mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Compare commits
3 Commits
tmp_broken
...
matmul-slo
Author | SHA1 | Date | |
---|---|---|---|
69c1fb1ee8 | |||
c55ebaf477 | |||
4c91dd2ff4 |
BIN
.github/workflows/maturin.yml
vendored
BIN
.github/workflows/maturin.yml
vendored
Binary file not shown.
62
.github/workflows/python.yml
vendored
62
.github/workflows/python.yml
vendored
@ -1,62 +0,0 @@
|
||||
name: PyO3-CI
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- candle-pyo3/**
|
||||
pull_request:
|
||||
paths:
|
||||
- candle-pyo3/**
|
||||
|
||||
jobs:
|
||||
build_and_test:
|
||||
name: Check everything builds & tests
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest] # For now, only test on Linux
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Install Rust
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
- name: Install Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.11
|
||||
architecture: "x64"
|
||||
|
||||
- name: Cache Cargo Registry
|
||||
uses: actions/cache@v1
|
||||
with:
|
||||
path: ~/.cargo/registry
|
||||
key: ${{ runner.os }}-cargo-registry-${{ hashFiles('**/Cargo.lock') }}
|
||||
|
||||
- name: Install
|
||||
working-directory: ./candle-pyo3
|
||||
run: |
|
||||
python -m venv .env
|
||||
source .env/bin/activate
|
||||
pip install -U pip
|
||||
pip install pytest maturin black
|
||||
python -m maturin develop -r
|
||||
|
||||
- name: Check style
|
||||
working-directory: ./candle-pyo3
|
||||
run: |
|
||||
source .env/bin/activate
|
||||
python stub.py --check
|
||||
black --check .
|
||||
|
||||
- name: Run tests
|
||||
working-directory: ./candle-pyo3
|
||||
run: |
|
||||
source .env/bin/activate
|
||||
python -m pytest -s -v tests
|
12
Cargo.toml
12
Cargo.toml
@ -7,7 +7,13 @@ members = [
|
||||
"candle-nn",
|
||||
"candle-pyo3",
|
||||
"candle-transformers",
|
||||
"candle-wasm-examples/*",
|
||||
"candle-wasm-examples/llama2-c",
|
||||
"candle-wasm-examples/segment-anything",
|
||||
"candle-wasm-examples/whisper",
|
||||
"candle-wasm-examples/yolo",
|
||||
"candle-wasm-examples/bert",
|
||||
"candle-wasm-examples/phi",
|
||||
"candle-wasm-examples/t5",
|
||||
"candle-wasm-tests",
|
||||
]
|
||||
exclude = ["candle-flash-attn", "candle-kernels"]
|
||||
@ -28,7 +34,8 @@ anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
cudarc = { version = "0.9.14", features = ["f16"] }
|
||||
gemm = { version = "0.16.6", features = ["wasm-simd128-enable"] }
|
||||
# TODO: Switch back to the official gemm implementation once it has caught up.
|
||||
gemm = { version = "0.16.0", package = "candle-gemm" }
|
||||
hf-hub = "0.3.0"
|
||||
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
|
||||
@ -55,7 +62,6 @@ tracing-subscriber = "0.3.7"
|
||||
wav = "1.0.0"
|
||||
yoke = { version = "0.7.2", features = ["derive"] }
|
||||
zip = { version = "0.6.6", default-features = false }
|
||||
metal = { git = "https://github.com/ivarflakstad/metal-rs.git", features = ["mps"] }
|
||||
|
||||
[profile.release-with-debug]
|
||||
inherits = "release"
|
||||
|
36
README.md
36
README.md
@ -56,19 +56,17 @@ These online demos run entirely in your browser:
|
||||
- [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation.
|
||||
- [Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
|
||||
- [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation.
|
||||
- [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
|
||||
|
||||
We also provide a some command line based examples using state of the art models:
|
||||
|
||||
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM.
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Phi-v1 and Phi-v1.5](./candle-examples/examples/phi/): a 1.3b general LLM with performance on par with LLaMA-v2 7b.
|
||||
- [Phi-v1.5](./candle-examples/examples/phi/): a 1.3b general LLM with performance on par with LLaMA-v2 7b.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets.
|
||||
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
|
||||
performance larger than all publicly available 13b models as of 2023-09-28.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
|
||||
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
|
||||
- [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of
|
||||
the LLaMA model using the same quantization techniques as
|
||||
[llama.cpp](https://github.com/ggerganov/llama.cpp).
|
||||
@ -96,15 +94,10 @@ We also provide a some command line based examples using state of the art models
|
||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
||||
|
||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
|
||||
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/): useful for sentence embeddings.
|
||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||
using self-supervision (can be used for imagenet classification, depth
|
||||
evaluation, segmentation).
|
||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||
generate captions for an image.
|
||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
||||
model, generates the translated text from the input text.
|
||||
|
||||
Run them using commands like:
|
||||
```
|
||||
@ -136,13 +129,8 @@ And then head over to
|
||||
|
||||
<!--- ANCHOR: useful_libraries --->
|
||||
|
||||
## Useful External Resources
|
||||
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): a
|
||||
very detailed tutorial showing how to convert a PyTorch model to Candle.
|
||||
- [`optimisers`](https://github.com/KGrewal1/optimisers): a collection of optimisers
|
||||
including SGD with momentum, AdaGrad, AdaDelta, AdaMax, NAdam, RAdam, and RMSprop.
|
||||
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): a LoRA implementation
|
||||
that conforms to the official `peft` implementation.
|
||||
## Useful Libraries
|
||||
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora) provides a LoRA implementation that conforms to the official `peft` implementation.
|
||||
|
||||
If you have an addition to this list, please submit a pull request.
|
||||
|
||||
@ -167,20 +155,16 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Phi v1.5.
|
||||
- Mistral 7b v0.1.
|
||||
- StableLM-3B-4E1T.
|
||||
- Replit-code-v1.5-3B.
|
||||
- T5.
|
||||
- Bert.
|
||||
- Whisper (multi-lingual support).
|
||||
- Text to image.
|
||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
||||
- Wurstchen v2.
|
||||
- Image to text.
|
||||
- BLIP.
|
||||
- Text to text.
|
||||
- Marian MT (Machine Translation).
|
||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
||||
- Wurstchen v2.
|
||||
- Computer Vision Models.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
|
||||
- yolo-v3, yolo-v8.
|
||||
- DINOv2.
|
||||
- EfficientNet.
|
||||
- yolo-v3.
|
||||
- yolo-v8.
|
||||
- Segment-Anything Model (SAM).
|
||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||
- Serverless (on CPU), small and fast deployments.
|
||||
|
@ -12,9 +12,6 @@ compute_cap
|
||||
8.9
|
||||
```
|
||||
|
||||
You can also compile the Cuda kernels for a specific compute cap using the
|
||||
`CUDA_COMPUTE_CAP=<compute cap>` environment variable.
|
||||
|
||||
If any of the above commands errors out, please make sure to update your Cuda version.
|
||||
|
||||
2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support.
|
||||
|
@ -12,10 +12,7 @@ readme = "README.md"
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
byteorder = { workspace = true }
|
||||
tracing = { workspace = true }
|
||||
candle-kernels = { path = "../candle-kernels", version = "0.3.0", optional = true }
|
||||
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
|
||||
metal = { workspace = true, optional = true}
|
||||
cudarc = { workspace = true, optional = true }
|
||||
gemm = { workspace = true }
|
||||
half = { workspace = true }
|
||||
@ -42,4 +39,3 @@ cuda = ["cudarc", "dep:candle-kernels"]
|
||||
cudnn = ["cuda", "cudarc/cudnn"]
|
||||
mkl = ["dep:libc", "dep:intel-mkl-src"]
|
||||
accelerate = ["dep:libc", "dep:accelerate-src"]
|
||||
metal = ["dep:candle-metal-kernels", "dep:metal"]
|
||||
|
@ -36,8 +36,6 @@ impl Tensor {
|
||||
// Do not call recursively on the "leaf" nodes.
|
||||
track_grad = true;
|
||||
nodes
|
||||
} else if node.dtype().is_int() {
|
||||
nodes
|
||||
} else if let Some(op) = node.op() {
|
||||
match op {
|
||||
Op::IndexAdd(t1, t2, t3, _)
|
||||
@ -105,6 +103,7 @@ impl Tensor {
|
||||
| Op::Broadcast(node)
|
||||
| Op::Cmp(node, _)
|
||||
| Op::Reduce(node, ReduceOp::Min | ReduceOp::Sum | ReduceOp::Max, _)
|
||||
| Op::ToDType(node)
|
||||
| Op::ToDevice(node)
|
||||
| Op::Transpose(node, _, _)
|
||||
| Op::Permute(node, _)
|
||||
@ -117,15 +116,6 @@ impl Tensor {
|
||||
track_grad |= tg;
|
||||
nodes
|
||||
}
|
||||
Op::ToDType(node) => {
|
||||
if node.dtype().is_float() {
|
||||
let (tg, nodes) = walk(node, nodes, already_seen);
|
||||
track_grad |= tg;
|
||||
nodes
|
||||
} else {
|
||||
nodes
|
||||
}
|
||||
}
|
||||
Op::Reduce(_, ReduceOp::ArgMin | ReduceOp::ArgMax, _) => nodes,
|
||||
}
|
||||
} else {
|
||||
@ -238,13 +228,6 @@ impl Tensor {
|
||||
.conv2d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
||||
.transpose(0, 1)?;
|
||||
let sum_grad = grads.or_insert(kernel)?;
|
||||
let (_, _, k0, k1) = kernel.dims4()?;
|
||||
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
|
||||
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
|
||||
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
|
||||
} else {
|
||||
grad_kernel
|
||||
};
|
||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
||||
}
|
||||
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
|
||||
@ -391,7 +374,7 @@ impl Tensor {
|
||||
}
|
||||
Op::ToDType(arg) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad.to_dtype(arg.dtype())?)?
|
||||
*sum_grad = sum_grad.add(&grad.to_dtype(node.dtype())?)?
|
||||
}
|
||||
Op::Copy(arg) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
@ -478,15 +461,7 @@ impl Tensor {
|
||||
Op::Unary(_, UnaryOp::Round) => {
|
||||
Err(Error::BackwardNotSupported { op: "round" })?
|
||||
}
|
||||
Op::Unary(arg, UnaryOp::Gelu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
let cube = arg.powf(3.)?;
|
||||
let tanh = (0.0356774 * &cube + (0.797885 * arg)?)?.tanh()?;
|
||||
let gelu_grad = (((0.5 * &tanh)?
|
||||
+ (0.0535161 * cube + (0.398942 * arg)?)? * (1. - tanh.powf(2.)?))?
|
||||
+ 0.5)?;
|
||||
*sum_grad = sum_grad.add(&(&grad * gelu_grad)?)?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Gelu) => Err(Error::BackwardNotSupported { op: "gelu" })?,
|
||||
Op::Unary(_, UnaryOp::Erf) => Err(Error::BackwardNotSupported { op: "erf" })?,
|
||||
Op::Unary(_, UnaryOp::GeluErf) => {
|
||||
Err(Error::BackwardNotSupported { op: "gelu-erf" })?
|
||||
|
@ -804,11 +804,11 @@ impl<'a, I: IntDType> Map1 for Gather<'a, I> {
|
||||
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
|
||||
let ids = match self.ids_l.contiguous_offsets() {
|
||||
Some((a, b)) => &self.ids[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "gather" })?,
|
||||
};
|
||||
let src = match src_l.contiguous_offsets() {
|
||||
Some((a, b)) => &src[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "gather" })?,
|
||||
};
|
||||
let dim = self.dim;
|
||||
let ids_dims = self.ids_l.dims();
|
||||
@ -857,7 +857,7 @@ impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
|
||||
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
|
||||
let src = match layout.contiguous_offsets() {
|
||||
Some((a, b)) => &src[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "index-select" })?,
|
||||
};
|
||||
let dim = self.dim;
|
||||
let n_ids = match self.ids_l.dims() {
|
||||
@ -913,7 +913,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
|
||||
let mut dst = vec![T::zero(); dst_len];
|
||||
copy_strided_src_(v1, &mut dst, 0, l1);
|
||||
let src = match src_l.contiguous_offsets() {
|
||||
None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "scatter-add" })?,
|
||||
Some((o1, o2)) => &src[o1..o2],
|
||||
};
|
||||
|
||||
@ -929,7 +929,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
|
||||
|
||||
let ids = match self.ids_l.contiguous_offsets() {
|
||||
Some((a, b)) => &self.ids[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "gather" })?,
|
||||
};
|
||||
for left_i in 0..ids_left_len {
|
||||
let start_ids_idx = left_i * ids_right_len * ids_dim_len;
|
||||
@ -971,7 +971,7 @@ impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
|
||||
let mut dst = vec![T::zero(); dst_len];
|
||||
copy_strided_src_(v1, &mut dst, 0, l1);
|
||||
let src = match src_l.contiguous_offsets() {
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" })?,
|
||||
Some((o1, o2)) => &src[o1..o2],
|
||||
};
|
||||
let dim = self.dim;
|
||||
@ -2539,25 +2539,25 @@ impl BackendStorage for CpuStorage {
|
||||
Self::U8(ids) => {
|
||||
let ids = match ids_l.contiguous_offsets() {
|
||||
Some((a, b)) => &ids[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" })?,
|
||||
};
|
||||
IndexAdd { ids, dim }.map(self, l, src, src_l)
|
||||
}
|
||||
Self::U32(ids) => {
|
||||
let ids = match ids_l.contiguous_offsets() {
|
||||
Some((a, b)) => &ids[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" })?,
|
||||
};
|
||||
IndexAdd { ids, dim }.map(self, l, src, src_l)
|
||||
}
|
||||
Self::I64(ids) => {
|
||||
let ids = match ids_l.contiguous_offsets() {
|
||||
Some((a, b)) => &ids[a..b],
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
|
||||
None => Err(Error::RequiresContiguous { op: "index-add" })?,
|
||||
};
|
||||
IndexAdd { ids, dim }.map(self, l, src, src_l)
|
||||
}
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
|
||||
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add")),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -224,10 +224,8 @@ impl BackendDevice for CudaDevice {
|
||||
}
|
||||
|
||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
// We do not call set_seed but instead create a new curand object. This ensures that the
|
||||
// state will be identical and the same random numbers will be generated.
|
||||
let mut curand = self.curand.lock().unwrap();
|
||||
curand.0 = cudarc::curand::CudaRng::new(seed, self.device.clone()).w()?;
|
||||
curand.0.set_seed(seed).w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -2171,7 +2169,7 @@ impl BackendStorage for CudaStorage {
|
||||
if src_l.is_contiguous() {
|
||||
dev.dtod_copy(&src, &mut dst).w()?
|
||||
} else {
|
||||
let func = dev.get_or_load_func("ucopy_f64", kernels::UNARY)?;
|
||||
let func = dev.get_or_load_func("ucopy_64", kernels::UNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
let params = (el_count, dims.len(), &ds, &src, &mut dst);
|
||||
// SAFETY: ffi.
|
||||
|
@ -1,6 +1,6 @@
|
||||
use crate::backend::BackendDevice;
|
||||
use crate::cpu_backend::CpuDevice;
|
||||
use crate::{bail, CpuStorage, DType, Result, Shape, Storage, WithDType};
|
||||
use crate::{CpuStorage, DType, Result, Shape, Storage, WithDType};
|
||||
|
||||
/// A `DeviceLocation` represents a physical device whereas multiple `Device`
|
||||
/// can live on the same location (typically for cuda devices).
|
||||
@ -8,14 +8,12 @@ use crate::{bail, CpuStorage, DType, Result, Shape, Storage, WithDType};
|
||||
pub enum DeviceLocation {
|
||||
Cpu,
|
||||
Cuda { gpu_id: usize },
|
||||
Metal,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Device {
|
||||
Cpu,
|
||||
Cuda(crate::CudaDevice),
|
||||
Metal(crate::MetalDevice),
|
||||
}
|
||||
|
||||
pub trait NdArray {
|
||||
@ -105,14 +103,14 @@ impl<S: WithDType, const N1: usize, const N2: usize, const N3: usize, const N4:
|
||||
impl<S: NdArray> NdArray for Vec<S> {
|
||||
fn shape(&self) -> Result<Shape> {
|
||||
if self.is_empty() {
|
||||
bail!("empty array")
|
||||
crate::bail!("empty array")
|
||||
}
|
||||
let shape0 = self[0].shape()?;
|
||||
let n = self.len();
|
||||
for v in self.iter() {
|
||||
let shape = v.shape()?;
|
||||
if shape != shape0 {
|
||||
bail!("two elements have different shapes {shape:?} {shape0:?}")
|
||||
crate::bail!("two elements have different shapes {shape:?} {shape0:?}")
|
||||
}
|
||||
}
|
||||
Ok(Shape::from([[n].as_slice(), shape0.dims()].concat()))
|
||||
@ -130,18 +128,6 @@ impl Device {
|
||||
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
|
||||
}
|
||||
|
||||
pub fn new_metal(ordinal: usize) -> Result<Self> {
|
||||
Ok(Self::Metal(crate::MetalDevice::new(ordinal)?))
|
||||
}
|
||||
|
||||
pub fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu => CpuDevice.set_seed(seed),
|
||||
Self::Cuda(c) => c.set_seed(seed),
|
||||
Self::Metal(m) => m.set_seed(seed),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn same_device(&self, rhs: &Self) -> bool {
|
||||
match (self, rhs) {
|
||||
(Self::Cpu, Self::Cpu) => true,
|
||||
@ -154,16 +140,21 @@ impl Device {
|
||||
match self {
|
||||
Self::Cpu => DeviceLocation::Cpu,
|
||||
Self::Cuda(device) => device.location(),
|
||||
Device::Metal(device) => device.location(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_cpu(&self) -> bool {
|
||||
matches!(self, Self::Cpu)
|
||||
match self {
|
||||
Self::Cpu => true,
|
||||
Self::Cuda(_) => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_cuda(&self) -> bool {
|
||||
matches!(self, Self::Cuda(_))
|
||||
match self {
|
||||
Self::Cpu => false,
|
||||
Self::Cuda(_) => true,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn cuda_if_available(ordinal: usize) -> Result<Self> {
|
||||
@ -190,11 +181,6 @@ impl Device {
|
||||
let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(_device) => {
|
||||
// let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
||||
// Ok(Storage::Metal(storage))
|
||||
bail!("Metal rand_uniform not implemented")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -223,10 +209,6 @@ impl Device {
|
||||
let storage = device.rand_normal(shape, dtype, mean, std)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.rand_normal(shape, dtype, mean, std)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -249,10 +231,6 @@ impl Device {
|
||||
let storage = device.ones_impl(shape, dtype)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.ones_impl(shape, dtype)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -266,10 +244,6 @@ impl Device {
|
||||
let storage = device.zeros_impl(shape, dtype)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.zeros_impl(shape, dtype)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -281,11 +255,6 @@ impl Device {
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = array.to_cpu_storage();
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -297,11 +266,6 @@ impl Device {
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = S::to_cpu_storage_owned(data);
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -14,7 +14,6 @@ impl Tensor {
|
||||
crate::DeviceLocation::Cuda { gpu_id } => {
|
||||
format!(", cuda:{}", gpu_id)
|
||||
}
|
||||
_ => todo!(),
|
||||
};
|
||||
|
||||
write!(f, "Tensor[")?;
|
||||
@ -477,7 +476,6 @@ impl std::fmt::Display for Tensor {
|
||||
crate::DeviceLocation::Cuda { gpu_id } => {
|
||||
format!(", cuda:{}", gpu_id)
|
||||
}
|
||||
crate::DeviceLocation::Metal => todo!(),
|
||||
};
|
||||
|
||||
write!(
|
||||
|
@ -1,201 +0,0 @@
|
||||
#![allow(dead_code)]
|
||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct MetalDevice;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct MetalStorage;
|
||||
|
||||
macro_rules! fail {
|
||||
() => {
|
||||
unimplemented!("metal support has not been enabled, add `metal` feature to enable.")
|
||||
};
|
||||
}
|
||||
|
||||
impl crate::backend::BackendStorage for MetalStorage {
|
||||
type Device = MetalDevice;
|
||||
|
||||
fn try_clone(&self, _: &Layout) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn dtype(&self) -> DType {
|
||||
fail!()
|
||||
}
|
||||
|
||||
fn device(&self) -> &Self::Device {
|
||||
fail!()
|
||||
}
|
||||
|
||||
fn to_cpu_storage(&self) -> Result<CpuStorage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn conv1d(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &crate::conv::ParamsConv1D,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn conv2d(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &crate::conv::ParamsConv2D,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn conv_transpose2d(
|
||||
&self,
|
||||
_l: &Layout,
|
||||
_kernel: &Self,
|
||||
_kernel_l: &Layout,
|
||||
_params: &crate::conv::ParamsConvTranspose2D,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn scatter_add(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: usize,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn index_add(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: usize,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn matmul(
|
||||
&self,
|
||||
_: &Self,
|
||||
_: (usize, usize, usize, usize),
|
||||
_: &Layout,
|
||||
_: &Layout,
|
||||
) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::backend::BackendDevice for MetalDevice {
|
||||
type Storage = MetalStorage;
|
||||
fn new(_: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn set_seed(&self, _: u64) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
fail!()
|
||||
}
|
||||
|
||||
fn same_device(&self, _: &Self) -> bool {
|
||||
fail!()
|
||||
}
|
||||
|
||||
fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
use crate::{metal_backend, DType, DeviceLocation, Layout, Shape};
|
||||
use crate::{DType, DeviceLocation, Layout, Shape};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct MatMulUnexpectedStriding {
|
||||
@ -142,9 +142,6 @@ pub enum Error {
|
||||
#[error("{op} expects at least one tensor")]
|
||||
OpRequiresAtLeastOneTensor { op: &'static str },
|
||||
|
||||
#[error("{op} expects at least two tensors")]
|
||||
OpRequiresAtLeastTwoTensors { op: &'static str },
|
||||
|
||||
#[error("backward is not supported for {op}")]
|
||||
BackwardNotSupported { op: &'static str },
|
||||
|
||||
@ -152,9 +149,6 @@ pub enum Error {
|
||||
#[error("the candle crate has not been built with cuda support")]
|
||||
NotCompiledWithCudaSupport,
|
||||
|
||||
#[error("the candle crate has not been built with metal support")]
|
||||
NotCompiledWithMetalSupport,
|
||||
|
||||
#[error("cannot find tensor {path}")]
|
||||
CannotFindTensor { path: String },
|
||||
|
||||
@ -162,9 +156,6 @@ pub enum Error {
|
||||
#[error(transparent)]
|
||||
Cuda(Box<dyn std::error::Error + Send + Sync>),
|
||||
|
||||
#[error("Metal error {0}")]
|
||||
Metal(#[from] metal_backend::MetalError),
|
||||
|
||||
#[error(transparent)]
|
||||
TryFromIntError(#[from] core::num::TryFromIntError),
|
||||
|
||||
|
@ -52,10 +52,6 @@ mod dummy_cuda_backend;
|
||||
pub mod error;
|
||||
mod indexer;
|
||||
pub mod layout;
|
||||
#[cfg(feature = "metal")]
|
||||
pub mod metal_backend;
|
||||
#[cfg(feature = "accelerate")]
|
||||
mod metal_backend;
|
||||
#[cfg(feature = "mkl")]
|
||||
mod mkl;
|
||||
pub mod npy;
|
||||
@ -91,12 +87,6 @@ pub use cuda_backend::{CudaDevice, CudaStorage};
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
pub use metal_backend::{MetalDevice, MetalStorage};
|
||||
|
||||
#[cfg(not(feature = "metal"))]
|
||||
pub use dummy_metal_backend::{MetalDevice, MetalStorage};
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
@ -135,15 +125,3 @@ impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
|
||||
self(xs)
|
||||
}
|
||||
}
|
||||
|
||||
// A trait defining a module with forward method using a single tensor argument and a flag to
|
||||
// separate the training and evaluation behaviors.
|
||||
pub trait ModuleT {
|
||||
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
|
||||
}
|
||||
|
||||
impl<M: Module> ModuleT for M {
|
||||
fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> {
|
||||
self.forward(xs)
|
||||
}
|
||||
}
|
||||
|
@ -1,806 +0,0 @@
|
||||
use crate::backend::{BackendDevice, BackendStorage};
|
||||
use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose2D};
|
||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||
use candle_metal_kernels;
|
||||
use candle_metal_kernels::{void_ptr, Kernels, Source};
|
||||
use core::mem;
|
||||
use half::{bf16, f16};
|
||||
use metal;
|
||||
use metal::mps::matrix::encode_gemm;
|
||||
use metal::mps::Float32;
|
||||
use metal::{Buffer, CompileOptions, MTLResourceOptions, MTLSize, NSUInteger};
|
||||
use std::sync::Arc;
|
||||
use tracing::debug;
|
||||
|
||||
/// Metal related errors
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum MetalError {
|
||||
#[error("{0}")]
|
||||
Message(String),
|
||||
#[error(transparent)]
|
||||
KernelError(#[from] candle_metal_kernels::MetalKernelError),
|
||||
}
|
||||
|
||||
impl From<String> for MetalError {
|
||||
fn from(e: String) -> Self {
|
||||
MetalError::Message(e)
|
||||
}
|
||||
}
|
||||
|
||||
impl MetalError {
|
||||
fn msg<S: AsRef<str>>(msg: S) -> Self {
|
||||
MetalError::Message(msg.as_ref().to_string())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MetalDevice {
|
||||
device: metal::Device,
|
||||
command_queue: metal::CommandQueue,
|
||||
kernels: Arc<candle_metal_kernels::Kernels>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for MetalDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "MetalDevice({:?})", self.device.registry_id())
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for MetalDevice {
|
||||
type Target = metal::DeviceRef;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.device
|
||||
}
|
||||
}
|
||||
|
||||
impl MetalDevice {
|
||||
// pub fn metal_device(&self) -> &metal::DeviceRef {
|
||||
// self.device.as_ref()
|
||||
// }
|
||||
|
||||
pub fn id(&self) -> u64 {
|
||||
self.registry_id()
|
||||
}
|
||||
|
||||
fn new_buffer(&self, element_count: usize, dtype: DType) -> Buffer {
|
||||
let size = (element_count * dtype.size_in_bytes()) as u64;
|
||||
// debug!("Allocate 1 - buffer size {size}");
|
||||
self.device
|
||||
.new_buffer(size, MTLResourceOptions::StorageModeManaged)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct MetalStorage {
|
||||
buffer: metal::Buffer,
|
||||
device: MetalDevice,
|
||||
dtype: DType,
|
||||
}
|
||||
|
||||
impl BackendStorage for MetalStorage {
|
||||
type Device = MetalDevice;
|
||||
|
||||
fn try_clone(&self, _: &Layout) -> Result<Self> {
|
||||
Ok(self.clone())
|
||||
}
|
||||
|
||||
fn dtype(&self) -> DType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
fn device(&self) -> &Self::Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
fn to_cpu_storage(&self) -> Result<CpuStorage> {
|
||||
match self.dtype {
|
||||
DType::F32 => Ok(CpuStorage::F32(
|
||||
self.buffer.read_to_vec(self.buffer.length() as usize / 4),
|
||||
)),
|
||||
dtype => todo!("Unsupported dtype {dtype:?}"),
|
||||
}
|
||||
}
|
||||
|
||||
fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
|
||||
let shape = layout.shape();
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
let dtype = self.dtype;
|
||||
|
||||
assert!(layout.is_contiguous());
|
||||
assert_eq!(dtype, DType::F32);
|
||||
|
||||
let mut buffer = device.new_buffer(el, self.dtype);
|
||||
let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
candle_metal_kernels::call_affine(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
el,
|
||||
&self.buffer,
|
||||
&mut buffer,
|
||||
mul as f32,
|
||||
add as f32,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
return Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
});
|
||||
}
|
||||
|
||||
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
|
||||
debug!("TODO reduce_op {op:?}");
|
||||
let src_stride = layout.stride();
|
||||
let src_dims = layout.shape().dims();
|
||||
let src_el: usize = src_dims.iter().product();
|
||||
// Source dims and strides with the sum dims at the end.
|
||||
let mut dims = vec![];
|
||||
let mut stride = vec![];
|
||||
let mut dst_el: usize = 1;
|
||||
for (dim_idx, &d) in src_dims.iter().enumerate() {
|
||||
if !sum_dims.contains(&dim_idx) {
|
||||
dst_el *= d;
|
||||
dims.push(d);
|
||||
stride.push(src_stride[dim_idx]);
|
||||
}
|
||||
}
|
||||
for &dim_idx in sum_dims.iter() {
|
||||
dims.push(src_dims[dim_idx]);
|
||||
stride.push(src_stride[dim_idx]);
|
||||
}
|
||||
// let el_to_sum_per_block = src_el / dst_el;
|
||||
// // The reduction loop requires the shared array to be properly initialized and for
|
||||
// // this we want the number of threads to be a power of two.
|
||||
// let block_dim = usize::min(1024, el_to_sum_per_block).next_power_of_two();
|
||||
// let cfg = LaunchConfig {
|
||||
// // TODO: Maybe use grid_y if the output is too large?
|
||||
// // TODO: Specialized implementation when reducing on no or all dimensions or when
|
||||
// // reducing only aggregate a small number of elements together.
|
||||
// grid_dim: (dst_el as u32, 1, 1),
|
||||
// block_dim: (block_dim as u32, 1, 1),
|
||||
// shared_mem_bytes: 0,
|
||||
// };
|
||||
// let ds = dev
|
||||
// .htod_copy([dims.as_slice(), stride.as_slice()].concat())
|
||||
// .w()?;
|
||||
// let src = &src.slice(layout.start_offset()..);
|
||||
// let (name, check_empty, return_index) = match self.1 {
|
||||
// ReduceOp::Sum => ("fast_sum", false, false),
|
||||
// ReduceOp::Min => ("fast_min", true, false),
|
||||
// ReduceOp::Max => ("fast_max", true, false),
|
||||
// ReduceOp::ArgMin => ("fast_argmin", true, true),
|
||||
// ReduceOp::ArgMax => ("fast_argmax", true, true),
|
||||
// };
|
||||
// if check_empty && layout.shape().elem_count() == 0 {
|
||||
// Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
|
||||
// }
|
||||
// let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?;
|
||||
// if return_index {
|
||||
// // SAFETY: filled in by the follow up kernel.
|
||||
// let out = unsafe { dev.alloc::<u32>(dst_el) }.w()?;
|
||||
// let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
|
||||
// // SAFETY: ffi.
|
||||
// unsafe { func.launch(cfg, params) }.w()?;
|
||||
// Ok(S::U32(out))
|
||||
// } else {
|
||||
// // SAFETY: filled in by the follow up kernel.
|
||||
// let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
|
||||
// let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
|
||||
// // SAFETY: ffi.
