test::<k_quants::BlockQ4_0>()?;
ggml_matmul_error_test::<k_quants::BlockQ4_1>()?;
ggml_matmul_error_test::<k_quants::BlockQ5_0>()?;
ggml_matmul_error_test::<k_quants::BlockQ5_1>()?;
ggml_matmul_error_test::<k_quants::BlockQ8_0>()?;
Ok(())
}
/// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result.
fn get_random_tensors(
m: usize,
@ -772,112 +566,6 @@ fn get_random_tensors(
Ok((lhs, rhs, mm))
}
#[macro_export]
macro_rules! quantized_matmul {
// TODO: Switch to generating the two last arguments automatically once concat_idents is
// stable. https://github.com/rust-lang/rust/issues/29599
($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => {
fn $fn_name(device: &Device) -> Result<()> {
if device.is_cuda() {
// TODO Enable Cuda GGML sometime maybe.
return Ok(());
}
test_matmul(device, (1, 3, 4, 256), $dtype)?;
Ok(())
}
test_device!($fn_name, $fn_name_cpu, $fn_name_cuda, $fn_name_metal);
};
}
quantized_matmul!(
quantized_matmul_q4_0_bis,
quantized_matmul_q4_0_cpu,
quantized_matmul_q4_0_cuda,
quantized_matmul_q4_0_metal,
GgmlDType::Q4_0
);
quantized_matmul!(
quantized_matmul_q4_1_bis,
quantized_matmul_q4_1_cpu,
quantized_matmul_q4_1_cuda,
quantized_matmul_q4_1_metal,
GgmlDType::Q4_1
);
quantized_matmul!(
quantized_matmul_q5_0_bis,
quantized_matmul_q5_0_cpu,
quantized_matmul_q5_0_cuda,
quantized_matmul_q5_0_metal,
GgmlDType::Q5_0
);
quantized_matmul!(
quantized_matmul_q5_1_bis,
quantized_matmul_q5_1_cpu,
quantized_matmul_q5_1_cuda,
quantized_matmul_q5_1_metal,
GgmlDType::Q5_1
);
quantized_matmul!(
quantized_matmul_q8_0_bis,
quantized_matmul_q8_0_cpu,
quantized_matmul_q8_0_cuda,
quantized_matmul_q8_0_metal,
GgmlDType::Q8_0
);
// Not implemented in Ggml
// quantized_matmul!(
// quantized_matmul_q8_1_bis,
// quantized_matmul_q8_1_cpu,
// quantized_matmul_q8_1_cuda,
// quantized_matmul_q8_1_metal,
// GgmlDType::Q8_1
// );
// TODO This is bugged (also bugged in GGML
quantized_matmul!(
quantized_matmul_q2k_bis,
quantized_matmul_q2k_cpu,
quantized_matmul_q2k_cuda,
quantized_matmul_q2k_metal,
GgmlDType::Q2K
);
quantized_matmul!(
quantized_matmul_q3k_bis,
quantized_matmul_q3k_cpu,
quantized_matmul_q3k_cuda,
quantized_matmul_q3k_metal,
GgmlDType::Q3K
);
quantized_matmul!(
quantized_matmul_q4k_bis,
quantized_matmul_q4k_cpu,
quantized_matmul_q4k_cuda,
quantized_matmul_q4k_metal,
GgmlDType::Q4K
);
quantized_matmul!(
quantized_matmul_q5k_bis,
quantized_matmul_q5k_cpu,
quantized_matmul_q5k_cuda,
quantized_matmul_q5k_metal,
GgmlDType::Q5K
);
quantized_matmul!(
quantized_matmul_q6k_bis,
quantized_matmul_q6k_cpu,
quantized_matmul_q6k_cuda,
quantized_matmul_q6k_metal,
GgmlDType::Q6K
);
// Not implemented on metal
// quantized_matmul!(
// quantized_matmul_q8k_bis,
// quantized_matmul_q8k_cpu,
// quantized_matmul_q8k_cuda,
// quantized_matmul_q8k_metal,
// GgmlDType::Q8K
// );
#[test]
fn quantized_matmul_q2k() -> Result<()> {
use k_quants::BlockQ2K;
@ -890,7 +578,7 @@ fn quantized_matmul_q2k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?;
let rhs = quantized::QTensor::quantize::<BlockQ2K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;
@ -916,7 +604,7 @@ fn quantized_matmul_q3k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q3K)?;
let rhs = quantized::QTensor::quantize::<BlockQ3K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;
@ -942,7 +630,7 @@ fn quantized_matmul_q4k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q4K)?;
let rhs = quantized::QTensor::quantize::<BlockQ4K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;
@ -968,7 +656,7 @@ fn quantized_matmul_q5k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q5K)?;
let rhs = quantized::QTensor::quantize::<BlockQ5K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;
@ -995,7 +683,7 @@ fn quantized_matmul_q6k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q6K)?;
let rhs = quantized::QTensor::quantize::<BlockQ6K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;
@ -1020,7 +708,7 @@ fn quantized_matmul_q8k() -> Result<()> {
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q8K)?;
let rhs = quantized::QTensor::quantize::<BlockQ8K>(&rhs)?;
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
let mm = rhs.forward(&lhs)?;

