Files
candle/candle-book/src/guide/mnist/training.md
Kyle Birnbaum 76e565c4ab Updated candle-book: Introduction, Installation, MNIST guide, and added CONTRIBUTING.md (#2897)
* added CONTRIBUTING.md to candle-book

* added description to candle-book introduction

* Updated formatting and added different features to candle-book installation

* mnist guide first draft candle-book

* updated mnist guide syntax and grammar for candle-book

* changed HelloWorld - Mnist to Tutorial - Mnist in SUMMARY.md

* updated intro to mnist guide in candle-book
2025-04-15 21:41:10 +02:00

134 lines
4.1 KiB
Markdown

# Candle MNIST Tutorial
## Training Implementation
First, let's create a utility function `make_linear` that accepts a `VarBuilder` and returns an initialized linear layer. The `VarBuilder` constructs a `VarMap`, which is the data structure that stores our trainable parameters.
```rust
use candle_core::{Device, Result, Tensor};
use candle_nn::{Linear, Module, VarBuilder, VarMap};
fn make_linear(vs: VarBuilder, in_dim: usize, out_dim: usize) -> Result<Linear> {
let ws = vs.get_with_hints(
(out_dim, in_dim),
"weight",
candle_nn::init::DEFAULT_KAIMING_NORMAL,
)?;
let bound = 1. / (in_dim as f64).sqrt();
let bs = vs.get_with_hints(
out_dim,
"bias",
candle_nn::Init::Uniform {
lo: -bound,
up: bound,
},
)?;
Ok(Linear::new(ws, Some(bs)))
}
```
Next, let's implement a `new` method for our model class to accept a `VarBuilder` and initialize the model. We use `VarBuilder::pp` to "push prefix" so that the parameter names are organized hierarchically: the first layer weights as `first.weight` and `first.bias`, and the second layer weights as `second.weight` and `second.bias`.
```rust
impl Model {
fn new(vs: VarBuilder) -> Result<Self> {
const IMAGE_DIM: usize = 784;
const HIDDEN_DIM: usize = 100;
const LABELS: usize = 10;
let first = make_linear(vs.pp("first"), IMAGE_DIM, HIDDEN_DIM)?;
let second = make_linear(vs.pp("second"), HIDDEN_DIM, LABELS)?;
Ok(Self { first, second })
}
fn forward(&self, image: &Tensor) -> Result<Tensor> {
let x = self.first.forward(image)?;
let x = x.relu()?;
self.second.forward(&x)
}
}
```
Now, let's add the `candle-datasets` package to our project to access the MNIST dataset:
```bash
$ cargo add --git https://github.com/huggingface/candle.git candle-datasets
```
With the dataset available, we can implement our training loop:
```rust
use candle_core::{DType, Device, Result, Tensor, D};
use candle_nn::{loss, ops, Linear, Module, Optimizer, VarBuilder, VarMap};
fn training_loop(
m: candle_datasets::vision::Dataset,
) -> anyhow::Result<()> {
let dev = Device::cuda_if_available(0)?;
let train_labels = m.train_labels;
let train_images = m.train_images.to_device(&dev)?;
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
// Initialize a VarMap to store trainable parameters
let varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
let model = Model::new(vs.clone())?;
let learning_rate = 0.05;
let epochs = 10;
// Initialize a stochastic gradient descent optimizer to update parameters
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), learning_rate)?;
let test_images = m.test_images.to_device(&dev)?;
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
for epoch in 1..epochs {
// Perform forward pass on MNIST data
let logits = model.forward(&train_images)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
// Compute Negative Log Likelihood loss
let loss = loss::nll(&log_sm, &train_labels)?;
// Perform backward pass and update weights
sgd.backward_step(&loss)?;
// Evaluate model on test set
let test_logits = model.forward(&test_images)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::<f32>()?;
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
println!(
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
loss.to_scalar::<f32>()?,
test_accuracy
);
}
Ok(())
}
```
Finally, let's implement our main function:
```rust
pub fn main() -> anyhow::Result<()> {
let m = candle_datasets::vision::mnist::load()?;
return training_loop(m);
}
```
Let's execute the training process:
```bash
$ cargo run --release
> 1 train loss: 2.35449 test acc: 0.12%
> 2 train loss: 2.30760 test acc: 0.15%
> ...
```