|
||||
// unsafe { func.launch(cfg, params) }.w()?;
|
||||
// Ok(wrap(out))
|
||||
// }
|
||||
// Ok(self.clone())
|
||||
// todo!()
|
||||
let dtype = self.dtype;
|
||||
let device = self.device();
|
||||
let buffer = device.new_buffer(dst_el, dtype);
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
|
||||
let device = self.device();
|
||||
let shape = layout.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if layout.is_contiguous() {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
|
||||
let kernel_name = match (self.dtype, dtype) {
|
||||
(DType::U32, DType::F32) => "cast_u32_f32",
|
||||
(left, right) => todo!("to dtype {left:?} - {right:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_cast_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
&self.buffer,
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
todo!(
|
||||
"TODO Implement the kernel calling cast {:?}-{:?}",
|
||||
self.dtype,
|
||||
dtype
|
||||
);
|
||||
}
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"cast {:?} - {:?} - {:?} - {:?}",
|
||||
dtype,
|
||||
start.elapsed(),
|
||||
self.buffer.length(),
|
||||
buffer.length()
|
||||
);
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
|
||||
let device = self.device();
|
||||
let dtype = self.dtype;
|
||||
let shape = layout.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
// TODO remove
|
||||
// return Ok(Self {
|
||||
// buffer,
|
||||
// device: device.clone(),
|
||||
// dtype,
|
||||
// });
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if layout.is_contiguous() {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("ucos", DType::F32) => contiguous::cos::FLOAT,
|
||||
("usin", DType::F32) => contiguous::sin::FLOAT,
|
||||
("usqr", DType::F32) => contiguous::sqr::FLOAT,
|
||||
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
|
||||
("uneg", DType::F32) => contiguous::neg::FLOAT,
|
||||
("uexp", DType::F32) => contiguous::exp::FLOAT,
|
||||
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
&self.buffer,
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
todo!("TODO Implement the kernel calling {}", B::KERNEL);
|
||||
}
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"Unary {:?} - {:?} - {:?} - {:?}",
|
||||
B::KERNEL,
|
||||
start.elapsed(),
|
||||
self.buffer.length(),
|
||||
buffer.length()
|
||||
);
|
||||
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn binary_impl<B: BinaryOpT>(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
) -> Result<Self> {
|
||||
let device = self.device();
|
||||
let dtype = self.dtype;
|
||||
let shape = lhs_l.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
|
||||
use candle_metal_kernels::binary::contiguous;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("add", DType::F32) => contiguous::add::FLOAT,
|
||||
("badd", DType::F32) => contiguous::add::FLOAT,
|
||||
("sub", DType::F32) => contiguous::sub::FLOAT,
|
||||
("bsub", DType::F32) => contiguous::sub::FLOAT,
|
||||
("mul", DType::F32) => contiguous::mul::FLOAT,
|
||||
("bmul", DType::F32) => contiguous::mul::FLOAT,
|
||||
("div", DType::F32) => contiguous::div::FLOAT,
|
||||
("bdiv", DType::F32) => contiguous::div::FLOAT,
|
||||
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_binary_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
&self.buffer,
|
||||
&rhs.buffer,
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
use candle_metal_kernels::binary::strided;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("badd", DType::F32) => strided::add::FLOAT,
|
||||
("bsub", DType::F32) => strided::sub::FLOAT,
|
||||
("bmul", DType::F32) => strided::mul::FLOAT,
|
||||
("bdiv", DType::F32) => strided::div::FLOAT,
|
||||
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_binary_strided(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
lhs_l.dims(),
|
||||
&self.buffer,
|
||||
&lhs_l.stride(),
|
||||
lhs_l.start_offset(),
|
||||
&rhs.buffer,
|
||||
&rhs_l.stride(),
|
||||
rhs_l.start_offset(),
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"Binary {:?} - {:?} - {:?} - {:?}",
|
||||
B::KERNEL,
|
||||
start.elapsed(),
|
||||
self.buffer.length(),
|
||||
buffer.length()
|
||||
);
|
||||
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn where_cond(&self, _: &Layout, rhs: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
|
||||
debug!("TODO where_cond");
|
||||
Ok(rhs.clone())
|
||||
// todo!()
|
||||
}
|
||||
|
||||
fn conv1d(
|
||||
&self,
|
||||
_l: &Layout,
|
||||
_kernel: &Self,
|
||||
_kernel_l: &Layout,
|
||||
_params: &ParamsConv1D,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn conv2d(
|
||||
&self,
|
||||
_l: &Layout,
|
||||
_kernel: &Self,
|
||||
_kernel_l: &Layout,
|
||||
_params: &ParamsConv2D,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn conv_transpose2d(
|
||||
&self,
|
||||
_l: &Layout,
|
||||
_kernel: &Self,
|
||||
_kernel_l: &Layout,
|
||||
_params: &ParamsConvTranspose2D,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn scatter_add(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: usize,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn index_select(&self, ids: &Self, src_l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
|
||||
debug!(
|
||||
"TODO Index select {:?} {:?} {src_l:?} {ids_l:?} {dim:?}",
|
||||
self.buffer.length(),
|
||||
ids.buffer.length(),
|
||||
);
|
||||
let src = self;
|
||||
let ids_shape = ids_l.shape();
|
||||
let ids_dims = ids_shape.dims();
|
||||
// let ds = dev.htod_copy([ids_dims, ids_l.stride()].concat()).w()?;
|
||||
// let src = match src_l.contiguous_offsets() {
|
||||
// Some((o1, o2)) => src.slice(o1..o2),
|
||||
// None => Err(crate::Error::RequiresContiguous { op: "index-select" }.bt())?,
|
||||
// };
|
||||
let left_size: usize = src_l.dims()[..dim].iter().product();
|
||||
let right_size: usize = src_l.dims()[dim + 1..].iter().product();
|
||||
let src_dim_size = src_l.dims()[dim];
|
||||
let ids_dim_size = ids_shape.elem_count();
|
||||
let dst_el = ids_shape.elem_count() * left_size * right_size;
|
||||
let dtype = self.dtype;
|
||||
let device = self.device();
|
||||
let buffer = device.new_buffer(dst_el, dtype);
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
// todo!()
|
||||
}
|
||||
|
||||
fn index_add(
|
||||
&self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: &Self,
|
||||
_: &Layout,
|
||||
_: usize,
|
||||
) -> Result<Self> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn matmul(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
(b, m, n, k): (usize, usize, usize, usize),
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
) -> Result<Self> {
|
||||
let transpose_left = false;
|
||||
let transpose_right = false;
|
||||
let alpha = 1.0;
|
||||
let beta = 0.0;
|
||||
self.matmul_generic(
|
||||
rhs,
|
||||
(b, m, n, k),
|
||||
lhs_l,
|
||||
rhs_l,
|
||||
transpose_left,
|
||||
transpose_right,
|
||||
alpha,
|
||||
beta,
|
||||
)
|
||||
}
|
||||
|
||||
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
|
||||
let src_shape = src_l.shape();
|
||||
let dims = src_shape.dims();
|
||||
let el_count = src_shape.elem_count();
|
||||
if el_count == 0 {
|
||||
return Ok(());
|
||||
}
|
||||
if src_l.is_contiguous() {
|
||||
let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
let blip = command_buffer.new_blit_command_encoder();
|
||||
blip.copy_from_buffer(
|
||||
&self.buffer,
|
||||
src_l.start_offset() as u64,
|
||||
&dst.buffer,
|
||||
dst_offset as u64,
|
||||
self.buffer.length(),
|
||||
);
|
||||
} else {
|
||||
let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
let kernel_name = match self.dtype {
|
||||
DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT,
|
||||
DType::F16 => candle_metal_kernels::unary::strided::copy::HALF,
|
||||
DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT,
|
||||
dtype => todo!("copy_strided not implemented for {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_unary_strided(
|
||||
&self.device.device,
|
||||
&command_buffer,
|
||||
&self.device.kernels,
|
||||
kernel_name,
|
||||
src_l.dims(),
|
||||
&self.buffer,
|
||||
&src_l.stride(),
|
||||
src_l.start_offset(),
|
||||
&mut dst.buffer,
|
||||
dst_offset,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
command_buffer.commit();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl MetalStorage {
|
||||
pub(crate) fn matmul_t(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
(b, m, n, k): (usize, usize, usize, usize),
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
) -> Result<Self> {
|
||||
let transpose_left = false;
|
||||
let transpose_right = true;
|
||||
let alpha = 1.0;
|
||||
let beta = 0.0;
|
||||
self.matmul_generic(
|
||||
rhs,
|
||||
(b, m, n, k),
|
||||
lhs_l,
|
||||
rhs_l,
|
||||
transpose_left,
|
||||
transpose_right,
|
||||
alpha,
|
||||
beta,
|
||||
)
|
||||
}
|
||||
pub(crate) fn matmul_generic(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
(b, m, n, k): (usize, usize, usize, usize),
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
transpose_left: bool,
|
||||
transpose_right: bool,
|
||||
alpha: f64,
|
||||
beta: f64,
|
||||
) -> Result<Self> {
|
||||
let elem_count = b * m * n;
|
||||
match (self.dtype, rhs.dtype) {
|
||||
(DType::F32, DType::F32) => {
|
||||
let mut out_buffer = self.device.new_buffer(elem_count, self.dtype);
|
||||
if b != 1 {
|
||||
debug!("TODO implement batched matmul for B={b}");
|
||||
// bail!("Didn't implemented strided matmul yet");
|
||||
return Ok(Self {
|
||||
buffer: out_buffer,
|
||||
device: self.device.clone(),
|
||||
dtype: self.dtype(),
|
||||
});
|
||||
}
|
||||
if !lhs_l.is_contiguous() || !rhs_l.is_contiguous() {
|
||||
debug!(
|
||||
"TODO non contiguous matmul yet {:?} {:?}",
|
||||
lhs_l.is_contiguous(),
|
||||
rhs_l.is_contiguous()
|
||||
);
|
||||
return Ok(Self {
|
||||
buffer: out_buffer,
|
||||
device: self.device.clone(),
|
||||
dtype: self.dtype(),
|
||||
});
|
||||
}
|
||||
|
||||
debug!("GEMM");
|
||||
let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
encode_gemm::<Float32, Float32, Float32>(
|
||||
&self.device,
|
||||
&command_buffer,
|
||||
transpose_left,
|
||||
transpose_right,
|
||||
&self.buffer,
|
||||
&rhs.buffer,
|
||||
&mut out_buffer,
|
||||
m as NSUInteger,
|
||||
n as NSUInteger,
|
||||
k as NSUInteger,
|
||||
alpha as f32,
|
||||
beta as f32,
|
||||
Some(b as NSUInteger),
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
|
||||
Ok(Self {
|
||||
buffer: out_buffer,
|
||||
device: self.device.clone(),
|
||||
dtype: self.dtype(),
|
||||
})
|
||||
}
|
||||
_ => todo!("Unimplemented matmul for this pair"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BackendDevice for MetalDevice {
|
||||
type Storage = MetalStorage;
|
||||
|
||||
fn new(ordinal: usize) -> Result<Self> {
|
||||
let device = metal::Device::all().swap_remove(ordinal);
|
||||
|
||||
// let capture = metal::CaptureManager::shared();
|
||||
// let descriptor = metal::CaptureDescriptor::new();
|
||||
// descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
||||
// descriptor.set_capture_device(&device);
|
||||
// let mut dir = std::env::current_dir()?;
|
||||
// dir.push("out.gputrace");
|
||||
// descriptor.set_output_url(dir);
|
||||
|
||||
// capture
|
||||
// .start_capture(&descriptor)
|
||||
// .map_err(MetalError::from)?;
|
||||
let command_queue = device.new_command_queue();
|
||||
// let command_buffer = _command_queue.new_owned_command_buffer();
|
||||
let kernels = Arc::new(Kernels::new());
|
||||
Ok(Self {
|
||||
device,
|
||||
command_queue,
|
||||
// command_buffer,
|
||||
kernels,
|
||||
})
|
||||
}
|
||||
|
||||
fn set_seed(&self, _seed: u64) -> Result<()> {
|
||||
todo!("set_seed")
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
crate::DeviceLocation::Metal
|
||||
}
|
||||
|
||||
fn same_device(&self, rhs: &Self) -> bool {
|
||||
self.device.registry_id() == rhs.device.registry_id()
|
||||
}
|
||||
|
||||
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> {
|
||||
// TODO Is there a faster way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.zeros_impl(shape, dtype)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
}
|
||||
|
||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
|
||||
// TODO Is there a faster way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.ones_impl(shape, dtype)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
|
||||
let option = metal::MTLResourceOptions::StorageModeManaged;
|
||||
let buffer = match storage {
|
||||
CpuStorage::U8(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<u8>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::U32(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<u32>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::I64(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<i64>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::BF16(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<bf16>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::F16(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<f16>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::F32(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<f32>()) as u64,
|
||||
option,
|
||||
),
|
||||
CpuStorage::F64(storage) => self.device.new_buffer_with_data(
|
||||
storage.as_ptr() as *const core::ffi::c_void,
|
||||
(storage.len() * mem::size_of::<f64>()) as u64,
|
||||
option,
|
||||
),
|
||||
};
|
||||
// debug!("Allocate 2 - buffer size {}", buffer.length());
|
||||
Ok(Self::Storage {
|
||||
buffer,
|
||||
device: self.clone(),
|
||||
dtype: storage.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_uniform(
|
||||
&self,
|
||||
shape: &Shape,
|
||||
dtype: DType,
|
||||
mean: f64,
|
||||
stddev: f64,
|
||||
) -> Result<Self::Storage> {
|
||||
// TODO is there a better way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.rand_uniform(shape, dtype, mean, stddev)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
}
|
||||
|
||||
fn rand_normal(
|
||||
&self,
|
||||
shape: &Shape,
|
||||
dtype: DType,
|
||||
mean: f64,
|
||||
stddev: f64,
|
||||
) -> Result<Self::Storage> {
|
||||
// TODO is there a better way ?
|
||||
let cpu_storage = crate::cpu_backend::CpuDevice.rand_normal(shape, dtype, mean, stddev)?;
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
}
|
||||
}
|
@ -250,6 +250,8 @@ impl Tensor {
|
||||
if header.fortran_order {
|
||||
return Err(Error::Npy("fortran order not supported".to_string()));
|
||||
}
|
||||
let mut data: Vec<u8> = vec![];
|
||||
reader.read_to_end(&mut data)?;
|
||||
Self::from_reader(header.shape(), header.descr, &mut reader)
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
||||
use crate::{CpuStorage, CudaStorage, Layout, Result, Shape, Tensor};
|
||||
use half::{bf16, f16};
|
||||
use num_traits::float::Float;
|
||||
|
||||
@ -174,18 +174,6 @@ pub trait CustomOp1 {
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||
/// The function should return the gradient of the argument.
|
||||
@ -221,20 +209,6 @@ pub trait CustomOp2 {
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
@ -277,22 +251,6 @@ pub trait CustomOp3 {
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
@ -578,6 +536,7 @@ unary_op!(Log, "log", v, v.ln(), vs_ln, vd_ln);
|
||||
unary_op!(Sin, "sin", v, v.sin(), vs_sin, vd_sin);
|
||||
unary_op!(Cos, "cos", v, v.cos(), vs_cos, vd_cos);
|
||||
unary_op!(Tanh, "tanh", v, v.tanh(), vs_tanh, vd_tanh);
|
||||
unary_op!(Abs, "abs", v, v.abs());
|
||||
unary_op!(Neg, "neg", v, -v);
|
||||
unary_op!(Recip, "recip", v, v.recip());
|
||||
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
|
||||
@ -707,40 +666,6 @@ impl UnaryOpT for Erf {
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Abs {
|
||||
const NAME: &'static str = "abs";
|
||||
const KERNEL: &'static str = "uabs";
|
||||
const V: Self = Abs;
|
||||
#[inline(always)]
|
||||
fn bf16(v: bf16) -> bf16 {
|
||||
v.abs()
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f16(v: f16) -> f16 {
|
||||
v.abs()
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
v.abs()
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
v.abs()
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(v: u8) -> u8 {
|
||||
v
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u32(v: u32) -> u32 {
|
||||
v
|
||||
}
|
||||
#[inline(always)]
|
||||
fn i64(v: i64) -> i64 {
|
||||
v.abs()
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Ceil {
|
||||
const NAME: &'static str = "ceil";
|
||||
const KERNEL: &'static str = "uceil";
|
||||
|
@ -193,50 +193,6 @@ impl Object {
|
||||
_ => Err(self),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_tensor_info(
|
||||
self,
|
||||
name: Self,
|
||||
dir_name: &std::path::Path,
|
||||
) -> Result<Option<TensorInfo>> {
|
||||
let name = match name.unicode() {
|
||||
Ok(name) => name,
|
||||
Err(_) => return Ok(None),
|
||||
};
|
||||
let (callable, args) = match self.reduce() {
|
||||
Ok(callable_args) => callable_args,
|
||||
_ => return Ok(None),
|
||||
};
|
||||
let (callable, args) = match callable {
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._tensor" && class_name == "_rebuild_from_type_v2" => {
|
||||
let mut args = args.tuple()?;
|
||||
let callable = args.remove(0);
|
||||
let args = args.remove(1);
|
||||
(callable, args)
|
||||
}
|
||||
_ => (callable, args),
|
||||
};
|
||||
match callable {
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
|
||||
_ => return Ok(None),
|
||||
};
|
||||
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
|
||||
let mut path = dir_name.to_path_buf();
|
||||
path.push(file_path);
|
||||
Ok(Some(TensorInfo {
|
||||
name,
|
||||
dtype,
|
||||
layout,
|
||||
path: path.to_string_lossy().into_owned(),
|
||||
storage_size,
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<Object> for String {
|
||||
@ -609,7 +565,6 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
|
||||
"HalfStorage" => DType::F16,
|
||||
"BFloat16Storage" => DType::BF16,
|
||||
"ByteStorage" => DType::U8,
|
||||
"LongStorage" => DType::I64,
|
||||
other => {
|
||||
crate::bail!("unsupported storage type {other}")
|
||||
}
|
||||
@ -668,10 +623,50 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
};
|
||||
if let Object::Dict(key_values) = obj {
|
||||
for (name, value) in key_values.into_iter() {
|
||||
match value.into_tensor_info(name, &dir_name) {
|
||||
Ok(Some(tensor_info)) => tensor_infos.push(tensor_info),
|
||||
Ok(None) => {}
|
||||
Err(err) => eprintln!("skipping: {err:?}"),
|
||||
let name = match name.unicode() {
|
||||
Ok(name) => name,
|
||||
Err(_) => continue,
|
||||
};
|
||||
let (callable, args) = match value.reduce() {
|
||||
Ok(callable_args) => callable_args,
|
||||
_ => continue,
|
||||
};
|
||||
let (callable, args) = match callable {
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._tensor"
|
||||
&& class_name == "_rebuild_from_type_v2" =>
|
||||
{
|
||||
let mut args = args.tuple()?;
|
||||
let callable = args.remove(0);
|
||||
let args = args.remove(1);
|
||||
(callable, args)
|
||||
}
|
||||
_ => (callable, args),
|
||||
};
|
||||
match callable {
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
|
||||
_ => continue,
|
||||
};
|
||||
match rebuild_args(args) {
|
||||
Ok((layout, dtype, file_path, storage_size)) => {
|
||||
let mut path = dir_name.clone();
|
||||
path.push(file_path);
|
||||
tensor_infos.push(TensorInfo {
|
||||
name,
|
||||
dtype,
|
||||
layout,
|
||||
path: path.to_string_lossy().into_owned(),
|
||||
storage_size,
|
||||
})
|
||||
}
|
||||
Err(err) => {
|
||||
eprintln!("skipping {name}: {err:?}")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -728,16 +723,3 @@ impl PthTensors {
|
||||
Ok(Some(tensor))
|
||||
}
|
||||
}
|
||||
|
||||
/// Read all the tensors from a PyTorch pth file.
|
||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
||||
let pth = PthTensors::new(path)?;
|
||||
let tensor_names = pth.tensor_infos.keys();
|
||||
let mut tensors = Vec::with_capacity(tensor_names.len());
|
||||
for name in tensor_names {
|
||||
if let Some(tensor) = pth.get(name)? {
|
||||
tensors.push((name.to_string(), tensor))
|
||||
}
|
||||
}
|
||||
Ok(tensors)
|
||||
}
|
||||
|
@ -50,9 +50,14 @@ pub(crate) unsafe fn mul_sum_i8_pairs_float(x: __m256i, y: __m256i) -> __m256 {
|
||||
#[inline(always)]
|
||||
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
||||
let qk = QK8_0;
|
||||
let nb = n / qk;
|
||||
if n % QK8_0 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||
}
|
||||
|
||||
unsafe {
|
||||
let mut acc = _mm256_setzero_ps();
|
||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
//! Support for the GGML file format.
|
||||
|
||||
use super::{k_quants, GgmlDType};
|
||||
use crate::{Device, Result};
|
||||
use crate::Result;
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use std::collections::HashMap;
|
||||
|
||||
@ -121,12 +121,11 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
|
||||
raw_data: &[u8],
|
||||
size_in_bytes: usize,
|
||||
dims: Vec<usize>,
|
||||
device: &Device,
|
||||
) -> Result<super::QTensor> {
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
|
||||
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
||||
super::QTensor::new(data.to_vec(), dims, device)
|
||||
super::QTensor::new(data.to_vec(), dims)
|
||||
}
|
||||
|
||||
/// Creates a [Tensor] from a raw GGML tensor.
|
||||
@ -134,7 +133,6 @@ pub fn qtensor_from_ggml(
|
||||
ggml_dtype: GgmlDType,
|
||||
raw_data: &[u8],
|
||||
dims: Vec<usize>,
|
||||
device: &Device,
|
||||
) -> Result<super::QTensor> {
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let blck_size = ggml_dtype.blck_size();
|
||||
@ -146,38 +144,18 @@ pub fn qtensor_from_ggml(
|
||||
let size_in_bytes = tensor_elems / blck_size * ggml_dtype.type_size();
|
||||
|
||||
match ggml_dtype {
|
||||
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
|
||||
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
|
||||
GgmlDType::Q4_0 => {
|
||||
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q4_1 => {
|
||||
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5_0 => {
|
||||
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5_1 => {
|
||||
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q8_0 => {
|
||||
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q2K => {
|
||||
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q3K => {
|
||||
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q4K => {
|
||||
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5K => {
|
||||
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q6K => {
|
||||
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4_0 => from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4_1 => from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5_0 => from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5_1 => from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q8_0 => from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q2K => from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q3K => from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4K => from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5K => from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q6K => from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims),
|
||||
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
|
||||
}
|
||||
}
|
||||
@ -185,7 +163,6 @@ pub fn qtensor_from_ggml(
|
||||
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
magic: VersionedMagic,
|
||||
device: &Device,
|
||||
) -> Result<(String, super::QTensor)> {
|
||||
let n_dims = reader.read_u32::<LittleEndian>()?;
|
||||
let name_len = reader.read_u32::<LittleEndian>()?;
|
||||
@ -210,7 +187,7 @@ fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
// TODO: Mmap version to avoid copying the data around?
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
|
||||
match qtensor_from_ggml(ggml_dtype, &raw_data, dims) {
|
||||
Ok(tensor) => Ok((name, tensor)),
|
||||
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
|
||||
}
|
||||
@ -224,10 +201,7 @@ pub struct Content {
|
||||
}
|
||||
|
||||
impl Content {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Content> {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Content> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
||||
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
||||
reader.seek(std::io::SeekFrom::Start(0))?;
|
||||
@ -237,7 +211,7 @@ impl Content {
|
||||
let mut tensors = HashMap::new();
|
||||
|
||||
while reader.stream_position()? != last_position {
|
||||
let (name, tensor) = read_one_tensor(reader, magic, device)?;
|
||||
let (name, tensor) = read_one_tensor(reader, magic)?;
|
||||
tensors.insert(name, tensor);
|
||||
}
|
||||
Ok(Self {
|
||||
|
@ -3,7 +3,7 @@
|
||||
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
|
||||
|
||||
use super::{GgmlDType, QTensor};
|
||||
use crate::{Device, Result};
|
||||
use crate::Result;
|
||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use std::collections::HashMap;
|
||||
|
||||
@ -57,7 +57,6 @@ impl TensorInfo {
|
||||
&self,
|
||||
reader: &mut R,
|
||||
tensor_data_offset: u64,
|
||||
device: &Device,
|
||||
) -> Result<QTensor> {
|
||||
let tensor_elems = self.shape.elem_count();
|
||||
let blck_size = self.ggml_dtype.blck_size();
|
||||
@ -70,12 +69,7 @@ impl TensorInfo {
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
super::ggml_file::qtensor_from_ggml(
|
||||
self.ggml_dtype,
|
||||
&raw_data,
|
||||
self.shape.dims().to_vec(),
|
||||
device,
|
||||
)
|
||||
super::ggml_file::qtensor_from_ggml(self.ggml_dtype, &raw_data, self.shape.dims().to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
@ -456,13 +450,12 @@ impl Content {
|
||||
&self,
|
||||
reader: &mut R,
|
||||
name: &str,
|
||||
device: &Device,
|
||||
) -> Result<QTensor> {
|
||||
let tensor_info = match self.tensor_infos.get(name) {
|
||||
Some(tensor_info) => tensor_info,
|
||||
None => crate::bail!("cannot find tensor-infor for {name}"),
|
||||
};
|
||||
tensor_info.read(reader, self.tensor_data_offset, device)
|
||||
tensor_info.read(reader, self.tensor_data_offset)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -236,9 +236,14 @@ impl GgmlType for BlockQ4_0 {
|
||||
|
||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
||||
let qk = QK8_0;
|
||||
let nb = n / qk;
|
||||
if n % QK8_0 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||
}
|
||||
|
||||
// Generic implementation.
|
||||
let mut sumf = 0f32;
|
||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
||||
|
@ -1,5 +1,4 @@
|
||||
use crate::{Device, Result, Shape, Tensor};
|
||||
use tracing::debug;
|
||||
|
||||
#[cfg(target_feature = "avx")]
|
||||
pub mod avx;
|
||||
@ -15,7 +14,6 @@ pub mod utils;
|
||||
pub use k_quants::GgmlType;
|
||||
|
||||
pub struct QTensor {
|
||||
device: Device,
|
||||
data: Box<dyn QuantizedType>,
|
||||
shape: Shape,
|
||||
}
|
||||
@ -172,20 +170,17 @@ impl QTensor {
|
||||
pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
|
||||
data: Vec<T>,
|
||||
shape: S,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
check_shape::<T>(&shape)?;
|
||||
Ok(Self {
|
||||
data: Box::new(data),
|
||||
shape,
|
||||
device: device.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
|
||||
let shape = src.shape();
|
||||
let device = src.device();
|
||||
check_shape::<T>(shape)?;
|
||||
let src = src
|
||||
.to_dtype(crate::DType::F32)?
|
||||
@ -202,7 +197,6 @@ impl QTensor {
|
||||
Ok(Self {
|
||||
data: Box::new(data),
|
||||
shape: shape.clone(),
|
||||
device: device.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
@ -218,12 +212,7 @@ impl QTensor {
|
||||
&self.shape
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
|
||||
// TODO Skip the CPU part on metal
|
||||
let mut f32_data = vec![0f32; self.shape.elem_count()];
|
||||
self.data.to_float(&mut f32_data)?;
|
||||
Tensor::from_vec(f32_data, &self.shape, device)
|
||||
@ -316,46 +305,6 @@ impl crate::CustomOp1 for QTensor {
|
||||
)?;
|
||||
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
|
||||
}
|
||||
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &crate::MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::MetalStorage, Shape)> {
|
||||
debug!("TODO qmatmul");
|
||||
if !layout.is_contiguous() {
|
||||
crate::bail!("input tensor is not contiguous {layout:?}")
|
||||
}
|
||||
let src_shape = layout.shape();
|
||||
// self is transposed so n is first then k.
|
||||
let (n, k) = self.shape.dims2()?;
|
||||
if src_shape.rank() < 2 {
|
||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||
}
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
if last_k != k {
|
||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
|
||||
}
|
||||
dst_shape.push(n);
|
||||
let dst_shape = Shape::from(dst_shape);
|
||||
// let storage = storage.as_slice::<f32>()?;
|
||||
// let storage =
|
||||
// &storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||
let dst_storage = vec![0f32; dst_shape.elem_count()];
|
||||
// self.matmul_t(
|
||||
// (dst_shape.elem_count() / n, k, n),
|
||||
// storage,
|
||||
// &mut dst_storage,
|
||||
// )?;
|
||||
let cpu_storage = crate::CpuStorage::F32(dst_storage);
|
||||
use crate::backend::{BackendDevice, BackendStorage};
|
||||
if let Device::Metal(device) = &self.device {
|
||||
Ok((device.storage_from_cpu_storage(&cpu_storage)?, dst_shape))
|
||||
} else {
|
||||
crate::bail!("qtensor not on metal device")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl QMatMul {
|
||||
|
@ -19,29 +19,42 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
|
||||
if n % QK8_0 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||
}
|
||||
|
||||
unsafe {
|
||||
let mut sumv0 = vdupq_n_f32(0.0f32);
|
||||
for i in 0..nb {
|
||||
let mut sumv1 = vdupq_n_f32(0.0f32);
|
||||
for i in (0..nb).step_by(2) {
|
||||
let x0 = &xs[i];
|
||||
let x1 = &xs[i + 1];
|
||||
let y0 = &ys[i];
|
||||
let y1 = &ys[i + 1];
|
||||
|
||||
let m4b = vdupq_n_u8(0x0F);
|
||||
let s8b = vdupq_n_s8(0x8);
|
||||
|
||||
let v0_0 = vld1q_u8(x0.qs.as_ptr());
|
||||
let v0_1 = vld1q_u8(x1.qs.as_ptr());
|
||||
|
||||
// 4-bit -> 8-bit
|
||||
let v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
|
||||
let v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
||||
let v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
|
||||
let v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
||||
|
||||
// sub 8
|
||||
let v0_0ls = vsubq_s8(v0_0l, s8b);
|
||||
let v0_0hs = vsubq_s8(v0_0h, s8b);
|
||||
let v0_1ls = vsubq_s8(v0_1l, s8b);
|
||||
let v0_1hs = vsubq_s8(v0_1h, s8b);
|
||||
|
||||
// load y
|
||||
let v1_0l = vld1q_s8(y0.qs.as_ptr());
|
||||
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||
let v1_1l = vld1q_s8(y1.qs.as_ptr());
|
||||
let v1_1h = vld1q_s8(y1.qs.as_ptr().add(16));
|
||||
|
||||
// TODO: Support dotprod when it's available outside of nightly.