View File

@ -1,4 +1,4 @@
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor, D};
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor};
fn zeros(device: &Device) -> Result<()> {
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
@ -29,34 +29,7 @@ fn ones(device: &Device) -> Result<()> {
Tensor::ones((2, 3), DType::F64, device)?.to_vec2::<f64>()?,
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
);
Ok(())
}
fn full(device: &Device) -> Result<()> {
assert_eq!(
Tensor::full(42u32, (2, 3), device)?.to_vec2::<u32>()?,
[[42, 42, 42], [42, 42, 42]],
);
Ok(())
}
fn arange(device: &Device) -> Result<()> {
assert_eq!(
Tensor::arange(0u8, 5u8, device)?.to_vec1::<u8>()?,
[0, 1, 2, 3, 4],
);
assert_eq!(
Tensor::arange_step(0u8, 5u8, 2, device)?.to_vec1::<u8>()?,
[0, 2, 4],
);
assert_eq!(
Tensor::arange_step(0u8, 5u8, 3, device)?.to_vec1::<u8>()?,
[0, 3],
);
assert_eq!(
Tensor::arange_step(5i64, 0i64, -1, device)?.to_vec1::<i64>()?,
[5, 4, 3, 2, 1],
);
Ok(())
}
@ -120,13 +93,6 @@ fn unary_op(device: &Device) -> Result<()> {
[0.9999, -0.9891, -0.3079, 0.9891, 0.9999]
]
);
assert_eq!(
test_utils::to_vec2_round(&tensor.silu()?, 4)?,
[
[-0.1423, 0.7311, 3.9281, -0.0475, 0.3112],
[2.53, -0.2553, -0.1205, 1.5447, 2.6395]
]
);
assert_eq!(
test_utils::to_vec2_round(&tensor.ceil()?, 4)?,
[[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]]
@ -195,22 +161,6 @@ fn transpose(device: &Device) -> Result<()> {
Ok(())
}
fn var(device: &Device) -> Result<()> {
// Values taken from https://pytorch.org/docs/stable/generated/torch.var.html
let data = &[
[0.2035f32, 1.2959, 1.8101, -0.4644],
[1.5027, -0.3270, 0.5905, 0.6538],
[-1.5745, 1.3330, -0.5596, -0.6548],
[0.1264, -0.5080, 1.6420, 0.1992],
];
let tensor = Tensor::new(data, device)?;
assert_eq!(
test_utils::to_vec2_round(&tensor.var_keepdim(1)?, 4)?,
&[[1.0631], [0.559], [1.4893], [0.8258]]
);
Ok(())
}
fn sum(device: &Device) -> Result<()> {
let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
let tensor = Tensor::new(data, device)?;
@ -1085,61 +1035,33 @@ fn randn(device: &Device) -> Result<()> {
Ok(())
}
test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal);
test_device!(ones, ones_cpu, ones_gpu, ones_metal);
test_device!(full, full_cpu, full_gpu, full_metal);
test_device!(arange, arange_cpu, arange_gpu, arange_metal);
test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal);
test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal);
test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal);
test_device!(cat, cat_cpu, cat_gpu, cat_metal);
test_device!(sum, sum_cpu, sum_gpu, sum_metal);
test_device!(min, min_cpu, min_gpu, min_metal);
test_device!(max, max_cpu, max_gpu, max_metal);
test_device!(argmax, argmax_cpu, argmax_gpu, argmax_metal);
test_device!(argmin, argmin_cpu, argmin_gpu, argmin_metal);
test_device!(transpose, transpose_cpu, transpose_gpu, transpose_metal);
test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(
broadcasting,
broadcasting_cpu,
broadcasting_gpu,
broadcasting_metal
);
test_device!(
index_select,
index_select_cpu,
index_select_gpu,
index_select_metal
);
test_device!(index_add, index_add_cpu, index_add_gpu, index_add_metal);
test_device!(gather, gather_cpu, gather_gpu, gather_metal);
test_device!(
scatter_add,
scatter_add_cpu,
scatter_add_gpu,
scatter_add_metal
);
test_device!(
slice_scatter,
slice_scatter_cpu,
slice_scatter_gpu,
slice_scatter_metal
);
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
test_device!(var, var_cpu, var_gpu, var_metal);
test_device!(zeros, zeros_cpu, zeros_gpu);
test_device!(ones, ones_cpu, ones_gpu);
test_device!(add_mul, add_mul_cpu, add_mul_gpu);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu);
test_device!(narrow, narrow_cpu, narrow_gpu);
test_device!(broadcast, broadcast_cpu, broadcast_gpu);
test_device!(cat, cat_cpu, cat_gpu);
test_device!(sum, sum_cpu, sum_gpu);
test_device!(min, min_cpu, min_gpu);
test_device!(max, max_cpu, max_gpu);
test_device!(argmax, argmax_cpu, argmax_gpu);
test_device!(argmin, argmin_cpu, argmin_gpu);
test_device!(transpose, transpose_cpu, transpose_gpu);
test_device!(unary_op, unary_op_cpu, unary_op_gpu);
test_device!(binary_op, binary_op_cpu, binary_op_gpu);
test_device!(embeddings, embeddings_cpu, embeddings_gpu);
test_device!(cmp, cmp_cpu, cmp_gpu);
test_device!(matmul, matmul_cpu, matmul_gpu);
test_device!(broadcast_matmul, broadcast_matmul_cpu, broadcast_matmul_gpu);
test_device!(broadcasting, broadcasting_cpu, broadcasting_gpu);
test_device!(index_select, index_select_cpu, index_select_gpu);
test_device!(index_add, index_add_cpu, index_add_gpu);
test_device!(gather, gather_cpu, gather_gpu);
test_device!(scatter_add, scatter_add_cpu, scatter_add_gpu);
test_device!(slice_scatter, slice_scatter_cpu, slice_scatter_gpu);
test_device!(randn, randn_cpu, randn_gpu);
test_device!(clamp, clamp_cpu, clamp_gpu);
// There was originally a bug on the CPU implementation for randn
// https://github.com/huggingface/candle/issues/381
@ -1167,108 +1089,3 @@ fn pad_with_same() -> Result<()> {
);
Ok(())
}
#[test]
fn i64_abs() -> Result<()> {
let t = Tensor::new(&[-42i64, 1337], &Device::Cpu)?;
let t = t.abs()?;
assert_eq!(t.to_vec1::<i64>()?, [42, 1337]);
Ok(())
}
#[test]
fn tril_triu_eye() -> Result<()> {
let t = Tensor::tril2(4, DType::F32, &Device::Cpu)?;
assert_eq!(
t.to_vec2::<f32>()?,
[
[1.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.0],
[1.0, 1.0, 1.0, 1.0]
],
);
let t = Tensor::triu2(4, DType::F32, &Device::Cpu)?;
assert_eq!(
t.to_vec2::<f32>()?,
[
[1.0, 1.0, 1.0, 1.0],
[0.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0]
]
);
let t = Tensor::eye(4, DType::F32, &Device::Cpu)?;
assert_eq!(
t.to_vec2::<f32>()?,
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
]
);
Ok(())
}
#[test]
fn cumsum() -> Result<()> {
let t = &[3f32, 1., 4., 1., 5.];
let t = Tensor::new(t, &Device::Cpu)?;
assert_eq!(t.cumsum(0)?.to_vec1::<f32>()?, [3., 4., 8., 9., 14.]);
let t = t.unsqueeze(1)?;
assert_eq!(
t.cumsum(0)?.to_vec2::<f32>()?,
[[3.0], [4.0], [8.0], [9.0], [14.0]]
);
assert_eq!(
t.cumsum(1)?.to_vec2::<f32>()?,
[[3.0], [1.0], [4.0], [1.0], [5.0]]
);
let t = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
let t = Tensor::new(t, &Device::Cpu)?;
assert_eq!(
t.cumsum(1)?.to_vec2::<f32>()?,
[[3.0, 4.0, 8.0, 9.0, 14.0], [2.0, 3.0, 10.0, 18.0, 20.0]],
);
assert_eq!(
t.cumsum(0)?.to_vec2::<f32>()?,
[[3.0, 1.0, 4.0, 1.0, 5.0], [5.0, 2.0, 11.0, 9.0, 7.0]]
);
Ok(())
}
/// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data.
/// Assertion passes if the difference of all pairs of a and b is smaller than epsilon.
fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
let a_vec: Vec<f64> = a.to_vec1()?;
let b_vec: Vec<f64> = b.to_vec1()?;
assert_eq!(a_vec.len(), b_vec.len());
for (a, b) in a_vec.iter().zip(b_vec.iter()) {
assert!((a - b).abs() < epsilon);
}
Ok(())
}
#[test]
fn log_sum_exp() -> Result<()> {
let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
let output = input.log_sum_exp(D::Minus1)?;
// The expectations obtained from pytorch.
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
assert_close(&output, &expected, 0.00001)?;
Ok(())
}
#[test]
fn pow() -> Result<()> {
let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
let rhs = (&lhs - 2.)?;
let res = lhs.pow(&rhs)?;
assert_eq!(
test_utils::to_vec2_round(&res, 4)?,
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]]
);
Ok(())
}

Binary file not shown.

Binary file not shown.

View File

@ -11,8 +11,8 @@ readme = "README.md"
[dependencies]
byteorder = { workspace = true }
candle = { workspace = true }
candle-nn = { workspace = true }
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
candle-nn = { path = "../candle-nn", version = "0.3.0" }
hf-hub = { workspace = true}
intel-mkl-src = { workspace = true, optional = true }
memmap2 = { workspace = true }

View File

@ -4,9 +4,7 @@
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
//! The binary version of the dataset is used.
use crate::vision::Dataset;
use candle::{DType, Device, Error, Result, Tensor};
use hf_hub::{api::sync::Api, Repo, RepoType};
use parquet::file::reader::{FileReader, SerializedFileReader};
use candle::{DType, Device, Result, Tensor};
use std::fs::File;
use std::io::{BufReader, Read};
@ -62,58 +60,3 @@ pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
labels: 10,
})
}
fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> {
let samples = parquet.metadata().file_metadata().num_rows() as usize;
let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 1_024);
let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples);
for row in parquet.into_iter().flatten() {
for (_name, field) in row.get_column_iter() {
if let parquet::record::Field::Group(subrow) = field {
for (_name, field) in subrow.get_column_iter() {
if let parquet::record::Field::Bytes(value) = field {
let image = image::load_from_memory(value.data()).unwrap();
buffer_images.extend(image.to_rgb8().as_raw());
}
}
} else if let parquet::record::Field::Long(label) = field {
buffer_labels.push(*label as u8);
}
}
}
let images = (Tensor::from_vec(buffer_images, (samples, 3, 32, 32), &Device::Cpu)?
.to_dtype(DType::U8)?
/ 255.)?;
let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
Ok((images, labels))
}
pub fn load() -> Result<Dataset> {
let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
let dataset_id = "cifar10".to_string();
let repo = Repo::with_revision(
dataset_id,
RepoType::Dataset,
"refs/convert/parquet".to_string(),
);
let repo = api.repo(repo);
let test_parquet_filename = repo
.get("plain_text/test/0000.parquet")
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
let train_parquet_filename = repo
.get("plain_text/train/0000.parquet")
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?)
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?)
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
let (test_images, test_labels) = load_parquet(test_parquet)?;
let (train_images, train_labels) = load_parquet(train_parquet)?;
Ok(crate::vision::Dataset {
train_images,
train_labels,
test_images,
test_labels,
labels: 10,
})
}

View File

@ -11,33 +11,28 @@ readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
candle = { workspace = true }
candle-datasets = { workspace = true }
candle-nn = { workspace = true }
candle-transformers = { workspace = true }
candle-flash-attn = { workspace = true, optional = true }
candle-onnx = { workspace = true, optional = true }
csv = "1.3.0"
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
candle-datasets = { path = "../candle-datasets", version = "0.3.0" }
candle-nn = { path = "../candle-nn", version = "0.3.0" }
candle-transformers = { path = "../candle-transformers", version = "0.3.0" }
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.0", optional = true }
cudarc = { workspace = true, optional = true }
half = { workspace = true, optional = true }
hf-hub = { workspace = true, features = ["tokio"] }
image = { workspace = true }
intel-mkl-src = { workspace = true, optional = true }
num-traits = { workspace = true }
pyo3 = { version = "0.20.0", features = ["auto-initialize"], optional = true }
pyo3 = { version = "0.19.0", features = ["auto-initialize"], optional = true }
rayon = { workspace = true }
safetensors = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }
symphonia = { version = "0.5.3", features = ["all"] }
tokenizers = { workspace = true, features = ["onig"] }
cpal= { version = "0.15.2", optional = true }
[dev-dependencies]
anyhow = { workspace = true }
byteorder = { workspace = true }
clap = { workspace = true }
hf-hub = { workspace = true, features=["tokio"]}
imageproc = { workspace = true }
memmap2 = { workspace = true }
rand = { workspace = true }
@ -45,24 +40,21 @@ rusttype = { workspace = true }
tracing = { workspace = true }
tracing-chrome = { workspace = true }
tracing-subscriber = { workspace = true }
wav = { workspace = true }
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
tokio = "1.29.1"
[build-dependencies]
anyhow = { workspace = true }
bindgen_cuda = { version = "0.1.1", optional = true }
[features]
default = []
accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda", "dep:bindgen_cuda"]
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda"]
cudnn = ["candle/cudnn"]
flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
nccl = ["cuda", "cudarc/nccl", "dep:half"]
onnx = ["candle-onnx"]
metal = ["candle/metal", "candle-nn/metal"]
microphone = ["cpal"]
[[example]]
name = "llama_multiprocess"
@ -71,15 +63,3 @@ required-features = ["cuda", "nccl", "flash-attn"]
[[example]]
name = "reinforcement-learning"
required-features = ["pyo3"]
[[example]]
name = "onnx"
required-features = ["onnx"]
[[example]]
name = "onnx_basics"
required-features = ["onnx"]
[[example]]
name = "whisper-microphone"
required-features = ["microphone"]

