mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Compare commits
11 Commits
qmm-fix2
...
cudarc-12-
Author | SHA1 | Date | |
---|---|---|---|
42c702a023 | |||
d6f01f625d | |||
3277844fd9 | |||
c79bf421c7 | |||
58c1e909d3 | |||
9964c6d86c | |||
fc877920ce | |||
6547c4bfc3 | |||
f9579f80be | |||
1bddd44cb8 | |||
9cfe3c7141 |
18
Cargo.toml
18
Cargo.toml
@ -20,7 +20,7 @@ exclude = [
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "0.7.1"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
description = "Minimalist ML framework."
|
||||
repository = "https://github.com/huggingface/candle"
|
||||
@ -33,14 +33,14 @@ ab_glyph = "0.2.23"
|
||||
accelerate-src = { version = "0.3.2" }
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.7.1" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.7.1" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.7.1" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.7.1" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.7.1" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.7.1" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.7.1" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.7.1" }
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.7.0" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.7.0" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.7.0" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.7.0" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.7.0" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.7.0" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.7.0" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.7.0" }
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
criterion = { version = "0.5.1", default-features=false }
|
||||
cudarc = { version = "0.12.1", features = ["std", "cublas", "cublaslt", "curand", "driver", "nvrtc", "f16", "cuda-version-from-build-system", "dynamic-linking"], default-features=false }
|
||||
|
@ -37,12 +37,6 @@ fn pad(p: usize, q: usize) -> usize {
|
||||
ceil_div(p, q) * q
|
||||
}
|
||||
|
||||
fn pad_for_alloc(p: usize) -> usize {
|
||||
// Overallocate by q rather than just padding by q as this should pad the last row
|
||||
// and we don't have enough information here to know how many elements to add :(
|
||||
p + MATRIX_ROW_PADDING
|
||||
}
|
||||
|
||||
fn quantize_q8_1(
|
||||
src: &CudaView<f32>,
|
||||
dst: &mut CudaSlice<u8>,
|
||||
@ -450,11 +444,8 @@ impl QCudaStorage {
|
||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?;
|
||||
qcpu_storage.quantize(&src)?;
|
||||
let data = qcpu_storage.data()?;
|
||||
let mut dst = self.device.alloc_zeros::<u8>(pad_for_alloc(src_len)).w()?;
|
||||
self.device
|
||||
.htod_sync_copy_into(data.as_ref(), &mut dst.slice_mut(..src_len))
|
||||
.w()?;
|
||||
self.data = dst;
|
||||
let data = self.device.htod_sync_copy(data.as_ref()).w()?;
|
||||
self.data = data;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -18,7 +18,7 @@ pub(super) fn group_for_quantization<'a, 'b, T: super::k_quants::GgmlType>(
|
||||
let actual_blocks = ys.len();
|
||||
|
||||
// Validate that the input is the right size
|
||||
if expected_blocks > actual_blocks {
|
||||
if expected_blocks != actual_blocks {
|
||||
crate::bail!("quantize {dtype:?}: expected {expected_blocks} blocks but only {actual_blocks} were provided!")
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-flash-attn"
|
||||
version = "0.7.1"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
|
||||
description = "Flash attention layer for the candle ML framework."
|
||||
@ -11,7 +11,7 @@ license = "MIT OR Apache-2.0"
|
||||
readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.7.1" }
|
||||
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.7.0" }
|
||||
half = { version = "2.3.1", features = ["num-traits"] }
|
||||
|
||||
[build-dependencies]
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-kernels"
|
||||
version = "0.7.1"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
|
||||
description = "CUDA kernels for Candle"
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-metal-kernels"
|
||||
version = "0.7.1"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
|
||||
description = "Metal kernels for Candle"
|
||||
|
@ -1,4 +1,4 @@
|
||||
use candle::{Device, Result, Tensor};
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Cache {
|
||||
@ -255,56 +255,6 @@ impl RotatingCache {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn get_mask_abs(&self, size1: usize, size2: usize, device: &Device) -> Result<Tensor> {
|
||||
let context = self.max_seq_len;
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|i| {
|
||||
(0..size2).map(move |j| {
|
||||
u8::from(size1 + j > size2 + i || size1 + j + context < size2 + i)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
fn get_mask_rel(&self, size1: usize, size2: usize, device: &Device) -> Result<Tensor> {
|
||||
let context = self.max_seq_len;
|
||||
let upd_offset = (self.offset + size1) % self.max_seq_len;
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|pos_src| {
|
||||
// The absolute position of the elements that will get added to the cache.
|
||||
let pos_src = self.current_seq_len + pos_src;
|
||||
(0..size2).map(move |pos_cache_rel| {
|
||||
// The absolute position of the cache elements after the addition.
|
||||
let pos_cache = self.current_seq_len + size1 + pos_cache_rel - upd_offset;
|
||||
let pos_cache = if pos_cache_rel < upd_offset {
|
||||
pos_cache
|
||||
} else {
|
||||
pos_cache - self.max_seq_len
|
||||
};
|
||||
u8::from(pos_cache > pos_src || pos_cache + context < pos_src)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
/// Returns the attn_mask to be applied *after* adding `seq_len` to the cache.