|
||||
let pl0l = vmull_s8(vget_low_s8(v0_0ls), vget_low_s8(v1_0l));
|
||||
@ -49,16 +62,28 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
|
||||
let ph0l = vmull_s8(vget_low_s8(v0_0hs), vget_low_s8(v1_0h));
|
||||
let ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
|
||||
|
||||
let pl1l = vmull_s8(vget_low_s8(v0_1ls), vget_low_s8(v1_1l));
|
||||
let pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
|
||||
let ph1l = vmull_s8(vget_low_s8(v0_1hs), vget_low_s8(v1_1h));
|
||||
let ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
|
||||
|
||||
let pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
||||
let ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
||||
let pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||
let ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||
|
||||
sumv0 = vmlaq_n_f32(
|
||||
sumv0,
|
||||
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
|
||||
x0.d.to_f32() * y0.d.to_f32(),
|
||||
);
|
||||
sumv1 = vmlaq_n_f32(
|
||||
sumv1,
|
||||
vcvtq_f32_s32(vaddq_s32(pl1, ph1)),
|
||||
x1.d.to_f32() * y1.d.to_f32(),
|
||||
);
|
||||
}
|
||||
Ok(vaddvq_f32(sumv0))
|
||||
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
|
||||
}
|
||||
}
|
||||
|
||||
@ -69,18 +94,28 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
let nb = n / QK8_0;
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
|
||||
}
|
||||
unsafe {
|
||||
let mut sumv0 = vdupq_n_f32(0.0f32);
|
||||
for i in 0..nb {
|
||||
let mut sumv1 = vdupq_n_f32(0.0f32);
|
||||
for i in (0..nb).step_by(2) {
|
||||
let x0 = &xs[i];
|
||||
let x1 = &xs[i + 1];
|
||||
let y0 = &ys[i];
|
||||
let y1 = &ys[i + 1];
|
||||
|
||||
let x0_0 = vld1q_s8(x0.qs.as_ptr());
|
||||
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
|
||||
let x1_0 = vld1q_s8(x1.qs.as_ptr());
|
||||
let x1_1 = vld1q_s8(x1.qs.as_ptr().add(16));
|
||||
|
||||
// load y
|
||||
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
||||
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||
let y1_0 = vld1q_s8(y1.qs.as_ptr());
|
||||
let y1_1 = vld1q_s8(y1.qs.as_ptr().add(16));
|
||||
|
||||
// TODO dotprod once this is the intrinsics are.
|
||||
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
|
||||
@ -88,16 +123,28 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
||||
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
|
||||
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
||||
|
||||
let p1_0 = vmull_s8(vget_low_s8(x1_0), vget_low_s8(y1_0));
|
||||
let p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
|
||||
let p1_2 = vmull_s8(vget_low_s8(x1_1), vget_low_s8(y1_1));
|
||||
let p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
|
||||
|
||||
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
||||
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
||||
let p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
||||
let p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
||||
|
||||
sumv0 = vmlaq_n_f32(
|
||||
sumv0,
|
||||
vcvtq_f32_s32(vaddq_s32(p0, p1)),
|
||||
x0.d.to_f32() * y0.d.to_f32(),
|
||||
);
|
||||
sumv1 = vmlaq_n_f32(
|
||||
sumv1,
|
||||
vcvtq_f32_s32(vaddq_s32(p2, p3)),
|
||||
x1.d.to_f32() * y1.d.to_f32(),
|
||||
);
|
||||
}
|
||||
Ok(vaddvq_f32(sumv0))
|
||||
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,6 +11,10 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
|
||||
if n % QK8_0 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
let nb = n / QK8_0;
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||
}
|
||||
unsafe {
|
||||
let mut acc = f32x4_splat(0.0f32);
|
||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
||||
@ -57,6 +61,10 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
||||
if n % QK8_0 != 0 {
|
||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||
}
|
||||
let nb = n / QK8_0;
|
||||
if nb % 2 != 0 {
|
||||
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
|
||||
}
|
||||
unsafe {
|
||||
let mut acc = f32x4_splat(0.0f32);
|
||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
||||
|
@ -203,7 +203,7 @@ impl Shape {
|
||||
|
||||
/// Check whether the two shapes are compatible for broadcast, and if it is the case return the
|
||||
/// broadcasted shape. This is to be used for binary pointwise ops.
|
||||
pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
|
||||
pub(crate) fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
|
||||
let lhs = self;
|
||||
let lhs_dims = lhs.dims();
|
||||
let rhs_dims = rhs.dims();
|
||||
@ -511,119 +511,154 @@ impl ShapeWithOneHole for ((),) {
|
||||
}
|
||||
}
|
||||
|
||||
fn hole_size(el_count: usize, prod_d: usize, s: &dyn std::fmt::Debug) -> Result<usize> {
|
||||
if prod_d == 0 {
|
||||
crate::bail!("cannot reshape tensor of {el_count} elements to {s:?}")
|
||||
}
|
||||
if el_count % prod_d != 0 {
|
||||
crate::bail!("cannot reshape tensor with {el_count} elements to {s:?}")
|
||||
}
|
||||
Ok(el_count / prod_d)
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for ((), usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let ((), d1) = self;
|
||||
Ok((hole_size(el_count, d1, &self)?, d1).into())
|
||||
if el_count % d1 != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d1}")
|
||||
}
|
||||
Ok((el_count / d1, d1).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, ()) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, ()) = self;
|
||||
Ok((d1, hole_size(el_count, d1, &self)?).into())
|
||||
if el_count % d1 != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d1}")
|
||||
}
|
||||
Ok((d1, el_count / d1).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for ((), usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let ((), d1, d2) = self;
|
||||
Ok((hole_size(el_count, d1 * d2, &self)?, d1, d2).into())
|
||||
let d = d1 * d2;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((el_count / d, d1, d2).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, (), usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, (), d2) = self;
|
||||
Ok((d1, hole_size(el_count, d1 * d2, &self)?, d2).into())
|
||||
let d = d1 * d2;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, el_count / d, d2).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, ()) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, ()) = self;
|
||||
Ok((d1, d2, hole_size(el_count, d1 * d2, &self)?).into())
|
||||
let d = d1 * d2;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, el_count / d).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for ((), usize, usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let ((), d1, d2, d3) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
||||
Ok((d, d1, d2, d3).into())
|
||||
let d = d1 * d2 * d3;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((el_count / d, d1, d2, d3).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, (), usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, (), d2, d3) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
||||
Ok((d1, d, d2, d3).into())
|
||||
let d = d1 * d2 * d3;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, el_count / d, d2, d3).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, (), usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, (), d3) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
||||
Ok((d1, d2, d, d3).into())
|
||||
let d = d1 * d2 * d3;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, el_count / d, d3).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, usize, ()) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, d3, ()) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
||||
Ok((d1, d2, d3, d).into())
|
||||
let d = d1 * d2 * d3;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, d3, el_count / d).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for ((), usize, usize, usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let ((), d1, d2, d3, d4) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
||||
Ok((d, d1, d2, d3, d4).into())
|
||||
let d = d1 * d2 * d3 * d4;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((el_count / d, d1, d2, d3, d4).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, (), usize, usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, (), d2, d3, d4) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
||||
Ok((d1, d, d2, d3, d4).into())
|
||||
let d = d1 * d2 * d3 * d4;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, el_count / d, d2, d3, d4).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, (), usize, usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, (), d3, d4) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
||||
Ok((d1, d2, d, d3, d4).into())
|
||||
let d = d1 * d2 * d3 * d4;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, el_count / d, d3, d4).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, usize, (), usize) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, d3, (), d4) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
||||
Ok((d1, d2, d3, d, d4).into())
|
||||
let d = d1 * d2 * d3 * d4;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, d3, el_count / d, d4).into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
|
||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||
let (d1, d2, d3, d4, ()) = self;
|
||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
||||
Ok((d1, d2, d3, d4, d).into())
|
||||
let d = d1 * d2 * d3 * d4;
|
||||
if el_count % d != 0 {
|
||||
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||
}
|
||||
Ok((d1, d2, d3, d4, el_count / d).into())
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
|
||||
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
|
||||
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, Result, Shape};
|
||||
|
||||
// We do not want to implement Clone on Storage as cloning may fail because of
|
||||
// out of memory. Instead try_clone should be used.
|
||||
@ -8,7 +8,6 @@ use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage,
|
||||
pub enum Storage {
|
||||
Cpu(CpuStorage),
|
||||
Cuda(CudaStorage),
|
||||
Metal(MetalStorage),
|
||||
}
|
||||
|
||||
impl Storage {
|
||||
@ -19,10 +18,6 @@ impl Storage {
|
||||
let storage = storage.try_clone(layout)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.try_clone(layout)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -30,7 +25,6 @@ impl Storage {
|
||||
match self {
|
||||
Self::Cpu(_) => Device::Cpu,
|
||||
Self::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
||||
Self::Metal(storage) => Device::Metal(storage.device().clone()),
|
||||
}
|
||||
}
|
||||
|
||||
@ -38,7 +32,6 @@ impl Storage {
|
||||
match self {
|
||||
Self::Cpu(storage) => storage.dtype(),
|
||||
Self::Cuda(storage) => storage.dtype(),
|
||||
Self::Metal(storage) => storage.dtype(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -72,10 +65,6 @@ impl Storage {
|
||||
let storage = storage.affine(layout, mul, add)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.affine(layout, mul, add)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -89,10 +78,6 @@ impl Storage {
|
||||
let storage = storage.powf(layout, alpha)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.powf(layout, alpha)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -106,10 +91,6 @@ impl Storage {
|
||||
let storage = storage.elu(layout, alpha)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.elu(layout, alpha)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -131,10 +112,6 @@ impl Storage {
|
||||
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
||||
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
(lhs, rhs) => {
|
||||
// Should not happen because of the same device check above but we're defensive
|
||||
// anyway.
|
||||
@ -158,10 +135,6 @@ impl Storage {
|
||||
let storage = storage.reduce_op(op, layout, s)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.reduce_op(op, layout, s)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -175,10 +148,6 @@ impl Storage {
|
||||
let storage = storage.to_dtype(layout, dtype)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.to_dtype(layout, dtype)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -192,10 +161,6 @@ impl Storage {
|
||||
let (storage, shape) = c.cuda_fwd(storage, l)?;
|
||||
Ok((Self::Cuda(storage), shape))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let (storage, shape) = c.metal_fwd(storage, l)?;
|
||||
Ok((Self::Metal(storage), shape))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -216,10 +181,6 @@ impl Storage {
|
||||
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2)?;
|
||||
Ok((Self::Cuda(s), shape))
|
||||
}
|
||||
(Self::Metal(s1), Self::Metal(s2)) => {
|
||||
let (s, shape) = c.metal_fwd(s1, l1, s2, l2)?;
|
||||
Ok((Self::Metal(s), shape))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
@ -244,10 +205,6 @@ impl Storage {
|
||||
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2, s3, l3)?;
|
||||
Ok((Self::Cuda(s), shape))
|
||||
}
|
||||
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
|
||||
let (s, shape) = c.metal_fwd(s1, l1, s2, l2, s3, l3)?;
|
||||
Ok((Self::Metal(s), shape))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
@ -262,10 +219,6 @@ impl Storage {
|
||||
let storage = storage.unary_impl::<B>(layout)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.unary_impl::<B>(layout)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -286,10 +239,6 @@ impl Storage {
|
||||
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
||||
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
(lhs, rhs) => {
|
||||
// Should not happen because of the same device check above but we're defensive
|
||||
// anyway.
|
||||
@ -321,10 +270,6 @@ impl Storage {
|
||||
let s = inp.conv1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Cuda(s))
|
||||
}
|
||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
||||
let s = inp.conv1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Metal(s))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -352,10 +297,6 @@ impl Storage {
|
||||
let s = inp.conv2d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Cuda(s))
|
||||
}
|
||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
||||
let s = inp.conv2d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Metal(s))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -383,10 +324,6 @@ impl Storage {
|
||||
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Cuda(s))
|
||||
}
|
||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
||||
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Metal(s))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -411,10 +348,6 @@ impl Storage {
|
||||
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -433,10 +366,6 @@ impl Storage {
|
||||
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -450,10 +379,6 @@ impl Storage {
|
||||
let storage = storage.upsample_nearest1d(layout, sz)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.upsample_nearest1d(layout, sz)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -467,10 +392,6 @@ impl Storage {
|
||||
let storage = storage.upsample_nearest2d(layout, h, w)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
Self::Metal(storage) => {
|
||||
let storage = storage.upsample_nearest2d(layout, h, w)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -494,10 +415,6 @@ impl Storage {
|
||||
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(cond), Self::Metal(t), Self::Metal(f)) => {
|
||||
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
(_, lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -524,10 +441,6 @@ impl Storage {
|
||||
let storage = s.gather(l, indexes, indexes_l, d)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(s), Self::Metal(indexes)) => {
|
||||
let storage = s.gather(l, indexes, indexes_l, d)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
@ -552,10 +465,6 @@ impl Storage {
|
||||
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
|
||||
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
@ -580,10 +489,6 @@ impl Storage {
|
||||
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
|
||||
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
@ -605,10 +510,6 @@ impl Storage {
|
||||
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
||||
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -636,10 +537,6 @@ impl Storage {
|
||||
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
||||
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
|
||||
Ok(Self::Metal(storage))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -659,9 +556,6 @@ impl Storage {
|
||||
match (self, dst) {
|
||||
(Self::Cpu(src), Self::Cpu(dst)) => src.copy_strided_src(dst, dst_offset, src_l),
|
||||
(Self::Cuda(src), Self::Cuda(dst)) => Ok(src.copy_strided_src(dst, dst_offset, src_l)?),
|
||||
(Self::Metal(src), Self::Metal(dst)) => {
|
||||
Ok(src.copy_strided_src(dst, dst_offset, src_l)?)
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
|
@ -6,7 +6,7 @@ use crate::op::{
|
||||
};
|
||||
use crate::scalar::TensorOrScalar;
|
||||
use crate::shape::{Dim, Dims};
|
||||
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
|
||||
use crate::{storage::Storage, DType, Device, Error, Layout, Result, Shape};
|
||||
use std::sync::{Arc, RwLock};
|
||||
|
||||
/// Unique identifier for tensors.
|
||||
@ -385,21 +385,11 @@ impl Tensor {
|
||||
step: D,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
if D::is_zero(&step) {
|
||||
crate::bail!("step cannot be zero")
|
||||
}
|
||||
let mut data = vec![];
|
||||
let mut current = start;
|
||||
if step >= D::zero() {
|
||||
while current < end {
|
||||
data.push(current);
|
||||
current += step;
|
||||
}
|
||||
} else {
|
||||
while current > end {
|
||||
data.push(current);
|
||||
current += step;
|
||||
}
|
||||
while current < end {
|
||||
data.push(current);
|
||||
current += step;
|
||||
}
|
||||
let len = data.len();
|
||||
Self::from_vec_impl(data, len, device, false)
|
||||
@ -459,7 +449,7 @@ impl Tensor {
|
||||
|
||||
/// Returns true if the computation graph should track this op, that is if it is
|
||||
/// a variable or if it has some variable as dependencies.
|
||||
pub fn track_op(&self) -> bool {
|
||||
pub(crate) fn track_op(&self) -> bool {
|
||||
self.is_variable || self.op.is_some()
|
||||
}
|
||||
|
||||
@ -523,7 +513,6 @@ impl Tensor {
|
||||
match &*self.storage() {
|
||||
Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage),
|
||||
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
}
|
||||
}
|
||||
|
||||
@ -551,73 +540,6 @@ impl Tensor {
|
||||
Ok(inp)
|
||||
}
|
||||
|
||||
/// Creates grids of coordinates specified by the 1D inputs.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `args` - A slice of 1D tensors.
|
||||
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
|
||||
/// first dimension corresponds to the cardinality of the second input and the second
|
||||
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
|
||||
/// dimensions are in the same order as the cardinality of the inputs.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```rust
|
||||
/// use candle_core::{Tensor, Device, Shape};
|
||||
/// let x = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
|
||||
/// let y = Tensor::new(&[4f32, 5., 6.], &Device::Cpu)?;
|
||||
///
|
||||
/// let grids_xy = Tensor::meshgrid(&[&x, &y], true)?;
|
||||
///
|
||||
/// assert_eq!(grids_xy.len(), 2);
|
||||
/// assert_eq!(grids_xy[0].dims(), &[3, 3]);
|
||||
///
|
||||
/// assert_eq!(grids_xy[0].to_vec2::<f32>()?, &[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]);
|
||||
/// assert_eq!(grids_xy[1].to_vec2::<f32>()?, &[[4., 4., 4.], [5., 5., 5.], [6., 6., 6.]]);
|
||||
///
|
||||
/// let grids_ij = Tensor::meshgrid(&[&x, &y], false)?;
|
||||
///
|
||||
/// assert_eq!(grids_ij[0].to_vec2::<f32>()?, &[[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]);
|
||||
/// assert_eq!(grids_ij[1].to_vec2::<f32>()?, &[[4., 5., 6.], [4., 5., 6.], [4., 5., 6.]]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// * Will return `Err` if `args` contains less than 2 tensors.
|
||||
///
|
||||
pub fn meshgrid<A: AsRef<Tensor>>(args: &[A], xy_indexing: bool) -> Result<Vec<Self>> {
|
||||
if args.len() <= 1 {
|
||||
Err(Error::OpRequiresAtLeastTwoTensors { op: "meshgrid" }.bt())?
|
||||
}
|
||||
let args: Vec<_> = if xy_indexing {
|
||||
args.iter().rev().collect()
|
||||
} else {
|
||||
args.iter().collect()
|
||||
};
|
||||
|
||||
let mut shape = Vec::with_capacity(args.len());
|
||||
for arg in args.iter() {
|
||||
shape.push(arg.as_ref().dims1()?)
|
||||
}
|
||||
|
||||
let mut grids = Vec::with_capacity(args.len());
|
||||
for idx in 0..args.len() {
|
||||
let mut ones = vec![1usize; args.len()];
|
||||
ones[idx] = shape[idx];
|
||||
let arg = args[idx].as_ref().reshape(ones)?;
|
||||
let mut repeats = shape.clone();
|
||||
repeats[idx] = 1;
|
||||
let repeated_tensor = arg.repeat(repeats)?;
|
||||
grids.push(repeated_tensor);
|
||||
}
|
||||
if xy_indexing {
|
||||
grids.reverse();
|
||||
}
|
||||
Ok(grids)
|
||||
}
|
||||
|
||||
/// This operation multiplies the input tensor by `mul` then adds `add` and return the result.
|
||||
/// The input values `mul` and `add` are casted to the appropriate type so some rounding might
|
||||
/// be performed.
|
||||
@ -693,23 +615,15 @@ impl Tensor {
|
||||
pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> {
|
||||
let dims = self.dims();
|
||||
let dim = dim.to_index(self.shape(), "narrow")?;
|
||||
let err = |msg| {
|
||||
Err::<(), _>(
|
||||
Error::NarrowInvalidArgs {
|
||||
shape: self.shape().clone(),
|
||||
dim,
|
||||
start,
|
||||
len,
|
||||
msg,
|
||||
}
|
||||
.bt(),
|
||||
)
|
||||
};
|
||||
if start > dims[dim] {
|
||||
err("start > dim_len")?
|
||||
}
|
||||
if start.saturating_add(len) > dims[dim] {
|
||||
err("start + len > dim_len")?
|
||||
if start + len > dims[dim] {
|
||||
Err(Error::NarrowInvalidArgs {
|
||||
shape: self.shape().clone(),
|
||||
dim,
|
||||
start,
|
||||
len,
|
||||
msg: "start + len > dim_len",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if start == 0 && dims[dim] == len {
|
||||
Ok(self.clone())
|
||||
@ -1197,16 +1111,14 @@ impl Tensor {
|
||||
op: "scatter-add (self, src)",
|
||||
lhs: self.shape().clone(),
|
||||
rhs: source.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
if indexes.dims() != source.dims() {
|
||||
Err(Error::ShapeMismatchBinaryOp {
|
||||
op: "scatter-add (indexes, src)",
|
||||
lhs: indexes.shape().clone(),
|
||||
rhs: source.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
let storage = self.storage().scatter_add(
|
||||
self.layout(),
|
||||
@ -1278,8 +1190,7 @@ impl Tensor {
|
||||
op: "slice-scatter (self, src)",
|
||||
lhs: self.shape().clone(),
|
||||
rhs: src.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
|
||||
self.storage()
|
||||
@ -1313,8 +1224,7 @@ impl Tensor {
|
||||
op: "index-add (self, source)",
|
||||
lhs: self.shape().clone(),
|
||||
rhs: source.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
// The number of element in indexes must match the dimension on which the add is
|
||||
// performed on the source tensor (and the index values from `indexes` are taken from
|
||||
@ -1325,8 +1235,7 @@ impl Tensor {
|
||||
op: "index-add (ids, source))",
|
||||
lhs: indexes.shape().clone(),
|
||||
rhs: source.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
let storage = self.storage().index_add(
|
||||
self.layout(),
|
||||
@ -1374,8 +1283,7 @@ impl Tensor {
|
||||
op: "gather",
|
||||
lhs: self.shape().clone(),
|
||||
rhs: indexes.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
})?
|
||||
}
|
||||
let storage =
|
||||
self.storage()
|
||||
@ -1449,7 +1357,6 @@ impl Tensor {
|
||||
match &*self.storage() {
|
||||
Storage::Cpu(storage) => from_cpu_storage(storage),
|
||||
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
}
|
||||
}
|
||||
|
||||
@ -1480,7 +1387,6 @@ impl Tensor {
|
||||
match &*self.storage() {
|
||||
Storage::Cpu(storage) => from_cpu_storage(storage),
|
||||
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
}
|
||||
}
|
||||
|
||||
@ -1521,7 +1427,6 @@ impl Tensor {
|
||||
match &*self.storage() {
|
||||
Storage::Cpu(storage) => from_cpu_storage(storage),
|
||||
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
|
||||
}
|
||||
}
|
||||
|
||||
@ -1685,24 +1590,6 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the sub-tensor fixing the index at `index` on the dimension `dim`.
|
||||
///
|
||||
/// ```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let t = tensor.get_on_dim(1, 0)?;
|
||||
/// assert_eq!(t.to_vec1::<f32>()?, &[0., 2., 4.]);
|
||||
/// let t = tensor.get_on_dim(1, 1)?;
|
||||
/// assert_eq!(t.to_vec1::<f32>()?, &[1., 3., 5.]);
|
||||
/// let t = tensor.get_on_dim(0, 1)?;
|
||||
/// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn get_on_dim<D: Dim>(&self, dim: D, index: usize) -> Result<Tensor> {
|
||||
let dim = dim.to_index(self.shape(), "get_on_dim")?;
|
||||
self.narrow(dim, index, 1)?.squeeze(dim)
|
||||
}
|
||||
|
||||
/// Returns a tensor that is a transposed version of the input, the two last dimensions of the
|
||||
/// input are swapped.
|
||||
///
|
||||
@ -1841,9 +1728,6 @@ impl Tensor {
|
||||
Storage::Cuda(cuda.storage_from_cpu_storage(&cpu_storage)?)
|
||||
}
|
||||
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
|
||||
_ => {
|
||||
bail!("not implemented yet")
|
||||
}
|
||||
};
|
||||
let op = BackpropOp::new1(self, Op::ToDevice);
|
||||
let tensor_ = Tensor_ {
|
||||
@ -2243,56 +2127,11 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Pad the input tensor using same values along dimension `dim`. This adds `left` elements before the
|
||||
/// input tensor values and `right` elements after.
|
||||
pub fn pad_with_same<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
|
||||
if left == 0 && right == 0 {
|
||||
Ok(self.clone())
|
||||
} else if self.elem_count() == 0 {
|
||||
crate::bail!("cannot use pad_with_same on an empty tensor")
|
||||
} else if left == 0 {
|
||||
let dim = dim.to_index(self.shape(), "pad_with_same")?;
|
||||
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
|
||||
let mut v = vec![self];
|
||||
for _ in 0..right {
|
||||
v.push(&r)
|
||||
}
|
||||
Tensor::cat(&v, dim)
|
||||
} else if right == 0 {
|
||||
let dim = dim.to_index(self.shape(), "pad_with_same")?;
|
||||
let l = self.narrow(dim, 0, 1)?;
|
||||
let mut v = vec![];
|
||||
for _ in 0..left {
|
||||
v.push(&l)
|
||||
}
|
||||
v.push(self);
|
||||
Tensor::cat(&v, dim)
|
||||
} else {
|
||||
let dim = dim.to_index(self.shape(), "pad_with_same")?;
|
||||
let l = self.narrow(dim, 0, 1)?;
|
||||
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
|
||||
let mut v = vec![];
|
||||
for _ in 0..left {
|
||||
v.push(&l)
|
||||
}
|
||||
v.push(self);
|
||||
for _ in 0..right {
|
||||
v.push(&r)
|
||||
}
|
||||
Tensor::cat(&v, dim)
|
||||
}
|
||||
}
|
||||
|
||||
/// Run the `forward` method of `m` on `self`.
|
||||
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
|
||||
m.forward(self)
|
||||
}
|
||||
|
||||
/// Run the `forward` method of `m` on `self`.
|
||||
pub fn apply_t<M: crate::ModuleT>(&self, m: &M, train: bool) -> Result<Self> {
|
||||
m.forward_t(self, train)
|
||||
}
|
||||
|
||||
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
|
||||
self.storage.read().unwrap()
|
||||
}
|
||||
|
@ -23,10 +23,6 @@ pub fn cuda_is_available() -> bool {
|
||||
cfg!(feature = "cuda")
|
||||
}
|
||||
|
||||
pub fn metal_is_available() -> bool {
|
||||
cfg!(feature = "metal")
|
||||
}
|
||||
|
||||
pub fn with_avx() -> bool {
|
||||
cfg!(target_feature = "avx")
|
||||
}
|
||||
|
@ -479,71 +479,6 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
// Replicate the issue from https://github.com/huggingface/candle/issues/1212
|
||||
let res = t.i((.., .., 0..4, 0..4))?.conv2d(&w, 0, 2, 1, 1)?;
|
||||
let loss = res.sqr()?.sum_all()?;
|
||||
assert_eq!(test_utils::to_vec0_round(&loss, 2)?, 21.12f32);
|
||||
let grads = loss.backward()?;
|
||||
let grad_t = grads.get(&t).unwrap();
|
||||
let grad_w = grads.get(&w).unwrap();
|
||||
assert_eq!(grad_t.dims(), [1, 4, 5, 5]);
|
||||
assert_eq!(grad_w.dims(), [2, 4, 3, 3]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&grad_t.i(0)?, 2)?,
|
||||
[
|
||||
[
|
||||
[9.29, -7.03, 7.87, 0.0, 0.0],
|
||||
[-1.8, -7.82, 5.9, 0.0, 0.0],
|
||||
[-3.12, 4.49, 5.52, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
],
|
||||
[
|
||||
[21.73, 3.39, 4.77, 0.0, 0.0],
|
||||
[8.25, 3.73, 27.61, 0.0, 0.0],
|
||||
[-20.55, -5.61, -2.77, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
],
|
||||
[
|
||||
[-8.98, 9.91, -7.15, 0.0, 0.0],
|
||||
[4.93, -0.33, 4.56, 0.0, 0.0],
|
||||
[-6.7, -5.76, -8.05, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
],
|
||||
[
|
||||
[23.54, 6.98, -10.0, 0.0, 0.0],
|
||||
[9.65, 6.18, 18.72, 0.0, 0.0],
|
||||
[3.29, -5.27, 0.79, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
]
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&grad_w.i(0)?, 2)?,
|
||||
[
|
||||
[
|
||||
[-3.47, 7.44, 0.66],
|
||||
[12.89, -3.4, -9.29],
|
||||
[-14.16, -0.83, 7.14]
|
||||
],
|
||||
[
|
||||
[-3.23, 5.37, -3.02],
|
||||
[-2.12, -11.24, 1.94],
|
||||
[6.97, 7.2, 2.99]
|
||||
],
|
||||
[
|
||||
[-4.04, -3.31, 4.87],
|
||||
[-6.68, -5.68, 1.73],
|
||||
[-5.54, 4.32, 0.52]
|
||||
],
|
||||
[[-4.72, 1.5, 4.72], [3.79, 4.04, 6.76], [-4.6, 5.8, 6.93]]
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -192,19 +192,6 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(grad_x, 2)?,
|
||||
[0.01, 0.42, 0.0, 0.98],
|
||||
);
|
||||
|
||||
// testing compared to pytorch nn.GELU(approximate = 'tanh')
|
||||
let y = x.gelu()?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[2.9964, 0.8412, 3.9999, 0.0839]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(grad_x, 4)?,
|
||||
[1.0116, 1.0830, 1.0003, 0.6188],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -1,9 +0,0 @@
|
||||
import numpy as np
|
||||
x = np.arange(10)
|
||||
|
||||
# Write a npy file.
|
||||
np.save("test.npy", x)
|
||||
|
||||
# Write multiple values to a npz file.
|
||||
values = { "x": x, "x_plus_one": x + 1 }
|
||||
np.savez("test.npz", **values)
|
@ -1,24 +0,0 @@
|
||||
use candle_core::{DType, Result, Tensor};
|
||||
|
||||
#[test]
|
||||
fn npy() -> Result<()> {
|
||||
let npy = Tensor::read_npy("tests/test.npy")?;
|
||||
assert_eq!(
|
||||
npy.to_dtype(DType::U8)?.to_vec1::<u8>()?,
|
||||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn npz() -> Result<()> {
|
||||
let npz = Tensor::read_npz("tests/test.npz")?;
|
||||
assert_eq!(npz.len(), 2);
|
||||
assert_eq!(npz[0].0, "x");
|
||||
assert_eq!(npz[1].0, "x_plus_one");
|
||||
assert_eq!(
|
||||
npz[1].1.to_dtype(DType::U8)?.to_vec1::<u8>()?,
|
||||
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
||||
);
|
||||
Ok(())
|
||||
}
|
@ -29,26 +29,7 @@ fn ones(device: &Device) -> Result<()> {
|
||||
Tensor::ones((2, 3), DType::F64, device)?.to_vec2::<f64>()?,
|
||||
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn arange(device: &Device) -> Result<()> {
|
||||
assert_eq!(
|
||||
Tensor::arange(0u8, 5u8, device)?.to_vec1::<u8>()?,
|
||||
[0, 1, 2, 3, 4],
|
||||
);
|
||||
assert_eq!(
|
||||
Tensor::arange_step(0u8, 5u8, 2, device)?.to_vec1::<u8>()?,
|
||||
[0, 2, 4],
|
||||
);
|
||||
assert_eq!(
|
||||
Tensor::arange_step(0u8, 5u8, 3, device)?.to_vec1::<u8>()?,
|
||||
[0, 3],
|
||||
);
|
||||
assert_eq!(
|
||||
Tensor::arange_step(5i64, 0i64, -1, device)?.to_vec1::<i64>()?,
|
||||
[5, 4, 3, 2, 1],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1056,7 +1037,6 @@ fn randn(device: &Device) -> Result<()> {
|
||||
|
||||
test_device!(zeros, zeros_cpu, zeros_gpu);
|
||||
test_device!(ones, ones_cpu, ones_gpu);
|
||||
test_device!(arange, arange_cpu, arange_gpu);
|
||||
test_device!(add_mul, add_mul_cpu, add_mul_gpu);
|
||||
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu);
|
||||
test_device!(narrow, narrow_cpu, narrow_gpu);
|
||||
@ -1093,27 +1073,3 @@ fn randn_hasneg() -> Result<()> {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pad_with_same() -> Result<()> {
|
||||
let t = Tensor::arange(1f32, 5f32, &Device::Cpu)?.reshape((2, 2))?;
|
||||
let t0 = t.pad_with_same(0, 1, 2)?;
|
||||
assert_eq!(
|
||||
t0.to_vec2::<f32>()?,
|
||||
[[1.0, 2.0], [1.0, 2.0], [3.0, 4.0], [3.0, 4.0], [3.0, 4.0]]
|
||||
);
|
||||
let t1 = t.pad_with_same(1, 1, 2)?;
|
||||
assert_eq!(
|
||||
t1.to_vec2::<f32>()?,
|
||||
[[1.0, 1.0, 2.0, 2.0, 2.0], [3.0, 3.0, 4.0, 4.0, 4.0]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn i64_abs() -> Result<()> {
|
||||
let t = Tensor::new(&[-42i64, 1337], &Device::Cpu)?;
|
||||
let t = t.abs()?;
|
||||
assert_eq!(t.to_vec1::<i64>()?, [42, 1337]);
|
||||
Ok(())
|
||||
}
|
||||
|
Binary file not shown.