View File

@ -4,28 +4,235 @@ use std::io::Write;
use std::path::PathBuf;
struct KernelDirectories {
kernel_glob: &'static str,
kernel_dir: &'static str,
rust_target: &'static str,
include_dirs: &'static [&'static str],
}
const KERNEL_DIRS: [KernelDirectories; 1] = [KernelDirectories {
kernel_glob: "examples/custom-ops/kernels/*.cu",
const DIRS: [KernelDirectories; 1] = [KernelDirectories {
kernel_dir: "examples/custom-ops/kernels/",
rust_target: "examples/custom-ops/cuda_kernels.rs",
include_dirs: &[],
}];
impl KernelDirectories {
fn maybe_build_ptx(
&self,
cu_file: &std::path::Path,
ptx_file: &std::path::Path,
compute_cap: usize,
) -> Result<()> {
let should_compile = if ptx_file.exists() {
let ptx_modified = ptx_file.metadata()?.modified()?;
let cu_modified = cu_file.metadata()?.modified()?;
cu_modified.duration_since(ptx_modified).is_ok()
} else {
true
};
if should_compile {
#[cfg(feature = "cuda")]
{
let mut command = std::process::Command::new("nvcc");
let out_dir = ptx_file.parent().context("no parent for ptx file")?;
let include_dirs: Vec<String> =
self.include_dirs.iter().map(|c| format!("-I{c}")).collect();
command
.arg(format!("--gpu-architecture=sm_{compute_cap}"))
.arg("--ptx")
.args(["--default-stream", "per-thread"])
.args(["--output-directory", out_dir.to_str().unwrap()])
.arg(format!("-I/{}", self.kernel_dir))
.args(include_dirs)
.arg(cu_file);
let output = command
.spawn()
.context("failed spawning nvcc")?
.wait_with_output()?;
if !output.status.success() {
anyhow::bail!(
"nvcc error while compiling {cu_file:?}:\n\n# stdout\n{:#}\n\n# stderr\n{:#}",
String::from_utf8_lossy(&output.stdout),
String::from_utf8_lossy(&output.stderr)
)
}
}
#[cfg(not(feature = "cuda"))]
std::fs::OpenOptions::new()
.create(true)
.write(true)
.open(ptx_file)?;
}
Ok(())
}
fn process(&self, out_dir: &std::path::Path, compute_cap: usize) -> Result<()> {
println!("cargo:rerun-if-changed={}", self.kernel_dir);
let kernel_dir = PathBuf::from(self.kernel_dir);
let out_dir = out_dir.join(self.kernel_dir);
if !out_dir.exists() {
std::fs::create_dir_all(&out_dir)?;
}
let mut cu_files = vec![];
let mut cuh_files = vec![];
for file in std::fs::read_dir(kernel_dir)?.flatten() {
let file = file.path();
match file.extension().and_then(|v| v.to_str()) {
Some("cu") => cu_files.push(file),
Some("cuh") => cuh_files.push(file),
_ => {}
}
}
let mut ptx_paths = vec![];
for cu_file in cu_files.iter() {
let file_stem = cu_file
.file_stem()
.with_context(|| format!("no stem {cu_file:?}"))?;
let file_stem = file_stem.to_string_lossy().into_owned();
let ptx_file = out_dir.join(&format!("{file_stem}.ptx"));
self.maybe_build_ptx(cu_file, &ptx_file, compute_cap)?;
ptx_paths.push(ptx_file);
}
let regenerate_rs_file = true;
if regenerate_rs_file {
let mut file = std::fs::File::create(self.rust_target)?;
for ptx_path in ptx_paths {
let name = ptx_path
.file_stem()
.context("empty stem")?
.to_string_lossy();
file.write_all(b"#[rustfmt::skip]\n")?;
let const_definition = format!(
r#"pub const {}: &str = include_str!(concat!(env!("OUT_DIR"), "/{}/{name}.ptx"));"#,
name.to_uppercase().replace('.', "_"),
self.kernel_dir,
);
file.write_all(const_definition.as_bytes())?;
file.write_all(b"\n")?;
}
}
Ok(())
}
}
fn main() -> Result<()> {
println!("cargo:rerun-if-changed=build.rs");
let out_dir = std::env::var("OUT_DIR").context("OUT_DIR not set")?;
let out_dir = PathBuf::from(out_dir);
#[cfg(feature = "cuda")]
{
for kdir in KERNEL_DIRS.iter() {
let builder = bindgen_cuda::Builder::default().kernel_paths_glob(kdir.kernel_glob);
println!("cargo:info={builder:?}");
let bindings = builder.build_ptx().unwrap();
bindings.write(kdir.rust_target).unwrap()
}
set_cuda_include_dir()?;
#[cfg(feature = "cuda")]
let compute_cap = compute_cap()?;
#[cfg(not(feature = "cuda"))]
let compute_cap = 0;
for d in DIRS {
d.process(&out_dir, compute_cap)?
}
Ok(())
}
fn set_cuda_include_dir() -> Result<()> {
// NOTE: copied from cudarc build.rs.
let env_vars = [
"CUDA_PATH",
"CUDA_ROOT",
"CUDA_TOOLKIT_ROOT_DIR",
"CUDNN_LIB",
];
let env_vars = env_vars
.into_iter()
.map(std::env::var)
.filter_map(Result::ok)
.map(Into::<PathBuf>::into);
let roots = [
"/usr",
"/usr/local/cuda",
"/opt/cuda",
"/usr/lib/cuda",
"C:/Program Files/NVIDIA GPU Computing Toolkit",
"C:/CUDA",
];
let roots = roots.into_iter().map(Into::<PathBuf>::into);
let root = env_vars
.chain(roots)
.find(|path| path.join("include").join("cuda.h").is_file())
.context("cannot find include/cuda.h")?;
println!(
"cargo:rustc-env=CUDA_INCLUDE_DIR={}",
root.join("include").display()
);
Ok(())
}
#[allow(unused)]
fn compute_cap() -> Result<usize> {
// Grab compute code from nvidia-smi
let mut compute_cap = {
let out = std::process::Command::new("nvidia-smi")
.arg("--query-gpu=compute_cap")
.arg("--format=csv")
.output()
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?;
let mut lines = out.lines();
assert_eq!(
lines.next().context("missing line in stdout")?,
"compute_cap"
);
let cap = lines
.next()
.context("missing line in stdout")?
.replace('.', "");
cap.parse::<usize>()
.with_context(|| format!("cannot parse as int {cap}"))?
};
// Grab available GPU codes from nvcc and select the highest one
let max_nvcc_code = {
let out = std::process::Command::new("nvcc")
.arg("--list-gpu-code")
.output()
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
let out = std::str::from_utf8(&out.stdout).unwrap();
let out = out.lines().collect::<Vec<&str>>();
let mut codes = Vec::with_capacity(out.len());
for code in out {
let code = code.split('_').collect::<Vec<&str>>();
if !code.is_empty() && code.contains(&"sm") {
if let Ok(num) = code[1].parse::<usize>() {
codes.push(num);
}
}
}
codes.sort();
if !codes.contains(&compute_cap) {
anyhow::bail!(
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {codes:?}."
);
}
*codes.last().unwrap()
};
// If nvidia-smi compute_cap is higher than the highest gpu code from nvcc,
// then choose the highest gpu code in nvcc
if compute_cap > max_nvcc_code {
println!(
"cargo:warning=Lowering gpu arch {compute_cap} to max nvcc target {max_nvcc_code}."
);
compute_cap = max_nvcc_code;
}
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
compute_cap = compute_cap_str
.parse::<usize>()
.with_context(|| format!("cannot parse as usize '{compute_cap_str}'"))?;
println!("cargo:warning=Using gpu arch {compute_cap} from $CUDA_COMPUTE_CAP");
}
println!("cargo:rustc-env=CUDA_COMPUTE_CAP=sm_{compute_cap}");
Ok(compute_cap)
}

