mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 12:06:35 +00:00

* update whisper * update llama2c * update t5 * update phi and t5 * add a blip model * qlamma doc * add two new docs * add docs and emoji * additional models * openclip * pixtral * edits on the model docs * update yu * update a fe wmore models * add persimmon * add model-level doc * names * update module doc * links in heira * remove empty URL * update more hyperlinks * updated hyperlinks * more links * Update mod.rs --------- Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
302 lines
8.1 KiB
Rust
302 lines
8.1 KiB
Rust
//! Hiera inference implementation based on timm.
|
|
//!
|
|
//!
|
|
//! - 💻 [Hiera](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/hiera.py)
|
|
//! - 📝 [Paper](https://arxiv.org/abs/2306.00989). Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
|
|
|
|
use candle::{Result, D};
|
|
use candle_nn::{conv2d, layer_norm, linear, ops::softmax, Conv2dConfig, Func, VarBuilder};
|
|
|
|
#[derive(Debug, Clone, serde::Deserialize)]
|
|
pub struct Config {
|
|
channels: usize,
|
|
heads: usize,
|
|
stages: [usize; 4],
|
|
}
|
|
|
|
impl Config {
|
|
pub fn tiny() -> Self {
|
|
Self {
|
|
channels: 96,
|
|
heads: 1,
|
|
stages: [1, 2, 7, 2],
|
|
}
|
|
}
|
|
pub fn small() -> Self {
|
|
Self {
|
|
channels: 96,
|
|
heads: 1,
|
|
stages: [1, 2, 11, 2],
|
|
}
|
|
}
|
|
pub fn base() -> Self {
|
|
Self {
|
|
channels: 96,
|
|
heads: 1,
|
|
stages: [2, 3, 16, 3],
|
|
}
|
|
}
|
|
pub fn base_plus() -> Self {
|
|
Self {
|
|
channels: 112,
|
|
heads: 2,
|
|
stages: [2, 3, 16, 3],
|
|
}
|
|
}
|
|
pub fn large() -> Self {
|
|
Self {
|
|
channels: 144,
|
|
heads: 2,
|
|
stages: [2, 6, 36, 4],
|
|
}
|
|
}
|
|
pub fn huge() -> Self {
|
|
Self {
|
|
channels: 256,
|
|
heads: 4,
|
|
stages: [2, 6, 36, 4],
|
|
}
|
|
}
|
|
}
|
|
|
|
const NUM_TOKENS: usize = 56 * 56;
|
|
|
|
fn hiera_embeddings(channels: usize, vb: VarBuilder) -> Result<Func<'static>> {
|
|
let conv_cfg = Conv2dConfig {
|
|
stride: 4,
|
|
padding: 3,
|
|
..Default::default()
|
|
};
|
|
let proj = conv2d(3, channels, 7, conv_cfg, vb.pp("patch_embed.proj"))?;
|
|
|
|
let pos_embed = vb.get((1, NUM_TOKENS, channels), "pos_embed")?;
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let xs = xs.apply(&proj)?;
|
|
let (b, c, _, _) = xs.dims4()?;
|
|
let xs = xs.reshape((b, c, ()))?.transpose(1, 2)?;
|
|
let xs = xs.broadcast_add(&pos_embed)?;
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_unroll() -> Result<Func<'static>> {
|
|
Ok(Func::new(move |xs| {
|
|
let mut xs = xs.clone();
|
|
let (mut b, _, c) = xs.dims3()?;
|
|
let mut size = 56;
|
|
|
|
xs = xs.reshape((b, size, size, c))?;
|
|
for _ in 0..3 {
|
|
size /= 2;
|
|
let new_shape = &[b, size, 2, size, 2, c];
|
|
xs = xs.reshape(new_shape)?;
|
|
xs = xs.permute((0, 2, 4, 1, 3, 5))?;
|
|
xs = xs.flatten(0, 2)?;
|
|
b *= 4;
|
|
}
|
|
xs = xs.reshape(((), NUM_TOKENS, c))?;
|
|
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_mlp(in_channels: usize, out_channels: usize, vb: VarBuilder) -> Result<Func<'static>> {
|
|
let fc1 = linear(in_channels, out_channels, vb.pp("fc1"))?;
|
|
let fc2 = linear(out_channels, in_channels, vb.pp("fc2"))?;
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let xs = xs.apply(&fc1)?.gelu()?.apply(&fc2)?;
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_attention(
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
heads: usize,
|
|
q_stride: usize,
|
|
window_size: usize,
|
|
use_mask_attention: bool,
|
|
vb: VarBuilder,
|
|
) -> Result<Func<'static>> {
|
|
let head_dim = out_channels / heads;
|
|
|
|
let scale = (head_dim as f64).powf(-0.5);
|
|
|
|
let proj = linear(out_channels, out_channels, vb.pp("proj"))?;
|
|
let qkv = linear(in_channels, out_channels * 3, vb.pp("qkv"))?;
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let (b, n, _) = xs.dims3()?;
|
|
|
|
let num_windows = if use_mask_attention {
|
|
n / (q_stride * window_size)
|
|
} else {
|
|
1
|
|
};
|
|
let qkv = xs.apply(&qkv)?;
|
|
|
|
let ec = qkv.elem_count();
|
|
let s = ec / (b * num_windows * 3 * heads * head_dim);
|
|
let qkv = qkv
|
|
.reshape((b, s, num_windows, 3, heads, head_dim))?