Binary file not shown.
@ -21,7 +21,6 @@ half = { workspace = true, optional = true }
|
||||
image = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
num-traits = { workspace = true }
|
||||
pyo3 = { version = "0.20.0", features = ["auto-initialize"], optional = true }
|
||||
rayon = { workspace = true }
|
||||
safetensors = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
@ -51,7 +50,6 @@ anyhow = { workspace = true }
|
||||
default = []
|
||||
accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
|
||||
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda"]
|
||||
metal = ["candle/metal", "candle-nn/metal", "candle-transformers/metal"]
|
||||
cudnn = ["candle/cudnn"]
|
||||
flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
|
||||
@ -60,7 +58,3 @@ nccl = ["cuda", "cudarc/nccl", "dep:half"]
|
||||
[[example]]
|
||||
name = "llama_multiprocess"
|
||||
required-features = ["cuda", "nccl", "flash-attn"]
|
||||
|
||||
[[example]]
|
||||
name = "reinforcement-learning"
|
||||
required-features = ["pyo3"]
|
||||
|
@ -5,11 +5,11 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
use candle_transformers::models::bert::{BertModel, Config, DTYPE};
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use anyhow::{anyhow, Error as E, Result};
|
||||
use candle::Tensor;
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use hf_hub::{api::sync::Api, Cache, Repo, RepoType};
|
||||
use tokenizers::{PaddingParams, Tokenizer};
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
@ -19,6 +19,10 @@ struct Args {
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Run offline (you must have the files already cached)
|
||||
#[arg(long)]
|
||||
offline: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
@ -34,10 +38,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
prompt: Option<String>,
|
||||
|
||||
/// Use the pytorch weights rather than the safetensors ones
|
||||
#[arg(long)]
|
||||
use_pth: bool,
|
||||
|
||||
/// The number of times to run the prompt.
|
||||
#[arg(long, default_value = "1")]
|
||||
n: usize,
|
||||
@ -60,27 +60,34 @@ impl Args {
|
||||
};
|
||||
|
||||
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
|
||||
let (config_filename, tokenizer_filename, weights_filename) = {
|
||||
let (config_filename, tokenizer_filename, weights_filename) = if self.offline {
|
||||
let cache = Cache::default().repo(repo);
|
||||
(
|
||||
cache
|
||||
.get("config.json")
|
||||
.ok_or(anyhow!("Missing config file in cache"))?,
|
||||
cache
|
||||
.get("tokenizer.json")
|
||||
.ok_or(anyhow!("Missing tokenizer file in cache"))?,
|
||||
cache
|
||||
.get("model.safetensors")
|
||||
.ok_or(anyhow!("Missing weights file in cache"))?,
|
||||
)
|
||||
} else {
|
||||
let api = Api::new()?;
|
||||
let api = api.repo(repo);
|
||||
let config = api.get("config.json")?;
|
||||
let tokenizer = api.get("tokenizer.json")?;
|
||||
let weights = if self.use_pth {
|
||||
api.get("pytorch_model.bin")?
|
||||
} else {
|
||||
api.get("model.safetensors")?
|
||||
};
|
||||
(config, tokenizer, weights)
|
||||
(
|
||||
api.get("config.json")?,
|
||||
api.get("tokenizer.json")?,
|
||||
api.get("model.safetensors")?,
|
||||
)
|
||||
};
|
||||
let config = std::fs::read_to_string(config_filename)?;
|
||||
let config: Config = serde_json::from_str(&config)?;
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let vb = if self.use_pth {
|
||||
VarBuilder::from_pth(&weights_filename, DTYPE, &device)?
|
||||
} else {
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? }
|
||||
};
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? };
|
||||
let model = BertModel::load(vb, &config)?;
|
||||
Ok((model, tokenizer))
|
||||
}
|
||||
|
@ -1,19 +0,0 @@
|
||||
# candle-blip
|
||||
|
||||
The
|
||||
[blip-image-captioning](https://huggingface.co/Salesforce/blip-image-captioning-base)
|
||||
model can generate captions for an input image.
|
||||
|
||||
## Running on an example
|
||||
|
||||
```bash
|
||||
cargo run --example blip --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
```
|
||||
|
||||
```
|
||||
Running on CPU, to run on GPU, build this example with `--features cuda`
|
||||
loaded image Tensor[dims 3, 384, 384; f32]
|
||||
model built
|
||||
several cyclists are riding down a road with cars behind them%
|
||||
```
|
||||

|
@ -1,154 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Error as E;
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::blip;
|
||||
use candle_transformers::models::quantized_blip;
|
||||
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
M(blip::BlipForConditionalGeneration),
|
||||
Q(quantized_blip::BlipForConditionalGeneration),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn text_decoder_forward(&mut self, xs: &Tensor, img_xs: &Tensor) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::M(m) => m.text_decoder().forward(xs, img_xs),
|
||||
Self::Q(m) => m.text_decoder().forward(xs, img_xs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Maybe add support for the conditional prompt.
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Use the quantized version of the model.
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
}
|
||||
|
||||
const SEP_TOKEN_ID: u32 = 102;
|
||||
|
||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||
/// (3, 384, 384). OpenAI normalization is applied.
|
||||
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
||||
let img = image::io::Reader::open(p)?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?
|
||||
.resize_to_fill(384, 384, image::imageops::FilterType::Triangle);
|
||||
let img = img.to_rgb8();
|
||||
let data = img.into_raw();
|
||||
let data = Tensor::from_vec(data, (384, 384, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
||||
let mean =
|
||||
Tensor::new(&[0.48145466f32, 0.4578275, 0.40821073], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
let std = Tensor::new(&[0.26862954f32, 0.261_302_6, 0.275_777_1], &Device::Cpu)?
|
||||
.reshape((3, 1, 1))?;
|
||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
||||
.broadcast_sub(&mean)?
|
||||
.broadcast_div(&std)
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
if args.quantized {
|
||||
let api = api.model("lmz/candle-blip".to_string());
|
||||
api.get("blip-image-captioning-large-q4k.gguf")?
|
||||
} else {
|
||||
let api = api.repo(hf_hub::Repo::with_revision(
|
||||
"Salesforce/blip-image-captioning-large".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/18".to_string(),
|
||||
));
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
let tokenizer = match args.tokenizer {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("Salesforce/blip-image-captioning-large".to_string());
|
||||
api.get("tokenizer.json")?
|
||||
}
|
||||
Some(file) => file.into(),
|
||||
};
|
||||
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
let mut tokenizer = TokenOutputStream::new(tokenizer);
|
||||
let mut logits_processor =
|
||||
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
|
||||
|
||||
let config = blip::Config::image_captioning_large();
|
||||
|
||||
let (image_embeds, device, mut model) = if args.quantized {
|
||||
let device = Device::Cpu;
|
||||
let image = load_image(args.image)?.to_device(&device)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let vb = quantized_blip::VarBuilder::from_gguf(model_file)?;
|
||||
let model = quantized_blip::BlipForConditionalGeneration::new(&config, vb)?;
|
||||
let image_embeds = image.unsqueeze(0)?.apply(model.vision_model())?;
|
||||
(image_embeds, device, Model::Q(model))
|
||||
} else {
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let image = load_image(args.image)?.to_device(&device)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = blip::BlipForConditionalGeneration::new(&config, vb)?;
|
||||
let image_embeds = image.unsqueeze(0)?.apply(model.vision_model())?;
|
||||
(image_embeds, device, Model::M(model))
|
||||
};
|
||||
|
||||
let mut token_ids = vec![30522u32];
|
||||
for index in 0..1000 {
|
||||
let context_size = if index > 0 { 1 } else { token_ids.len() };
|
||||
let start_pos = token_ids.len().saturating_sub(context_size);
|
||||
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
|
||||
let logits = model.text_decoder_forward(&input_ids, &image_embeds)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = logits.get(logits.dim(0)? - 1)?;
|
||||
let token = logits_processor.sample(&logits)?;
|
||||
if token == SEP_TOKEN_ID {
|
||||
break;
|
||||
}
|
||||
token_ids.push(token);
|
||||
if let Some(t) = tokenizer.next_token(token)? {
|
||||
use std::io::Write;
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
println!();
|
||||
Ok(())
|
||||
}
|
@ -1,59 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::convmixer;
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("lmz/candle-convmixer".into());
|
||||
api.get("convmixer_1024_20_ks9_p14.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = convmixer::c1024_20(1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,45 +0,0 @@
|
||||
# candle-jina-bert
|
||||
|
||||
Jina-Bert is a general large language model with a context size of 8192, [model
|
||||
card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en). In this example
|
||||
it can be used for two different tasks:
|
||||
- Compute sentence embeddings for a prompt.
|
||||
- Compute similarities between a set of sentences.
|
||||
|
||||
|
||||
## Sentence embeddings
|
||||
|
||||
Jina-Bert is used to compute the sentence embeddings for a prompt. The model weights
|
||||
are downloaded from the hub on the first run.
|
||||
|
||||
```bash
|
||||
cargo run --example jina-bert --release -- --prompt "Here is a test sentence"
|
||||
|
||||
> [[[ 0.1595, -0.9885, 0.6494, ..., 0.3003, -0.6901, -1.2355],
|
||||
> [ 0.0374, -0.1798, 1.3359, ..., 0.6731, 0.2133, -1.6807],
|
||||
> [ 0.1700, -0.8534, 0.8924, ..., -0.1785, -0.0727, -1.5087],
|
||||
> ...
|
||||
> [-0.3113, -1.3665, 0.2027, ..., -0.2519, 0.1711, -1.5811],
|
||||
> [ 0.0907, -1.0492, 0.5382, ..., 0.0242, -0.7077, -1.0830],
|
||||
> [ 0.0369, -0.6343, 0.6105, ..., 0.0671, 0.3778, -1.1505]]]
|
||||
> Tensor[[1, 7, 768], f32]
|
||||
```
|
||||
|
||||
## Similarities
|
||||
|
||||
In this example, Jina-Bert is used to compute the sentence embeddings for a set of
|
||||
sentences (hardcoded in the examples). Then cosine similarities are computed for
|
||||
each sentence pair and they are reported by decreasing values, hence the first
|
||||
reported pair contains the two sentences that have the highest similarity score.
|
||||
The sentence embeddings are computed using average pooling through all the
|
||||
sentence tokens, including some potential padding.
|
||||
|
||||
```bash
|
||||
cargo run --example jina-bert --release
|
||||
|
||||
> score: 0.94 'The new movie is awesome' 'The new movie is so great'
|
||||
> score: 0.81 'The cat sits outside' 'The cat plays in the garden'
|
||||
> score: 0.78 'I love pasta' 'Do you like pizza?'
|
||||
> score: 0.68 'I love pasta' 'The new movie is awesome'
|
||||
> score: 0.67 'A man is playing guitar' 'A woman watches TV'
|
||||
```
|
@ -1,180 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle_transformers::models::jina_bert::{BertModel, Config};
|
||||
|
||||
use anyhow::Error as E;
|
||||
use candle::{DType, Module, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// When set, compute embeddings for this prompt.
|
||||
#[arg(long)]
|
||||
prompt: Option<String>,
|
||||
|
||||
/// The number of times to run the prompt.
|
||||
#[arg(long, default_value = "1")]
|
||||
n: usize,
|
||||
|
||||
/// L2 normalization for embeddings.
|
||||
#[arg(long, default_value = "true")]
|
||||
normalize_embeddings: bool,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn build_model_and_tokenizer(&self) -> anyhow::Result<(BertModel, tokenizers::Tokenizer)> {
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
let model = match &self.model {
|
||||
Some(model_file) => std::path::PathBuf::from(model_file),
|
||||
None => Api::new()?
|
||||
.repo(Repo::new(
|
||||
"jinaai/jina-embeddings-v2-base-en".to_string(),
|
||||
RepoType::Model,
|
||||
))
|
||||
.get("model.safetensors")?,
|
||||
};
|
||||
let tokenizer = match &self.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => Api::new()?
|
||||
.repo(Repo::new(
|
||||
"sentence-transformers/all-MiniLM-L6-v2".to_string(),
|
||||
RepoType::Model,
|
||||
))
|
||||
.get("tokenizer.json")?,
|
||||
};
|
||||
let device = candle_examples::device(self.cpu)?;
|
||||
let config = Config::v2_base();
|
||||
let tokenizer = tokenizers::Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
|
||||
let model = BertModel::new(vb, &config)?;
|
||||
Ok((model, tokenizer))
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
println!("tracing...");
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let start = std::time::Instant::now();
|
||||
|
||||
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
|
||||
let device = &model.device;
|
||||
|
||||
if let Some(prompt) = args.prompt {
|
||||
let tokenizer = tokenizer
|
||||
.with_padding(None)
|
||||
.with_truncation(None)
|
||||
.map_err(E::msg)?;
|
||||
let tokens = tokenizer
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
|
||||
println!("Loaded and encoded {:?}", start.elapsed());
|
||||
for idx in 0..args.n {
|
||||
let start = std::time::Instant::now();
|
||||
let ys = model.forward(&token_ids)?;
|
||||
if idx == 0 {
|
||||
println!("{ys}");
|
||||
}
|
||||
println!("Took {:?}", start.elapsed());
|
||||
}
|
||||
} else {
|
||||
let sentences = [
|
||||
"The cat sits outside",
|
||||
"A man is playing guitar",
|
||||
"I love pasta",
|
||||
"The new movie is awesome",
|
||||
"The cat plays in the garden",
|
||||
"A woman watches TV",
|
||||
"The new movie is so great",
|
||||
"Do you like pizza?",
|
||||
];
|
||||
let n_sentences = sentences.len();
|
||||
if let Some(pp) = tokenizer.get_padding_mut() {
|
||||
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
|
||||
} else {
|
||||
let pp = tokenizers::PaddingParams {
|
||||
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
||||
..Default::default()
|
||||
};
|
||||
tokenizer.with_padding(Some(pp));
|
||||
}
|
||||
let tokens = tokenizer
|
||||
.encode_batch(sentences.to_vec(), true)
|
||||
.map_err(E::msg)?;
|
||||
let token_ids = tokens
|
||||
.iter()
|
||||
.map(|tokens| {
|
||||
let tokens = tokens.get_ids().to_vec();
|
||||
Tensor::new(tokens.as_slice(), device)
|
||||
})
|
||||
.collect::<candle::Result<Vec<_>>>()?;
|
||||
|
||||
let token_ids = Tensor::stack(&token_ids, 0)?;
|
||||
println!("running inference on batch {:?}", token_ids.shape());
|
||||
let embeddings = model.forward(&token_ids)?;
|
||||
println!("generated embeddings {:?}", embeddings.shape());
|
||||
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
||||
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
|
||||
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
|
||||
let embeddings = if args.normalize_embeddings {
|
||||
normalize_l2(&embeddings)?
|
||||
} else {
|
||||
embeddings
|
||||
};
|
||||
println!("pooled embeddings {:?}", embeddings.shape());
|
||||
|
||||
let mut similarities = vec![];
|
||||
for i in 0..n_sentences {
|
||||
let e_i = embeddings.get(i)?;
|
||||
for j in (i + 1)..n_sentences {
|
||||
let e_j = embeddings.get(j)?;
|
||||
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
|
||||
similarities.push((cosine_similarity, i, j))
|
||||
}
|
||||
}
|
||||
similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
|
||||
for &(score, i, j) in similarities[..5].iter() {
|
||||
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn normalize_l2(v: &Tensor) -> candle::Result<Tensor> {
|
||||
v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)
|
||||
}
|
@ -6,10 +6,9 @@ extern crate accelerate_src;
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use candle_transformers::models::llama2_c as model;
|
||||
use candle_transformers::models::llama2_c_weights as weights;
|
||||
use candle_transformers::models::quantized_llama2_c as qmodel;
|
||||
mod model;
|
||||
mod training;
|
||||
mod weights;
|
||||
use clap::{Parser, Subcommand};
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
@ -20,7 +19,6 @@ use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use model::{Config, Llama};
|
||||
use qmodel::QLlama;
|
||||
use weights::TransformerWeights;
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
@ -154,20 +152,6 @@ fn main() -> anyhow::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
enum Model {
|
||||
Llama(Llama),
|
||||
QLlama(QLlama),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
|
||||
match self {
|
||||
Self::Llama(l) => Ok(l.forward(xs, pos)?),
|
||||
Self::QLlama(l) => Ok(l.forward(xs, pos)?),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
||||
use std::io::BufRead;
|
||||
|
||||
@ -257,66 +241,24 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
|
||||
let device = candle_examples::device(common_args.cpu)?;
|
||||
|
||||
let is_gguf = config_path.extension().map_or(false, |v| v == "gguf");
|
||||
let is_safetensors = config_path
|
||||
.extension()
|
||||
.map_or(false, |v| v == "safetensors");
|
||||
let (model, config) = if is_gguf {
|
||||
let vb = qmodel::VarBuilder::from_gguf(config_path)?;
|
||||
let (_vocab_size, dim) = vb
|
||||
.get_no_shape("model.embed_tokens.weight")?
|
||||
.shape()
|
||||
.dims2()?;
|
||||
let config = match dim {
|
||||
64 => Config::tiny_260k(),
|
||||
288 => Config::tiny_15m(),
|
||||
512 => Config::tiny_42m(),
|
||||
768 => Config::tiny_110m(),
|
||||
_ => anyhow::bail!("no config for dim {dim}"),
|
||||
};
|
||||
let freq_cis_real = vb
|
||||
.get(
|
||||
(config.seq_len, config.head_size() / 2),
|
||||
"rot.freq_cis_real",
|
||||
)?
|
||||
.dequantize(&candle::Device::Cpu)?;
|
||||
let freq_cis_imag = vb
|
||||
.get(
|
||||
(config.seq_len, config.head_size() / 2),
|
||||
"rot.freq_cis_imag",
|
||||
)?
|
||||
.dequantize(&candle::Device::Cpu)?;
|
||||
|
||||
let fake_vb = candle_nn::VarBuilder::from_tensors(
|
||||
[
|
||||
("freq_cis_real".to_string(), freq_cis_real),
|
||||
("freq_cis_imag".to_string(), freq_cis_imag),
|
||||
]
|
||||
.into_iter()
|
||||
.collect(),
|
||||
candle::DType::F32,
|
||||
&candle::Device::Cpu,
|
||||
);
|
||||
let cache = model::Cache::new(true, &config, fake_vb)?;
|
||||
let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
} else if is_safetensors {
|
||||
let config = Config::tiny_15m();
|
||||
let (vb, config) = if is_safetensors {
|
||||
let config = Config::tiny();
|
||||
let tensors = candle::safetensors::load(config_path, &device)?;
|
||||
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
(vb, config)
|
||||
} else {
|
||||
let mut file = std::fs::File::open(config_path)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
println!("{config:?}");
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||
(model, config)
|
||||
(vb, config)
|
||||
};
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, config)?;
|
||||
|
||||
println!("starting the inference loop");
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p);
|
||||
@ -331,7 +273,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0.. {
|
||||
if tokens.len() >= config.seq_len {
|
||||
if tokens.len() >= model.config.seq_len {
|
||||
break;
|
||||
}
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
|
@ -17,20 +17,7 @@ pub struct Config {
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn tiny_260k() -> Self {
|
||||
Self {
|
||||
dim: 64,
|
||||
hidden_dim: 768,
|
||||
n_layers: 5,
|
||||
n_heads: 8,
|
||||
n_kv_heads: 4,
|
||||
vocab_size: 32000,
|
||||
seq_len: 512,
|
||||
norm_eps: 1e-5,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tiny_15m() -> Self {
|
||||
pub fn tiny() -> Self {
|
||||
Self {
|
||||
dim: 288,
|
||||
hidden_dim: 768,
|
||||
@ -42,32 +29,6 @@ impl Config {
|
||||
norm_eps: 1e-5,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tiny_42m() -> Self {
|
||||
Self {
|
||||
dim: 512,
|
||||
hidden_dim: 768,
|
||||
n_layers: 8,
|
||||
n_heads: 8,
|
||||
n_kv_heads: 8,
|
||||
vocab_size: 32000,
|
||||
seq_len: 1024,
|
||||
norm_eps: 1e-5,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tiny_110m() -> Self {
|
||||
Self {
|
||||
dim: 768,
|
||||
hidden_dim: 768,
|
||||
n_layers: 12,
|
||||
n_heads: 12,
|
||||
n_kv_heads: 12,
|
||||
vocab_size: 32000,
|
||||
seq_len: 1024,
|
||||
norm_eps: 1e-5,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
@ -75,9 +36,9 @@ pub struct Cache {
|
||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||
pub use_kv_cache: bool,
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
||||
pub cos: Tensor,
|
||||
pub sin: Tensor,
|
||||
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
@ -114,7 +75,7 @@ impl Cache {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn mask(&self, t: usize) -> Result<Tensor> {
|
||||
fn mask(&self, t: usize) -> Result<Tensor> {
|
||||
let mut masks = self.masks.lock().unwrap();
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
@ -33,7 +33,7 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
|
||||
);
|
||||
let varmap = candle_nn::VarMap::new();
|
||||
let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device);
|
||||
let config = Config::tiny_15m();
|
||||
let config = Config::tiny();
|
||||
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
|
||||
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
use anyhow::Result;
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use candle::{DType, Device, IndexOp, Result, Shape, Tensor};
|
||||
use candle::{DType, Device, IndexOp, Shape, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
|
||||
use super::llama2_c::Config;
|
||||
use crate::model::Config;
|
||||
|
||||
pub struct TransformerWeights {
|
||||
// token embedding table
|
@ -1,38 +0,0 @@
|
||||
# candle-marian-mt
|
||||
|
||||
`marian-mt` is a neural machine translation model. In this example it is used to
|
||||
translate text from French to English. See the associated [model
|
||||
card](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en) for details on
|
||||
the model itself.
|
||||
|
||||
## Running an example
|
||||
|
||||
```bash
|
||||
cargo run --example marian-mt --release -- \
|
||||
--text "Demain, dès l'aube, à l'heure où blanchit la campagne, Je partirai. Vois-tu, je sais que tu m'attends. J'irai par la forêt, j'irai par la montagne. Je ne puis demeurer loin de toi plus longtemps."
|
||||
```
|
||||
|
||||
```
|
||||
<NIL> Tomorrow, at dawn, at the time when the country is whitening, I will go. See,
|
||||
I know you are waiting for me. I will go through the forest, I will go through the
|
||||
mountain. I cannot stay far from you any longer.</s>
|
||||
```
|
||||
|
||||
## Generating the tokenizer.json files
|
||||
|
||||
You can use the following script to generate the `tokenizer.json` config files
|
||||
from the hf-hub repos. This requires the `tokenizers` and `sentencepiece`
|
||||
packages to be install and use the `convert_slow_tokenizer.py` script from this
|
||||
directory.
|
||||
|
||||
```python
|
||||
from convert_slow_tokenizer import MarianConverter
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en", use_fast=False)
|
||||
fast_tokenizer = MarianConverter(tokenizer, index=0).converted()
|
||||
fast_tokenizer.save(f"tokenizer-marian-base-fr.json")
|
||||
fast_tokenizer = MarianConverter(tokenizer, index=1).converted()
|
||||
fast_tokenizer.save(f"tokenizer-marian-base-en.json")
|
||||
```
|
File diff suppressed because it is too large
Load Diff
@ -1,152 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Error as E;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::marian;
|
||||
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Clone, Debug, Copy, ValueEnum)]
|
||||
enum Which {
|
||||
Base,
|
||||
Big,
|
||||
}
|
||||
|
||||
// TODO: Maybe add support for the conditional prompt.
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_dec: Option<String>,
|
||||
|
||||
/// Choose the variant of the model to run.
|
||||
#[arg(long, default_value = "big")]
|
||||
which: Which,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Use the quantized version of the model.
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// Text to be translated
|
||||
#[arg(long)]
|
||||
text: String,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
use hf_hub::api::sync::Api;
|
||||
let args = Args::parse();
|
||||
|
||||
let config = match args.which {
|
||||
Which::Base => marian::Config::opus_mt_fr_en(),
|
||||
Which::Big => marian::Config::opus_mt_tc_big_fr_en(),
|
||||
};
|
||||
let tokenizer = {
|
||||
let tokenizer = match args.tokenizer {
|
||||
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
|
||||
None => {
|
||||
let name = match args.which {
|
||||
Which::Base => "tokenizer-marian-base-fr.json",
|
||||
Which::Big => "tokenizer-marian-fr.json",
|
||||
};
|
||||
Api::new()?
|
||||
.model("lmz/candle-marian".to_string())
|
||||
.get(name)?
|
||||
}
|
||||
};
|
||||
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
|
||||
};
|
||||
|
||||
let tokenizer_dec = {
|
||||
let tokenizer = match args.tokenizer_dec {
|
||||
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
|
||||
None => {
|
||||
let name = match args.which {
|
||||
Which::Base => "tokenizer-marian-base-en.json",
|
||||
Which::Big => "tokenizer-marian-en.json",
|
||||
};
|
||||
Api::new()?
|
||||
.model("lmz/candle-marian".to_string())
|
||||
.get(name)?
|
||||
}
|
||||
};
|
||||
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
|
||||
};
|
||||
let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec);
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = {
|
||||
let model = match args.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => match args.which {
|
||||
Which::Base => Api::new()?
|
||||
.repo(hf_hub::Repo::with_revision(
|
||||
"Helsinki-NLP/opus-mt-fr-en".to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
"refs/pr/4".to_string(),
|
||||
))
|
||||
.get("model.safetensors")?,
|
||||
Which::Big => Api::new()?
|
||||
.model("Helsinki-NLP/opus-mt-tc-big-fr-en".to_string())
|
||||
.get("model.safetensors")?,
|
||||
},
|
||||
};
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[&model], DType::F32, &device)? }
|
||||
};
|
||||
let mut model = marian::MTModel::new(&config, vb)?;
|
||||
|
||||
let mut logits_processor =
|
||||
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
|
||||
|
||||
let encoder_xs = {
|
||||
let mut tokens = tokenizer
|
||||
.encode(args.text, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
tokens.push(config.eos_token_id);
|
||||
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
|
||||
model.encoder().forward(&tokens, 0)?
|
||||
};
|
||||
|
||||
let mut token_ids = vec![config.decoder_start_token_id];
|
||||
for index in 0..1000 {
|
||||
let context_size = if index >= 1 { 1 } else { token_ids.len() };
|
||||
let start_pos = token_ids.len().saturating_sub(context_size);
|
||||
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
|
||||
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = logits.get(logits.dim(0)? - 1)?;
|
||||
let token = logits_processor.sample(&logits)?;
|
||||
token_ids.push(token);
|
||||
if let Some(t) = tokenizer_dec.next_token(token)? {
|
||||
use std::io::Write;
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
if token == config.eos_token_id || token == config.forced_eos_token_id {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
println!();
|
||||
Ok(())
|
||||
}
|
@ -9,7 +9,7 @@ use clap::{Parser, ValueEnum};
|
||||
use rand::prelude::*;
|
||||
|
||||
use candle::{DType, Result, Tensor, D};
|
||||
use candle_nn::{loss, ops, Conv2d, Linear, Module, ModuleT, Optimizer, VarBuilder, VarMap};
|
||||
use candle_nn::{loss, ops, Conv2d, Linear, Module, Optimizer, VarBuilder, VarMap};
|
||||
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const LABELS: usize = 10;
|
||||
@ -95,7 +95,7 @@ impl ConvNet {
|
||||
.flatten_from(1)?
|
||||
.apply(&self.fc1)?
|
||||
.relu()?;
|
||||
self.dropout.forward_t(&xs, train)?.apply(&self.fc2)
|
||||
self.dropout.forward(&xs, train)?.apply(&self.fc2)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -41,16 +41,3 @@ def median(arr):
|
||||
else:
|
||||
return arr[n//2]
|
||||
```
|
||||
|
||||
This also supports the [Puffin Phi v2
|
||||
model](https://huggingface.co/teknium/Puffin-Phi-v2) for human interaction.
|
||||
```
|
||||
$ cargo run --example phi --release -- \
|
||||
--prompt "USER: What would you do on a sunny day in Paris?\nASSISTANT:" \
|
||||
--sample-len 200 --model puffin-phi-v2 --quantized
|
||||
USER: What would you do on a sunny day in Paris?
|
||||
ASSISTANT: On a sunny day in Paris, you could visit the Musée du Louvre to admire the famous
|
||||
painting "Mona Lisa" by Leonardo da Vinci. You might also want to stroll along the Champs-Élysées
|
||||
and enjoy the beautiful architecture of the buildings around you. Don't forget to stop by a café
|
||||
for a cup of coffee and to soak up the sun!"
|
||||
```
|
||||
|
@ -5,7 +5,7 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::{Parser, ValueEnum};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
||||
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
||||
@ -28,7 +28,6 @@ struct TextGeneration {
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
@ -41,7 +40,6 @@ impl TextGeneration {
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
@ -51,7 +49,6 @@ impl TextGeneration {
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
verbose_prompt,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
@ -59,24 +56,20 @@ impl TextGeneration {
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
||||
}
|
||||
if self.verbose_prompt {
|
||||
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
println!("{id:7} -> '{token}'");
|
||||
}
|
||||
}
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
print!("{prompt}");
|
||||
std::io::stdout().flush()?;
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||
Some(token) => *token,
|
||||
None => anyhow::bail!("cannot find the endoftext token"),
|
||||
};
|
||||
print!("{prompt}");
|
||||
std::io::stdout().flush()?;
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
@ -117,16 +110,6 @@ impl TextGeneration {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum WhichModel {
|
||||
#[value(name = "1")]
|
||||
V1,
|
||||
#[value(name = "1.5")]
|
||||
V1_5,
|
||||
PuffinPhiV2,
|
||||
PhiHermes,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
@ -138,10 +121,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
@ -161,21 +140,15 @@ struct Args {
|
||||
#[arg(long, short = 'n', default_value_t = 100)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
#[arg(long, default_value = "microsoft/phi-1_5")]
|
||||
model_id: String,
|
||||
|
||||
#[arg(long, default_value = "1.5")]
|
||||
model: WhichModel,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
#[arg(long, default_value = "refs/pr/18")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
weight_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
@ -216,62 +189,20 @@ fn main() -> Result<()> {
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
"lmz/candle-quantized-phi".to_string()
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 => "microsoft/phi-1".to_string(),
|
||||
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
"lmz/candle-quantized-phi".to_string()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
let revision = match args.revision {
|
||||
Some(rev) => rev.to_string(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
"main".to_string()
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 => "refs/pr/2".to_string(),
|
||||
WhichModel::V1_5 => "refs/pr/18".to_string(),
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => "main".to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 => repo.get("tokenizer.json")?,
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
repo.get("tokenizer-puffin-phi-v2.json")?
|
||||
}
|
||||
},
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
args.model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = repo.get("tokenizer.json")?;
|
||||
let filename = match args.weight_file {
|
||||
Some(weight_file) => std::path::PathBuf::from(weight_file),
|
||||
None => {
|
||||
if args.quantized {
|
||||
match args.model {
|
||||
WhichModel::V1 => repo.get("model-v1-q4k.gguf")?,
|
||||
WhichModel::V1_5 => repo.get("model-q4k.gguf")?,
|
||||
WhichModel::PuffinPhiV2 => repo.get("model-puffin-phi-v2-q4k.gguf")?,
|
||||
WhichModel::PhiHermes => repo.get("model-phi-hermes-1_3B-q4k.gguf")?,
|
||||
}
|
||||
api.model("lmz/candle-quantized-phi".to_string())
|
||||
.get("model-q4k.gguf")?