View File

@ -2,10 +2,10 @@
Bert is a general large language model. In this example it can be used for two
different tasks:
- Compute sentence embeddings for a prompt.
- Compute similarities between a set of sentences.
## Sentence embeddings
Bert is used to compute the sentence embeddings for a prompt. The model weights
@ -24,48 +24,6 @@ cargo run --example bert --release -- --prompt "Here is a test sentence"
> Tensor[[1, 7, 384], f32]
```
### Custom models
You can specify different models, such as BGE, with the `--model-id` flag:
```bash
cargo run --example bert --release -- \
--model-id BAAI/bge-large-zh-v1.5 \
--prompt "Here is a test sentence"
Loaded and encoded 435.70775ms
[[[ 3.0944e-1, -7.8455e-5, -1.2768e0, ..., 1.3755e-2, -3.2371e-1, 2.3819e-1],
[-2.8506e-1, 1.9953e-1, -1.3076e0, ..., 6.9819e-2, 1.0833e-2, -1.1512e0],
[ 3.9892e-1, 2.0000e-1, -9.3178e-1, ..., -4.1393e-1, -4.9644e-2, -3.3786e-1],
...
[ 6.0345e-1, 3.5744e-1, -1.2672e0, ..., -6.9165e-1, -3.4973e-3, -8.4214e-1],
[ 3.9218e-1, -3.2735e-1, -1.3123e0, ..., -4.9318e-1, -5.1334e-1, -3.6391e-1],
[ 3.0978e-1, 2.5662e-4, -1.2773e0, ..., 1.3357e-2, -3.2390e-1, 2.3858e-1]]]
Tensor[[1, 9, 1024], f32]
Took 176.744667ms
```
### Gelu approximation
You can get a speedup by using an approximation of the gelu activation, with a
small loss of precision, by passing the `--approximate-gelu` flag:
```bash
$ cargo run --example bert --release -- \
--model-id BAAI/bge-large-zh-v1.5 \
--prompt "Here is a test sentence" \
--approximate-gelu
Loaded and encoded 244.388042ms
[[[ 3.1048e-1, -6.0339e-4, -1.2758e0, ..., 1.3718e-2, -3.2362e-1, 2.3775e-1],
[-2.8354e-1, 1.9984e-1, -1.3077e0, ..., 6.9390e-2, 9.9681e-3, -1.1531e0],
[ 3.9947e-1, 1.9917e-1, -9.3178e-1, ..., -4.1301e-1, -5.0719e-2, -3.3955e-1],
...
[ 6.0499e-1, 3.5664e-1, -1.2642e0, ..., -6.9134e-1, -3.4581e-3, -8.4471e-1],
[ 3.9311e-1, -3.2812e-1, -1.3105e0, ..., -4.9291e-1, -5.1270e-1, -3.6543e-1],
[ 3.1082e-1, -2.6737e-4, -1.2762e0, ..., 1.3319e-2, -3.2381e-1, 2.3815e-1]]]
Tensor[[1, 9, 1024], f32]
Took 116.840791ms
```
## Similarities
In this example, Bert is used to compute the sentence embeddings for a set of

View File

@ -3,7 +3,7 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_transformers::models::bert::{BertModel, Config, HiddenAct, DTYPE};
use candle_transformers::models::bert::{BertModel, Config, DTYPE};
use anyhow::{Error as E, Result};
use candle::Tensor;
@ -45,10 +45,6 @@ struct Args {
/// L2 normalization for embeddings.
#[arg(long, default_value = "true")]
normalize_embeddings: bool,
/// Use tanh based approximation for Gelu instead of erf implementation.
#[arg(long, default_value = "false")]
approximate_gelu: bool,
}
impl Args {
@ -77,7 +73,7 @@ impl Args {
(config, tokenizer, weights)
};
let config = std::fs::read_to_string(config_filename)?;
let mut config: Config = serde_json::from_str(&config)?;
let config: Config = serde_json::from_str(&config)?;
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let vb = if self.use_pth {
@ -85,9 +81,6 @@ impl Args {
} else {
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? }
};
if self.approximate_gelu {
config.hidden_act = HiddenAct::GeluApproximate;
}
let model = BertModel::load(vb, &config)?;
Ok((model, tokenizer))
}

View File

@ -106,17 +106,17 @@ pub fn main() -> anyhow::Result<()> {
let config = blip::Config::image_captioning_large();
let device = candle_examples::device(args.cpu)?;
let (image_embeds, device, mut model) = if args.quantized {
let device = Device::Cpu;
let image = load_image(args.image)?.to_device(&device)?;
println!("loaded image {image:?}");
let vb = quantized_blip::VarBuilder::from_gguf(model_file, &device)?;
let vb = quantized_blip::VarBuilder::from_gguf(model_file)?;
let model = quantized_blip::BlipForConditionalGeneration::new(&config, vb)?;
let image_embeds = image.unsqueeze(0)?.apply(model.vision_model())?;
(image_embeds, device, Model::Q(model))
} else {
let device = candle_examples::device(args.cpu)?;
let image = load_image(args.image)?.to_device(&device)?;
println!("loaded image {image:?}");
@ -149,6 +149,6 @@ pub fn main() -> anyhow::Result<()> {
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}

View File

@ -1,237 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::chatglm::{Config, Model};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the chatglm model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_vocab(true).get("</s>") {
Some(token) => *token,
None => anyhow::bail!("cannot find the endoftext token"),
};
print!("{prompt}");
std::io::stdout().flush()?;
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input)?;
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 5000)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
weight_file: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id.to_string(),
None => "THUDM/chatglm3-6b".to_string(),
};
let revision = match args.revision {
Some(rev) => rev.to_string(),
None => "main".to_string(),
};
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("lmz/candle-chatglm".to_string())
.get("chatglm-tokenizer.json")?,
};
let filenames = match args.weight_file {
Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = Config::glm3_6b();
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -1,23 +0,0 @@
# candle-convnext
[A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) and
[ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808).
This candle implementation uses a pre-trained ConvNeXt network for inference. The
classification head has been trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example convnext --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which tiny
loaded image Tensor[dims 3, 224, 224; f32]
model built
mountain bike, all-terrain bike, off-roader: 84.09%
bicycle-built-for-two, tandem bicycle, tandem: 4.15%
maillot : 0.74%
crash helmet : 0.54%
unicycle, monocycle : 0.44%
```

View File

@ -1,126 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::convnext;
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
Atto,
Femto,
Pico,
Nano,
Tiny,
Small,
Base,
Large,
AttoV2,
FemtoV2,
PicoV2,
NanoV2,
TinyV2,
BaseV2,
LargeV2,
XLarge,
Huge,
}
impl Which {
fn model_filename(&self) -> String {
let name = match self {
Self::Atto => "convnext_atto.d2_in1k",
Self::Femto => "convnext_femto.d1_in1k",
Self::Pico => "convnext_pico.d1_in1k",
Self::Nano => "convnext_nano.d1h_in1k",
Self::Tiny => "convnext_tiny.fb_in1k",
Self::Small => "convnext_small.fb_in1k",
Self::Base => "convnext_base.fb_in1k",
Self::Large => "convnext_large.fb_in1k",
Self::AttoV2 => "convnextv2_atto.fcmae_ft_in1k",
Self::FemtoV2 => "convnextv2_femto.fcmae_ft_in1k",
Self::PicoV2 => "convnextv2_pico.fcmae_ft_in1k",
Self::NanoV2 => "convnextv2_nano.fcmae_ft_in1k",
Self::TinyV2 => "convnextv2_tiny.fcmae_ft_in1k",
Self::BaseV2 => "convnextv2_base.fcmae_ft_in1k",
Self::LargeV2 => "convnextv2_large.fcmae_ft_in1k",
Self::XLarge => "convnext_xlarge.fb_in22k_ft_in1k",
Self::Huge => "convnextv2_huge.fcmae_ft_in1k",
};
format!("timm/{name}")
}
fn config(&self) -> convnext::Config {
match self {
Self::Atto | Self::AttoV2 => convnext::Config::atto(),
Self::Femto | Self::FemtoV2 => convnext::Config::femto(),
Self::Pico | Self::PicoV2 => convnext::Config::pico(),
Self::Nano | Self::NanoV2 => convnext::Config::nano(),
Self::Tiny | Self::TinyV2 => convnext::Config::tiny(),
Self::Small => convnext::Config::small(),
Self::Base | Self::BaseV2 => convnext::Config::base(),
Self::Large | Self::LargeV2 => convnext::Config::large(),
Self::XLarge => convnext::Config::xlarge(),
Self::Huge => convnext::Config::huge(),
}
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(value_enum, long, default_value_t=Which::Tiny)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let model_name = args.which.model_filename();
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(model_name);
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = convnext::convnext(&args.which.config(), 1000, vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

View File

@ -0,0 +1,2 @@
#[rustfmt::skip]
pub const LAYERNORM_KERNELS: &str = include_str!(concat!(env!("OUT_DIR"), "/examples/custom-ops/kernels//layernorm_kernels.ptx"));

View File

@ -6,8 +6,7 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[rustfmt::skip]
#[cfg(feature = "cuda")]
#[allow(unused)]
mod cuda_kernels;
use clap::Parser;

View File

@ -1,22 +0,0 @@
# candle-distilbert
DistilBert is a distiled version of the Bert model.
## Sentence embeddings
DistilBert is used to compute the sentence embeddings for a prompt. The model weights
are downloaded from the hub on the first run.
```bash
cargo run --example distilbert --release -- --prompt "Here is a test sentence"
> [[[ 0.5109, 0.1280, -0.2635, ..., 0.3462, -1.0434, 0.1441],
> [ 0.1735, 0.0818, -0.5549, ..., 0.3472, -0.8264, -0.0244],
> [ 0.0702, -0.1311, -0.4914, ..., 0.3483, -0.6194, 0.1829],
> ...
> [ 0.2993, -0.0106, -0.4640, ..., 0.2844, -0.6732, 0.0042],
> [ 0.1066, -0.0081, -0.4299, ..., 0.3435, -0.7729, 0.0190],
> [ 0.8903, 0.2055, -0.2541, ..., 0.3208, -0.6585, 0.0586]]]
> Tensor[[1, 7, 768], f32]
```