|
||||
pub fn attn_mask(&self, seq_len: usize, device: &Device) -> Result<Option<Tensor>> {
|
||||
let mask = if seq_len == 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = if seq_len < self.max_seq_len {
|
||||
let cache_out_len = (self.current_seq_len + seq_len).min(self.max_seq_len);
|
||||
self.get_mask_rel(seq_len, cache_out_len, device)?
|
||||
} else {
|
||||
self.get_mask_abs(seq_len, seq_len, device)?
|
||||
};
|
||||
Some(mask)
|
||||
};
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@ -358,10 +308,6 @@ impl RotatingKvCache {
|
||||
self.k.current_seq_len()
|
||||
}
|
||||
|
||||
pub fn attn_mask(&self, seq_len: usize, device: &Device) -> Result<Option<Tensor>> {
|
||||
self.k.attn_mask(seq_len, device)
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.k.reset();
|
||||
self.v.reset();
|
||||
|
@ -69,36 +69,13 @@ fn rotating_kv_cache() -> Result<()> {
|
||||
assert_eq!(cache.current_seq_len(), 13);
|
||||
assert_eq!(cache.offset(), 1);
|
||||
|
||||
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]],
|
||||
);
|
||||
let t = Tensor::new(&[0., 1., 2., 3., 4., 5., 6., 7., 8.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [0., 1., 2., 3., 4., 5., 6., 7., 8.]);
|
||||
assert_eq!(cache.current_seq_len(), 22);
|
||||
assert_eq!(cache.offset(), 0);
|
||||
|
||||
let mask = cache.attn_mask(1, &Device::Cpu)?;
|
||||
assert!(mask.is_none());
|
||||
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let t = Tensor::new(&[42.], &Device::Cpu)?;
|
||||
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [42., 4., 5., 6., 7., 8.]);
|
||||
assert_eq!(cache.current_seq_len(), 23);
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-onnx"
|
||||
version = "0.7.1"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
|
||||
description = "ONNX support for Candle"
|
||||
@ -10,8 +10,8 @@ categories = ["science"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../candle-core", package = "candle-core", version = "0.7.1" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.7.1" }
|
||||
candle = { path = "../candle-core", package = "candle-core", version = "0.7.0" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.7.0" }
|
||||
prost = "0.12.1"
|
||||
|
||||
[build-dependencies]
|
||||
|
@ -101,6 +101,21 @@ impl Module for LayerScale {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn get_mask(
|
||||
size1: usize,
|
||||
size2: usize,
|
||||
context: usize,
|
||||
device: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|i| {
|
||||
(0..size2)
|
||||
.map(move |j| u8::from(size1 + j > size2 + i || size1 + j + context < size2 + i))
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StreamingMultiheadAttention {
|
||||
q_proj: Linear,
|
||||
@ -575,6 +590,7 @@ impl StreamingTransformerLayer {
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StreamingTransformer {
|
||||
layers: Vec<StreamingTransformerLayer>,
|
||||
context: usize,
|
||||
positional_embedding: PositionalEmbedding,
|
||||
max_period: usize,
|
||||
}
|
||||
@ -601,6 +617,7 @@ impl StreamingTransformer {
|
||||
}
|
||||
Ok(Self {
|
||||
layers,
|
||||
context: cfg.context,
|
||||
positional_embedding: cfg.positional_embedding,
|
||||
max_period: cfg.max_period,
|
||||
})
|
||||
@ -612,11 +629,23 @@ impl StreamingTransformer {
|
||||
|
||||
pub fn forward_ca(&mut self, xs: &Tensor, ca_src: Option<&Tensor>) -> Result<Tensor> {
|
||||
let (_b, t, c) = xs.dims3()?;
|
||||
let pos = self.layers[0].self_attn.kv_cache.current_seq_len();
|
||||
let mask = self.layers[0]
|
||||
let pos = self.layers[0]
|
||||
.self_attn
|
||||
.kv_cache
|
||||
.attn_mask(t, xs.device())?;
|
||||
.k_cache()
|
||||
.current_seq_len();
|
||||
let mask = if t == 1 {
|
||||
None
|
||||
} else {
|
||||
let cache_out_len = if t < self.context {
|
||||
(pos + t).min(self.context)
|
||||
} else {
|
||||
t
|
||||
};
|
||||
// TODO: this is wrong, the mask depends on the kv-cache offset because of its rotating
|
||||
// nature.
|
||||
Some(get_mask(t, cache_out_len, self.context, xs.device())?)
|
||||
};
|
||||
let mut xs = match self.positional_embedding {
|
||||
PositionalEmbedding::Rope | PositionalEmbedding::None => xs.clone(),
|
||||
PositionalEmbedding::Sin => {
|
||||
|
Reference in New Issue
Block a user