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 => repo.get("model.safetensors")?,
|
||||
WhichModel::PuffinPhiV2 => repo.get("model-puffin-phi-v2.safetensors")?,
|
||||
WhichModel::PhiHermes => repo.get("model-phi-hermes-1_3B.safetensors")?,
|
||||
}
|
||||
repo.get("model.safetensors")?
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -279,12 +210,7 @@ fn main() -> Result<()> {
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = match args.model {
|
||||
WhichModel::V1 => Config::v1(),
|
||||
WhichModel::V1_5 => Config::v1_5(),
|
||||
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
|
||||
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
|
||||
};
|
||||
let config = Config::v1_5();
|
||||
let (model, device) = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename)?;
|
||||
let model = QMixFormer::new(&config, vb)?;
|
||||
@ -305,7 +231,6 @@ fn main() -> Result<()> {
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
args.verbose_prompt,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
|
@ -9,7 +9,7 @@ use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use candle::quantized::{ggml_file, gguf_file};
|
||||
use candle::Tensor;
|
||||
use candle::{Device, Tensor};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
use candle_transformers::models::quantized_llama as model;
|
||||
@ -48,8 +48,6 @@ enum Which {
|
||||
Mistral7b,
|
||||
#[value(name = "7b-mistral-instruct")]
|
||||
Mistral7bInstruct,
|
||||
#[value(name = "7b-zephyr")]
|
||||
Zephyr7b,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
@ -64,7 +62,7 @@ impl Which {
|
||||
| Self::L7bCode
|
||||
| Self::L13bCode
|
||||
| Self::L34bCode => false,
|
||||
Self::Mistral7b | Self::Mistral7bInstruct | Self::Zephyr7b => true,
|
||||
Self::Mistral7b | Self::Mistral7bInstruct => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -176,10 +174,6 @@ impl Args {
|
||||
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
||||
"mistral-7b-instruct-v0.1.Q4_K_S.gguf",
|
||||
),
|
||||
Which::Zephyr7b => (
|
||||
"TheBloke/zephyr-7B-alpha-GGUF",
|
||||
"zephyr-7b-alpha.Q4_K_M.gguf",
|
||||
),
|
||||
};
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(repo.to_string());
|
||||
@ -232,13 +226,11 @@ fn main() -> anyhow::Result<()> {
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(false)?;
|
||||
let temperature = if args.temperature == 0. {
|
||||
None
|
||||
} else {
|
||||
Some(args.temperature)
|
||||
};
|
||||
tracing_subscriber::fmt::init();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
@ -278,10 +270,10 @@ fn main() -> anyhow::Result<()> {
|
||||
&format_size(total_size_in_bytes),
|
||||
start.elapsed().as_secs_f32(),
|
||||
);
|
||||
ModelWeights::from_gguf(model, &mut file, &device)?
|
||||
ModelWeights::from_gguf(model, &mut file)?
|
||||
}
|
||||
Some("ggml" | "bin") | Some(_) | None => {
|
||||
let model = ggml_file::Content::read(&mut file, &device)?;
|
||||
let model = ggml_file::Content::read(&mut file)?;
|
||||
let mut total_size_in_bytes = 0;
|
||||
for (_, tensor) in model.tensors.iter() {
|
||||
let elem_count = tensor.shape().elem_count();
|
||||
@ -303,13 +295,9 @@ fn main() -> anyhow::Result<()> {
|
||||
| Which::L7bCode
|
||||
| Which::L13bCode
|
||||
| Which::L34bCode => 1,
|
||||
Which::Mistral7b
|
||||
| Which::Mistral7bInstruct
|
||||
| Which::Zephyr7b
|
||||
| Which::L70b
|
||||
| Which::L70bChat => 8,
|
||||
Which::Mistral7b | Which::Mistral7bInstruct | Which::L70b | Which::L70bChat => 8,
|
||||
};
|
||||
ModelWeights::from_ggml(model, args.gqa.unwrap_or(default_gqa), &device)?
|
||||
ModelWeights::from_ggml(model, args.gqa.unwrap_or(default_gqa))?
|
||||
}
|
||||
};
|
||||
println!("model built");
|
||||
@ -368,13 +356,10 @@ fn main() -> anyhow::Result<()> {
|
||||
|
||||
let start_prompt_processing = std::time::Instant::now();
|
||||
let mut next_token = {
|
||||
let input = Tensor::new(prompt_tokens.as_slice(), &device)?.unsqueeze(0)?;
|
||||
let input = Tensor::new(prompt_tokens.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, 0)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
// TODO Remove this once implementation is finished.
|
||||
let logits = logits.ones_like()?;
|
||||
// logits_processor.sample(&logits)?
|
||||
15043
|
||||
logits_processor.sample(&logits)?
|
||||
};
|
||||
let prompt_dt = start_prompt_processing.elapsed();
|
||||
all_tokens.push(next_token);
|
||||
@ -384,7 +369,7 @@ fn main() -> anyhow::Result<()> {
|
||||
|
||||
let start_post_prompt = std::time::Instant::now();
|
||||
for index in 0..to_sample {
|
||||
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
||||
let input = Tensor::new(&[next_token], &Device::Cpu)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, prompt_tokens.len() + index)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
@ -397,10 +382,7 @@ fn main() -> anyhow::Result<()> {
|
||||
&all_tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
// TODO Remove this once implementation is finished.
|
||||
// let logits = logits.ones_like()?;
|
||||
// next_token = logits_processor.sample(&logits)?;
|
||||
let next_token = 15043;
|
||||
next_token = logits_processor.sample(&logits)?;
|
||||
all_tokens.push(next_token);
|
||||
print_token(next_token, &tokenizer);
|
||||
if next_token == eos_token {
|
||||
|
@ -1,16 +0,0 @@
|
||||
# candle-reinforcement-learning
|
||||
|
||||
Reinforcement Learning examples for candle.
|
||||
|
||||
This has been tested with `gymnasium` version `0.29.1`. You can install the
|
||||
Python package with:
|
||||
```bash
|
||||
pip install "gymnasium[accept-rom-license]"
|
||||
```
|
||||
|
||||
In order to run the example, use the following command. Note the additional
|
||||
`--package` flag to ensure that there is no conflict with the `candle-pyo3`
|
||||
crate.
|
||||
```bash
|
||||
cargo run --example reinforcement-learning --features=pyo3 --package candle-examples
|
||||
```
|
@ -1,308 +0,0 @@
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
from PIL import Image
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
# atari_wrappers.py
|
||||
class NoopResetEnv(gym.Wrapper):
|
||||
def __init__(self, env, noop_max=30):
|
||||
"""Sample initial states by taking random number of no-ops on reset.
|
||||
No-op is assumed to be action 0.
|
||||
"""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.noop_max = noop_max
|
||||
self.override_num_noops = None
|
||||
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
|
||||
|
||||
def reset(self):
|
||||
""" Do no-op action for a number of steps in [1, noop_max]."""
|
||||
self.env.reset()
|
||||
if self.override_num_noops is not None:
|
||||
noops = self.override_num_noops
|
||||
else:
|
||||
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) #pylint: disable=E1101
|
||||
assert noops > 0
|
||||
obs = None
|
||||
for _ in range(noops):
|
||||
obs, _, done, _ = self.env.step(0)
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
return obs
|
||||
|
||||
class FireResetEnv(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
"""Take action on reset for environments that are fixed until firing."""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
|
||||
assert len(env.unwrapped.get_action_meanings()) >= 3
|
||||
|
||||
def reset(self):
|
||||
self.env.reset()
|
||||
obs, _, done, _ = self.env.step(1)
|
||||
if done:
|
||||
self.env.reset()
|
||||
obs, _, done, _ = self.env.step(2)
|
||||
if done:
|
||||
self.env.reset()
|
||||
return obs
|
||||
|
||||
class ImageSaver(gym.Wrapper):
|
||||
def __init__(self, env, img_path, rank):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self._cnt = 0
|
||||
self._img_path = img_path
|
||||
self._rank = rank
|
||||
|
||||
def step(self, action):
|
||||
step_result = self.env.step(action)
|
||||
obs, _, _, _ = step_result
|
||||
img = Image.fromarray(obs, 'RGB')
|
||||
img.save('%s/out%d-%05d.png' % (self._img_path, self._rank, self._cnt))
|
||||
self._cnt += 1
|
||||
return step_result
|
||||
|
||||
class EpisodicLifeEnv(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
"""Make end-of-life == end-of-episode, but only reset on true game over.
|
||||
Done by DeepMind for the DQN and co. since it helps value estimation.
|
||||
"""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.lives = 0
|
||||
self.was_real_done = True
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self.env.step(action)
|
||||
self.was_real_done = done
|
||||
# check current lives, make loss of life terminal,
|
||||
# then update lives to handle bonus lives
|
||||
lives = self.env.unwrapped.ale.lives()
|
||||
if lives < self.lives and lives > 0:
|
||||
# for Qbert somtimes we stay in lives == 0 condtion for a few frames
|
||||
# so its important to keep lives > 0, so that we only reset once
|
||||
# the environment advertises done.
|
||||
done = True
|
||||
self.lives = lives
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
"""Reset only when lives are exhausted.
|
||||
This way all states are still reachable even though lives are episodic,
|
||||
and the learner need not know about any of this behind-the-scenes.
|
||||
"""
|
||||
if self.was_real_done:
|
||||
obs = self.env.reset()
|
||||
else:
|
||||
# no-op step to advance from terminal/lost life state
|
||||
obs, _, _, _ = self.env.step(0)
|
||||
self.lives = self.env.unwrapped.ale.lives()
|
||||
return obs
|
||||
|
||||
class MaxAndSkipEnv(gym.Wrapper):
|
||||
def __init__(self, env, skip=4):
|
||||
"""Return only every `skip`-th frame"""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
# most recent raw observations (for max pooling across time steps)
|
||||
self._obs_buffer = deque(maxlen=2)
|
||||
self._skip = skip
|
||||
|
||||
def step(self, action):
|
||||
"""Repeat action, sum reward, and max over last observations."""
|
||||
total_reward = 0.0
|
||||
done = None
|
||||
for _ in range(self._skip):
|
||||
obs, reward, done, info = self.env.step(action)
|
||||
self._obs_buffer.append(obs)
|
||||
total_reward += reward
|
||||
if done:
|
||||
break
|
||||
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
|
||||
|
||||
return max_frame, total_reward, done, info
|
||||
|
||||
def reset(self):
|
||||
"""Clear past frame buffer and init. to first obs. from inner env."""
|
||||
self._obs_buffer.clear()
|
||||
obs = self.env.reset()
|
||||
self._obs_buffer.append(obs)
|
||||
return obs
|
||||
|
||||
class ClipRewardEnv(gym.RewardWrapper):
|
||||
def reward(self, reward):
|
||||
"""Bin reward to {+1, 0, -1} by its sign."""
|
||||
return np.sign(reward)
|
||||
|
||||
class WarpFrame(gym.ObservationWrapper):
|
||||
def __init__(self, env):
|
||||
"""Warp frames to 84x84 as done in the Nature paper and later work."""
|
||||
gym.ObservationWrapper.__init__(self, env)
|
||||
self.res = 84
|
||||
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.res, self.res, 1), dtype='uint8')
|
||||
|
||||
def observation(self, obs):
|
||||
frame = np.dot(obs.astype('float32'), np.array([0.299, 0.587, 0.114], 'float32'))
|
||||
frame = np.array(Image.fromarray(frame).resize((self.res, self.res),
|
||||
resample=Image.BILINEAR), dtype=np.uint8)
|
||||
return frame.reshape((self.res, self.res, 1))
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
"""Buffer observations and stack across channels (last axis)."""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.k = k
|
||||
self.frames = deque([], maxlen=k)
|
||||
shp = env.observation_space.shape
|
||||
assert shp[2] == 1 # can only stack 1-channel frames
|
||||
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], k), dtype='uint8')
|
||||
|
||||
def reset(self):
|
||||
"""Clear buffer and re-fill by duplicating the first observation."""
|
||||
ob = self.env.reset()
|
||||
for _ in range(self.k): self.frames.append(ob)
|
||||
return self.observation()
|
||||
|
||||
def step(self, action):
|
||||
ob, reward, done, info = self.env.step(action)
|
||||
self.frames.append(ob)
|
||||
return self.observation(), reward, done, info
|
||||
|
||||
def observation(self):
|
||||
assert len(self.frames) == self.k
|
||||
return np.concatenate(self.frames, axis=2)
|
||||
|
||||
def wrap_deepmind(env, episode_life=True, clip_rewards=True):
|
||||
"""Configure environment for DeepMind-style Atari.
|
||||
|
||||
Note: this does not include frame stacking!"""
|
||||
assert 'NoFrameskip' in env.spec.id # required for DeepMind-style skip
|
||||
if episode_life:
|
||||
env = EpisodicLifeEnv(env)
|
||||
env = NoopResetEnv(env, noop_max=30)
|
||||
env = MaxAndSkipEnv(env, skip=4)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = WarpFrame(env)
|
||||
if clip_rewards:
|
||||
env = ClipRewardEnv(env)
|
||||
return env
|
||||
|
||||
# envs.py
|
||||
def make_env(env_id, img_dir, seed, rank):
|
||||
def _thunk():
|
||||
env = gym.make(env_id)
|
||||
env.reset(seed=(seed + rank))
|
||||
if img_dir is not None:
|
||||
env = ImageSaver(env, img_dir, rank)
|
||||
env = wrap_deepmind(env)
|
||||
env = WrapPyTorch(env)
|
||||
return env
|
||||
|
||||
return _thunk
|
||||
|
||||
class WrapPyTorch(gym.ObservationWrapper):
|
||||
def __init__(self, env=None):
|
||||
super(WrapPyTorch, self).__init__(env)
|
||||
self.observation_space = gym.spaces.Box(0.0, 1.0, [1, 84, 84], dtype='float32')
|
||||
|
||||
def observation(self, observation):
|
||||
return observation.transpose(2, 0, 1)
|
||||
|
||||
# vecenv.py
|
||||
class VecEnv(object):
|
||||
"""
|
||||
Vectorized environment base class
|
||||
"""
|
||||
def step(self, vac):
|
||||
"""
|
||||
Apply sequence of actions to sequence of environments
|
||||
actions -> (observations, rewards, news)
|
||||
|
||||
where 'news' is a boolean vector indicating whether each element is new.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
def reset(self):
|
||||
"""
|
||||
Reset all environments
|
||||
"""
|
||||
raise NotImplementedError
|
||||
def close(self):
|
||||
pass
|
||||
|
||||
# subproc_vec_env.py
|
||||
def worker(remote, env_fn_wrapper):
|
||||
env = env_fn_wrapper.x()
|
||||
while True:
|
||||
cmd, data = remote.recv()
|
||||
if cmd == 'step':
|
||||
ob, reward, done, info = env.step(data)
|
||||
if done:
|
||||
ob = env.reset()
|
||||
remote.send((ob, reward, done, info))
|
||||
elif cmd == 'reset':
|
||||
ob = env.reset()
|
||||
remote.send(ob)
|
||||
elif cmd == 'close':
|
||||
remote.close()
|
||||
break
|
||||
elif cmd == 'get_spaces':
|
||||
remote.send((env.action_space, env.observation_space))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
class CloudpickleWrapper(object):
|
||||
"""
|
||||
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
|
||||
"""
|
||||
def __init__(self, x):
|
||||
self.x = x
|
||||
def __getstate__(self):
|
||||
import cloudpickle
|
||||
return cloudpickle.dumps(self.x)
|
||||
def __setstate__(self, ob):
|
||||
import pickle
|
||||
self.x = pickle.loads(ob)
|
||||
|
||||
class SubprocVecEnv(VecEnv):
|
||||
def __init__(self, env_fns):
|
||||
"""
|
||||
envs: list of gym environments to run in subprocesses
|
||||
"""
|
||||
nenvs = len(env_fns)
|
||||
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
|
||||
self.ps = [Process(target=worker, args=(work_remote, CloudpickleWrapper(env_fn)))
|
||||
for (work_remote, env_fn) in zip(self.work_remotes, env_fns)]
|
||||
for p in self.ps:
|
||||
p.start()
|
||||
|
||||
self.remotes[0].send(('get_spaces', None))
|
||||
self.action_space, self.observation_space = self.remotes[0].recv()
|
||||
|
||||
|
||||
def step(self, actions):
|
||||
for remote, action in zip(self.remotes, actions):
|
||||
remote.send(('step', action))
|
||||
results = [remote.recv() for remote in self.remotes]
|
||||
obs, rews, dones, infos = zip(*results)
|
||||
return np.stack(obs), np.stack(rews), np.stack(dones), infos
|
||||
|
||||
def reset(self):
|
||||
for remote in self.remotes:
|
||||
remote.send(('reset', None))
|
||||
return np.stack([remote.recv() for remote in self.remotes])
|
||||
|
||||
def close(self):
|
||||
for remote in self.remotes:
|
||||
remote.send(('close', None))
|
||||
for p in self.ps:
|
||||
p.join()
|
||||
|
||||
@property
|
||||
def num_envs(self):
|
||||
return len(self.remotes)
|
||||
|
||||
# Create the environment.
|
||||
def make(env_name, img_dir, num_processes):
|
||||
envs = SubprocVecEnv([
|
||||
make_env(env_name, img_dir, 1337, i) for i in range(num_processes)
|
||||
])
|
||||
return envs
|
@ -1,451 +0,0 @@
|
||||
use std::collections::VecDeque;
|
||||
use std::fmt::Display;
|
||||
|
||||
use candle::{DType, Device, Error, Module, Result, Tensor, Var};
|
||||
use candle_nn::{
|
||||
func, linear, sequential::seq, Activation, AdamW, Optimizer, ParamsAdamW, Sequential,
|
||||
VarBuilder, VarMap,
|
||||
};
|
||||
use rand::{distributions::Uniform, thread_rng, Rng};
|
||||
|
||||
pub struct OuNoise {
|
||||
mu: f64,
|
||||
theta: f64,
|
||||
sigma: f64,
|
||||
state: Tensor,
|
||||
}
|
||||
impl OuNoise {
|
||||
pub fn new(mu: f64, theta: f64, sigma: f64, size_action: usize) -> Result<Self> {
|
||||
Ok(Self {
|
||||
mu,
|
||||
theta,
|
||||
sigma,
|
||||
state: Tensor::ones(size_action, DType::F32, &Device::Cpu)?,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn sample(&mut self) -> Result<Tensor> {
|
||||
let rand = Tensor::randn_like(&self.state, 0.0, 1.0)?;
|
||||
let dx = ((self.theta * (self.mu - &self.state)?)? + (self.sigma * rand)?)?;
|
||||
self.state = (&self.state + dx)?;
|
||||
Ok(self.state.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct Transition {
|
||||
state: Tensor,
|
||||
action: Tensor,
|
||||
reward: Tensor,
|
||||
next_state: Tensor,
|
||||
terminated: bool,
|
||||
truncated: bool,
|
||||
}
|
||||
impl Transition {
|
||||
fn new(
|
||||
state: &Tensor,
|
||||
action: &Tensor,
|
||||
reward: &Tensor,
|
||||
next_state: &Tensor,
|
||||
terminated: bool,
|
||||
truncated: bool,
|
||||
) -> Self {
|
||||
Self {
|
||||
state: state.clone(),
|
||||
action: action.clone(),
|
||||
reward: reward.clone(),
|
||||
next_state: next_state.clone(),
|
||||
terminated,
|
||||
truncated,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ReplayBuffer {
|
||||
buffer: VecDeque<Transition>,
|
||||
capacity: usize,
|
||||
size: usize,
|
||||
}
|
||||
impl ReplayBuffer {
|
||||
pub fn new(capacity: usize) -> Self {
|
||||
Self {
|
||||
buffer: VecDeque::with_capacity(capacity),
|
||||
capacity,
|
||||
size: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn push(
|
||||
&mut self,
|
||||
state: &Tensor,
|
||||
action: &Tensor,
|
||||
reward: &Tensor,
|
||||
next_state: &Tensor,
|
||||
terminated: bool,
|
||||
truncated: bool,
|
||||
) {
|
||||
if self.size == self.capacity {
|
||||
self.buffer.pop_front();
|
||||
} else {
|
||||
self.size += 1;
|
||||
}
|
||||
self.buffer.push_back(Transition::new(
|
||||
state, action, reward, next_state, terminated, truncated,
|
||||
));
|
||||
}
|
||||
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub fn random_batch(
|
||||
&self,
|
||||
batch_size: usize,
|
||||
) -> Result<Option<(Tensor, Tensor, Tensor, Tensor, Vec<bool>, Vec<bool>)>> {
|
||||
if self.size < batch_size {
|
||||
Ok(None)
|
||||
} else {
|
||||
let transitions: Vec<&Transition> = thread_rng()
|
||||
.sample_iter(Uniform::from(0..self.size))
|
||||
.take(batch_size)
|
||||
.map(|i| self.buffer.get(i).unwrap())
|
||||
.collect();
|
||||
|
||||
let states: Vec<Tensor> = transitions
|
||||
.iter()
|
||||
.map(|t| t.state.unsqueeze(0))
|
||||
.collect::<Result<_>>()?;
|
||||
let actions: Vec<Tensor> = transitions
|
||||
.iter()
|
||||
.map(|t| t.action.unsqueeze(0))
|
||||
.collect::<Result<_>>()?;
|
||||
let rewards: Vec<Tensor> = transitions
|
||||
.iter()
|
||||
.map(|t| t.reward.unsqueeze(0))
|
||||
.collect::<Result<_>>()?;
|
||||
let next_states: Vec<Tensor> = transitions
|
||||
.iter()
|
||||
.map(|t| t.next_state.unsqueeze(0))
|
||||
.collect::<Result<_>>()?;
|
||||
let terminateds: Vec<bool> = transitions.iter().map(|t| t.terminated).collect();
|
||||
let truncateds: Vec<bool> = transitions.iter().map(|t| t.truncated).collect();
|
||||
|
||||
Ok(Some((
|
||||
Tensor::cat(&states, 0)?,
|
||||
Tensor::cat(&actions, 0)?,
|
||||
Tensor::cat(&rewards, 0)?,
|
||||
Tensor::cat(&next_states, 0)?,
|
||||
terminateds,
|
||||
truncateds,
|
||||
)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn track(
|
||||
varmap: &mut VarMap,
|
||||
vb: &VarBuilder,
|
||||
target_prefix: &str,
|
||||
network_prefix: &str,
|
||||
dims: &[(usize, usize)],
|
||||
tau: f64,
|
||||
) -> Result<()> {
|
||||
for (i, &(in_dim, out_dim)) in dims.iter().enumerate() {
|
||||
let target_w = vb.get((out_dim, in_dim), &format!("{target_prefix}-fc{i}.weight"))?;
|
||||
let network_w = vb.get((out_dim, in_dim), &format!("{network_prefix}-fc{i}.weight"))?;
|
||||
varmap.set_one(
|
||||
format!("{target_prefix}-fc{i}.weight"),
|
||||
((tau * network_w)? + ((1.0 - tau) * target_w)?)?,
|
||||
)?;
|
||||
|
||||
let target_b = vb.get(out_dim, &format!("{target_prefix}-fc{i}.bias"))?;
|
||||
let network_b = vb.get(out_dim, &format!("{network_prefix}-fc{i}.bias"))?;
|
||||
varmap.set_one(
|
||||
format!("{target_prefix}-fc{i}.bias"),
|
||||
((tau * network_b)? + ((1.0 - tau) * target_b)?)?,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
struct Actor<'a> {
|
||||
varmap: VarMap,
|
||||
vb: VarBuilder<'a>,
|
||||
network: Sequential,
|
||||
target_network: Sequential,
|
||||
size_state: usize,
|
||||
size_action: usize,
|
||||
dims: Vec<(usize, usize)>,
|
||||
}
|
||||
|
||||
impl Actor<'_> {
|
||||
fn new(device: &Device, dtype: DType, size_state: usize, size_action: usize) -> Result<Self> {
|
||||
let mut varmap = VarMap::new();
|
||||
let vb = VarBuilder::from_varmap(&varmap, dtype, device);
|
||||
|
||||
let dims = vec![(size_state, 400), (400, 300), (300, size_action)];
|
||||
|
||||
let make_network = |prefix: &str| {
|
||||
let seq = seq()
|
||||
.add(linear(
|
||||
dims[0].0,
|
||||
dims[0].1,
|
||||
vb.pp(format!("{prefix}-fc0")),
|
||||
)?)
|
||||
.add(Activation::Relu)
|
||||
.add(linear(
|
||||
dims[1].0,
|
||||
dims[1].1,
|
||||
vb.pp(format!("{prefix}-fc1")),
|
||||
)?)
|
||||
.add(Activation::Relu)
|
||||
.add(linear(
|
||||
dims[2].0,
|
||||
dims[2].1,
|
||||
vb.pp(format!("{prefix}-fc2")),
|
||||
)?)
|
||||
.add(func(|xs| xs.tanh()));
|
||||
Ok::<Sequential, Error>(seq)
|
||||
};
|
||||
|
||||
let network = make_network("actor")?;
|
||||
let target_network = make_network("target-actor")?;
|
||||
|
||||
// this sets the two networks to be equal to each other using tau = 1.0
|
||||
track(&mut varmap, &vb, "target-actor", "actor", &dims, 1.0);
|
||||
|
||||
Ok(Self {
|
||||
varmap,
|
||||
vb,
|
||||
network,
|
||||
target_network,
|
||||
size_state,
|
||||
size_action,
|
||||
dims,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, state: &Tensor) -> Result<Tensor> {
|
||||
self.network.forward(state)
|
||||
}
|
||||
|
||||
fn target_forward(&self, state: &Tensor) -> Result<Tensor> {
|
||||
self.target_network.forward(state)
|
||||
}
|
||||
|
||||
fn track(&mut self, tau: f64) -> Result<()> {
|
||||
track(
|
||||
&mut self.varmap,
|
||||
&self.vb,
|
||||
"target-actor",
|
||||
"actor",
|
||||
&self.dims,
|
||||
tau,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
struct Critic<'a> {
|
||||
varmap: VarMap,
|
||||
vb: VarBuilder<'a>,
|
||||
network: Sequential,
|
||||
target_network: Sequential,
|
||||
size_state: usize,
|
||||
size_action: usize,
|
||||
dims: Vec<(usize, usize)>,
|
||||
}
|
||||
|
||||
impl Critic<'_> {
|
||||
fn new(device: &Device, dtype: DType, size_state: usize, size_action: usize) -> Result<Self> {
|
||||
let mut varmap = VarMap::new();
|
||||
let vb = VarBuilder::from_varmap(&varmap, dtype, device);
|
||||
|
||||
let dims: Vec<(usize, usize)> = vec![(size_state + size_action, 400), (400, 300), (300, 1)];
|
||||
|
||||
let make_network = |prefix: &str| {
|
||||
let seq = seq()
|
||||
.add(linear(
|
||||
dims[0].0,
|
||||
dims[0].1,
|
||||
vb.pp(format!("{prefix}-fc0")),
|
||||
)?)
|
||||
.add(Activation::Relu)
|
||||
.add(linear(
|
||||
dims[1].0,
|
||||
dims[1].1,
|
||||
vb.pp(format!("{prefix}-fc1")),
|
||||
)?)
|
||||
.add(Activation::Relu)
|
||||
.add(linear(
|
||||
dims[2].0,
|
||||
dims[2].1,
|
||||
vb.pp(format!("{prefix}-fc2")),
|
||||
)?);
|
||||
Ok::<Sequential, Error>(seq)
|
||||
};
|
||||
|
||||
let network = make_network("critic")?;
|
||||
let target_network = make_network("target-critic")?;
|
||||
|
||||
// this sets the two networks to be equal to each other using tau = 1.0
|
||||
track(&mut varmap, &vb, "target-critic", "critic", &dims, 1.0);
|
||||
|
||||
Ok(Self {
|
||||
varmap,
|
||||
vb,
|
||||
network,
|
||||
target_network,
|
||||
size_state,
|
||||
size_action,
|
||||
dims,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, state: &Tensor, action: &Tensor) -> Result<Tensor> {
|
||||
let xs = Tensor::cat(&[action, state], 1)?;
|
||||
self.network.forward(&xs)
|
||||
}
|
||||
|
||||
fn target_forward(&self, state: &Tensor, action: &Tensor) -> Result<Tensor> {
|
||||
let xs = Tensor::cat(&[action, state], 1)?;
|
||||
self.target_network.forward(&xs)
|
||||
}
|
||||
|
||||
fn track(&mut self, tau: f64) -> Result<()> {
|
||||
track(
|
||||
&mut self.varmap,
|
||||
&self.vb,
|
||||
"target-critic",
|
||||
"critic",
|
||||
&self.dims,
|
||||
tau,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
pub struct DDPG<'a> {
|
||||
actor: Actor<'a>,
|
||||
actor_optim: AdamW,
|
||||
critic: Critic<'a>,
|
||||
critic_optim: AdamW,
|
||||
gamma: f64,
|
||||
tau: f64,
|
||||
replay_buffer: ReplayBuffer,
|
||||
ou_noise: OuNoise,
|
||||
|
||||
size_state: usize,
|
||||
size_action: usize,
|
||||
pub train: bool,
|
||||
}
|
||||
|
||||
impl DDPG<'_> {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
device: &Device,
|
||||
size_state: usize,
|
||||
size_action: usize,
|
||||
train: bool,
|
||||
actor_lr: f64,
|
||||
critic_lr: f64,
|
||||
gamma: f64,
|
||||
tau: f64,
|
||||
buffer_capacity: usize,
|
||||
ou_noise: OuNoise,
|
||||
) -> Result<Self> {
|
||||
let filter_by_prefix = |varmap: &VarMap, prefix: &str| {
|
||||
varmap
|
||||
.data()
|
||||
.lock()
|
||||
.unwrap()
|
||||
.iter()
|
||||
.filter_map(|(name, var)| name.starts_with(prefix).then_some(var.clone()))
|
||||
.collect::<Vec<Var>>()
|
||||
};
|
||||
|
||||
let actor = Actor::new(device, DType::F32, size_state, size_action)?;
|
||||
let actor_optim = AdamW::new(
|
||||
filter_by_prefix(&actor.varmap, "actor"),
|
||||
ParamsAdamW {
|
||||
lr: actor_lr,
|
||||
..Default::default()
|
||||
},
|
||||
)?;
|
||||
|
||||
let critic = Critic::new(device, DType::F32, size_state, size_action)?;
|
||||
let critic_optim = AdamW::new(
|
||||
filter_by_prefix(&critic.varmap, "critic"),
|
||||
ParamsAdamW {
|
||||
lr: critic_lr,
|
||||
..Default::default()
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(Self {
|
||||
actor,
|
||||
actor_optim,
|
||||
critic,
|
||||
critic_optim,
|
||||
gamma,
|
||||
tau,
|
||||
replay_buffer: ReplayBuffer::new(buffer_capacity),
|
||||
ou_noise,
|
||||
size_state,
|
||||
size_action,
|
||||
train,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn remember(
|
||||
&mut self,
|
||||
state: &Tensor,
|
||||
action: &Tensor,
|
||||
reward: &Tensor,
|
||||
next_state: &Tensor,
|
||||
terminated: bool,
|
||||
truncated: bool,
|
||||
) {
|
||||
self.replay_buffer
|
||||
.push(state, action, reward, next_state, terminated, truncated)
|
||||
}
|
||||
|
||||
pub fn actions(&mut self, state: &Tensor) -> Result<f32> {
|
||||
let actions = self
|
||||
.actor
|
||||
.forward(&state.detach()?.unsqueeze(0)?)?