View File

@ -1,135 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_transformers::models::distilbert::{Config, DistilBertModel, DTYPE};
use anyhow::{Error as E, Result};
use candle::{Device, Tensor};
use candle_nn::VarBuilder;
use clap::Parser;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// The model to use, check out available models: https://huggingface.co/models?library=sentence-transformers&sort=trending
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
/// When set, compute embeddings for this prompt.
#[arg(long)]
prompt: String,
/// Use the pytorch weights rather than the safetensors ones
#[arg(long)]
use_pth: bool,
/// The number of times to run the prompt.
#[arg(long, default_value = "1")]
n: usize,
/// L2 normalization for embeddings.
#[arg(long, default_value = "true")]
normalize_embeddings: bool,
}
impl Args {
fn build_model_and_tokenizer(&self) -> Result<(DistilBertModel, Tokenizer)> {
let device = candle_examples::device(self.cpu)?;
let default_model = "distilbert-base-uncased".to_string();
let default_revision = "main".to_string();
let (model_id, revision) = match (self.model_id.to_owned(), self.revision.to_owned()) {
(Some(model_id), Some(revision)) => (model_id, revision),
(Some(model_id), None) => (model_id, "main".to_string()),
(None, Some(revision)) => (default_model, revision),
(None, None) => (default_model, default_revision),
};
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
let (config_filename, tokenizer_filename, weights_filename) = {
let api = Api::new()?;
let api = api.repo(repo);
let config = api.get("config.json")?;
let tokenizer = api.get("tokenizer.json")?;
let weights = if self.use_pth {
api.get("pytorch_model.bin")?
} else {
api.get("model.safetensors")?
};
(config, tokenizer, weights)
};
let config = std::fs::read_to_string(config_filename)?;
let config: Config = serde_json::from_str(&config)?;
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let vb = if self.use_pth {
VarBuilder::from_pth(&weights_filename, DTYPE, &device)?
} else {
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? }
};
let model = DistilBertModel::load(vb, &config)?;
Ok((model, tokenizer))
}
}
fn get_mask(size: usize, device: &Device) -> Tensor {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device).unwrap()
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
println!("tracing...");
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
let device = &model.device;
let tokenizer = tokenizer
.with_padding(None)
.with_truncation(None)
.map_err(E::msg)?;
let tokens = tokenizer
.encode(args.prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
let mask = get_mask(tokens.len(), device);
println!("token_ids: {:?}", token_ids.to_vec2::<u32>());
println!("mask: {:?}", mask.to_vec2::<u8>());
let ys = model.forward(&token_ids, &mask)?;
println!("{ys}");
Ok(())
}
pub fn normalize_l2(v: &Tensor) -> Result<Tensor> {
Ok(v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)?)
}

View File

@ -165,7 +165,14 @@ fn main() -> Result<()> {
args.revision,
));
let tokenizer_filename = repo.get("tokenizer.json")?;
let filenames = candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?;
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
let filename = repo.get(rfilename)?;
filenames.push(filename);
}
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;

View File

@ -1,45 +0,0 @@
# candle-jina-bert
Jina-Bert is a general large language model with a context size of 8192, [model
card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en). In this example
it can be used for two different tasks:
- Compute sentence embeddings for a prompt.
- Compute similarities between a set of sentences.
## Sentence embeddings
Jina-Bert is used to compute the sentence embeddings for a prompt. The model weights
are downloaded from the hub on the first run.
```bash
cargo run --example jina-bert --release -- --prompt "Here is a test sentence"
> [[[ 0.1595, -0.9885, 0.6494, ..., 0.3003, -0.6901, -1.2355],
> [ 0.0374, -0.1798, 1.3359, ..., 0.6731, 0.2133, -1.6807],
> [ 0.1700, -0.8534, 0.8924, ..., -0.1785, -0.0727, -1.5087],
> ...
> [-0.3113, -1.3665, 0.2027, ..., -0.2519, 0.1711, -1.5811],
> [ 0.0907, -1.0492, 0.5382, ..., 0.0242, -0.7077, -1.0830],
> [ 0.0369, -0.6343, 0.6105, ..., 0.0671, 0.3778, -1.1505]]]
> Tensor[[1, 7, 768], f32]
```
## Similarities
In this example, Jina-Bert is used to compute the sentence embeddings for a set of
sentences (hardcoded in the examples). Then cosine similarities are computed for
each sentence pair and they are reported by decreasing values, hence the first
reported pair contains the two sentences that have the highest similarity score.
The sentence embeddings are computed using average pooling through all the
sentence tokens, including some potential padding.
```bash
cargo run --example jina-bert --release
> score: 0.94 'The new movie is awesome' 'The new movie is so great'
> score: 0.81 'The cat sits outside' 'The cat plays in the garden'
> score: 0.78 'I love pasta' 'Do you like pizza?'
> score: 0.68 'I love pasta' 'The new movie is awesome'
> score: 0.67 'A man is playing guitar' 'A woman watches TV'
```

View File

@ -1,180 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_transformers::models::jina_bert::{BertModel, Config};
use anyhow::Error as E;
use candle::{DType, Module, Tensor};
use candle_nn::VarBuilder;
use clap::Parser;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// When set, compute embeddings for this prompt.
#[arg(long)]
prompt: Option<String>,
/// The number of times to run the prompt.
#[arg(long, default_value = "1")]
n: usize,
/// L2 normalization for embeddings.
#[arg(long, default_value = "true")]
normalize_embeddings: bool,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
model: Option<String>,
}
impl Args {
fn build_model_and_tokenizer(&self) -> anyhow::Result<(BertModel, tokenizers::Tokenizer)> {
use hf_hub::{api::sync::Api, Repo, RepoType};
let model = match &self.model {
Some(model_file) => std::path::PathBuf::from(model_file),
None => Api::new()?
.repo(Repo::new(
"jinaai/jina-embeddings-v2-base-en".to_string(),
RepoType::Model,
))
.get("model.safetensors")?,
};
let tokenizer = match &self.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => Api::new()?
.repo(Repo::new(
"sentence-transformers/all-MiniLM-L6-v2".to_string(),
RepoType::Model,
))
.get("tokenizer.json")?,
};
let device = candle_examples::device(self.cpu)?;
let config = Config::v2_base();
let tokenizer = tokenizers::Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
let model = BertModel::new(vb, &config)?;
Ok((model, tokenizer))
}
}
fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
println!("tracing...");
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
let start = std::time::Instant::now();
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
let device = &model.device;
if let Some(prompt) = args.prompt {
let tokenizer = tokenizer
.with_padding(None)
.with_truncation(None)
.map_err(E::msg)?;
let tokens = tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
println!("Loaded and encoded {:?}", start.elapsed());
for idx in 0..args.n {
let start = std::time::Instant::now();
let ys = model.forward(&token_ids)?;
if idx == 0 {
println!("{ys}");
}
println!("Took {:?}", start.elapsed());
}
} else {
let sentences = [
"The cat sits outside",
"A man is playing guitar",
"I love pasta",
"The new movie is awesome",
"The cat plays in the garden",
"A woman watches TV",
"The new movie is so great",
"Do you like pizza?",
];
let n_sentences = sentences.len();
if let Some(pp) = tokenizer.get_padding_mut() {
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
} else {
let pp = tokenizers::PaddingParams {
strategy: tokenizers::PaddingStrategy::BatchLongest,
..Default::default()
};
tokenizer.with_padding(Some(pp));
}
let tokens = tokenizer
.encode_batch(sentences.to_vec(), true)
.map_err(E::msg)?;
let token_ids = tokens
.iter()
.map(|tokens| {
let tokens = tokens.get_ids().to_vec();
Tensor::new(tokens.as_slice(), device)
})
.collect::<candle::Result<Vec<_>>>()?;
let token_ids = Tensor::stack(&token_ids, 0)?;
println!("running inference on batch {:?}", token_ids.shape());
let embeddings = model.forward(&token_ids)?;
println!("generated embeddings {:?}", embeddings.shape());
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
let embeddings = if args.normalize_embeddings {
normalize_l2(&embeddings)?
} else {
embeddings
};
println!("pooled embeddings {:?}", embeddings.shape());
let mut similarities = vec![];
for i in 0..n_sentences {
let e_i = embeddings.get(i)?;
for j in (i + 1)..n_sentences {
let e_j = embeddings.get(j)?;
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
similarities.push((cosine_similarity, i, j))
}
}
similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
for &(score, i, j) in similarities[..5].iter() {
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
}
}
Ok(())
}
pub fn normalize_l2(v: &Tensor) -> candle::Result<Tensor> {
v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)
}

