mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00

* Add a quantized version of recurrent-gemma. * Share the rglru part. * Get the quantized gemma model to work.
322 lines
9.4 KiB
Rust
322 lines
9.4 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle_transformers::models::quantized_recurrent_gemma::Model as QModel;
|
|
use candle_transformers::models::recurrent_gemma::{Config, Model as BModel};
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_examples::token_output_stream::TokenOutputStream;
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
enum Model {
|
|
B(BModel),
|
|
Q(QModel),
|
|
}
|
|
|
|
impl Model {
|
|
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::B(m) => m.forward(xs, pos),
|
|
Self::Q(m) => m.forward(xs, pos),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
|
enum Which {
|
|
#[value(name = "2b")]
|
|
Base2B,
|
|
#[value(name = "2b-it")]
|
|
Instruct2B,
|
|
}
|
|
|
|
struct TextGeneration {
|
|
model: Model,
|
|
device: Device,
|
|
tokenizer: TokenOutputStream,
|
|
logits_processor: LogitsProcessor,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn new(
|
|
model: Model,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temp: Option<f64>,
|
|
top_p: Option<f64>,
|
|
top_k: usize,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
device: &Device,
|
|
) -> Self {
|
|
let sampling = match temp {
|
|
None => candle_transformers::generation::Sampling::ArgMax,
|
|
Some(temperature) => match top_p {
|
|
None => candle_transformers::generation::Sampling::TopK {
|
|
temperature,
|
|
k: top_k,
|
|
},
|
|
Some(top_p) => candle_transformers::generation::Sampling::TopKThenTopP {
|
|
temperature,
|
|
k: top_k,
|
|
p: top_p,
|
|
},
|
|
},
|
|
};
|
|
let logits_processor = LogitsProcessor::from_sampling(seed, sampling);
|
|
Self {
|
|
model,
|
|
tokenizer: TokenOutputStream::new(tokenizer),
|
|
logits_processor,
|
|
repeat_penalty,
|
|
repeat_last_n,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
use std::io::Write;
|
|
self.tokenizer.clear();
|
|
let mut tokens = self
|
|
.tokenizer
|
|
.tokenizer()
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
for &t in tokens.iter() {
|
|
if let Some(t) = self.tokenizer.next_token(t)? {
|
|
print!("{t}")
|
|
}
|
|
}
|
|
std::io::stdout().flush()?;
|
|
|
|
let mut generated_tokens = 0usize;
|
|
let eos_token = match self.tokenizer.get_token("<eos>") {
|
|
Some(token) => token,
|
|
None => anyhow::bail!("cannot find the <eos> token"),
|
|
};
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0..sample_len {
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let start_pos = tokens.len().saturating_sub(context_size);
|
|
let ctxt = &tokens[start_pos..];
|
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
|
let logits = self.model.forward(&input, start_pos)?;
|
|
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
|
let logits = if self.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
self.repeat_penalty,
|
|
&tokens[start_at..],
|
|
)?
|
|
};
|
|
|
|
let next_token = self.logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
generated_tokens += 1;
|
|
if next_token == eos_token {
|
|
break;
|
|
}
|
|
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
|
print!("{rest}");
|
|
}
|
|
std::io::stdout().flush()?;
|
|
println!(
|
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
|
generated_tokens as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
#[arg(long, default_value_t = 250)]
|
|
top_k: usize,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, short = 'n', default_value_t = 8000)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long, default_value = "main")]
|
|
revision: String,
|
|
|
|
#[arg(long)]
|
|
tokenizer_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
config_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
weight_files: Option<String>,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
/// The model to use.
|
|
#[arg(long, default_value = "2b")]
|
|
which: Which,
|
|
|
|
#[arg(long)]
|
|
quantized: bool,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature.unwrap_or(0.),
|
|
args.repeat_penalty,
|
|
args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let model_id = match &args.model_id {
|
|
Some(model_id) => model_id.to_string(),
|
|
None => match args.which {
|
|
Which::Base2B => "google/recurrentgemma-2b".to_string(),
|
|
Which::Instruct2B => "google/recurrentgemma-2b-it".to_string(),
|
|
},
|
|
};
|
|
let repo = api.repo(Repo::with_revision(
|
|
model_id,
|
|
RepoType::Model,
|
|
args.revision,
|
|
));
|
|
let tokenizer_filename = match args.tokenizer_file {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => repo.get("tokenizer.json")?,
|
|
};
|
|
let config_filename = match args.config_file {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => repo.get("config.json")?,
|
|
};
|
|
let filenames = match args.weight_files {
|
|
Some(files) => files
|
|
.split(',')
|
|
.map(std::path::PathBuf::from)
|
|
.collect::<Vec<_>>(),
|
|
None => {
|
|
if args.quantized {
|
|
let filename = match args.which {
|
|
Which::Base2B => "recurrent-gemma-2b-q4k.gguf",
|
|
Which::Instruct2B => "recurrent-gemma-7b-q4k.gguf",
|
|
};
|
|
let filename = api.model("lmz/candle-gemma".to_string()).get(filename)?;
|
|
vec![filename]
|
|
} else {
|
|
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
|
}
|
|
}
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let dtype = if device.is_cuda() {
|
|
DType::BF16
|
|
} else {
|
|
DType::F32
|
|
};
|
|
let model = if args.quantized {
|
|
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
|
&filenames[0],
|
|
&device,
|
|
)?;
|
|
Model::Q(QModel::new(&config, vb.pp("model"))?)
|
|
} else {
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
|
Model::B(BModel::new(&config, vb.pp("model"))?)
|
|
};
|
|
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(
|
|
model,
|
|
tokenizer,
|
|
args.seed,
|
|
args.temperature,
|
|
args.top_p,
|
|
args.top_k,
|
|
args.repeat_penalty,
|
|
args.repeat_last_n,
|
|
&device,
|
|
);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|