mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00

* Add the CSM model. * Add some code to load the model. * Load the text tokenizer. * Add frame generation. * Get the sampling to work. * Rope fix. * Autoregressive generation. * Generate some audio file. * Use the actual prompt. * Support multiple turns. * Add a very barebone readme. * Move some of the shared bits to the model.
244 lines
7.4 KiB
Rust
244 lines
7.4 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle_transformers::models::csm::{Config, Model};
|
|
|
|
use candle::{DType, IndexOp, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
|
enum Which {
|
|
#[value(name = "1b")]
|
|
Csm1b,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
use_flash_attn: bool,
|
|
|
|
/// The prompt to be used for the generation, use a | to separate the speakers.
|
|
#[arg(long, default_value = "Hey how are you doing today?")]
|
|
prompt: String,
|
|
|
|
/// The voices to be used, in safetensors format.
|
|
#[arg(long)]
|
|
voices: String,
|
|
|
|
/// The output file using the wav format.
|
|
#[arg(long, default_value = "out.wav")]
|
|
out_file: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long, default_value_t = 0.7)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// Only sample among the top K samples.
|
|
#[arg(long)]
|
|
top_k: Option<usize>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, short = 'n', default_value_t = 10000)]
|
|
sample_len: usize,
|
|
|
|
/// The model size to use.
|
|
#[arg(long, default_value = "1b")]
|
|
which: Which,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long, default_value = "main")]
|
|
revision: String,
|
|
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
|
|
#[arg(long)]
|
|
config: Option<String>,
|
|
|
|
#[arg(long)]
|
|
weights: Option<String>,
|
|
|
|
/// The mimi model weight file, in safetensor format.
|
|
#[arg(long)]
|
|
mimi_weights: Option<String>,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature, args.repeat_penalty, args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let model_id = match args.model_id {
|
|
Some(model_id) => model_id,
|
|
None => {
|
|
let name = match args.which {
|
|
Which::Csm1b => "sesame/csm-1b",
|
|
};
|
|
name.to_string()
|
|
}
|
|
};
|
|
let repo = api.repo(Repo::with_revision(
|
|
model_id,
|
|
RepoType::Model,
|
|
args.revision,
|
|
));
|
|
let filenames = match args.weights {
|
|
Some(files) => files
|
|
.split(',')
|
|
.map(std::path::PathBuf::from)
|
|
.collect::<Vec<_>>(),
|
|
None => vec![repo.get("model.safetensors")?],
|
|
};
|
|
let tokenizer_filename = match args.tokenizer {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => api
|
|
.model("meta-llama/Llama-3.2-1B".to_string())
|
|
.get("tokenizer.json")?,
|
|
};
|
|
let mimi_filename = match args.mimi_weights {
|
|
Some(model) => std::path::PathBuf::from(model),
|
|
None => Api::new()?
|
|
.model("kyutai/mimi".to_string())
|
|
.get("model.safetensors")?,
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let config: Config = match args.config {
|
|
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
|
|
None => {
|
|
let config_file = repo.get("config.json")?;
|
|
serde_json::from_slice(&std::fs::read(config_file)?)?
|
|
}
|
|
};
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let (mut model, device) = {
|
|
let dtype = device.bf16_default_to_f32();
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
|
let model = Model::new(&config, vb)?;
|
|
(model, device)
|
|
};
|
|
let mut mimi_model = {
|
|
use candle_transformers::models::mimi;
|
|
let vb =
|
|
unsafe { VarBuilder::from_mmaped_safetensors(&[mimi_filename], DType::F32, &device)? };
|
|
let config = mimi::Config::v0_1(Some(32));
|
|
mimi::Model::new(config, vb)?
|
|
};
|
|
let cb = config.audio_num_codebooks;
|
|
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let voices = candle::safetensors::load(args.voices, &device)?;
|
|
let mut lp = candle_transformers::generation::LogitsProcessor::new(
|
|
args.seed,
|
|
Some(args.temperature),
|
|
None,
|
|
);
|
|
let tokens = voices
|
|
.get("tokens")
|
|
.expect("no tokens in prompt")
|
|
.to_dtype(DType::U32)?;
|
|
let mask = voices.get("mask").expect("no mask in prompt").clone();
|
|
|
|
let mut pos = 0;
|
|
let _frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
|
pos += tokens.dim(1)?;
|
|
|
|
let mut all_pcms = vec![];
|
|
for (turn_idx, prompt) in args.prompt.split('|').enumerate() {
|
|
println!("{prompt:?}");
|
|
let speaker_idx = turn_idx % 2;
|
|
let prompt = format!("[{speaker_idx}]{}<|end_of_text|>", prompt);
|
|
let prompt = tokenizer.encode(prompt, true).map_err(E::msg)?;
|
|
|
|
let (mut tokens, mut mask) = model.text_tokens_and_mask(prompt.get_ids())?;
|
|
|
|
let mut generated_tokens = vec![];
|
|
loop {
|
|
let frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
|
pos += tokens.dim(1)?;
|
|
let is_done = frame.iter().all(|&x| x == 0);
|
|
(tokens, mask) = model.audio_tokens_and_mask(frame)?;
|
|
print!("\rframe {pos}");
|
|
if is_done {
|
|
let _frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
|
pos += tokens.dim(1)?;
|
|
break;
|
|
}
|
|
generated_tokens.push(tokens.clone());
|
|
}
|
|
println!();
|
|
let generated_tokens = Tensor::cat(&generated_tokens, 1)?.narrow(2, 0, cb)?.t()?;
|
|
let pcm = mimi_model.decode(&generated_tokens)?;
|
|
let pcm = pcm.i(0)?.i(0)?.to_dtype(DType::F32)?;
|
|
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
|
|
all_pcms.push(pcm);
|
|
}
|
|
let pcm = Tensor::cat(&all_pcms, 0)?;
|
|
let pcm = pcm.to_vec1::<f32>()?;
|
|
println!("writing output file {}", args.out_file);
|
|
let mut output = std::fs::File::create(args.out_file)?;
|
|
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
|
|
|
|
Ok(())
|
|
}
|