View File

@ -13,7 +13,7 @@ extern crate accelerate_src;
extern crate intel_mkl_src;
use anyhow::{bail, Error as E, Result};
use clap::{Parser, ValueEnum};
use clap::Parser;
use candle::{DType, Tensor};
use candle_nn::VarBuilder;
@ -22,21 +22,11 @@ use hf_hub::{api::sync::Api, Repo, RepoType};
use std::io::Write;
use candle_transformers::models::llama as model;
use model::{Llama, LlamaConfig};
use model::{Config, Llama, LlamaConfig};
const EOS_TOKEN: &str = "</s>";
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
V1,
V2,
#[value(name = "solar-10.7b")]
Solar10_7B,
#[value(name = "tiny-llama-1.1b-chat")]
TinyLlama1_1BChat,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
@ -44,6 +34,10 @@ struct Args {
#[arg(long)]
cpu: bool,
/// Use npy instead of safetensors
#[arg(long)]
npy: Option<String>,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
@ -57,7 +51,7 @@ struct Args {
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, default_value_t = 10000)]
#[arg(long, default_value_t = 100)]
sample_len: usize,
/// Disable the key-value cache.
@ -82,13 +76,17 @@ struct Args {
#[arg(long)]
revision: Option<String>,
/// The model size to use.
#[arg(long, default_value = "v2")]
which: Which,
#[arg(long)]
v1: bool,
#[arg(long)]
use_flash_attn: bool,
/// The folder name that contains safetensor weights and json files
/// (same structure as huggingface online)
#[arg(long)]
local_weights: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.0)]
repeat_penalty: f32,
@ -120,33 +118,65 @@ fn main() -> Result<()> {
Some(dtype) => bail!("Unsupported dtype {dtype}"),
None => DType::F16,
};
let (llama, tokenizer_filename, cache) = {
let api = Api::new()?;
let model_id = args.model_id.unwrap_or_else(|| match args.which {
Which::V1 => "Narsil/amall-7b".to_string(),
Which::V2 => "meta-llama/Llama-2-7b-hf".to_string(),
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0".to_string(),
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0".to_string(),
});
println!("loading the model weights from {model_id}");
let revision = args.revision.unwrap_or("main".to_string());
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let (llama, tokenizer_filename, cache) = match args.npy {
Some(filename) => {
let config = if args.v1 {
Config::config_7b_v1(args.use_flash_attn)
} else {
Config::config_7b_v2(args.use_flash_attn)
};
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
let vb = VarBuilder::from_npz(filename, dtype, &device)?;
let tokenizer = std::path::PathBuf::from("llama-tokenizer.json");
(Llama::load(vb, &cache, &config)?, tokenizer, cache)
}
None => {
let api = Api::new()?;
let model_id = args.model_id.unwrap_or_else(|| {
if args.v1 {
"Narsil/amall-7b".to_string()
} else {
"meta-llama/Llama-2-7b-hf".to_string()
}
});
println!("loading the model weights from {model_id}");
let revision = args.revision.unwrap_or("main".to_string());
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = api.get("tokenizer.json")?;
let config_filename = api.get("config.json")?;
let config: LlamaConfig = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let config = config.into_config(args.use_flash_attn);
let tokenizer_filename = match &args.local_weights {
Some(path) => (path.to_owned() + "tokenizer.json").into(),
_ => api.get("tokenizer.json")?,
};
let filenames = match args.which {
Which::V1 | Which::V2 | Which::Solar10_7B => {
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
let config_filename = match &args.local_weights {
Some(path) => (path.to_owned() + "config.json").into(),
_ => api.get("config.json")?,
};
let config: LlamaConfig = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let config = config.into_config(args.use_flash_attn);
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
match &args.local_weights {
Some(path) => {
filenames.push((path.to_owned() + rfilename).into());
}
_ => {
let filename = api.get(rfilename)?;
filenames.push(filename);
}
};
}
Which::TinyLlama1_1BChat => vec![api.get("model.safetensors")?],
};
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
(Llama::load(vb, &cache, &config)?, tokenizer_filename, cache)
println!("building the model");
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
(Llama::load(vb, &cache, &config)?, tokenizer_filename, cache)
}
};
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let eos_token_id = tokenizer.token_to_id(EOS_TOKEN);
@ -156,7 +186,6 @@ fn main() -> Result<()> {
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
println!("starting the inference loop");
print!("{prompt}");
@ -165,14 +194,14 @@ fn main() -> Result<()> {
let mut index_pos = 0;
let mut token_generated = 0;
for index in 0..args.sample_len {
let (context_size, context_index) = if cache.use_kv_cache && index > 0 {
(1, index_pos)
let context_size = if cache.use_kv_cache && index > 0 {
1
} else {
(tokens.len(), 0)
tokens.len()
};
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
let logits = llama.forward(&input, context_index)?;
let logits = llama.forward(&input, index_pos)?;
let logits = logits.squeeze(0)?;
let logits = if args.repeat_penalty == 1. {
logits
@ -190,16 +219,18 @@ fn main() -> Result<()> {
token_generated += 1;
tokens.push(next_token);
// Extracting the last token as a string is complicated, here we just apply some simple
// heuristics as it seems to work well enough for this example. See the following for more
// details:
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
if let Some(text) = tokenizer.id_to_token(next_token) {
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
print!("{text}");
std::io::stdout().flush()?;
}
if Some(next_token) == eos_token_id {
break;
}
if let Some(t) = tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
let dt = start_gen.elapsed();
println!(

View File

@ -6,10 +6,9 @@ extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use candle_transformers::models::llama2_c as model;
use candle_transformers::models::llama2_c_weights as weights;
use candle_transformers::models::quantized_llama2_c as qmodel;
mod model;
mod training;
mod weights;
use clap::{Parser, Subcommand};
use anyhow::{Error as E, Result};
@ -20,7 +19,6 @@ use std::io::Write;
use tokenizers::Tokenizer;
use model::{Config, Llama};
use qmodel::QLlama;
use weights::TransformerWeights;
#[derive(Parser, Debug, Clone)]
@ -154,20 +152,6 @@ fn main() -> anyhow::Result<()> {
Ok(())
}
enum Model {
Llama(Llama),
QLlama(QLlama),
}
impl Model {
fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
match self {
Self::Llama(l) => Ok(l.forward(xs, pos)?),
Self::QLlama(l) => Ok(l.forward(xs, pos)?),
}
}
}
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
use std::io::BufRead;
@ -257,66 +241,24 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let device = candle_examples::device(common_args.cpu)?;
let is_gguf = config_path.extension().map_or(false, |v| v == "gguf");
let is_safetensors = config_path
.extension()
.map_or(false, |v| v == "safetensors");
let (model, config) = if is_gguf {
let vb = qmodel::VarBuilder::from_gguf(config_path, &device)?;
let (_vocab_size, dim) = vb
.get_no_shape("model.embed_tokens.weight")?
.shape()
.dims2()?;
let config = match dim {
64 => Config::tiny_260k(),
288 => Config::tiny_15m(),
512 => Config::tiny_42m(),
768 => Config::tiny_110m(),
_ => anyhow::bail!("no config for dim {dim}"),
};
let freq_cis_real = vb
.get(
(config.seq_len, config.head_size() / 2),
"rot.freq_cis_real",
)?
.dequantize(&device)?;
let freq_cis_imag = vb
.get(
(config.seq_len, config.head_size() / 2),
"rot.freq_cis_imag",
)?
.dequantize(&device)?;
let fake_vb = candle_nn::VarBuilder::from_tensors(
[
("freq_cis_real".to_string(), freq_cis_real),
("freq_cis_imag".to_string(), freq_cis_imag),
]
.into_iter()
.collect(),
candle::DType::F32,
&device,
);
let cache = model::Cache::new(true, &config, fake_vb)?;
let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
(model, config)
} else if is_safetensors {
let config = Config::tiny_15m();
let (vb, config) = if is_safetensors {
let config = Config::tiny();
let tensors = candle::safetensors::load(config_path, &device)?;
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
(model, config)
(vb, config)
} else {
let mut file = std::fs::File::open(config_path)?;
let config = Config::from_reader(&mut file)?;
println!("{config:?}");
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
(model, config)
(vb, config)
};
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
println!("starting the inference loop");
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p);
@ -328,11 +270,10 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
let start_gen = std::time::Instant::now();
for index in 0.. {
if tokens.len() >= config.seq_len {
if tokens.len() >= model.config.seq_len {
break;
}
let context_size = if index > 0 { 1 } else { tokens.len() };
@ -354,14 +295,16 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let next_token = logits_processor.sample(&logits)?;
tokens.push(next_token);
if let Some(t) = tokenizer.next_token(next_token)? {
print!("{t}");
// Extracting the last token as a string is complicated, here we just apply some simple
// heuristics as it seems to work well enough for this example. See the following for more
// details:
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
if let Some(text) = tokenizer.id_to_token(next_token) {
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
print!("{text}");
std::io::stdout().flush()?;
}
}
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
let dt = start_gen.elapsed();
println!(
"\n{} tokens generated ({:.2} token/s)\n",

View File

@ -17,20 +17,7 @@ pub struct Config {
}
impl Config {
pub fn tiny_260k() -> Self {
Self {
dim: 64,
hidden_dim: 768,
n_layers: 5,
n_heads: 8,
n_kv_heads: 4,
vocab_size: 32000,
seq_len: 512,
norm_eps: 1e-5,
}
}
pub fn tiny_15m() -> Self {
pub fn tiny() -> Self {
Self {
dim: 288,
hidden_dim: 768,
@ -42,32 +29,6 @@ impl Config {
norm_eps: 1e-5,
}
}
pub fn tiny_42m() -> Self {
Self {
dim: 512,
hidden_dim: 768,
n_layers: 8,
n_heads: 8,
n_kv_heads: 8,
vocab_size: 32000,
seq_len: 1024,
norm_eps: 1e-5,
}
}
pub fn tiny_110m() -> Self {
Self {
dim: 768,
hidden_dim: 768,
n_layers: 12,
n_heads: 12,
n_kv_heads: 12,
vocab_size: 32000,
seq_len: 1024,
norm_eps: 1e-5,
}
}
}
#[derive(Clone)]
@ -75,9 +36,9 @@ pub struct Cache {
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
pub use_kv_cache: bool,
#[allow(clippy::type_complexity)]
pub kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
pub cos: Tensor,
pub sin: Tensor,
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
cos: Tensor,
sin: Tensor,
device: Device,
}
@ -114,7 +75,7 @@ impl Cache {
})
}
pub fn mask(&self, t: usize) -> Result<Tensor> {
fn mask(&self, t: usize) -> Result<Tensor> {
let mut masks = self.masks.lock().unwrap();
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())

View File

@ -33,7 +33,7 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
);
let varmap = candle_nn::VarMap::new();
let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device);
let config = Config::tiny_15m();
let config = Config::tiny();
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);