|
||||
.squeeze(0)?;
|
||||
let actions = if self.train {
|
||||
(actions + self.ou_noise.sample()?)?
|
||||
} else {
|
||||
actions
|
||||
};
|
||||
actions.squeeze(0)?.to_scalar::<f32>()
|
||||
}
|
||||
|
||||
pub fn train(&mut self, batch_size: usize) -> Result<()> {
|
||||
let (states, actions, rewards, next_states, _, _) =
|
||||
match self.replay_buffer.random_batch(batch_size)? {
|
||||
Some(v) => v,
|
||||
_ => return Ok(()),
|
||||
};
|
||||
|
||||
let q_target = self
|
||||
.critic
|
||||
.target_forward(&next_states, &self.actor.target_forward(&next_states)?)?;
|
||||
let q_target = (rewards + (self.gamma * q_target)?.detach())?;
|
||||
let q = self.critic.forward(&states, &actions)?;
|
||||
let diff = (q_target - q)?;
|
||||
|
||||
let critic_loss = diff.sqr()?.mean_all()?;
|
||||
self.critic_optim.backward_step(&critic_loss)?;
|
||||
|
||||
let actor_loss = self
|
||||
.critic
|
||||
.forward(&states, &self.actor.forward(&states)?)?
|
||||
.mean_all()?
|
||||
.neg()?;
|
||||
self.actor_optim.backward_step(&actor_loss)?;
|
||||
|
||||
self.critic.track(self.tau)?;
|
||||
self.actor.track(self.tau)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -1,112 +0,0 @@
|
||||
#![allow(unused)]
|
||||
//! Wrappers around the Python API of Gymnasium (the new version of OpenAI gym)
|
||||
use candle::{Device, Result, Tensor};
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::types::PyDict;
|
||||
|
||||
/// The return value for a step.
|
||||
#[derive(Debug)]
|
||||
pub struct Step<A> {
|
||||
pub state: Tensor,
|
||||
pub action: A,
|
||||
pub reward: f64,
|
||||
pub terminated: bool,
|
||||
pub truncated: bool,
|
||||
}
|
||||
|
||||
impl<A: Copy> Step<A> {
|
||||
/// Returns a copy of this step changing the observation tensor.
|
||||
pub fn copy_with_obs(&self, state: &Tensor) -> Step<A> {
|
||||
Step {
|
||||
state: state.clone(),
|
||||
action: self.action,
|
||||
reward: self.reward,
|
||||
terminated: self.terminated,
|
||||
truncated: self.truncated,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An OpenAI Gym session.
|
||||
pub struct GymEnv {
|
||||
env: PyObject,
|
||||
action_space: usize,
|
||||
observation_space: Vec<usize>,
|
||||
}
|
||||
|
||||
fn w(res: PyErr) -> candle::Error {
|
||||
candle::Error::wrap(res)
|
||||
}
|
||||
|
||||
impl GymEnv {
|
||||
/// Creates a new session of the specified OpenAI Gym environment.
|
||||
pub fn new(name: &str) -> Result<GymEnv> {
|
||||
Python::with_gil(|py| {
|
||||
let gym = py.import("gymnasium")?;
|
||||
let make = gym.getattr("make")?;
|
||||
let env = make.call1((name,))?;
|
||||
let action_space = env.getattr("action_space")?;
|
||||
let action_space = if let Ok(val) = action_space.getattr("n") {
|
||||
val.extract()?
|
||||
} else {
|
||||
let action_space: Vec<usize> = action_space.getattr("shape")?.extract()?;
|
||||
action_space[0]
|
||||
};
|
||||
let observation_space = env.getattr("observation_space")?;
|
||||
let observation_space = observation_space.getattr("shape")?.extract()?;
|
||||
Ok(GymEnv {
|
||||
env: env.into(),
|
||||
action_space,
|
||||
observation_space,
|
||||
})
|
||||
})
|
||||
.map_err(w)
|
||||
}
|
||||
|
||||
/// Resets the environment, returning the observation tensor.
|
||||
pub fn reset(&self, seed: u64) -> Result<Tensor> {
|
||||
let state: Vec<f32> = Python::with_gil(|py| {
|
||||
let kwargs = PyDict::new(py);
|
||||
kwargs.set_item("seed", seed)?;
|
||||
let state = self.env.call_method(py, "reset", (), Some(kwargs))?;
|
||||
state.as_ref(py).get_item(0)?.extract()
|
||||
})
|
||||
.map_err(w)?;
|
||||
Tensor::new(state, &Device::Cpu)
|
||||
}
|
||||
|
||||
/// Applies an environment step using the specified action.
|
||||
pub fn step<A: pyo3::IntoPy<pyo3::Py<pyo3::PyAny>> + Clone>(
|
||||
&self,
|
||||
action: A,
|
||||
) -> Result<Step<A>> {
|
||||
let (state, reward, terminated, truncated) = Python::with_gil(|py| {
|
||||
let step = self.env.call_method(py, "step", (action.clone(),), None)?;
|
||||
let step = step.as_ref(py);
|
||||
let state: Vec<f32> = step.get_item(0)?.extract()?;
|
||||
let reward: f64 = step.get_item(1)?.extract()?;
|
||||
let terminated: bool = step.get_item(2)?.extract()?;
|
||||
let truncated: bool = step.get_item(3)?.extract()?;
|
||||
Ok((state, reward, terminated, truncated))
|
||||
})
|
||||
.map_err(w)?;
|
||||
let state = Tensor::new(state, &Device::Cpu)?;
|
||||
Ok(Step {
|
||||
state,
|
||||
action,
|
||||
reward,
|
||||
terminated,
|
||||
truncated,
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the number of allowed actions for this environment.
|
||||
pub fn action_space(&self) -> usize {
|
||||
self.action_space
|
||||
}
|
||||
|
||||
/// Returns the shape of the observation tensors.
|
||||
pub fn observation_space(&self) -> &[usize] {
|
||||
&self.observation_space
|
||||
}
|
||||
}
|
@ -1,144 +0,0 @@
|
||||
#![allow(unused)]
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod gym_env;
|
||||
mod vec_gym_env;
|
||||
|
||||
mod ddpg;
|
||||
|
||||
use candle::{Device, Result, Tensor};
|
||||
use clap::Parser;
|
||||
use rand::Rng;
|
||||
|
||||
// The impact of the q value of the next state on the current state's q value.
|
||||
const GAMMA: f64 = 0.99;
|
||||
// The weight for updating the target networks.
|
||||
const TAU: f64 = 0.005;
|
||||
// The capacity of the replay buffer used for sampling training data.
|
||||
const REPLAY_BUFFER_CAPACITY: usize = 100_000;
|
||||
// The training batch size for each training iteration.
|
||||
const TRAINING_BATCH_SIZE: usize = 100;
|
||||
// The total number of episodes.
|
||||
const MAX_EPISODES: usize = 100;
|
||||
// The maximum length of an episode.
|
||||
const EPISODE_LENGTH: usize = 200;
|
||||
// The number of training iterations after one episode finishes.
|
||||
const TRAINING_ITERATIONS: usize = 200;
|
||||
|
||||
// Ornstein-Uhlenbeck process parameters.
|
||||
const MU: f64 = 0.0;
|
||||
const THETA: f64 = 0.15;
|
||||
const SIGMA: f64 = 0.1;
|
||||
|
||||
const ACTOR_LEARNING_RATE: f64 = 1e-4;
|
||||
const CRITIC_LEARNING_RATE: f64 = 1e-3;
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let env = gym_env::GymEnv::new("Pendulum-v1")?;
|
||||
println!("action space: {}", env.action_space());
|
||||
println!("observation space: {:?}", env.observation_space());
|
||||
|
||||
let size_state = env.observation_space().iter().product::<usize>();
|
||||
let size_action = env.action_space();
|
||||
|
||||
let mut agent = ddpg::DDPG::new(
|
||||
&Device::Cpu,
|
||||
size_state,
|
||||
size_action,
|
||||
true,
|
||||
ACTOR_LEARNING_RATE,
|
||||
CRITIC_LEARNING_RATE,
|
||||
GAMMA,
|
||||
TAU,
|
||||
REPLAY_BUFFER_CAPACITY,
|
||||
ddpg::OuNoise::new(MU, THETA, SIGMA, size_action)?,
|
||||
)?;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for episode in 0..MAX_EPISODES {
|
||||
// let mut state = env.reset(episode as u64)?;
|
||||
let mut state = env.reset(rng.gen::<u64>())?;
|
||||
|
||||
let mut total_reward = 0.0;
|
||||
for _ in 0..EPISODE_LENGTH {
|
||||
let mut action = 2.0 * agent.actions(&state)?;
|
||||
action = action.clamp(-2.0, 2.0);
|
||||
|
||||
let step = env.step(vec![action])?;
|
||||
total_reward += step.reward;
|
||||
|
||||
agent.remember(
|
||||
&state,
|
||||
&Tensor::new(vec![action], &Device::Cpu)?,
|
||||
&Tensor::new(vec![step.reward as f32], &Device::Cpu)?,
|
||||
&step.state,
|
||||
step.terminated,
|
||||
step.truncated,
|
||||
);
|
||||
|
||||
if step.terminated || step.truncated {
|
||||
break;
|
||||
}
|
||||
state = step.state;
|
||||
}
|
||||
|
||||
println!("episode {episode} with total reward of {total_reward}");
|
||||
|
||||
for _ in 0..TRAINING_ITERATIONS {
|
||||
agent.train(TRAINING_BATCH_SIZE)?;
|
||||
}
|
||||
}
|
||||
|
||||
println!("Testing...");
|
||||
agent.train = false;
|
||||
for episode in 0..10 {
|
||||
// let mut state = env.reset(episode as u64)?;
|
||||
let mut state = env.reset(rng.gen::<u64>())?;
|
||||
let mut total_reward = 0.0;
|
||||
for _ in 0..EPISODE_LENGTH {
|
||||
let mut action = 2.0 * agent.actions(&state)?;
|
||||
action = action.clamp(-2.0, 2.0);
|
||||
|
||||
let step = env.step(vec![action])?;
|
||||
total_reward += step.reward;
|
||||
|
||||
if step.terminated || step.truncated {
|
||||
break;
|
||||
}
|
||||
state = step.state;
|
||||
}
|
||||
println!("episode {episode} with total reward of {total_reward}");
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -1,91 +0,0 @@
|
||||
#![allow(unused)]
|
||||
//! Vectorized version of the gym environment.
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::types::PyDict;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Step {
|
||||
pub obs: Tensor,
|
||||
pub reward: Tensor,
|
||||
pub is_done: Tensor,
|
||||
}
|
||||
|
||||
pub struct VecGymEnv {
|
||||
env: PyObject,
|
||||
action_space: usize,
|
||||
observation_space: Vec<usize>,
|
||||
}
|
||||
|
||||
fn w(res: PyErr) -> candle::Error {
|
||||
candle::Error::wrap(res)
|
||||
}
|
||||
|
||||
impl VecGymEnv {
|
||||
pub fn new(name: &str, img_dir: Option<&str>, nprocesses: usize) -> Result<VecGymEnv> {
|
||||
Python::with_gil(|py| {
|
||||
let sys = py.import("sys")?;
|
||||
let path = sys.getattr("path")?;
|
||||
let _ = path.call_method1(
|
||||
"append",
|
||||
("candle-examples/examples/reinforcement-learning",),
|
||||
)?;
|
||||
let gym = py.import("atari_wrappers")?;
|
||||
let make = gym.getattr("make")?;
|
||||
let env = make.call1((name, img_dir, nprocesses))?;
|
||||
let action_space = env.getattr("action_space")?;
|
||||
let action_space = action_space.getattr("n")?.extract()?;
|
||||
let observation_space = env.getattr("observation_space")?;
|
||||
let observation_space: Vec<usize> = observation_space.getattr("shape")?.extract()?;
|
||||
let observation_space =
|
||||
[vec![nprocesses].as_slice(), observation_space.as_slice()].concat();
|
||||
Ok(VecGymEnv {
|
||||
env: env.into(),
|
||||
action_space,
|
||||
observation_space,
|
||||
})
|
||||
})
|
||||
.map_err(w)
|
||||
}
|
||||
|
||||
pub fn reset(&self) -> Result<Tensor> {
|
||||
let obs = Python::with_gil(|py| {
|
||||
let obs = self.env.call_method0(py, "reset")?;
|
||||
let obs = obs.call_method0(py, "flatten")?;
|
||||
obs.extract::<Vec<f32>>(py)
|
||||
})
|
||||
.map_err(w)?;
|
||||
Tensor::new(obs, &Device::Cpu)?.reshape(self.observation_space.as_slice())
|
||||
}
|
||||
|
||||
pub fn step(&self, action: Vec<usize>) -> Result<Step> {
|
||||
let (obs, reward, is_done) = Python::with_gil(|py| {
|
||||
let step = self.env.call_method(py, "step", (action,), None)?;
|
||||
let step = step.as_ref(py);
|
||||
let obs = step.get_item(0)?.call_method("flatten", (), None)?;
|
||||
let obs_buffer = pyo3::buffer::PyBuffer::get(obs)?;
|
||||
let obs: Vec<u8> = obs_buffer.to_vec(py)?;
|
||||
let reward: Vec<f32> = step.get_item(1)?.extract()?;
|
||||
let is_done: Vec<f32> = step.get_item(2)?.extract()?;
|
||||
Ok((obs, reward, is_done))
|
||||
})
|
||||
.map_err(w)?;
|
||||
let obs = Tensor::from_vec(obs, self.observation_space.as_slice(), &Device::Cpu)?
|
||||
.to_dtype(DType::F32)?;
|
||||
let reward = Tensor::new(reward, &Device::Cpu)?;
|
||||
let is_done = Tensor::new(is_done, &Device::Cpu)?;
|
||||
Ok(Step {
|
||||
obs,
|
||||
reward,
|
||||
is_done,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn action_space(&self) -> usize {
|
||||
self.action_space
|
||||
}
|
||||
|
||||
pub fn observation_space(&self) -> &[usize] {
|
||||
&self.observation_space
|
||||
}
|
||||
}
|
@ -1,40 +0,0 @@
|
||||
# candle-replit-code: code completion specialized model.
|
||||
|
||||
[replit-code-v1_5-3b](https://huggingface.co/replit/replit-code-v1_5-3b) is a
|
||||
language model specialized for code completion. This model uses 3.3B parameters
|
||||
in `bfloat16` (so the GPU version will only work on recent nvidia cards).
|
||||
|
||||
## Running some example
|
||||
|
||||
```bash
|
||||
cargo run --example replit-code --release -- --prompt 'def fibonacci(n): '
|
||||
```
|
||||
This produces the following output.
|
||||
|
||||
```
|
||||
def fibonacci(n): # write Fibonacci series up to n
|
||||
"""Print a Fibonacci series up to n."""
|
||||
a, b = 0, 1
|
||||
while a < n:
|
||||
print(a, end=' ')
|
||||
a, b = b, a+b
|
||||
print()
|
||||
|
||||
|
||||
def fibonacci_loop(n): # write Fibonacci series up to n
|
||||
"""Print a Fibonacci series up to n."""
|
||||
result = []
|
||||
a, b = 0, 1
|
||||
while a < n:
|
||||
result.append(a)
|
||||
a, b = b, a+b
|
||||
return result
|
||||
|
||||
|
||||
def fibonacci_generator(n): # write Fibonacci series up to n
|
||||
"""Print a Fibonacci series up to n."""
|
||||
a, b = 0, 1
|
||||
while a < n:
|
||||
yield a
|
||||
a, b = b, a+b
|
||||
```
|
@ -1,265 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::mpt::{Config, Model as M};
|
||||
use candle_transformers::models::quantized_mpt::Model as Q;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
M(M),
|
||||
Q(Q),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::M(model) => model.forward(xs),
|
||||
Self::Q(model) => model.forward(xs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
verbose_prompt,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
||||
}
|
||||
if self.verbose_prompt {
|
||||
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
println!("{id:7} -> '{token}'");
|
||||
}
|
||||
}
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||
Some(token) => *token,
|
||||
None => anyhow::bail!("cannot find the endoftext token"),
|
||||
};
|
||||
print!("{prompt}");
|
||||
std::io::stdout().flush()?;
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input)?;
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||
print!("{token}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 1000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
#[arg(long)]
|
||||
weight_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "lmz/candle-replit-code".to_string(),
|
||||
};
|
||||
let revision = match args.revision {
|
||||
Some(rev) => rev.to_string(),
|
||||
None => "main".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filename = match args.weight_file {
|
||||
Some(weight_file) => std::path::PathBuf::from(weight_file),
|
||||
None => {
|
||||
if args.quantized {
|
||||
repo.get("model-replit-code-v1_5-q4k.gguf")?
|
||||
} else {
|
||||
repo.get("model.safetensors")?
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = Config::replit_code_v1_5_3b();
|
||||
let (model, device) = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename)?;
|
||||
let model = Model::Q(Q::new(&config, vb.pp("transformer"))?);
|
||||
(model, Device::Cpu)
|
||||
} else {
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
|
||||
let model = Model::M(M::new(&config, vb.pp("transformer"))?);
|
||||
(model, device)
|
||||
};
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
args.verbose_prompt,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -1,19 +0,0 @@
|
||||
# candle-resnet
|
||||
|
||||
A candle implementation of inference using a pre-trained [ResNet](https://arxiv.org/abs/1512.03385).
|
||||
This uses a classification head trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example resnet --release -- --image tiger.jpg
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
tiger, Panthera tigris : 90.21%
|
||||
tiger cat : 8.93%
|
||||
lion, king of beasts, Panthera leo: 0.35%
|
||||
leopard, Panthera pardus: 0.16%
|
||||
jaguar, panther, Panthera onca, Felis onca: 0.09%
|
||||
```
|
@ -1,12 +0,0 @@
|
||||
# This script exports pre-trained model weights in the safetensors format.
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
from safetensors import torch as stt
|
||||
|
||||
m = torchvision.models.resnet50(pretrained=True)
|
||||
stt.save_file(m.state_dict(), 'resnet50.safetensors')
|
||||
m = torchvision.models.resnet101(pretrained=True)
|
||||
stt.save_file(m.state_dict(), 'resnet101.safetensors')
|
||||
m = torchvision.models.resnet152(pretrained=True)
|
||||
stt.save_file(m.state_dict(), 'resnet152.safetensors')
|
@ -1,90 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use candle_transformers::models::resnet;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "18")]
|
||||
Resnet18,
|
||||
#[value(name = "34")]
|
||||
Resnet34,
|
||||
#[value(name = "50")]
|
||||
Resnet50,
|
||||
#[value(name = "101")]
|
||||
Resnet101,
|
||||
#[value(name = "152")]
|
||||
Resnet152,
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Variant of the model to use.
|
||||
#[arg(value_enum, long, default_value_t = Which::Resnet18)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("lmz/candle-resnet".into());
|
||||
let filename = match args.which {
|
||||
Which::Resnet18 => "resnet18.safetensors",
|
||||
Which::Resnet34 => "resnet34.safetensors",
|
||||
Which::Resnet50 => "resnet50.safetensors",
|
||||
Which::Resnet101 => "resnet101.safetensors",
|
||||
Which::Resnet152 => "resnet152.safetensors",
|
||||
};
|
||||
api.get(filename)?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let class_count = candle_examples::imagenet::CLASS_COUNT as usize;
|
||||
let model = match args.which {
|
||||
Which::Resnet18 => resnet::resnet18(class_count, vb)?,
|
||||
Which::Resnet34 => resnet::resnet34(class_count, vb)?,
|
||||
Which::Resnet50 => resnet::resnet50(class_count, vb)?,
|
||||
Which::Resnet101 => resnet::resnet101(class_count, vb)?,
|
||||
Which::Resnet152 => resnet::resnet152(class_count, vb)?,
|
||||
};
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -50,9 +50,6 @@ cached.
|
||||
Enabling flash-attention requires both a feature flag, `--feature flash-attn`
|
||||
and using the command line flag `--use-flash-attn`.
|
||||
|
||||
Note that flash-attention-v2 is only compatible with Ampere, Ada, or Hopper GPUs
|
||||
(e.g., A100/H100, RTX 3090/4090).
|
||||
|
||||
## Image to Image Pipeline
|
||||
...
|
||||
|
||||
|
@ -143,6 +143,7 @@ fn main() -> Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
println!("tracing...");
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
|
@ -1,13 +0,0 @@
|
||||
## VGG Model Implementation
|
||||
|
||||
This example demonstrates the implementation of VGG models (VGG13, VGG16, VGG19) using the Candle library.
|
||||
|
||||
The VGG models are defined in `candle-transformers/src/models/vgg.rs`. The main function in `candle-examples/examples/vgg/main.rs` loads an image, selects the VGG model based on the provided argument, and applies the model to the loaded image.
|
||||
|
||||
You can run the example with the following command:
|
||||
|
||||
```bash
|
||||
cargo run --example vgg --release -- --image ../yolo-v8/assets/bike.jpg --which vgg13
|
||||
```
|
||||
|
||||
In the command above, `--image` specifies the path to the image file and `--which` specifies the VGG model to use (vgg13, vgg16, or vgg19).
|
@ -1,77 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::{ModuleT, VarBuilder};
|
||||
use candle_transformers::models::vgg::{Models, Vgg};
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
Vgg13,
|
||||
Vgg16,
|
||||
Vgg19,
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Variant of the model to use.
|
||||
#[arg(value_enum, long, default_value_t = Which::Vgg13)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let repo = match args.which {
|
||||
Which::Vgg13 => "timm/vgg13.tv_in1k",
|
||||
Which::Vgg16 => "timm/vgg16.tv_in1k",
|
||||
Which::Vgg19 => "timm/vgg19.tv_in1k",
|
||||
};
|
||||
let api = api.model(repo.into());
|
||||
let filename = "model.safetensors";
|
||||
let model_file = api.get(filename)?;
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = match args.which {
|
||||
Which::Vgg13 => Vgg::new(vb, Models::Vgg13)?,
|
||||
Which::Vgg16 => Vgg::new(vb, Models::Vgg16)?,
|
||||
Which::Vgg19 => Vgg::new(vb, Models::Vgg19)?,
|
||||
};
|
||||
let logits = model.forward_t(&image, /*train=*/ false)?;
|
||||
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
|
||||
// Sort the predictions and take the top 5
|
||||
let mut top: Vec<_> = prs.iter().enumerate().collect();
|
||||
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
|
||||
let top = top.into_iter().take(5).collect::<Vec<_>>();
|
||||
|
||||
// Print the top predictions
|
||||
for &(i, p) in &top {
|
||||
println!(
|
||||
"{:50}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[i],
|
||||
p * 100.0
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
@ -1,20 +0,0 @@
|
||||
# candle-vit
|
||||
|
||||
Vision Transformer (ViT) model implementation following the lines of
|
||||
[vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
|
||||
This uses a classification head trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example vit --release -- --image tiger.jpg
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
tiger, Panthera tigris : 100.00%
|
||||
tiger cat : 0.00%
|
||||
jaguar, panther, Panthera onca, Felis onca: 0.00%
|
||||
leopard, Panthera pardus: 0.00%
|
||||
lion, king of beasts, Panthera leo: 0.00%
|
||||
```
|
@ -1,59 +0,0 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, IndexOp, D};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::vit;
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model_file = match args.model {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("google/vit-base-patch16-224".into());
|
||||
api.get("model.safetensors")?
|
||||
}
|
||||
Some(model) => model.into(),
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let model = vit::Model::new(&vit::Config::vit_base_patch16_224(), 1000, vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||
for &(category_idx, pr) in prs.iter().take(5) {
|
||||
println!(
|
||||
"{:24}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[category_idx],
|
||||
100. * pr
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -108,7 +108,7 @@ pub fn parse_config<T: AsRef<Path>>(path: T) -> Result<Darknet> {
|
||||
}
|
||||
|
||||
enum Bl {
|
||||
Layer(Box<dyn candle_nn::Module + Send + Sync>),
|
||||
Layer(Box<dyn candle_nn::Module + Send>),
|
||||
Route(Vec<usize>),
|
||||
Shortcut(usize),
|
||||
Yolo(usize, Vec<(usize, usize)>),
|
||||
|
@ -1,5 +1,7 @@
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{batch_norm, conv2d, conv2d_no_bias, Conv2d, Conv2dConfig, Module, VarBuilder};
|
||||
use candle_nn::{
|
||||
batch_norm, conv2d, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder,
|
||||
};
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Debug)]
|
||||
pub struct Multiples {
|
||||
@ -74,6 +76,7 @@ impl Module for Upsample {
|
||||
#[derive(Debug)]
|
||||
struct ConvBlock {
|
||||
conv: Conv2d,
|
||||
bn: BatchNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
@ -93,10 +96,11 @@ impl ConvBlock {
|
||||
groups: 1,
|
||||
dilation: 1,
|
||||
};
|
||||
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?;
|
||||
let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?;
|
||||
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?.absorb_bn(&bn)?;
|
||||
Ok(Self {
|
||||
conv,
|
||||
bn,
|
||||
span: tracing::span!(tracing::Level::TRACE, "conv-block"),
|
||||
})
|
||||
}
|
||||
@ -106,6 +110,7 @@ impl Module for ConvBlock {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let xs = self.conv.forward(xs)?;
|
||||
let xs = self.bn.forward(&xs)?;
|
||||
candle_nn::ops::silu(&xs)
|
||||
}
|
||||
}
|
||||
|
@ -2,30 +2,17 @@ pub mod coco_classes;
|
||||
pub mod imagenet;
|
||||
pub mod token_output_stream;
|
||||
|
||||
use candle::utils::{cuda_is_available, metal_is_available};
|
||||
use candle::{Device, Result, Tensor};
|
||||
|
||||
pub fn device(cpu: bool) -> Result<Device> {
|
||||
if cpu {
|
||||
Ok(Device::Cpu)
|
||||
} else {
|
||||
if cuda_is_available() {
|
||||
Ok(Device::new_cuda(0)?)
|
||||
} else if metal_is_available() {
|
||||
Ok(Device::new_metal(0)?)
|
||||
} else {
|
||||
#[cfg(all(target_os = "macos", target_arch = "aarch64"))]
|
||||
{
|
||||
println!("Running on CPU, to run on GPU(metal), build this example with `--features metal`");
|
||||
}
|
||||
#[cfg(not(all(target_os = "macos", target_arch = "aarch64")))]
|
||||
{
|
||||
println!(
|
||||
"Running on CPU, to run on GPU, build this example with `--features cuda`"
|
||||
);
|
||||
}
|
||||
Ok(Device::Cpu)
|
||||
let device = Device::cuda_if_available(0)?;
|
||||
if !device.is_cuda() {
|
||||
println!("Running on CPU, to run on GPU, build this example with `--features cuda`");
|
||||
}
|
||||
Ok(device)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -84,19 +84,12 @@ fn main() -> Result<()> {
|
||||
(kernel_dir.join(f), obj_file)
|
||||
})
|
||||
.collect();
|
||||
let out_modified: Result<_, _> = out_file.metadata().and_then(|m| m.modified());
|
||||
let should_compile = if out_file.exists() {
|
||||
kernel_dir
|
||||
.read_dir()
|
||||
.expect("kernels folder should exist")
|
||||
.any(|entry| {
|
||||
if let (Ok(entry), Ok(out_modified)) = (entry, &out_modified) {
|
||||
let in_modified = entry.metadata().unwrap().modified().unwrap();
|
||||
in_modified.duration_since(*out_modified).is_ok()
|
||||
} else {
|
||||
true
|
||||
}
|
||||
})
|
||||
cu_files.iter().any(|(cu_file, _)| {
|
||||
let out_modified = out_file.metadata().unwrap().modified().unwrap();
|
||||
let in_modified = cu_file.metadata().unwrap().modified().unwrap();
|
||||
in_modified.duration_since(out_modified).is_ok()
|
||||
})
|
||||
} else {
|
||||
true
|
||||
};
|
||||
@ -107,19 +100,12 @@ fn main() -> Result<()> {
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
command
|
||||
.arg("-std=c++17")
|
||||
.arg("-O3")
|
||||
.arg("-U__CUDA_NO_HALF_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_HALF_CONVERSIONS__")
|
||||
.arg("-U__CUDA_NO_HALF2_OPERATORS__")
|
||||
.arg("-U__CUDA_NO_BFLOAT16_CONVERSIONS__")
|
||||
.arg(format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.arg("-c")
|
||||
.args(["-o", obj_file.to_str().unwrap()])
|
||||
.args(["--default-stream", "per-thread"])
|
||||
.arg("-Icutlass/include")
|
||||
.arg("--expt-relaxed-constexpr")
|
||||
.arg("--expt-extended-lambda")
|
||||
.arg("--use_fast_math")
|
||||
.arg("--verbose");
|
||||
if let Ok(ccbin_path) = &ccbin_env {
|
||||
command
|
||||
@ -217,21 +203,13 @@ fn set_cuda_include_dir() -> Result<()> {
|
||||
|
||||
#[allow(unused)]
|
||||
fn compute_cap() -> Result<usize> {
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
|
||||
// Try to parse compute caps from env
|
||||
let mut compute_cap = if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={compute_cap_str}");
|
||||
compute_cap_str
|
||||
.parse::<usize>()
|
||||
.context("Could not parse compute cap")?
|
||||
} else {
|
||||
// Use nvidia-smi to get the current compute cap
|
||||
// Grab compute code from nvidia-smi
|
||||
let mut compute_cap = {
|
||||
let out = std::process::Command::new("nvidia-smi")
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
|
||||
let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?;
|
||||
let mut lines = out.lines();
|
||||
assert_eq!(
|
||||
@ -242,19 +220,16 @@ fn compute_cap() -> Result<usize> {
|
||||
.next()
|
||||
.context("missing line in stdout")?
|
||||
.replace('.', "");
|
||||
let cap = cap
|
||||
.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as int {cap}"))?;
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={cap}");
|
||||
cap
|
||||
cap.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as int {cap}"))?
