Files
candle/README.md
Laurent Mazare 6475bfadfe Simplify Tensor::randn. (#255)
* Simplify Tensor::randn.

* Also switch Tensor::rand to use a generic dtype.

* Support sampling for f16.

* Cleanup.
2023-07-27 07:40:36 +01:00

138 lines
6.1 KiB
Markdown

# candle
ML framework for Rust
```rust
let a = Tensor::randn(0f32, 1., (2, 3), &Device::Cpu)?;
let b = Tensor::randn(0f32, 1., (3, 4), &Device::Cpu)?;
let c = a.matmul(&b)?;
println!("{c}");
```
## Check out our examples
Check out our [examples](./candle-examples/examples/):
- [Whisper](./candle-examples/examples/whisper/)
- [Llama and Llama-v2](./candle-examples/examples/llama/)
- [Bert](./candle-examples/examples/bert/) (Useful for sentence embeddings)
- [Falcon](./candle-examples/examples/falcon/)
```
cargo run --example bert --release
cargo run --example whisper --release
cargo run --example llama --release
cargo run --example falcon --release
```
In order to use **CUDA** add `--features cuda` to the example command line.
There are also some wasm examples for whisper and
[llama2.c](https://github.com/karpathy/llama2.c). You can either build them with
`trunk` or try them online:
[whisper](https://laurentmazare.github.io/candle-whisper/index.html),
[llama2](https://laurentmazare.github.io/candle-llama2/index.html).
For llama2, run the following command to retrieve the weight files and start a
test server:
```bash
cd candle-wasm-examples/llama2-c
wget https://karpathy.ai/llama2c/model.bin
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.bin
trunk serve --release --public-url /candle-llama2/ --port 8081
```
And then browse to
[http://localhost:8081/candle-llama2](http://localhost:8081/candle-llama2).
## Features
- Simple syntax, looks and like PyTorch.
- CPU and Cuda backends, m1, f16, bf16.
- Enable serverless (CPU), small and fast deployments
- WASM support, run your models in a browser.
- Model training.
- Distributed computing using NCCL.
- Models out of the box: Llama, Whisper, Falcon, BERT...
- Embed user-defined ops/kernels, such as [flash-attention
v2](https://github.com/LaurentMazare/candle/blob/89ba005962495f2bfbda286e185e9c3c7f5300a3/candle-flash-attn/src/lib.rs#L152).
## How to use ?
Cheatsheet:
| | Using PyTorch | Using Candle |
|------------|------------------------------------------|------------------------------------------------------------------|
| Creation | `torch.Tensor([[1, 2], [3, 4]])` | `Tensor::new(&[[1f32, 2.]], [3., 4.]], &Device::Cpu)?` |
| Indexing | `tensor[:, :4]` | `tensor.i((.., ..4))?` |
| Operations | `tensor.view((2, 2))` | `tensor.reshape((2, 2))?` |
| Operations | `a.matmul(b)` | `a.matmul(&b)?` |
| Arithmetic | `a + b` | `&a + &b` |
| Device | `tensor.to(device="cuda")` | `tensor.to_device(&Device::Cuda(0))?` |
| Dtype | `tensor.to(dtype=torch.float16)` | `tensor.to_dtype(&DType::F16)?` |
| Saving | `torch.save({"A": A}, "model.bin")` | `tensor.save_safetensors("A", "model.safetensors")?` |
| Loading | `weights = torch.load("model.bin")` | TODO (see the examples for now) |
## Structure
- [candle-core](./candle-core): Core ops, devices, and `Tensor` struct definition
- [candle-nn](./candle-nn/): Facilities to build real models
- [candle-examples](./candle-examples/): Real-world like examples on how to use the library in real settings
- [candle-kernels](./candle-kernels/): CUDA custom kernels
## FAQ
### Why Candle?
Candle stems from the need to reduce binary size in order to *enable serverless*
possible by making the whole engine smaller than PyTorch very large library volume.
This enables creating runtimes on a cluster much faster.
And simply *removing Python* from production workloads.
Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers).
### Other ML frameworks
- [dfdx](https://github.com/coreylowman/dfdx) is a formidable crate, with shapes being included
in types preventing a lot of headaches by getting compiler to complain about shape mismatch right off the bat
However we found that some features still require nightly and writing code can be a bit dauting for non rust experts.
We're leveraging and contributing to other core crates for the runtime so hopefully both crates can benefit from each
other
- [burn](https://github.com/burn-rs/burn) is a general crate that can leverage multiple backends so you can choose the best
engine for your workload
- [tch-rs](https://github.com/LaurentMazare/tch-rs.git) Bindings to the torch library in Rust. Extremely versatile, but they
do bring in the entire torch library into the runtime. The main contributor of `tch-rs` is also involved in the development
of `candle`.
### Missing symbols when compiling with the mkl feature.
If you get some missing symbols when compiling binaries/tests using the mkl
features, e.g.:
```
= note: /usr/bin/ld: (....o): in function `blas::sgemm':
.../blas-0.22.0/src/lib.rs:1944: undefined reference to `sgemm_' collect2: error: ld returned 1 exit status
= note: some `extern` functions couldn't be found; some native libraries may need to be installed or have their path specified
= note: use the `-l` flag to specify native libraries to link
= note: use the `cargo:rustc-link-lib` directive to specify the native libraries to link with Cargo (see https://doc.rust-lang.org/cargo/reference/build-scripts.html#cargorustc-link-libkindname)
```
This is likely due to some missing linker flag that enable the mkl library. You
can try adding the following at the top of your binary:
```
extern crate intel_mkl_src;
```
### How to know where an error comes from.
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
error is generated.