View File

@ -1,8 +1,9 @@
use anyhow::Result;
use byteorder::{LittleEndian, ReadBytesExt};
use candle::{DType, Device, IndexOp, Result, Shape, Tensor};
use candle::{DType, Device, IndexOp, Shape, Tensor};
use candle_nn::VarBuilder;
use super::llama2_c::Config;
use crate::model::Config;
pub struct TransformerWeights {
// token embedding table

View File

@ -143,7 +143,14 @@ fn main() -> Result<()> {
let config_filename = api.get("config.json")?;
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let tokenizer_filename = api.get("tokenizer.json")?;
let filenames = candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?;
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
let filename = api.get(rfilename)?;
filenames.push(filename);
}
if args.rank.is_none() {
let children: Vec<_> = (0..args.num_shards)

View File

@ -1,15 +0,0 @@
# candle-mamba-minimal: minimal implementation of Mamba
This is based on [mamba-minimal](https://github.com/johnma2006/mamba-minimal).
Compared to the mamba example, this version can handle training but is much
slower.
## Running the example
```bash
$ cargo run --example mamba-minimal --release -- --prompt "Mamba is the"
Mamba is the most popular and best-selling game in the world. It has been downloaded more than 1,000 times by over 1 million people worldwide since its release on March 18th 2016.
The Mamba series of games are a collection that combines elements from all genres including action, adventure, strategy & puzzle games with some unique gameplay features such as stealth and survival. The game is also known for its innovative graphics and the ability to play in a variety of different modes like single player or multiplayer.
```

View File

@ -1,287 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
mod model;
use model::{Config, Model};
use candle::{DType, Device, Module, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let start_gen = std::time::Instant::now();
for _ in 0..sample_len {
let input = Tensor::new(tokens.as_slice(), &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, ValueEnum, Clone, Copy, PartialEq, Eq, Debug)]
enum Which {
Mamba130m,
Mamba370m,
Mamba790m,
Mamba1_4b,
Mamba2_8b,
Mamba2_8bSlimPj,
}
impl std::fmt::Display for Which {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl Which {
fn model_id(&self) -> &'static str {
match self {
Self::Mamba130m => "state-spaces/mamba-130m",
Self::Mamba370m => "state-spaces/mamba-370m",
Self::Mamba790m => "state-spaces/mamba-790m",
Self::Mamba1_4b => "state-spaces/mamba-1.4b",
Self::Mamba2_8b => "state-spaces/mamba-2.8b",
Self::Mamba2_8bSlimPj => "state-spaces/mamba-2.8b-slimpj'",
}
}
fn revision(&self) -> &'static str {
match self {
Self::Mamba130m
| Self::Mamba370m
| Self::Mamba790m
| Self::Mamba1_4b
| Self::Mamba2_8bSlimPj => "refs/pr/1",
Self::Mamba2_8b => "refs/pr/4",
}
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 5000)]
sample_len: usize,
#[arg(long, default_value = "mamba130m")]
which: Which,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
#[arg(long)]
config_file: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id
.unwrap_or_else(|| args.which.model_id().to_string()),
RepoType::Model,
args.revision
.unwrap_or_else(|| args.which.revision().to_string()),
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("EleutherAI/gpt-neox-20b".to_string())
.get("tokenizer.json")?,
};
let config_filename = match args.config_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("config.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => {
vec![repo.get("model.safetensors")?]
}
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = Model::new(&config, vb.pp("backbone"))?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -1,204 +0,0 @@
/// This follows the lines of:
/// https://github.com/johnma2006/mamba-minimal/blob/master/model.py
/// Simple, minimal implementation of Mamba in one file of PyTorch.
use candle::{IndexOp, Module, Result, Tensor, D};
use candle_nn::{RmsNorm, VarBuilder};
use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear};
#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
d_model: usize,
n_layer: usize,
vocab_size: usize,
pad_vocab_size_multiple: usize,
}
impl Config {
fn vocab_size(&self) -> usize {
let pad = self.pad_vocab_size_multiple;
(self.vocab_size + pad - 1) / pad * pad
}
fn dt_rank(&self) -> usize {
(self.d_model + 15) / 16
}
fn d_conv(&self) -> usize {
4
}
fn d_state(&self) -> usize {
16
}
fn d_inner(&self) -> usize {
self.d_model * 2
}
}
// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177
#[derive(Clone, Debug)]
pub struct MambaBlock {
in_proj: Linear,
conv1d: candle_nn::Conv1d,
x_proj: Linear,
dt_proj: Linear,
a_log: Tensor,
d: Tensor,
out_proj: Linear,
dt_rank: usize,
}
impl MambaBlock {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let d_inner = cfg.d_inner();
let d_conv = cfg.d_conv();
let d_state = cfg.d_state();
let dt_rank = cfg.dt_rank();
let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?;
let conv_cfg = candle_nn::Conv1dConfig {
groups: d_inner,
padding: d_conv - 1,
..Default::default()
};
let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?;
let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?;
let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?;
let a_log = vb.get((d_inner, d_state), "A_log")?;
let d = vb.get(d_inner, "D")?;
let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?;
Ok(Self {
in_proj,
conv1d,
x_proj,
dt_proj,
a_log,
d,
out_proj,
dt_rank,
})
}
fn ssm(&self, xs: &Tensor) -> Result<Tensor> {
let (_d_in, n) = self.a_log.dims2()?;
let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?;
let d = self.d.to_dtype(candle::DType::F32)?;
let x_dbl = xs.apply(&self.x_proj)?;
let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?;
let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?;
let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?;
let delta = delta.contiguous()?.apply(&self.dt_proj)?;
// softplus without threshold
let delta = (delta.exp()? + 1.)?.log()?;
let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?;
Ok(ss)
}
}
// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275
fn selective_scan(
u: &Tensor,
delta: &Tensor,
a: &Tensor,
b: &Tensor,
c: &Tensor,
d: &Tensor,
) -> Result<Tensor> {
let (b_sz, l, d_in) = u.dims3()?;
let n = a.dim(1)?;
let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1
let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?;
let delta_b_u = delta
.broadcast_mul(&b.reshape((b_sz, 1, l, n))?)?
.broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?;
let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?;
let mut ys = Vec::with_capacity(l);
for i in 0..l {
xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?;
let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?;
ys.push(y)
}
let ys = Tensor::stack(ys.as_slice(), 1)?;
ys + u.broadcast_mul(d)
}
impl Module for MambaBlock {
// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b_sz, seq_len, _dim) = xs.dims3()?;
let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?;
let (xs, res) = (&xs_and_res[0], &xs_and_res[1]);
let xs = xs
.t()?
.apply(&self.conv1d)?
.narrow(D::Minus1, 0, seq_len)?
.t()?;
let xs = candle_nn::ops::silu(&xs)?;
let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?;
ys.apply(&self.out_proj)
}
}
// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143
#[derive(Clone, Debug)]
pub struct ResidualBlock {
mixer: MambaBlock,
norm: RmsNorm,
}
impl ResidualBlock {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?;
let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?;
Ok(Self { mixer, norm })
}
}
impl Module for ResidualBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.norm)?.apply(&self.mixer)? + xs
}
}
// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56
#[derive(Clone, Debug)]
pub struct Model {
embedding: candle_nn::Embedding,
layers: Vec<ResidualBlock>,
norm_f: RmsNorm,
lm_head: Linear,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?;
let mut layers = Vec::with_capacity(cfg.n_layer);
let vb_l = vb.pp("layers");
for layer_idx in 0..cfg.n_layer {
let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?;
let lm_head = Linear::from_weights(embedding.embeddings().clone(), None);
Ok(Self {
embedding,
layers,
norm_f,
lm_head,
})
}
}
impl Module for Model {
fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
let (_b_size, seq_len) = input_ids.dims2()?;
let mut xs = self.embedding.forward(input_ids)?;
for layer in self.layers.iter() {
xs = layer.forward(&xs)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm_f)?
.apply(&self.lm_head)
}
}

View File

@ -1,17 +0,0 @@
# candle-mamba: Mamba implementation
Candle implementation of *Mamba* [1] inference only. Mamba is an alternative to
the transformer architecture. It leverages State Space Models (SSMs) with the
goal of being computationally efficient on long sequences. The implementation is
based on [mamba.rs](https://github.com/LaurentMazare/mamba.rs).
- [1]. [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752).
Compared to the mamba-minimal example, this version is far more efficient but
would only work for inference.
## Running the example
```bash
$ cargo run --example mamba-minimal --release -- --prompt "Mamba is the"
```