|
||||
};
|
||||
|
||||
// Grab available GPU codes from nvcc and select the highest one
|
||||
let (supported_nvcc_codes, max_nvcc_code) = {
|
||||
let max_nvcc_code = {
|
||||
let out = std::process::Command::new("nvcc")
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
|
||||
let out = out.lines().collect::<Vec<&str>>();
|
||||
@ -268,21 +243,30 @@ fn compute_cap() -> Result<usize> {
|
||||
}
|
||||
}
|
||||
codes.sort();
|
||||
let max_nvcc_code = *codes.last().context("no gpu codes parsed from nvcc")?;
|
||||
(codes, max_nvcc_code)
|
||||
if !codes.contains(&compute_cap) {
|
||||
anyhow::bail!(
|
||||
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {codes:?}."
|
||||
);
|
||||
}
|
||||
*codes.last().unwrap()
|
||||
};
|
||||
|
||||
// Check that nvcc supports the asked compute caps
|
||||
if !supported_nvcc_codes.contains(&compute_cap) {
|
||||
anyhow::bail!(
|
||||
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {supported_nvcc_codes:?}."
|
||||
);
|
||||
}
|
||||
// If nvidia-smi compute_cap is higher than the highest gpu code from nvcc,
|
||||
// then choose the highest gpu code in nvcc
|
||||
if compute_cap > max_nvcc_code {
|
||||
anyhow::bail!(
|
||||
"CUDA compute cap {compute_cap} is higher than the highest gpu code from nvcc {max_nvcc_code}"
|
||||
println!(
|
||||
"cargo:warning=Lowering gpu arch {compute_cap} to max nvcc target {max_nvcc_code}."
|
||||
);
|
||||
compute_cap = max_nvcc_code;
|
||||
}
|
||||
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
compute_cap = compute_cap_str
|
||||
.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as usize '{compute_cap_str}'"))?;
|
||||
println!("cargo:warning=Using gpu arch {compute_cap} from $CUDA_COMPUTE_CAP");
|
||||
}
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP=sm_{compute_cap}");
|
||||
Ok(compute_cap)
|
||||
}
|
||||
|
@ -12,6 +12,5 @@ license = "MIT OR Apache-2.0"
|
||||
[dependencies]
|
||||
|
||||
[build-dependencies]
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
glob = "0.3.1"
|
||||
rayon = "1.7.0"
|
||||
rayon = "1.7.0"
|
||||
|
@ -1,5 +1,4 @@
|
||||
use std::io::Write;
|
||||
|
||||
fn main() {
|
||||
println!("cargo:rerun-if-changed=build.rs");
|
||||
|
||||
@ -24,8 +23,6 @@ fn main() {
|
||||
}
|
||||
|
||||
mod cuda {
|
||||
use anyhow::{Context, Result};
|
||||
|
||||
pub fn set_include_dir() {
|
||||
use std::path::PathBuf;
|
||||
// NOTE: copied from cudarc build.rs.
|
||||
@ -103,52 +100,107 @@ mod cuda {
|
||||
include_directories.sort();
|
||||
include_directories.dedup();
|
||||
|
||||
let compute_cap = compute_cap().expect("Could not get Cuda compute cap");
|
||||
|
||||
#[allow(unused)]
|
||||
let include_options: Vec<String> = include_directories
|
||||
.into_iter()
|
||||
.map(|s| "-I".to_string() + &s.into_os_string().into_string().unwrap())
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// let start = std::time::Instant::now();
|
||||
|
||||
// Grab compute code from nvidia-smi
|
||||
let mut compute_cap = {
|
||||
let out = std::process::Command::new("nvidia-smi")
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.expect("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
let mut lines = out.lines();
|
||||
assert_eq!(lines.next().unwrap(), "compute_cap");
|
||||
let cap = lines.next().unwrap().replace('.', "");
|
||||
cap.parse::<usize>().unwrap()
|
||||
};
|
||||
|
||||
// Grab available GPU codes from nvcc and select the highest one
|
||||
let max_nvcc_code = {
|
||||
let out = std::process::Command::new("nvcc")
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
|
||||
let out = out.lines().collect::<Vec<&str>>();
|
||||
let mut codes = Vec::with_capacity(out.len());
|
||||
for code in out {
|
||||
let code = code.split('_').collect::<Vec<&str>>();
|
||||
if !code.is_empty() && code.contains(&"sm") {
|
||||
if let Ok(num) = code[1].parse::<usize>() {
|
||||
codes.push(num);
|
||||
}
|
||||
}
|
||||
}
|
||||
codes.sort();
|
||||
if !codes.contains(&compute_cap) {
|
||||
panic!("nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {codes:?}.");
|
||||
}
|
||||
*codes.last().unwrap()
|
||||
};
|
||||
|
||||
// If nvidia-smi compute_cap is higher than the highest gpu code from nvcc,
|
||||
// then choose the highest gpu code in nvcc
|
||||
if compute_cap > max_nvcc_code {
|
||||
println!(
|
||||
"cargo:warning=Lowering gpu arch {compute_cap} to max nvcc target {max_nvcc_code}."
|
||||
);
|
||||
compute_cap = max_nvcc_code;
|
||||
}
|
||||
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
compute_cap = compute_cap_str.parse::<usize>().unwrap();
|
||||
println!("cargo:warning=Using gpu arch {compute_cap} from $CUDA_COMPUTE_CAP");
|
||||
}
|
||||
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP=sm_{compute_cap}");
|
||||
|
||||
let ccbin_env = std::env::var("CANDLE_NVCC_CCBIN");
|
||||
println!("cargo:rerun-if-env-changed=CANDLE_NVCC_CCBIN");
|
||||
let children = kernel_paths
|
||||
.par_iter()
|
||||
.flat_map(|p| {
|
||||
let mut output = p.clone();
|
||||
output.set_extension("ptx");
|
||||
let output_filename = std::path::Path::new(&out_dir).to_path_buf().join("out").with_file_name(output.file_name().unwrap());
|
||||
.par_iter()
|
||||
.flat_map(|p| {
|
||||
let mut output = p.clone();
|
||||
output.set_extension("ptx");
|
||||
let output_filename = std::path::Path::new(&out_dir).to_path_buf().join("out").with_file_name(output.file_name().unwrap());
|
||||
|
||||
let ignore = if output_filename.exists() {
|
||||
let out_modified = output_filename.metadata().unwrap().modified().unwrap();
|
||||
let in_modified = p.metadata().unwrap().modified().unwrap();
|
||||
out_modified.duration_since(in_modified).is_ok()
|
||||
} else {
|
||||
false
|
||||
};
|
||||
if ignore {
|
||||
None
|
||||
} else {
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
command.arg(format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.arg("--ptx")
|
||||
.args(["--default-stream", "per-thread"])
|
||||
.args(["--output-directory", &out_dir])
|
||||
// Flash attention only
|
||||
// .arg("--expt-relaxed-constexpr")
|
||||
.args(&include_options);
|
||||
if let Ok(ccbin_path) = &ccbin_env {
|
||||
command
|
||||
.arg("-allow-unsupported-compiler")
|
||||
.args(["-ccbin", ccbin_path]);
|
||||
}
|
||||
command.arg(p);
|
||||
Some((p, command.spawn()
|
||||
let ignore = if output_filename.exists() {
|
||||
let out_modified = output_filename.metadata().unwrap().modified().unwrap();
|
||||
let in_modified = p.metadata().unwrap().modified().unwrap();
|
||||
out_modified.duration_since(in_modified).is_ok()
|
||||
}else{
|
||||
false
|
||||
};
|
||||
if ignore{
|
||||
None
|
||||
}else{
|
||||
let mut command = std::process::Command::new("nvcc");
|
||||
command.arg(format!("--gpu-architecture=sm_{compute_cap}"))
|
||||
.arg("--ptx")
|
||||
.args(["--default-stream", "per-thread"])
|
||||
.args(["--output-directory", &out_dir])
|
||||
// Flash attention only
|
||||
// .arg("--expt-relaxed-constexpr")
|
||||
.args(&include_options);
|
||||
if let Ok(ccbin_path) = &ccbin_env {
|
||||
command
|
||||
.arg("-allow-unsupported-compiler")
|
||||
.args(["-ccbin", ccbin_path]);
|
||||
}
|
||||
command.arg(p);
|
||||
Some((p, command.spawn()
|
||||
.expect("nvcc failed to start. Ensure that you have CUDA installed and that `nvcc` is in your PATH.").wait_with_output()))
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
}})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let ptx_paths: Vec<PathBuf> = glob::glob(&format!("{out_dir}/**/*.ptx"))
|
||||
.unwrap()
|
||||
@ -168,76 +220,4 @@ mod cuda {
|
||||
}
|
||||
(write, kernel_paths)
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
fn compute_cap() -> Result<usize> {
|
||||
println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP");
|
||||
|
||||
// Try to parse compute caps from env
|
||||
let mut compute_cap = if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") {
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={compute_cap_str}");
|
||||
compute_cap_str
|
||||
.parse::<usize>()
|
||||
.context("Could not parse code")?
|
||||
} else {
|
||||
// Use nvidia-smi to get the current compute cap
|
||||
let out = std::process::Command::new("nvidia-smi")
|
||||
.arg("--query-gpu=compute_cap")
|
||||
.arg("--format=csv")
|
||||
.output()
|
||||
.context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?;
|
||||
let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?;
|
||||
let mut lines = out.lines();
|
||||
assert_eq!(
|
||||
lines.next().context("missing line in stdout")?,
|
||||
"compute_cap"
|
||||
);
|
||||
let cap = lines
|
||||
.next()
|
||||
.context("missing line in stdout")?
|
||||
.replace('.', "");
|
||||
let cap = cap
|
||||
.parse::<usize>()
|
||||
.with_context(|| format!("cannot parse as int {cap}"))?;
|
||||
println!("cargo:rustc-env=CUDA_COMPUTE_CAP={cap}");
|
||||
cap
|
||||
};
|
||||
|
||||
// Grab available GPU codes from nvcc and select the highest one
|
||||
let (supported_nvcc_codes, max_nvcc_code) = {
|
||||
let out = std::process::Command::new("nvcc")
|
||||
.arg("--list-gpu-code")
|
||||
.output()
|
||||
.expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH.");
|
||||
let out = std::str::from_utf8(&out.stdout).unwrap();
|
||||
|
||||
let out = out.lines().collect::<Vec<&str>>();
|
||||
let mut codes = Vec::with_capacity(out.len());
|
||||
for code in out {
|
||||
let code = code.split('_').collect::<Vec<&str>>();
|
||||
if !code.is_empty() && code.contains(&"sm") {
|
||||
if let Ok(num) = code[1].parse::<usize>() {
|
||||
codes.push(num);
|
||||
}
|
||||
}
|
||||
}
|
||||
codes.sort();
|
||||
let max_nvcc_code = *codes.last().context("no gpu codes parsed from nvcc")?;
|
||||
(codes, max_nvcc_code)
|
||||
};
|
||||
|
||||
// Check that nvcc supports the asked compute caps
|
||||
if !supported_nvcc_codes.contains(&compute_cap) {
|
||||
anyhow::bail!(
|
||||
"nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {supported_nvcc_codes:?}."
|
||||
);
|
||||
}
|
||||
if compute_cap > max_nvcc_code {
|
||||
anyhow::bail!(
|
||||
"CUDA compute cap {compute_cap} is higher than the highest gpu code from nvcc {max_nvcc_code}"
|
||||
);
|
||||
}
|
||||
|
||||
Ok(compute_cap)
|
||||
}
|
||||
}
|
||||
|
@ -1,53 +1,6 @@
|
||||
#include "cuda_utils.cuh"
|
||||
#include<stdint.h>
|
||||
|
||||
template <typename S, typename T>
|
||||
__device__ void cast_(
|
||||
const size_t numel,
|
||||
const size_t num_dims,
|
||||
const size_t *info,
|
||||
const S *inp,
|
||||
T *out
|
||||
) {
|
||||
const size_t *dims = info;
|
||||
const size_t *strides = info + num_dims;
|
||||
if (is_contiguous(num_dims, dims, strides)) {
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
|
||||
out[i] = inp[i];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
|
||||
unsigned strided_i = get_strided_index(i, num_dims, dims, strides);
|
||||
out[i] = inp[strided_i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename S, typename T, typename I>
|
||||
__device__ void cast_through(
|
||||
const size_t numel,
|
||||
const size_t num_dims,
|
||||
const size_t *info,
|
||||
const S *inp,
|
||||
T *out
|
||||
) {
|
||||
const size_t *dims = info;
|
||||
const size_t *strides = info + num_dims;
|
||||
if (is_contiguous(num_dims, dims, strides)) {
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
|
||||
out[i] = static_cast<T>(static_cast<I>(inp[i]));
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) {
|
||||
unsigned strided_i = get_strided_index(i, num_dims, dims, strides);
|
||||
out[i] = static_cast<T>(static_cast<I>(inp[strided_i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#define CAST_OP(SRC_TYPENAME, DST_TYPENAME, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t numel, \
|
||||
@ -56,10 +9,22 @@ extern "C" __global__ void FN_NAME( \
|
||||
const SRC_TYPENAME *inp, \
|
||||
DST_TYPENAME *out \
|
||||
) { \
|
||||
cast_<SRC_TYPENAME, DST_TYPENAME>(numel, num_dims, info, inp, out); \
|
||||
const size_t *dims = info; \
|
||||
const size_t *strides = info + num_dims; \
|
||||
if (is_contiguous(num_dims, dims, strides)) { \
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
|
||||
out[i] = inp[i]; \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
|
||||
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
|
||||
out[i] = inp[strided_i]; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
|
||||
#define CAST_THROUGH_OP(SRC_TYPENAME, DST_TYPENAME, INT_TYPENAME, FN_NAME) \
|
||||
#define CAST_BF_OP(SRC_TYPENAME, DST_TYPENAME, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t numel, \
|
||||
const size_t num_dims, \
|
||||
@ -67,12 +32,25 @@ extern "C" __global__ void FN_NAME( \
|
||||
const SRC_TYPENAME *inp, \
|
||||
DST_TYPENAME *out \
|
||||
) { \
|
||||
cast_through<SRC_TYPENAME, DST_TYPENAME, INT_TYPENAME>(numel, num_dims, info, inp, out); \
|
||||
const size_t *dims = info; \
|
||||
const size_t *strides = info + num_dims; \
|
||||
if (is_contiguous(num_dims, dims, strides)) { \
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
|
||||
out[i] = (DST_TYPENAME) (float) inp[i]; \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
|
||||
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
|
||||
out[i] = (DST_TYPENAME) (float) inp[strided_i]; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
|
||||
#if __CUDA_ARCH__ >= 800
|
||||
CAST_OP(__nv_bfloat16, __nv_bfloat16, cast_bf16_bf16)
|
||||
|
||||
// CAST_OP(__nv_bfloat16, uint8_t, cast_bf16_u8)
|
||||
CAST_OP(__nv_bfloat16, uint32_t, cast_bf16_u32)
|
||||
CAST_OP(__nv_bfloat16, float, cast_bf16_f32)
|
||||
CAST_OP(__nv_bfloat16, double, cast_bf16_f64)
|
||||
@ -80,15 +58,14 @@ CAST_OP(uint8_t, __nv_bfloat16, cast_u8_bf16)
|
||||
CAST_OP(uint32_t, __nv_bfloat16, cast_u32_bf16)
|
||||
CAST_OP(float, __nv_bfloat16, cast_f32_bf16)
|
||||
CAST_OP(double, __nv_bfloat16, cast_f64_bf16)
|
||||
CAST_THROUGH_OP(__nv_bfloat16, uint8_t, float, cast_bf16_u8)
|
||||
CAST_THROUGH_OP(__nv_bfloat16, __half, float, cast_bf16_f16)
|
||||
CAST_THROUGH_OP(__half, __nv_bfloat16, float, cast_f16_bf16)
|
||||
CAST_BF_OP(__nv_bfloat16, __half, cast_bf16_f16)
|
||||
CAST_BF_OP(__half, __nv_bfloat16, cast_f16_bf16)
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
CAST_OP(__half, __half, cast_f16_f16)
|
||||
|
||||
CAST_THROUGH_OP(__half, uint8_t, float, cast_f16_u8)
|
||||
// CAST_OP(__half, uint8_t, cast_f16_u8 )
|
||||
CAST_OP(__half, uint32_t, cast_f16_u32)
|
||||
CAST_OP(__half, float, cast_f16_f32)
|
||||
CAST_OP(__half, double, cast_f16_f64)
|
||||
|
@ -1,17 +0,0 @@
|
||||
[package]
|
||||
name = "candle-metal-kernels"
|
||||
version.workspace = true
|
||||
edition.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
license.workspace = true
|
||||
|
||||
[dependencies]
|
||||
metal = { workspace = true }
|
||||
once_cell = "1.18.0"
|
||||
thiserror = { workspace = true }
|
||||
|
||||
[dev-dependencies]
|
||||
half = { workspace = true }
|
@ -1,3 +0,0 @@
|
||||
# candle-metal-kernels
|
||||
|
||||
This crate contains Metal kernels used from candle.
|
@ -1,44 +0,0 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define AFFINE(FN_NAME, TYPENAME) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
constant float &mul, \
|
||||
constant float &add, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = input[i] * mul + add; \
|
||||
} \
|
||||
} \
|
||||
|
||||
AFFINE(affine_float, float)
|
||||
AFFINE(affine_half, half)
|
||||
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
AFFINE(affine_bfloat, bfloat);
|
||||
#endif
|
@ -1,78 +0,0 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define BINARY(FN, TYPENAME, OUT_TYPENAME, FN_NAME, FN_NAME_STRIDED) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const TYPENAME *left, \
|
||||
device const TYPENAME *right, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
TYPENAME x = left[i]; \
|
||||
TYPENAME y = right[i]; \
|
||||
output[i] = OUT_TYPENAME(FN); \
|
||||
} \
|
||||
}\
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *left_strides, \
|
||||
constant size_t *right_strides, \
|
||||
device const TYPENAME *left, \
|
||||
device const TYPENAME *right, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
TYPENAME x = left[get_strided_index(i, num_dims, dims, left_strides)]; \
|
||||
TYPENAME y = left[get_strided_index(i, num_dims, dims, right_strides)]; \
|
||||
output[i] = OUT_TYPENAME(FN); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define BINARY_OP(FN, NAME) \
|
||||
BINARY(FN, float, float, NAME##_float, NAME##_float_strided); \
|
||||
BINARY(FN, half, half, NAME##_half, NAME##_half_strided);
|
||||
|
||||
#define BFLOAT_BINARY_OP(FN, NAME) \
|
||||
BINARY(FN, bfloat, bfloat, NAME##_bfloat, NAME##_bfloat_strided);
|
||||
|
||||
|
||||
BINARY_OP(x + y, add)
|
||||
BINARY_OP(x - y, sub)
|
||||
BINARY_OP(x * y, mul)
|
||||
BINARY_OP(x / y, div)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
BFLOAT_BINARY_OP(x + y, add)
|
||||
BFLOAT_BINARY_OP(x - y, sub)
|
||||
BFLOAT_BINARY_OP(x * y, mul)
|
||||
BFLOAT_BINARY_OP(x / y, div)
|
||||
#endif
|
@ -1,58 +0,0 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define CAST(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = RIGHT_TYPENAME(input[i]); \
|
||||
} \
|
||||
} \
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = RIGHT_TYPENAME(input[get_strided_index(i, num_dims, dims, strides)]); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
#endif
|
@ -1,75 +0,0 @@
|
||||
#include <metal_stdlib>
|
||||
using namespace metal;
|
||||
|
||||
template <typename T, typename I>
|
||||
void index_add(
|
||||
device I *ids [[buffer(0)]],
|
||||
device T *inp [[buffer(1)]],
|
||||
device T *out [[buffer(2)]],
|
||||
|
||||
constant uint &ids_dim_size,
|
||||
constant uint &left_size,
|
||||
constant uint &dst_dim_size,
|
||||
constant uint &right_size,
|
||||
|
||||
uint threadgroup_size [[threads_per_threadgroup]],
|
||||
uint threadgroup_position_in_grid [[threadgroup_position_in_grid]],
|
||||
uint thread_index [[thread_index_in_threadgroup]]
|
||||
) {
|
||||
|
||||
const uint gid = thread_index + (threadgroup_position_in_grid * threadgroup_size);
|
||||
if (gid >= left_size * right_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint i = gid;
|
||||
const uint pre = i / right_size;
|
||||
const uint post = i % right_size;
|
||||
|
||||
for (uint j = 0; j < ids_dim_size; j++) {
|
||||
const uint idx = ids[j];
|
||||
const uint src_i = (pre * ids_dim_size + j) * right_size + post;
|
||||
const uint dst_i = (pre * dst_dim_size + idx) * right_size + post;
|
||||
out[dst_i] += inp[src_i];
|
||||
}
|
||||
}
|
||||
|
||||
#define IA_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
|
||||
kernel void FN_NAME( \
|
||||
device INDEX_TYPENAME *ids [[buffer(0)]], \
|
||||
device TYPENAME *inp [[buffer(1)]], \
|
||||
device TYPENAME *out [[buffer(2)]], \
|
||||
constant uint &ids_dim_size, \
|
||||
constant uint &left_size, \
|
||||
constant uint &dst_dim_size, \
|
||||
constant uint &right_size, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint threadgroup_position_in_grid [[threadgroup_position_in_grid]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { index_add<TYPENAME, INDEX_TYPENAME>(ids, inp, out, ids_dim_size, left_size, dst_dim_size, right_size, threadgroup_size, threadgroup_position_in_grid, thread_index); } \
|
||||
|
||||
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
IA_OP(bfloat, int64_t, ia_i64_bf16)
|
||||
IA_OP(bfloat, uint32_t, ia_u32_bf16)
|
||||
IA_OP(bfloat, uint8_t, ia_u8_bf16)
|
||||
#endif
|
||||
|
||||
IA_OP(half, uint32_t, ia_u32_f16)
|
||||
IA_OP(half, uint8_t, ia_u8_f16)
|
||||
|
||||
IA_OP(float, int64_t, ia_i64_f32)
|
||||
IA_OP(uint8_t, int64_t, ia_i64_u8)
|
||||
IA_OP(int64_t, int64_t, ia_i64_i64)
|
||||
IA_OP(uint32_t, int64_t, ia_i64_u32)
|
||||
|
||||
IA_OP(float, uint32_t, ia_u32_f32)
|
||||
IA_OP(uint8_t, uint32_t, ia_u32_u8)
|
||||
IA_OP(int64_t, uint32_t, ia_u32_i64)
|
||||
IA_OP(uint32_t, uint32_t, ia_u32_u32)
|
||||
|
||||
IA_OP(float, uint8_t, ia_u8_f32)
|
||||
IA_OP(uint8_t, uint8_t, ia_u8_u8)
|
||||
IA_OP(uint32_t, uint8_t, ia_u8_u32)
|
||||
IA_OP(int64_t, uint8_t, ia_u8_i64)
|
@ -1,862 +0,0 @@
|
||||
use metal::{
|
||||
Buffer, CommandBufferRef, CompileOptions, ComputePipelineDescriptor, Device, Function, Library,
|
||||
MTLSize,
|
||||
};
|
||||
use std::collections::HashMap;
|
||||
use std::ffi::c_void;
|
||||
use std::sync::RwLock;
|
||||
|
||||
const AFFINE: &str = include_str!("affine.metal");
|
||||
const INDEXING: &str = include_str!("indexing.metal");
|
||||
const UNARY: &str = include_str!("unary.metal");
|
||||
const BINARY: &str = include_str!("binary.metal");
|
||||
const CAST: &str = include_str!("cast.metal");
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum Source {
|
||||
Affine,
|
||||
Indexing,
|
||||
Unary,
|
||||
Binary,
|
||||
Cast,
|
||||
}
|
||||
|
||||
macro_rules! ops{
|
||||
($($name:ident),+) => {
|
||||
|
||||
pub mod contiguous {
|
||||
pub struct Kernel(pub(crate) &'static str);
|
||||
$(
|
||||
pub mod $name {
|
||||
use super::Kernel;
|
||||
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_float"));
|
||||
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_half"));
|
||||
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat"));
|
||||
}
|
||||
)+
|
||||
}
|
||||
|
||||
pub mod strided {
|
||||
pub struct Kernel(pub(crate) &'static str);
|
||||
$(
|
||||
pub mod $name {
|
||||
use super::Kernel;
|
||||
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_float_strided"));
|
||||
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_half_strided"));
|
||||
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat_strided"));
|
||||
}
|
||||
)+
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
pub mod unary {
|
||||
ops!(cos, sin, exp, sqr, sqrt, neg, copy);
|
||||
}
|
||||
pub mod binary {
|
||||
ops!(add, sub, mul, div);
|
||||
}
|
||||
|
||||
// static LIBRARY_SOURCES: Lazy<HashMap<&'static str, &'static str>> = Lazy::new(|| {
|
||||
// let mut l = HashMap::new();
|
||||
// l.insert("affine", AFFINE);
|
||||
// l.insert("indexing", INDEXING);
|
||||
// l.insert("unary", UNARY);
|
||||
// l
|
||||
// });
|
||||
//
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum MetalKernelError {
|
||||
#[error("Could not lock kernel map: {0}")]
|
||||
LockError(String),
|
||||
#[error("Error while loading library: {0}")]
|
||||
LoadLibraryError(String),
|
||||
#[error("Error while loading function: {0}")]
|
||||
LoadFunctionError(String),
|
||||
}
|
||||
|
||||
impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
|
||||
fn from(e: std::sync::PoisonError<T>) -> Self {
|
||||
Self::LockError(e.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
type KernelMap<T> = HashMap<&'static str, T>;
|
||||
type Libraries = HashMap<Source, Library>;
|
||||
type Functions = KernelMap<Function>;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Kernels {
|
||||
libraries: RwLock<Libraries>,
|
||||
funcs: RwLock<Functions>,
|
||||
}
|
||||
|
||||
impl Kernels {
|
||||
pub fn new() -> Self {
|
||||
let libraries = RwLock::new(Libraries::new());
|
||||
let funcs = RwLock::new(Functions::new());
|
||||
Self { libraries, funcs }
|
||||
}
|
||||
|
||||
// pub fn init(device: &Device) -> Result<Self, MetalKernelError> {
|
||||
// let kernels = Self::new();
|
||||
// kernels.load_libraries(device)?;
|
||||
// Ok(kernels)
|
||||
// }
|
||||
|
||||
// fn load_libraries(&self, device: &Device) -> Result<(), MetalKernelError> {
|
||||
// for name in LIBRARY_SOURCES.keys() {
|
||||
// self.load_library(device, name)?;
|
||||
// }
|
||||
// Ok(())
|
||||
// }
|
||||
|
||||
fn get_library_source(&self, source: Source) -> &'static str {
|
||||
// LIBRARY_SOURCES.get(name).cloned()
|
||||
match source {
|
||||
Source::Affine => AFFINE,
|
||||
Source::Unary => UNARY,
|
||||
Source::Binary => BINARY,
|
||||
Source::Indexing => INDEXING,
|
||||
Source::Cast => CAST,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_library(
|
||||
&self,
|
||||
device: &Device,
|
||||
source: Source,
|
||||
) -> Result<Library, MetalKernelError> {
|
||||
let mut libraries = self.libraries.write()?;
|
||||
if let Some(lib) = libraries.get(&source) {
|
||||
Ok(lib.clone())
|
||||
} else {
|
||||
let source_content = self.get_library_source(source);
|
||||
let lib = device
|
||||
.new_library_with_source(source_content, &CompileOptions::new())
|
||||
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?;
|
||||
libraries.insert(source, lib.clone());
|
||||
Ok(lib)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_function(
|
||||
&self,
|
||||
device: &Device,
|
||||
source: Source,
|
||||
name: &'static str,
|
||||
) -> Result<Function, MetalKernelError> {
|
||||
let mut funcs = self.funcs.write()?;
|
||||
if let Some(func) = funcs.get(name) {
|
||||
Ok(func.clone())
|
||||
} else {
|
||||
let func = self
|
||||
.load_library(device, source)?