|
|
.permute((3, 0, 4, 2, 1, 5))?;
|
|
|
|
let mut q = qkv.get(0)?;
|
|
let k = qkv.get(1)?;
|
|
let v = qkv.get(2)?;
|
|
|
|
if q_stride > 1 {
|
|
let ec = q.elem_count();
|
|
let s = ec / (b * num_windows * q_stride * heads * head_dim);
|
|
q = q
|
|
.reshape((b, heads, num_windows, q_stride, s, head_dim))?
|
|
.max(3)?;
|
|
}
|
|
|
|
let q = (q * scale)?;
|
|
|
|
// Q, K and V are 6 dimensional with the first dimension being 1.
|
|
// Squeeze them for the attention calculation since 6 dimensional matmuls are not supported.
|
|
let att = q
|
|
.squeeze(0)?
|
|
.matmul(&k.squeeze(0)?.transpose(D::Minus2, D::Minus1)?)?;
|
|
let att = softmax(&att, D::Minus1)?;
|
|
let xs = att.matmul(&v.squeeze(0)?)?.unsqueeze(0)?;
|
|
|
|
let xs = xs.transpose(1, 3)?.reshape((b, (), out_channels))?;
|
|
let xs = xs.apply(&proj)?;
|
|
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_block(
|
|
heads: usize,
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
q_stride: usize,
|
|
window_size: usize,
|
|
use_mask_attention: bool,
|
|
vb: VarBuilder,
|
|
) -> Result<Func<'static>> {
|
|
let norm1 = layer_norm(in_channels, 1e-6, vb.pp("norm1"))?;
|
|
let norm2 = layer_norm(out_channels, 1e-6, vb.pp("norm2"))?;
|
|
let proj = linear(in_channels, out_channels, vb.pp("proj"));
|
|
let stride = 4;
|
|
let mlp = hiera_mlp(out_channels, out_channels * 4, vb.pp("mlp"))?;
|
|
let attn = hiera_attention(
|
|
in_channels,
|
|
out_channels,
|
|
heads,
|
|
q_stride,
|
|
window_size,
|
|
use_mask_attention,
|
|
vb.pp("attn"),
|
|
)?;
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let mut xs = xs.clone();
|
|
let xs_norm = xs.apply_t(&norm1, false)?;
|
|
if let Ok(p) = &proj {
|
|
xs = xs_norm.apply(p)?;
|
|
let (a, _, d) = xs.dims3()?;
|
|
xs = xs.reshape((a, stride, (), d))?.max(1)?;
|
|
}
|
|
let xs = (xs + &xs_norm.apply(&attn)?)?;
|
|
|
|
let xs = (&xs + &xs.apply_t(&norm2, false)?.apply(&mlp)?)?;
|
|
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_blocks(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
|
|
let nblocks = cfg.stages.iter().sum();
|
|
let mut blocks = Vec::with_capacity(nblocks);
|
|
|
|
let mut out_channels = cfg.channels;
|
|
let mut in_channels = out_channels;
|
|
let mut heads = cfg.heads;
|
|
let mut b = 0;
|
|
|
|
let mut q_stride = 1;
|
|
let mut window_size = 64;
|
|
|
|
for s in 0..4 {
|
|
let use_mask_attention = s < 2;
|
|
|
|
for _ in 0..cfg.stages[s] {
|
|
blocks.push(hiera_block(
|
|
heads,
|
|
in_channels,
|
|
out_channels,
|
|
q_stride,
|
|
window_size,
|
|
use_mask_attention,
|
|
vb.pp(b),
|
|
)?);
|
|
b += 1;
|
|
in_channels = out_channels;
|
|
q_stride = 1;
|
|
}
|
|
q_stride = 4;
|
|
out_channels *= 2;
|
|
heads *= 2;
|
|
window_size /= 4;
|
|
}
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let mut xs = xs.clone();
|
|
for block in blocks.iter() {
|
|
xs = xs.apply(block)?
|
|
}
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
fn hiera_head(outputs: usize, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
|
|
let norm = layer_norm(outputs, 1e-6, vb.pp("norm"))?;
|
|
let linear = linear(outputs, nclasses, vb.pp("fc"))?;
|
|
Ok(Func::new(move |xs| {
|
|
xs.apply_t(&norm, false)?.apply(&linear)
|
|
}))
|
|
}
|
|
|
|
// Build a hiera model for a given configuration.
|
|
fn hiera_model(cfg: &Config, nclasses: Option<usize>, vb: VarBuilder) -> Result<Func<'static>> {
|
|
let cls = match nclasses {
|
|
None => None,
|
|
Some(nclasses) => {
|
|
let outputs = cfg.channels * 8;
|
|
let head = hiera_head(outputs, nclasses, vb.pp("head"))?;
|
|
Some(head)
|
|
}
|
|
};
|
|
|
|
let embeddings = hiera_embeddings(cfg.channels, vb.clone())?;
|
|
let unroll = hiera_unroll()?;
|
|
let blocks = hiera_blocks(cfg, vb.pp("blocks"))?;
|
|
|
|
Ok(Func::new(move |xs| {
|
|
let xs = xs
|
|
.apply(&embeddings)?
|
|
.apply(&unroll)?
|
|
.apply(&blocks)?
|
|
.mean(1)?;
|
|
match &cls {
|
|
None => Ok(xs),
|
|
Some(cls) => xs.apply(cls),
|
|
}
|
|
}))
|
|
}
|
|
|
|
pub fn hiera(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
|
|
hiera_model(cfg, Some(nclasses), vb)
|
|
}
|
|
|
|
pub fn hiera_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
|
|
hiera_model(cfg, None, vb)
|
|
}
|