mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00

* Add the gradient for reduce-sum. * And add the gradient for the broadcast ops. * Add some backprop tests. * Add some linear regression example.
48 lines
1.0 KiB
Rust
48 lines
1.0 KiB
Rust
//! Various optimization algorithms.
|
|
use candle::{Result, Tensor, Var};
|
|
|
|
#[derive(Debug)]
|
|
pub struct SGD {
|
|
vars: Vec<Var>,
|
|
learning_rate: f64,
|
|
}
|
|
|
|
impl SGD {
|
|
pub fn new(vars: &[&Var], learning_rate: f64) -> Self {
|
|
let vars: Vec<_> = vars.iter().map(|&v| v.clone()).collect();
|
|
Self {
|
|
vars,
|
|
learning_rate,
|
|
}
|
|
}
|
|
|
|
pub fn empty(learning_rate: f64) -> Self {
|
|
Self {
|
|
vars: vec![],
|
|
learning_rate,
|
|
}
|
|
}
|
|
|
|
pub fn into_inner(self) -> Vec<Var> {
|
|
self.vars
|
|
}
|
|
|
|
pub fn learning_rate(&self) -> f64 {
|
|
self.learning_rate
|
|
}
|
|
|
|
pub fn push(&mut self, var: &Var) {
|
|
self.vars.push(var.clone())
|
|
}
|
|
|
|
pub fn backward_step(&self, loss: &Tensor) -> Result<()> {
|
|
let grads = loss.backward()?;
|
|
for var in self.vars.iter() {
|
|
if let Some(grad) = grads.get(var) {
|
|
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|