mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00

* update whisper * update llama2c * update t5 * update phi and t5 * add a blip model * qlamma doc * add two new docs * add docs and emoji * additional models * openclip * pixtral * edits on the model docs * update yu * update a fe wmore models * add persimmon * add model-level doc * names * update module doc * links in heira * remove empty URL * update more hyperlinks * updated hyperlinks * more links * Update mod.rs --------- Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
365 lines
12 KiB
Rust
365 lines
12 KiB
Rust
//! Yi model implementation.
|
|
//!
|
|
//! This candle implementation uses a pre-trained Yi decoder-only large language model for inference.
|
|
//! The model was trained by 01.AI and follows a standard transformer architecture similar to LLaMA.
|
|
//!
|
|
//! Original code:
|
|
//! - 💻 [Yi Model](https://huggingface.co/01-ai/Yi-6B)
|
|
//! - 💻 [Yi Modeling Code](https://huggingface.co/01-ai/Yi-6B/blob/main/modeling_yi.py)
|
|
//! - 📝 [Technical Report](https://arxiv.org/abs/2403.04652) Yi: Open Foundation Models by 01.AI
|
|
//!
|
|
//! Key characteristics:
|
|
//! - Multi-head attention with rotary positional embeddings
|
|
//! - RMS normalization
|
|
//! - SwiGLU activation in feed-forward layers
|
|
//! - Grouped-query attention for efficient inference
|
|
//!
|
|
|
|
use crate::models::with_tracing::{linear_no_bias, Linear, RmsNorm};
|
|
use candle::{DType, Device, Module, Result, Tensor, D};
|
|
use candle_nn::{Activation, VarBuilder};
|
|
use std::sync::Arc;
|
|
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub struct Config {
|
|
pub(crate) vocab_size: usize,
|
|
pub(crate) hidden_size: usize,
|
|
pub(crate) intermediate_size: usize,
|
|
pub(crate) num_hidden_layers: usize,
|
|
pub(crate) num_attention_heads: usize,
|
|
pub(crate) num_key_value_heads: usize,
|
|
pub(crate) hidden_act: Activation,
|
|
pub(crate) max_position_embeddings: usize,
|
|
pub(crate) rms_norm_eps: f64,
|
|
pub(crate) rope_theta: f64,
|
|
}
|
|
|
|
impl Config {
|
|
pub fn config_6b() -> Self {
|
|
Self {
|
|
vocab_size: 64000,
|
|
hidden_size: 4096,
|
|
intermediate_size: 11008,
|
|
num_hidden_layers: 32,
|
|
num_attention_heads: 32,
|
|
num_key_value_heads: 4,
|
|
hidden_act: Activation::Silu,
|
|
max_position_embeddings: 4096,
|
|
rms_norm_eps: 1e-5,
|
|
rope_theta: 5_000_000.,
|
|
}
|
|
}
|
|
|
|
pub fn config_34b() -> Self {
|
|
Self {
|
|
vocab_size: 64000,
|
|
hidden_size: 7168,
|
|
intermediate_size: 20480,
|
|
num_hidden_layers: 60,
|
|
num_attention_heads: 56,
|
|
num_key_value_heads: 8,
|
|
hidden_act: Activation::Silu,
|
|
max_position_embeddings: 4096,
|
|
rms_norm_eps: 1e-5,
|
|
rope_theta: 5_000_000.,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct RotaryEmbedding {
|
|
sin: Tensor,
|
|
cos: Tensor,
|
|
}
|
|
|
|
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
|
|
let last_dim = xs.dim(D::Minus1)?;
|
|
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
|
|
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
|
|
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
|
|
}
|
|
|
|
impl RotaryEmbedding {
|
|
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
|
let dim = cfg.hidden_size / cfg.num_attention_heads;
|
|
let max_seq_len = cfg.max_position_embeddings;
|
|
let inv_freq: Vec<_> = (0..dim)
|
|
.step_by(2)
|
|
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
|
|
.collect();
|
|
let inv_freq_len = inv_freq.len();
|
|
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
|
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
|
.to_dtype(dtype)?