|
||||
.get_function(name, None)
|
||||
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
|
||||
funcs.insert(name, func.clone());
|
||||
Ok(func)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn call_unary_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: unary::contiguous::Kernel,
|
||||
length: usize,
|
||||
input: &Buffer,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// println!("Kernel {:?}", kernel_name.0);
|
||||
// assert_eq!(input.length(), output.length());
|
||||
let func = kernels.load_function(device, Source::Unary, kernel_name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, 4, void_ptr(&length));
|
||||
encoder.set_buffer(1, Some(&input), 0);
|
||||
encoder.set_buffer(2, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), length as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
pub fn call_unary_strided(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
name: unary::strided::Kernel,
|
||||
shape: &[usize],
|
||||
input: &Buffer,
|
||||
strides: &[usize],
|
||||
offset: usize,
|
||||
output: &mut Buffer,
|
||||
output_offset: usize,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let func = kernels.load_function(device, Source::Unary, name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let num_dims: usize = shape.len() as usize;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
encoder.set_bytes(0, std::mem::size_of::<usize>() as u64, void_ptr(&length));
|
||||
encoder.set_bytes(1, std::mem::size_of::<usize>() as u64, void_ptr(&num_dims));
|
||||
encoder.set_bytes(
|
||||
2,
|
||||
(shape.len() * std::mem::size_of::<usize>()) as u64,
|
||||
shape.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(
|
||||
3,
|
||||
(strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
strides.as_ptr() as *const c_void,
|
||||
);
|
||||
|
||||
encoder.set_buffer(4, Some(&input), offset as u64);
|
||||
encoder.set_buffer(5, Some(&output), output_offset as u64);
|
||||
|
||||
let width = output.length();
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let thread_group_size = MTLSize {
|
||||
width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width),
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_binary_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: binary::contiguous::Kernel,
|
||||
length: usize,
|
||||
left: &Buffer,
|
||||
right: &Buffer,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// println!("Kernel {:?}", kernel_name.0);
|
||||
// assert_eq!(input.length(), output.length());
|
||||
let func = kernels.load_function(device, Source::Binary, kernel_name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, 4, void_ptr(&length));
|
||||
encoder.set_buffer(1, Some(&left), 0);
|
||||
encoder.set_buffer(2, Some(&right), 0);
|
||||
encoder.set_buffer(3, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), length as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_binary_strided(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
name: binary::strided::Kernel,
|
||||
shape: &[usize],
|
||||
left_input: &Buffer,
|
||||
left_strides: &[usize],
|
||||
left_offset: usize,
|
||||
right_input: &Buffer,
|
||||
right_strides: &[usize],
|
||||
right_offset: usize,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let func = kernels.load_function(device, Source::Binary, name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let num_dims: usize = shape.len() as usize;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
encoder.set_bytes(0, std::mem::size_of::<usize>() as u64, void_ptr(&length));
|
||||
encoder.set_bytes(1, std::mem::size_of::<usize>() as u64, void_ptr(&num_dims));
|
||||
encoder.set_bytes(
|
||||
2,
|
||||
(shape.len() * std::mem::size_of::<usize>()) as u64,
|
||||
shape.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(
|
||||
3,
|
||||
(left_strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
left_strides.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(
|
||||
4,
|
||||
(right_strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
right_strides.as_ptr() as *const c_void,
|
||||
);
|
||||
|
||||
encoder.set_buffer(5, Some(&left_input), left_offset as u64);
|
||||
encoder.set_buffer(6, Some(&right_input), right_offset as u64);
|
||||
encoder.set_buffer(7, Some(&output), 0);
|
||||
|
||||
let width = output.length();
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let thread_group_size = MTLSize {
|
||||
width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width),
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_cast_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: &'static str,
|
||||
length: usize,
|
||||
input: &Buffer,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// println!("Kernel {:?}", kernel_name.0);
|
||||
// assert_eq!(input.length(), output.length());
|
||||
let func = kernels.load_function(device, Source::Cast, kernel_name)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, 4, void_ptr(&length));
|
||||
encoder.set_buffer(1, Some(&input), 0);
|
||||
encoder.set_buffer(2, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), length as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn void_ptr<T>(v: &T) -> *const c_void {
|
||||
(v as *const T).cast()
|
||||
}
|
||||
|
||||
pub fn call_affine(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
size: usize,
|
||||
input: &Buffer,
|
||||
output: &mut Buffer,
|
||||
mul: f32,
|
||||
add: f32,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let func = kernels.load_function(device, Source::Affine, "affine_float")?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, core::mem::size_of::<usize>() as u64, void_ptr(&size));
|
||||
encoder.set_bytes(1, core::mem::size_of::<f32>() as u64, void_ptr(&mul));
|
||||
encoder.set_bytes(2, core::mem::size_of::<f32>() as u64, void_ptr(&add));
|
||||
encoder.set_buffer(3, Some(&input), 0);
|
||||
encoder.set_buffer(4, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), size as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use half::f16;
|
||||
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
|
||||
use std::mem;
|
||||
|
||||
fn device() -> Device {
|
||||
Device::system_default().unwrap()
|
||||
}
|
||||
|
||||
fn approx(v: Vec<f32>, digits: i32) -> Vec<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
v.iter().map(|t| f32::round(t * b) / b).collect()
|
||||
}
|
||||
|
||||
fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
|
||||
}
|
||||
|
||||
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let input = device.new_buffer_with_data(
|
||||
v.as_ptr() as *const core::ffi::c_void,
|
||||
(v.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((v.len() * core::mem::size_of::<T>()) as u64, options);
|
||||
call_unary_contiguous(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
v.len(),
|
||||
&input,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let left = device.new_buffer_with_data(
|
||||
x.as_ptr() as *const core::ffi::c_void,
|
||||
(x.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let right = device.new_buffer_with_data(
|
||||
y.as_ptr() as *const core::ffi::c_void,
|
||||
(y.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((x.len() * core::mem::size_of::<T>()) as u64, options);
|
||||
call_binary_contiguous(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
x.len(),
|
||||
&left,
|
||||
&right,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<T>(x.len())
|
||||
}
|
||||
|
||||
fn run_strided<T: Clone>(
|
||||
v: &[T],
|
||||
kernel: unary::strided::Kernel,
|
||||
shape: &[usize],
|
||||
strides: &[usize],
|
||||
offset: usize,
|
||||
) -> Vec<T> {
|
||||
let device = device();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let input = device.new_buffer_with_data(
|
||||
v.as_ptr() as *const core::ffi::c_void,
|
||||
(v.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((v.len() * core::mem::size_of::<T>()) as u64, options);
|
||||
let kernels = Kernels::new();
|
||||
call_unary_strided(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
kernel,
|
||||
shape,
|
||||
&input,
|
||||
strides,
|
||||
offset,
|
||||
&mut output,
|
||||
0,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cos_f32() {
|
||||
let v = vec![1.0f32, 2.0, 3.0];
|
||||
let results = run(&v, unary::contiguous::cos::FLOAT);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403, -0.4161, -0.99]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403, -0.4161, -0.99]);
|
||||
|
||||
let v = vec![1.0f32; 10_000];
|
||||
let results = run(&v, unary::contiguous::cos::FLOAT);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cos_f32_strided() {
|
||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||
// Shape = [6], strides = [1];
|
||||
let shape = vec![6];
|
||||
let strides = vec![1];
|
||||
let offset = 0;
|
||||
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
|
||||
);
|
||||
assert_eq!(
|
||||
approx(expected, 4),
|
||||
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
|
||||
);
|
||||
|
||||
// Contiguous
|
||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||
let shape = vec![3, 2];
|
||||
let strides = vec![2, 1];
|
||||
let offset = 0;
|
||||
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
|
||||
);
|
||||
assert_eq!(
|
||||
approx(expected, 4),
|
||||
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
|
||||
);
|
||||
|
||||
// Transposed
|
||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||
let shape = vec![3, 2];
|
||||
let strides = vec![1, 3];
|
||||
let offset = 0;
|
||||
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(
|
||||
approx(results, 4),
|
||||
vec![0.5403, -0.6536, -0.4161, 0.2837, -0.99, 0.9602]
|
||||
);
|
||||
assert_eq!(
|
||||
approx(expected, 4),
|
||||
vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602]
|
||||
);
|
||||
|
||||
// Very large
|
||||
let v = vec![1.0f32; 10_000];
|
||||
let shape = vec![2, 5_000];
|
||||
let strides = vec![2, 1];
|
||||
let offset = 0;
|
||||
let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn binary_add_f32() {
|
||||
let left = vec![1.0f32, 2.0, 3.0];
|
||||
let right = vec![2.0f32, 3.1, 4.2];
|
||||
let results = run_binary(&left, &right, binary::contiguous::add::FLOAT);
|
||||
let expected: Vec<_> = left
|
||||
.iter()
|
||||
.zip(right.iter())
|
||||
.map(|(&x, &y)| x + y)
|
||||
.collect();
|
||||
assert_eq!(approx(results, 4), vec![3.0f32, 5.1, 7.2]);
|
||||
assert_eq!(approx(expected, 4), vec![3.0f32, 5.1, 7.2]);
|
||||
}
|
||||
|
||||
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let input = device.new_buffer_with_data(
|
||||
v.as_ptr() as *const core::ffi::c_void,
|
||||
(v.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((v.len() * core::mem::size_of::<U>()) as u64, options);
|
||||
call_cast_contiguous(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
v.len(),
|
||||
&input,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<U>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cast_u32_f32() {
|
||||
let v = vec![1u32, 2, 3];
|
||||
let results = cast(&v, "cast_u32_f32");
|
||||
let expected: Vec<_> = v.iter().map(|&v| v as f32).collect();
|
||||
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
|
||||
let v = vec![1.0f32; 10_000];
|
||||
let results = run(&v, unary::contiguous::cos::FLOAT);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
|
||||
let input = device.new_buffer_with_data(
|
||||
v.as_ptr() as *const core::ffi::c_void,
|
||||
(v.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((v.len() * core::mem::size_of::<T>()) as u64, options);
|
||||
|
||||
let size = v.len();
|
||||
|
||||
call_affine(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
size,
|
||||
&input,
|
||||
&mut output,
|
||||
mul as f32,
|
||||
add as f32,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn affine() {
|
||||
let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
|
||||
let mul = 1.5;
|
||||
let add = 1.1;
|
||||
let result = run_affine(&input, mul, add);
|
||||
assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]);
|
||||
|
||||
let input = [1.0f32; 40_000];
|
||||
let mul = 1.5;
|
||||
let add = 1.1;
|
||||
let result = run_affine(&input, mul, add);
|
||||
assert_eq!(result, vec![2.6; 40_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn index_add() {
|
||||
let device = Device::system_default().expect("no device found");
|
||||
|
||||
let options = CompileOptions::new();
|
||||
let library = device.new_library_with_source(INDEXING, &options).unwrap();
|
||||
|
||||
let left = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
|
||||
let right = [1.0f32; 15];
|
||||
let index = [0u32, 4, 2];
|
||||
let ids_dim_size = index.len() as u32;
|
||||
let dst_dim_size: u32 = 15;
|
||||
let left_size: u32 = 3;
|
||||
let right_size: u32 = 3;
|
||||
|
||||
let function = library.get_function("ia_u32_f32", None).unwrap();
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(&function)
|
||||
.unwrap();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
|
||||
let ids_size = (index.len() * mem::size_of::<u32>()) as NSUInteger;
|
||||
let input_size = (left.len() * mem::size_of::<f32>()) as NSUInteger;
|
||||
let output_size = (right.len() * mem::size_of::<f32>()) as NSUInteger;
|
||||
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
encoder.set_threadgroup_memory_length(0, output_size as NSUInteger);
|
||||
|
||||
let index_buffer = device.new_buffer_with_data(void_ptr(&index), ids_size, options);
|
||||
let inputs_buffer = device.new_buffer_with_data(void_ptr(&left), input_size, options);
|
||||
let outputs_buffer = device.new_buffer_with_data(void_ptr(&right), output_size, options);
|
||||
|
||||
encoder.set_buffer(0, Some(&index_buffer), 0);
|
||||
encoder.set_buffer(1, Some(&inputs_buffer), 0);
|
||||
encoder.set_buffer(2, Some(&outputs_buffer), 0);
|
||||
|
||||
encoder.set_bytes(3, 4, void_ptr(&ids_dim_size));
|
||||
encoder.set_bytes(4, 4, void_ptr(&left_size));
|
||||
encoder.set_bytes(5, 4, void_ptr(&dst_dim_size));
|
||||
encoder.set_bytes(6, 4, void_ptr(&right_size));
|
||||
|
||||
let grid_size = MTLSize {
|
||||
width: right.len() as NSUInteger,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let thread_group_size = MTLSize {
|
||||
width: pipeline.max_total_threads_per_threadgroup(),
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(grid_size, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
|
||||
let expected = vec![
|
||||
2.0, 3.0, 4.0, 1.0, 1.0, 1.0, 8.0, 9.0, 10.0, 1.0, 1.0, 1.0, 5.0, 6.0, 7.0,
|
||||
];
|
||||
let result = outputs_buffer.read_to_vec::<f32>(right.len());
|
||||
assert_eq!(result, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cos_f16() {
|
||||
let v: Vec<f16> = [1.0f32, 2.0, 3.0]
|
||||
.iter()
|
||||
.map(|v| f16::from_f32(*v))
|
||||
.collect();
|
||||
let results = run(&v, unary::contiguous::cos::HALF);
|
||||
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
|
||||
assert_eq!(approx_f16(results, 4), vec![0.54, -0.4165, -0.9902]);
|
||||
assert_eq!(approx_f16(expected, 4), vec![0.5405, -0.4163, -0.9902]);
|
||||
}
|
||||
}
|
@ -1,82 +0,0 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
|
||||
template <typename T> METAL_FUNC T neg(T in){ return -in; }
|
||||
template <typename T> METAL_FUNC T id(T in){ return in; }
|
||||
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = TYPENAME(FN(input[i])); \
|
||||
} \
|
||||
}\
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = TYPENAME(FN(input[get_strided_index(i, num_dims, dims, strides)])); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define UNARY_OP(NAME) \
|
||||
UNARY(NAME, float, NAME##_float, NAME##_float_strided); \
|
||||
UNARY(NAME, half, NAME##_half, NAME##_half_strided);
|
||||
|
||||
#define BFLOAT_UNARY_OP(NAME) \
|
||||
UNARY(NAME, bfloat, NAME##_bfloat, NAME##_bfloat_strided);
|
||||
|
||||
|
||||
UNARY_OP(cos)
|
||||
UNARY_OP(sin)
|
||||
UNARY_OP(sqr)
|
||||
UNARY_OP(sqrt)
|
||||
UNARY_OP(neg)
|
||||
UNARY_OP(exp)
|
||||
UNARY(id, float, copy_float, copy_float_strided)
|
||||
UNARY(id, half, copy_half, copy_half_strided)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
BFLOAT_UNARY_OP(cos)
|
||||
BFLOAT_UNARY_OP(sin)
|
||||
BFLOAT_UNARY_OP(sqr)
|
||||
BFLOAT_UNARY_OP(sqrt)
|
||||
BFLOAT_UNARY_OP(neg)
|
||||
BFLOAT_UNARY_OP(exp)
|
||||
#endif
|
@ -14,7 +14,6 @@ accelerate-src = { workspace = true, optional = true }
|
||||
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
|
||||
half = { workspace = true }
|
||||
thiserror = { workspace = true }
|
||||
tracing = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
num-traits = { workspace = true }
|
||||
rayon = { workspace = true }
|
||||
@ -29,5 +28,4 @@ clap = { workspace = true }
|
||||
default = []
|
||||
accelerate = ["dep:accelerate-src", "candle/accelerate"]
|
||||
cuda = ["candle/cuda"]
|
||||
metal = ["candle/metal"]
|
||||
mkl = ["dep:intel-mkl-src", "candle/mkl"]
|
||||
|
@ -180,25 +180,8 @@ impl Benchmark for Conv2dIm2Col {
|
||||
const ITERS: usize = 5;
|
||||
}
|
||||
|
||||
struct MatMul;
|
||||
impl Benchmark for MatMul {
|
||||
type PreProcessData = (Tensor, Tensor);
|
||||
type RunResult = Tensor;
|
||||
fn preprocess() -> Result<Self::PreProcessData> {
|
||||
let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
||||
let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
||||
Ok((lhs, rhs))
|
||||
}
|
||||
|
||||
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
||||
d.0.matmul(&d.1)
|
||||
}
|
||||
|
||||
const ITERS: usize = 100;
|
||||
}
|
||||
|
||||
struct MatVec;
|
||||
impl Benchmark for MatVec {
|
||||
struct Matmul;
|
||||
impl Benchmark for Matmul {
|
||||
type PreProcessData = (Tensor, Tensor);
|
||||
type RunResult = Tensor;
|
||||
fn preprocess() -> Result<Self::PreProcessData> {
|
||||
@ -288,7 +271,6 @@ enum Task {
|
||||
Conv2d,
|
||||
Conv2dIm2Col,
|
||||
Matmul,
|
||||
Matvec,
|
||||
Qmatmul,
|
||||
Softmax,
|
||||
SoftmaxLastDim,
|
||||
@ -311,8 +293,7 @@ fn main() -> Result<()> {
|
||||
Task::Conv1d => run::<Conv1d>(args.iters)?,
|
||||
Task::Conv2d => run::<Conv2d>(args.iters)?,
|
||||
Task::Conv2dIm2Col => run::<Conv2dIm2Col>(args.iters)?,
|
||||
Task::Matmul => run::<MatMul>(args.iters)?,
|
||||
Task::Matvec => run::<MatVec>(args.iters)?,
|
||||
Task::Matmul => run::<Matmul>(args.iters)?,
|
||||
Task::Softmax => run::<Softmax>(args.iters)?,
|
||||
Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?,
|
||||
Task::Qmatmul => run::<QMatMul>(args.iters)?,
|
||||
|
@ -9,11 +9,8 @@ pub enum Activation {
|
||||
#[serde(rename = "gated-gelu")]
|
||||
NewGelu,
|
||||
Relu,
|
||||
Relu2,
|
||||
Relu6,
|
||||
Silu,
|
||||
Sigmoid,
|
||||
Swish,
|
||||
Elu(f64),
|
||||
LeakyRelu(f64),
|
||||
}
|
||||
@ -25,11 +22,8 @@ impl super::Module for Activation {
|
||||
// https://github.com/huggingface/transformers/blob/12f043eaeaabfef6f6efea411d98e6f6d3c094b7/src/transformers/activations.py#L49-L78
|
||||
Self::NewGelu => xs.gelu(),
|
||||
Self::Relu => xs.relu(),
|
||||
Self::Relu2 => xs.relu()?.sqr(),
|
||||
Self::Relu6 => xs.clamp(0f32, 6f32),
|
||||
Self::Silu => crate::ops::silu(xs),
|
||||
Self::Sigmoid => crate::ops::sigmoid(xs),
|
||||
Self::Swish => xs * crate::ops::sigmoid(xs)?,
|
||||
&Self::Elu(alpha) => xs.elu(alpha),
|
||||
&Self::LeakyRelu(negative_slope) => crate::ops::leaky_relu(xs, negative_slope),
|
||||
}
|
||||
|
@ -100,23 +100,9 @@ impl BatchNorm {
|
||||
num_features,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn running_mean(&self) -> &Tensor {
|
||||
&self.running_mean
|
||||
}
|
||||
|
||||
pub fn running_var(&self) -> &Tensor {
|
||||
&self.running_var
|
||||
}
|
||||
|
||||
pub fn eps(&self) -> f64 {
|
||||
self.eps
|
||||
}
|
||||
|
||||
pub fn weight_and_bias(&self) -> Option<(&Tensor, &Tensor)> {
|
||||
self.weight_and_bias.as_ref().map(|v| (&v.0, &v.1))
|
||||
}
|
||||
|
||||
impl BatchNorm {
|
||||
pub fn forward_learning(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x_dtype = x.dtype();
|
||||
let internal_dtype = match x_dtype {
|
||||
|
@ -1,5 +1,4 @@
|
||||
//! Convolution Layers.
|
||||
use crate::BatchNorm;
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
@ -116,26 +115,6 @@ impl Conv2d {
|
||||
pub fn bias(&self) -> Option<&Tensor> {
|
||||
self.bias.as_ref()
|
||||
}
|
||||
|
||||
pub fn absorb_bn(&self, bn: &BatchNorm) -> Result<Self> {
|
||||
if let Some((w_bn, b_bn)) = bn.weight_and_bias() {
|
||||
let std_ = w_bn.div(&((bn.running_var() + bn.eps())?.sqrt()?))?;
|
||||
let weight = self
|
||||
.weight()
|
||||
.broadcast_mul(&(std_.reshape((self.weight().dims4()?.0, 1, 1, 1))?))?;
|
||||
let bias = match &self.bias {
|
||||
None => b_bn.sub(&(std_.mul(bn.running_mean())?))?,
|
||||
Some(bias) => b_bn.add(&(std_.mul(&bias.sub(bn.running_mean())?)?))?,
|
||||
};
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: Some(bias),
|
||||
config: self.config,
|
||||
})
|
||||
} else {
|
||||
candle::bail!("batch norm does not have weight_and_bias")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::Module for Conv2d {
|
||||
|
@ -1,12 +1,10 @@
|
||||
//! Layers defined by closures.
|
||||
use candle::{Result, Tensor};
|
||||
use std::sync::Arc;
|
||||
|
||||
/// A layer defined by a simple closure.
|
||||
#[derive(Clone)]
|
||||
pub struct Func<'a> {
|
||||
#[allow(clippy::type_complexity)]
|
||||
f: Arc<dyn 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync>,
|
||||
f: Box<dyn 'a + Fn(&Tensor) -> Result<Tensor> + Send>,
|
||||
}
|
||||
|
||||
impl<'a> std::fmt::Debug for Func<'a> {
|
||||
@ -17,9 +15,9 @@ impl<'a> std::fmt::Debug for Func<'a> {
|
||||
|
||||
pub fn func<'a, F>(f: F) -> Func<'a>
|
||||
where
|
||||
F: 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync,
|
||||
F: 'a + Fn(&Tensor) -> Result<Tensor> + Send,
|
||||
{
|
||||
Func { f: Arc::new(f) }
|
||||
Func { f: Box::new(f) }
|
||||
}
|
||||
|
||||
impl<'a> super::Module for Func<'a> {
|
||||
@ -27,47 +25,3 @@ impl<'a> super::Module for Func<'a> {
|
||||
(*self.f)(xs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Func<'a> {
|
||||
pub fn new<F>(f: F) -> Self
|
||||
where
|
||||
F: 'a + Fn(&Tensor) -> Result<Tensor> + Send + Sync,
|
||||
{
|
||||
Self { f: Arc::new(f) }
|
||||
}
|
||||
}
|
||||
|
||||
/// A layer defined by a simple closure.
|
||||
#[derive(Clone)]
|
||||
pub struct FuncT<'a> {
|
||||
#[allow(clippy::type_complexity)]
|
||||
f: Arc<dyn 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync>,
|
||||
}
|
||||
|
||||
impl<'a> std::fmt::Debug for FuncT<'a> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
write!(f, "func")
|
||||
}
|
||||
}
|
||||
|
||||
pub fn func_t<'a, F>(f: F) -> FuncT<'a>
|
||||
where
|
||||
F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync,
|
||||
{
|
||||
FuncT { f: Arc::new(f) }
|
||||
}
|
||||
|
||||
impl<'a> super::ModuleT for FuncT<'a> {
|
||||
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
|
||||
(*self.f)(xs, train)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> FuncT<'a> {
|
||||
pub fn new<F>(f: F) -> Self
|
||||
where
|
||||
F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync,
|
||||
{
|
||||
Self { f: Arc::new(f) }
|
||||
}
|
||||
}
|
||||
|
@ -11,7 +11,6 @@ pub mod loss;
|
||||
pub mod ops;
|
||||
pub mod optim;
|
||||
pub mod rnn;
|
||||
pub mod sequential;
|
||||
pub mod var_builder;
|
||||
pub mod var_map;
|
||||
|
||||
@ -22,7 +21,7 @@ pub use conv::{
|
||||
Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose2d, ConvTranspose2dConfig,
|
||||
};
|
||||
pub use embedding::{embedding, Embedding};
|
||||
pub use func::{func, func_t, Func, FuncT};
|
||||
pub use func::{func, Func};
|
||||
pub use group_norm::{group_norm, GroupNorm};
|
||||
pub use init::Init;
|
||||
pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
|
||||
@ -30,8 +29,7 @@ pub use linear::{linear, linear_no_bias, Linear};
|
||||
pub use ops::Dropout;
|
||||
pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD};
|
||||
pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN};
|
||||
pub use sequential::{seq, Sequential};
|
||||
pub use var_builder::VarBuilder;
|
||||
pub use var_map::VarMap;
|
||||
|
||||
pub use candle::{Module, ModuleT};
|
||||
pub use candle::Module;
|
||||
|
@ -48,25 +48,3 @@ pub fn cross_entropy(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
||||
pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
||||
(inp - target)?.sqr()?.mean_all()
|
||||
}
|
||||
|
||||
/// The binary cross-entropy with logit loss.
|
||||
///
|
||||
/// Arguments
|
||||
///
|
||||
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
||||
/// of categories. This is expected to raw logits.
|
||||
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
|
||||
/// of categories.
|
||||
///
|
||||
/// The resulting tensor is a scalar containing the average value over the batch.
|
||||
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
||||
let inp = crate::ops::sigmoid(inp)?;
|
||||
|
||||
let left_side = target * inp.log()?;
|
||||
let right_side = (target.affine(-1., 1.))? * inp.affine(-1., 1.)?.log()?;
|
||||
|
||||
let loss = left_side? + right_side?;
|
||||
let loss = loss?.neg()?.mean_all()?;
|
||||
|
||||
Ok(loss)
|
||||
}
|
||||
|
@ -1,6 +1,5 @@
|
||||
use candle::{CpuStorage, Layout, Result, Shape, Tensor};
|
||||
use rayon::prelude::*;
|
||||
use tracing::debug;
|
||||
|
||||
/// Applies the softmax function to the input tensor, rescaling the element so that elements on
|
||||
/// a slice of fixed index on dimension `dim` are between 0 and 1 and sum to 1.
|
||||
@ -85,12 +84,6 @@ impl Dropout {
|
||||
}
|
||||
}
|
||||
|
||||
impl candle::ModuleT for Dropout {
|
||||
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
|
||||
self.forward(xs, train)
|
||||
}
|
||||
}
|
||||
|
||||
struct SoftmaxLastDim;
|
||||
|
||||
impl candle::CustomOp1 for SoftmaxLastDim {
|
||||
@ -192,16 +185,6 @@ impl candle::CustomOp1 for SoftmaxLastDim {
|
||||
};
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &candle::MetalStorage,
|
||||
layout: &Layout,
|
||||
) -> Result<(candle::MetalStorage, Shape)> {
|
||||
debug!("TODO softmax-last-dim");
|
||||
Ok((storage.clone(), layout.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {
|
||||
|
@ -1,62 +0,0 @@
|
||||
//! A sequential layer used to chain multiple layers and closures.
|
||||
use candle::{Module, Result, Tensor};
|
||||
|
||||
/// A sequential layer combining multiple other layers.
|
||||
pub struct Sequential {
|
||||
layers: Vec<Box<dyn Module>>,
|
||||
}
|
||||
|
||||
/// Creates a new empty sequential layer.
|
||||
pub fn seq() -> Sequential {
|
||||
Sequential { layers: vec![] }
|
||||
}
|
||||
|
||||
impl Sequential {
|
||||
/// The number of sub-layers embedded in this layer.
|
||||
pub fn len(&self) -> i64 {
|
||||
self.layers.len() as i64
|
||||
}
|
||||
|
||||
/// Returns true if this layer does not have any sub-layer.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.layers.is_empty()
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Sequential {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter() {
|
||||
xs = layer.forward(&xs)?
|
||||
}
|
||||
Ok(xs)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sequential {
|
||||
/// Appends a layer after all the current layers.
|
||||
#[allow(clippy::should_implement_trait)]
|
||||
pub fn add<M: Module + 'static>(mut self, layer: M) -> Self {
|
||||
self.layers.push(Box::new(layer));
|
||||
self
|
||||
}
|
||||
|
||||
/// Appends a closure after all the current layers.
|
||||
pub fn add_fn<F>(self, f: F) -> Self
|
||||
where
|
||||
F: 'static + Fn(&Tensor) -> Result<Tensor> + Send + Sync,
|
||||
{
|
||||
self.add(super::func(f))
|
||||
}
|
||||
|
||||
/// Applies the forward pass and returns the output for each layer.
|
||||
pub fn forward_all(&self, xs: &Tensor) -> Result<Vec<Tensor>> {
|
||||
let mut vec = Vec::with_capacity(self.layers.len());
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter() {
|
||||
xs = layer.forward(&xs)?;
|
||||
vec.push(xs.clone())
|
||||
}
|
||||
Ok(vec)
|
||||
}
|
||||
}
|
@ -191,7 +191,6 @@ impl<'a, B: Backend> VarBuilderArgs<'a, B> {
|
||||
}
|
||||
|
||||
struct Zeros;
|
||||
|
||||
impl SimpleBackend for Zeros {
|
||||
fn get(&self, s: Shape, _: &str, _: crate::Init, dtype: DType, dev: &Device) -> Result<Tensor> {
|
||||
Tensor::zeros(s, dtype, dev)
|
||||
@ -326,39 +325,6 @@ impl SimpleBackend for candle::npy::NpzTensors {
|
||||
}
|
||||
}
|
||||
|
||||
impl SimpleBackend for candle::pickle::PthTensors {
|
||||
fn get(
|
||||
&self,
|
||||
s: Shape,
|
||||
path: &str,
|
||||
_: crate::Init,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let tensor = match self.get(path)? {
|
||||
None => Err(Error::CannotFindTensor {
|
||||
path: path.to_string(),
|
||||
}
|
||||
.bt())?,
|
||||
Some(tensor) => tensor,
|
||||
};
|
||||
let tensor = tensor.to_device(dev)?.to_dtype(dtype)?;
|
||||
if tensor.shape() != &s {
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg: format!("shape mismatch for {path}"),
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn contains_tensor(&self, name: &str) -> bool {
|
||||
self.get(name).map_or(false, |v| v.is_some())
|
||||
}
|
||||
}
|
||||
|
||||
impl SimpleBackend for candle::safetensors::MmapedSafetensors {
|
||||
fn get(
|
||||
&self,
|
||||
@ -472,16 +438,9 @@ impl<'a> VarBuilder<'a> {
|
||||
let npz = candle::npy::NpzTensors::new(p)?;
|
||||
Ok(Self::new(Box::new(npz), dtype, dev.clone()))
|
||||
}
|
||||
|
||||
/// Initializes a `VarBuilder` that retrieves tensors stored in a pytorch pth file.
|
||||
pub fn from_pth<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
|
||||
let pth = candle::pickle::PthTensors::new(p)?;
|
||||
Ok(Self::new(Box::new(pth), dtype, dev.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ShardedSafeTensors(candle::safetensors::MmapedSafetensors);
|
||||
|
||||
pub type ShardedVarBuilder<'a> = VarBuilderArgs<'a, ShardedSafeTensors>;
|
||||
|
||||
impl ShardedSafeTensors {
|
||||
|
@ -39,50 +39,3 @@ fn nll_and_cross_entropy() -> Result<()> {
|
||||
assert_eq!(to_vec0_round(&loss, 4)?, 1.1312);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/* Equivalent python code:
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
inp = torch.Tensor([[ 2.3611, -0.8813, -0.5006, -0.2178],
|
||||
[ 0.0419, 0.0763, -1.0457, -1.6692],
|
||||
[-1.0494, 0.8111, 1.5723, 1.2315],
|
||||
[ 1.3081, 0.6641, 1.1802, -0.2547],
|
||||
[ 0.5292, 0.7636, 0.3692, -0.8318]])
|
||||
|
||||
target = torch.Tensor([[0., 1., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[0., 0., 0., 1.],
|
||||
[1., 0., 0., 0.],
|
||||
[0., 0., 1., 0.]])
|
||||
|
||||
print(F.binary_cross_entropy_with_logits(inp, target))
|
||||
*/
|
||||
#[test]
|
||||
fn binary_cross_entropy_with_logit() -> Result<()> {
|
||||
let cpu = Device::Cpu;
|
||||
|
||||
let inp = [
|
||||
[2.3611f32, -0.8813, -0.5006, -0.2178],
|
||||
[0.0419, 0.0763, -1.0457, -1.6692],
|
||||
[-1.0494, 0.8111, 1.5723, 1.2315],
|
||||
[1.3081, 0.6641, 1.1802, -0.2547],
|
||||
[0.5292, 0.7636, 0.3692, -0.8318],
|
||||
];
|
||||
|
||||
let target = [
|
||||
[0.0f32, 1., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[0., 0., 0., 1.],
|
||||
[1., 0., 0., 0.],
|
||||
[0., 0., 1., 0.],
|
||||
];
|
||||
|
||||
let inp = Tensor::new(&inp, &cpu)?;
|
||||
let target = Tensor::new(&target, &cpu)?;
|
||||
|
||||
let loss = candle_nn::loss::binary_cross_entropy_with_logit(&inp, &target)?;
|
||||
|
||||
assert_eq!(to_vec0_round(&loss, 4)?, 0.8224);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -14,18 +14,14 @@ name = "candle"
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
accelerate-src = { workspace = true, optional = true }
|
||||
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.3.0" }
|
||||
half = { workspace = true }
|
||||
intel-mkl-src = { workspace = true, optional = true }
|
||||
pyo3 = { version = "0.20.0", features = ["extension-module", "abi3-py38"] }
|
||||
pyo3 = { version = "0.19.0", features = ["extension-module"] }
|
||||
|
||||
[build-dependencies]
|
||||
pyo3-build-config = "0.20"
|
||||
pyo3-build-config = "0.19"
|
||||
|
||||
[features]
|
||||
default = []
|
||||
accelerate = ["dep:accelerate-src", "candle/accelerate"]
|
||||
cuda = ["candle/cuda"]
|
||||
mkl = ["dep:intel-mkl-src","candle/mkl"]
|
||||
|
@ -1,3 +0,0 @@
|
||||
This python module contains external typehinting for certain `candle` classes. This is only necessary for `magic` methodes e.g. `__add__` as their text signature cant be set via pyo3.
|
||||
|
||||
The classes in this module will be parsed by the `stub.py` script and interleafed with the signatures of the actual pyo3 `candle.candle` module.
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user