View File

@ -1,299 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::mamba::{Config, Model, State};
use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
config: Config,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
config: Config,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
config,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let mut state = State::new(1, &self.config, &self.device)?;
let mut next_logits = None;
for &t in tokens.iter() {
let input = Tensor::new(&[t], &self.device)?;
let logits = self.model.forward(&input, &mut state)?;
next_logits = Some(logits);
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let start_gen = std::time::Instant::now();
for _ in 0..sample_len {
let logits = match next_logits.as_ref() {
Some(logits) => logits,
None => anyhow::bail!("cannot work on an empty prompt"),
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
let input = Tensor::new(&[next_token], &self.device)?;
next_logits = Some(self.model.forward(&input, &mut state)?)
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, ValueEnum, Clone, Copy, PartialEq, Eq, Debug)]
enum Which {
Mamba130m,
Mamba370m,
Mamba790m,
Mamba1_4b,
Mamba2_8b,
Mamba2_8bSlimPj,
}
impl std::fmt::Display for Which {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl Which {
fn model_id(&self) -> &'static str {
match self {
Self::Mamba130m => "state-spaces/mamba-130m",
Self::Mamba370m => "state-spaces/mamba-370m",
Self::Mamba790m => "state-spaces/mamba-790m",
Self::Mamba1_4b => "state-spaces/mamba-1.4b",
Self::Mamba2_8b => "state-spaces/mamba-2.8b",
Self::Mamba2_8bSlimPj => "state-spaces/mamba-2.8b-slimpj'",
}
}
fn revision(&self) -> &'static str {
match self {
Self::Mamba130m
| Self::Mamba370m
| Self::Mamba790m
| Self::Mamba1_4b
| Self::Mamba2_8bSlimPj => "refs/pr/1",
Self::Mamba2_8b => "refs/pr/4",
}
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 5000)]
sample_len: usize,
#[arg(long, default_value = "mamba130m")]
which: Which,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
#[arg(long)]
config_file: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id
.unwrap_or_else(|| args.which.model_id().to_string()),
RepoType::Model,
args.revision
.unwrap_or_else(|| args.which.revision().to_string()),
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("EleutherAI/gpt-neox-20b".to_string())
.get("tokenizer.json")?,
};
let config_filename = match args.config_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("config.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => {
vec![repo.get("model.safetensors")?]
}
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = Model::new(&config, vb.pp("backbone"))?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
config,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -1,38 +0,0 @@
# candle-marian-mt
`marian-mt` is a neural machine translation model. In this example it is used to
translate text from French to English. See the associated [model
card](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en) for details on
the model itself.
## Running an example
```bash
cargo run --example marian-mt --release -- \
--text "Demain, dès l'aube, à l'heure où blanchit la campagne, Je partirai. Vois-tu, je sais que tu m'attends. J'irai par la forêt, j'irai par la montagne. Je ne puis demeurer loin de toi plus longtemps."
```
```
<NIL> Tomorrow, at dawn, at the time when the country is whitening, I will go. See,
I know you are waiting for me. I will go through the forest, I will go through the
mountain. I cannot stay far from you any longer.</s>
```
## Generating the tokenizer.json files
You can use the following script to generate the `tokenizer.json` config files
from the hf-hub repos. This requires the `tokenizers` and `sentencepiece`
packages to be install and use the `convert_slow_tokenizer.py` script from this
directory.
```python
from convert_slow_tokenizer import MarianConverter
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en", use_fast=False)
fast_tokenizer = MarianConverter(tokenizer, index=0).converted()
fast_tokenizer.save(f"tokenizer-marian-base-fr.json")
fast_tokenizer = MarianConverter(tokenizer, index=1).converted()
fast_tokenizer.save(f"tokenizer-marian-base-en.json")
```

File diff suppressed because it is too large Load Diff

View File

@ -1,152 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::marian;
use tokenizers::Tokenizer;
#[derive(Clone, Debug, Copy, ValueEnum)]
enum Which {
Base,
Big,
}
// TODO: Maybe add support for the conditional prompt.
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
tokenizer_dec: Option<String>,
/// Choose the variant of the model to run.
#[arg(long, default_value = "big")]
which: Which,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Use the quantized version of the model.
#[arg(long)]
quantized: bool,
/// Text to be translated
#[arg(long)]
text: String,
}
pub fn main() -> anyhow::Result<()> {
use hf_hub::api::sync::Api;
let args = Args::parse();
let config = match args.which {
Which::Base => marian::Config::opus_mt_fr_en(),
Which::Big => marian::Config::opus_mt_tc_big_fr_en(),
};
let tokenizer = {
let tokenizer = match args.tokenizer {
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
None => {
let name = match args.which {
Which::Base => "tokenizer-marian-base-fr.json",
Which::Big => "tokenizer-marian-fr.json",
};
Api::new()?
.model("lmz/candle-marian".to_string())
.get(name)?
}
};
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let tokenizer_dec = {
let tokenizer = match args.tokenizer_dec {
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
None => {
let name = match args.which {
Which::Base => "tokenizer-marian-base-en.json",
Which::Big => "tokenizer-marian-en.json",
};
Api::new()?
.model("lmz/candle-marian".to_string())
.get(name)?
}
};
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec);
let device = candle_examples::device(args.cpu)?;
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => match args.which {
Which::Base => Api::new()?
.repo(hf_hub::Repo::with_revision(
"Helsinki-NLP/opus-mt-fr-en".to_string(),
hf_hub::RepoType::Model,
"refs/pr/4".to_string(),
))
.get("model.safetensors")?,
Which::Big => Api::new()?
.model("Helsinki-NLP/opus-mt-tc-big-fr-en".to_string())
.get("model.safetensors")?,
},
};
unsafe { VarBuilder::from_mmaped_safetensors(&[&model], DType::F32, &device)? }
};
let mut model = marian::MTModel::new(&config, vb)?;
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let encoder_xs = {
let mut tokens = tokenizer
.encode(args.text, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
tokens.push(config.eos_token_id);
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
model.encoder().forward(&tokens, 0)?
};
let mut token_ids = vec![config.decoder_start_token_id];
for index in 0..1000 {
let context_size = if index >= 1 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
if token == config.eos_token_id || token == config.forced_eos_token_id {
break;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}

View File

@ -152,11 +152,11 @@ struct Args {
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
#[arg(long, short = 'n', default_value_t = 100)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "lmz/candle-mistral")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
@ -207,18 +207,8 @@ fn main() -> Result<()> {
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => {
if args.quantized {
"lmz/candle-mistral".to_string()
} else {
"mistralai/Mistral-7B-v0.1".to_string()
}
}
};
let repo = api.repo(Repo::with_revision(
model_id,
args.model_id,
RepoType::Model,
args.revision,
));
@ -235,7 +225,10 @@ fn main() -> Result<()> {
if args.quantized {
vec![repo.get("model-q4k.gguf")?]
} else {
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
vec![
repo.get("pytorch_model-00001-of-00002.safetensors")?,
repo.get("pytorch_model-00002-of-00002.safetensors")?,
]
}
}
};
@ -244,14 +237,13 @@ fn main() -> Result<()> {
let start = std::time::Instant::now();
let config = Config::config_7b_v0_1(args.use_flash_attn);
let device = candle_examples::device(args.cpu)?;
let (model, device) = if args.quantized {
let filename = &filenames[0];
let vb =
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?;
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename)?;
let model = QMistral::new(&config, vb)?;
(Model::Quantized(model), device)
(Model::Quantized(model), Device::Cpu)
} else {
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {

View File

@ -1,25 +0,0 @@
# candle-mixtral: 8x7b LLM using a sparse mixture of experts.
Mixtral-8x7B-v0.1 is a pretrained generative LLM with 56 billion parameters.
- [Blog post](https://mistral.ai/news/mixtral-of-experts/) from Mistral announcing the model release.
- [Model card](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the HuggingFace Hub.
## Running the example
```bash
$ cargo run --example mixtral --release -- --prompt "def print_prime(n): "
def print_prime(n): # n is the number of prime numbers to be printed
i = 2
count = 0
while (count < n):
if (isPrime(i)):
print(i)
count += 1
i += 1
def isPrime(n):
for x in range(2, int(n**0.5)+1):
if (n % x == 0):
...
```

View File

@ -1,241 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::mixtral::{Config, Model};
use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("</s>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
#[arg(long, default_value = "mistralai/Mixtral-8x7B-v0.1")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = Config::v0_1_8x7b(args.use_flash_attn);
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -9,7 +9,7 @@ use clap::{Parser, ValueEnum};
use rand::prelude::*;
use candle::{DType, Result, Tensor, D};
use candle_nn::{loss, ops, Conv2d, Linear, Module, ModuleT, Optimizer, VarBuilder, VarMap};
use candle_nn::{loss, ops, Conv2d, Linear, Module, Optimizer, VarBuilder, VarMap};
const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;
@ -95,7 +95,7 @@ impl ConvNet {
.flatten_from(1)?
.apply(&self.fc1)?
.relu()?;
self.dropout.forward_t(&xs, train)?.apply(&self.fc2)
self.dropout.forward(&xs, train)?.apply(&self.fc2)
}
}

View File

@ -1,22 +0,0 @@
# candle-mobileone
[MobileOne: An Improved One millisecond Mobile Backbone](https://arxiv.org/abs/2206.04040).
This candle implementation uses a pre-trained MobileOne network for inference. The
classification head has been trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example mobileone --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which s2
loaded image Tensor[dims 3, 224, 224; f32]
model built
mountain bike, all-terrain bike, off-roader: 79.33%
bicycle-built-for-two, tandem bicycle, tandem: 15.32%
crash helmet : 2.58%
unicycle, monocycle : 1.70%
alp : 0.21%
```

View File

@ -1,96 +0,0 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::mobileone;
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
S0,
S1,
S2,
S3,
S4,
}
impl Which {
fn model_filename(&self) -> String {
let name = match self {
Self::S0 => "s0",
Self::S1 => "s1",
Self::S2 => "s2",
Self::S3 => "s3",
Self::S4 => "s4",
};
format!("timm/mobileone_{}.apple_in1k", name)
}
fn config(&self) -> mobileone::Config {
match self {
Self::S0 => mobileone::Config::s0(),
Self::S1 => mobileone::Config::s1(),
Self::S2 => mobileone::Config::s2(),
Self::S3 => mobileone::Config::s3(),
Self::S4 => mobileone::Config::s4(),
}
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(value_enum, long, default_value_t=Which::S0)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let model_name = args.which.model_filename();
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(model_name);
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = mobileone::mobileone(&args.which.config(), 1000, vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

Some files were not shown because too many files have changed in this diff Show More