|
|
.reshape((max_seq_len, 1))?;
|
|
let freqs = t.matmul(&inv_freq)?;
|
|
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
|
|
Ok(Self {
|
|
sin: freqs.sin()?,
|
|
cos: freqs.cos()?,
|
|
})
|
|
}
|
|
|
|
fn apply_rotary_emb_qkv(
|
|
&self,
|
|
q: &Tensor,
|
|
k: &Tensor,
|
|
seqlen_offset: usize,
|
|
) -> Result<(Tensor, Tensor)> {
|
|
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
|
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
|
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
|
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
|
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
|
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
|
|
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
|
|
Ok((q_embed, k_embed))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
#[allow(clippy::upper_case_acronyms)]
|
|
struct MLP {
|
|
gate_proj: Linear,
|
|
up_proj: Linear,
|
|
down_proj: Linear,
|
|
act_fn: Activation,
|
|
}
|
|
|
|
impl MLP {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let hidden_sz = cfg.hidden_size;
|
|
let intermediate_sz = cfg.intermediate_size;
|
|
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
|
|
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
|
|
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
|
|
Ok(Self {
|
|
gate_proj,
|
|
up_proj,
|
|
down_proj,
|
|
act_fn: cfg.hidden_act,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for MLP {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
|
let rhs = xs.apply(&self.up_proj)?;
|
|
(lhs * rhs)?.apply(&self.down_proj)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Attention {
|
|
q_proj: Linear,
|
|
k_proj: Linear,
|
|
v_proj: Linear,
|
|
o_proj: Linear,
|
|
num_heads: usize,
|
|
num_kv_heads: usize,
|
|
num_kv_groups: usize,
|
|
head_dim: usize,
|
|
hidden_size: usize,
|
|
rotary_emb: Arc<RotaryEmbedding>,
|
|
kv_cache: Option<(Tensor, Tensor)>,
|
|
}
|
|
|
|
impl Attention {
|
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let hidden_sz = cfg.hidden_size;
|
|
let num_heads = cfg.num_attention_heads;
|
|
let num_kv_heads = cfg.num_key_value_heads;
|
|
let num_kv_groups = num_heads / num_kv_heads;
|
|
let head_dim = hidden_sz / num_heads;
|
|
let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
|
|
let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
|
|
let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
|
|
let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
|
|
Ok(Self {
|
|
q_proj,
|
|
k_proj,
|
|
v_proj,
|
|
o_proj,
|
|
num_heads,
|
|
num_kv_heads,
|
|
num_kv_groups,
|
|
head_dim,
|
|
hidden_size: hidden_sz,
|
|
rotary_emb,
|
|
kv_cache: None,
|
|
})
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
xs: &Tensor,
|
|
attention_mask: Option<&Tensor>,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
let (b_sz, q_len, _) = xs.dims3()?;
|
|
|
|
let query_states = self.q_proj.forward(xs)?;
|
|
let key_states = self.k_proj.forward(xs)?;
|
|
let value_states = self.v_proj.forward(xs)?;
|
|
|
|
let query_states = query_states
|
|
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
let key_states = key_states
|
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
let value_states = value_states
|
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
|
|
let (query_states, key_states) =
|
|
self.rotary_emb
|
|
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
|
|
|
let (key_states, value_states) = match &self.kv_cache {
|
|
None => (key_states, value_states),
|
|
Some((prev_k, prev_v)) => {
|
|
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
|
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
|
(key_states, value_states)
|
|
}
|
|
};
|
|
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
|
|
|
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
|
|
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
|
|
|
|
let attn_output = {
|
|
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
|
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
|
|
|
let attn_weights = match attention_mask {
|
|
None => attn_weights,
|
|
Some(mask) => attn_weights.broadcast_add(mask)?,
|
|
};
|
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
|
attn_weights.matmul(&value_states)?
|
|
};
|
|
attn_output
|
|
.transpose(1, 2)?
|
|
.reshape((b_sz, q_len, self.hidden_size))?
|
|
.apply(&self.o_proj)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct DecoderLayer {
|
|
self_attn: Attention,
|
|
mlp: MLP,
|
|
ln1: RmsNorm,
|
|
ln2: RmsNorm,
|
|
}
|
|
|
|
impl DecoderLayer {
|
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
|
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
|
let ln1 = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
|
let ln2 = RmsNorm::new(
|
|
cfg.hidden_size,
|
|
cfg.rms_norm_eps,
|
|
vb.pp("post_attention_layernorm"),
|
|
)?;
|
|
Ok(Self {
|
|
self_attn,
|
|
mlp,
|
|
ln1,
|
|
ln2,
|
|
})
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
xs: &Tensor,
|
|
attention_mask: Option<&Tensor>,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
let residual = xs;
|
|
let xs = self.ln1.forward(xs)?;
|
|
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
|
let xs = (xs + residual)?;
|
|
let residual = &xs;
|
|
let xs = xs.apply(&self.ln2)?.apply(&self.mlp)?;
|
|
residual + xs
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Model {
|
|
embed_tokens: candle_nn::Embedding,
|
|
layers: Vec<DecoderLayer>,
|
|
norm: RmsNorm,
|
|
lm_head: Linear,
|
|
device: Device,
|
|
dtype: DType,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let vb_m = vb.pp("model");
|
|
let embed_tokens =
|
|
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
|
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
|
|
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
|
let vb_l = vb_m.pp("layers");
|
|
for layer_idx in 0..cfg.num_hidden_layers {
|
|
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
|
layers.push(layer)
|
|
}
|
|
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
|
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
|
Ok(Self {
|
|
embed_tokens,
|
|
layers,
|
|
norm,
|
|
lm_head,
|
|
device: vb.device().clone(),
|
|
dtype: vb.dtype(),
|
|
})
|
|
}
|
|
|
|
fn prepare_decoder_attention_mask(
|
|
&self,
|
|
b_size: usize,
|
|
tgt_len: usize,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
// Sliding window mask?
|
|
let mask: Vec<_> = (0..tgt_len)
|
|
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
|
.collect();
|
|
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
|
let mask = if seqlen_offset > 0 {
|
|
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
|
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
|
} else {
|
|
mask
|
|
};
|
|
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
|
.to_dtype(self.dtype)
|
|
}
|
|
|
|
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
|
let (b_size, seq_len) = input_ids.dims2()?;
|
|
let attention_mask = if seq_len <= 1 {
|
|
None
|
|
} else {
|
|
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
|
Some(mask)
|
|
};
|
|
let mut xs = self.embed_tokens.forward(input_ids)?;
|
|
for layer in self.layers.iter_mut() {
|
|
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
|
}
|
|
xs.narrow(1, seq_len - 1, 1)?
|
|
.apply(&self.norm)?
|
|
.apply(&self.lm_head)
|
|
}
|
|
}
|