mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00

* Start sketching parler-tts support. * Implement the attention. * Add the example code. * Fix the example. * Add the description + t5 encode it. * More of the parler forward pass. * Fix the positional embeddings. * Support random sampling in generation. * Handle EOS. * Add the python decoder. * Proper causality mask.
176 lines
5.0 KiB
Rust
176 lines
5.0 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::Error as E;
|
|
use clap::Parser;
|
|
|
|
use candle::{DType, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::models::parler_tts::{Config, Model};
|
|
use tokenizers::Tokenizer;
|
|
|
|
#[derive(Parser)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// Display the token for the specified prompt.
|
|
#[arg(long)]
|
|
verbose_prompt: bool,
|
|
|
|
#[arg(long, default_value = "Hey, how are you doing today?")]
|
|
prompt: String,
|
|
|
|
#[arg(
|
|
long,
|
|
default_value = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
|
)]
|
|
description: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long, default_value_t = 1.0)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 0)]
|
|
seed: u64,
|
|
|
|
#[arg(long, default_value_t = 5000)]
|
|
sample_len: usize,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.0)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
#[arg(long)]
|
|
quantized: bool,
|
|
|
|
/// Use f16 precision for all the computations rather than f32.
|
|
#[arg(long)]
|
|
f16: bool,
|
|
|
|
#[arg(long)]
|
|
model_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
tokenizer_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
config_file: Option<String>,
|
|
|
|
#[arg(long, default_value_t = 512)]
|
|
max_steps: usize,
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature, args.repeat_penalty, args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let model_id = match args.model_id {
|
|
Some(model_id) => model_id.to_string(),
|
|
None => "parler-tts/parler-tts-large-v1".to_string(),
|
|
};
|
|
let revision = match args.revision {
|
|
Some(r) => r,
|
|
None => "main".to_string(),
|
|
};
|
|
let repo = api.repo(hf_hub::Repo::with_revision(
|
|
model_id,
|
|
hf_hub::RepoType::Model,
|
|
revision,
|
|
));
|
|
let model_files = match args.model_file {
|
|
Some(m) => vec![m.into()],
|
|
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
|
};
|
|
let config = match args.config_file {
|
|
Some(m) => m.into(),
|
|
None => repo.get("config.json")?,
|
|
};
|
|
let tokenizer = match args.tokenizer_file {
|
|
Some(m) => m.into(),
|
|
None => repo.get("tokenizer.json")?,
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&model_files, DType::F32, &device)? };
|
|
let config: Config = serde_json::from_reader(std::fs::File::open(config)?)?;
|
|
let mut model = Model::new(&config, vb)?;
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let description_tokens = tokenizer
|
|
.encode(args.description, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let description_tokens = Tensor::new(description_tokens, &device)?.unsqueeze(0)?;
|
|
println!("{description_tokens}");
|
|
|
|
let prompt_tokens = tokenizer
|
|
.encode(args.prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let prompt_tokens = Tensor::new(prompt_tokens, &device)?.unsqueeze(0)?;
|
|
println!("{prompt_tokens}");
|
|
|
|
let lp = candle_transformers::generation::LogitsProcessor::new(
|
|
args.seed,
|
|
Some(args.temperature),
|
|
args.top_p,
|
|
);
|
|
let codes = model.generate(&prompt_tokens, &description_tokens, lp, args.max_steps)?;
|
|
println!("{codes}");
|
|
let codes = codes.to_dtype(DType::I64)?;
|
|
codes.save_safetensors("codes", "out.safetensors")?;
|
|
Ok(())
|
|
}
|