mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
47 lines
1.4 KiB
Rust
47 lines
1.4 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::Result;
|
|
use candle::{test_utils, Device, Tensor};
|
|
use candle_nn::{LayerNorm, Module};
|
|
|
|
#[test]
|
|
fn layer_norm() -> Result<()> {
|
|
let device = &Device::Cpu;
|
|
let w = Tensor::new(&[3f32], device)?;
|
|
let b = Tensor::new(&[0.5f32], device)?;
|
|
let ln = LayerNorm::new(w, b, 1e-8);
|
|
|
|
let two = Tensor::new(&[[[2f32]]], device)?;
|
|
let res = ln.forward(&two)?.flatten_all()?;
|
|
assert_eq!(res.to_vec1::<f32>()?, [0.5f32]);
|
|
|
|
let inp = Tensor::new(&[[[4f32, 0f32]]], device)?;
|
|
let res = ln.forward(&inp)?;
|
|
assert_eq!(res.to_vec3::<f32>()?, [[[3.5f32, -2.5]]]);
|
|
|
|
let inp = Tensor::new(&[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], device)?;
|
|
let res = ln.forward(&inp)?;
|
|
assert_eq!(
|
|
test_utils::to_vec3_round(&res, 4)?,
|
|
[[
|
|
[-3.1742, 0.5, 4.1742],
|
|
[-3.1742, 0.5, 4.1742],
|
|
[4.1742, 0.5, -3.1742]
|
|
]]
|
|
);
|
|
let mean = (res.sum_keepdim(2)? / 3.0)?;
|
|
// The average value should be `b`.
|
|
assert_eq!(mean.to_vec3::<f32>()?, [[[0.5], [0.5], [0.5]]]);
|
|
let std = (res.broadcast_sub(&mean)?.sqr()?.sum_keepdim(2)?.sqrt()? / 3.0)?;
|
|
// The standard deviation should be sqrt(`w`).
|
|
assert_eq!(
|
|
test_utils::to_vec3_round(&std, 4)?,
|
|
[[[1.7321], [1.7321], [1.7321]]]
|
|
);
|
|
Ok(())
|
|
}
|