mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00
172 lines
4.8 KiB
Rust
172 lines
4.8 KiB
Rust
use super::*;
|
|
use candle::{DType, Device, Result, Shape, Tensor, WithDType};
|
|
use std::collections::HashMap;
|
|
use std::sync::Arc;
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Clone)]
|
|
struct NamedVar {
|
|
path: String,
|
|
dtype: DType,
|
|
shape: Shape,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct VarBuilder {
|
|
path: Vec<String>,
|
|
vars: std::rc::Rc<std::cell::RefCell<Vec<NamedVar>>>,
|
|
default_dtype: DType,
|
|
default_device: Device,
|
|
tensors: Arc<Option<HashMap<String, Tensor>>>,
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub struct VarStore {
|
|
vars: Vec<NamedVar>,
|
|
}
|
|
|
|
impl VarBuilder {
|
|
pub fn new<B: WithDType>(device: &Device, tensors: Option<HashMap<String, Tensor>>) -> Self {
|
|
let vars = std::rc::Rc::new(std::cell::RefCell::new(vec![]));
|
|
Self {
|
|
path: vec![],
|
|
vars,
|
|
default_dtype: B::DTYPE,
|
|
tensors: Arc::new(tensors),
|
|
default_device: device.clone(),
|
|
}
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.vars.borrow().len()
|
|
}
|
|
|
|
pub fn var(&self, s: &str) -> Result<Tensor> {
|
|
let path = format!("{}.{s}", self.path.join("."));
|
|
let parameter = match self.tensors.as_ref() {
|
|
None => panic!("Cannot find tensors"),
|
|
Some(tensors) => match tensors.get(&path) {
|
|
Some(tensor) => tensor.to_device(&self.default_device)?,
|
|
None => panic!("cannot find tensor for {path}"),
|
|
},
|
|
};
|
|
Ok(parameter)
|
|
}
|
|
|
|
pub fn into_store(self) -> VarStore {
|
|
let vars = self.vars.borrow();
|
|
VarStore {
|
|
vars: vars.to_vec(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: ToString> std::ops::Div<S> for &VarBuilder {
|
|
type Output = VarBuilder;
|
|
|
|
fn div(self, rhs: S) -> VarBuilder {
|
|
let mut path = self.path.clone();
|
|
path.push(rhs.to_string());
|
|
VarBuilder {
|
|
path,
|
|
vars: self.vars.clone(),
|
|
default_dtype: self.default_dtype,
|
|
default_device: self.default_device.clone(),
|
|
tensors: self.tensors.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: ToString> std::ops::Div<S> for VarBuilder {
|
|
type Output = VarBuilder;
|
|
|
|
fn div(self, rhs: S) -> VarBuilder {
|
|
&self / rhs
|
|
}
|
|
}
|
|
|
|
impl Embedding {
|
|
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
|
let embeddings = vb.var("weight")?;
|
|
Ok(Self { embeddings })
|
|
}
|
|
}
|
|
|
|
impl Linear {
|
|
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
|
let weight = vb.var("weight")?.t()?;
|
|
Ok(Self { weight })
|
|
}
|
|
}
|
|
|
|
impl RmsNorm {
|
|
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
|
let scale = vb.var("scale")?;
|
|
Ok(Self::new(scale))
|
|
}
|
|
}
|
|
|
|
impl CausalSelfAttention {
|
|
fn load_npy(vb: VarBuilder, cache: &Cache, config: &Config) -> Result<Self> {
|
|
let c_attn = Linear::load_npy(&vb / "c_attn")?;
|
|
let c_proj = Linear::load_npy(&vb / "c_proj")?;
|
|
Ok(Self::new(c_attn, c_proj, config.n_head, cache))
|
|
}
|
|
}
|
|
|
|
impl Mlp {
|
|
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
|
let c_fc1 = Linear::load_npy(&vb / "c_fc1")?;
|
|
let c_fc2 = Linear::load_npy(&vb / "c_fc2")?;
|
|
let c_proj = Linear::load_npy(&vb / "c_proj")?;
|
|
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
|
}
|
|
}
|
|
|
|
impl Block {
|
|
fn load_npy(vb: VarBuilder, cache: &Cache, config: &Config) -> Result<Self> {
|
|
let attn = CausalSelfAttention::load_npy(&vb / "attn", cache, config)?;
|
|
let mlp = Mlp::load_npy(&vb / "mlp")?;
|
|
let input_layernorm = RmsNorm::load_npy(&vb / "rms_1")?;
|
|
let post_attention_layernorm = RmsNorm::load_npy(&vb / "rms_2")?;
|
|
Ok(Self::new(
|
|
input_layernorm,
|
|
attn,
|
|
post_attention_layernorm,
|
|
mlp,
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Llama {
|
|
pub fn load_npy(
|
|
device: &Device,
|
|
filename: &str,
|
|
cache: &Cache,
|
|
config: &Config,
|
|
) -> Result<Self> {
|
|
let weight_path = std::path::Path::new(filename);
|
|
let weights = if weight_path.exists() {
|
|
println!("loading weights from {weight_path:?}");
|
|
let start_load = std::time::Instant::now();
|
|
let tensors = Tensor::read_npz(weight_path)?;
|
|
println!("loaded weights in {:?}", start_load.elapsed());
|
|
let tensors: std::collections::HashMap<String, Tensor> = tensors.into_iter().collect();
|
|
Some(tensors)
|
|
} else {
|
|
println!("cannot find {weight_path:?}, using zero weights");
|
|
None
|
|
};
|
|
let vb = VarBuilder::new::<f32>(device, weights);
|
|
|
|
let wte = Embedding::load_npy(&vb / "transformer" / "wte")?;
|
|
let lm_head = Linear::load_npy(&vb / "lm_head")?;
|
|
let norm = RmsNorm::load_npy(&vb / "transformer" / "ln_f")?;
|
|
let blocks: Vec<_> = (0..config.n_layer)
|
|
.map(|i| Block::load_npy(&vb / "transformer" / "h" / i, cache, config).unwrap())
|
|
.collect();
|
|
|
|
Ok(Self::new(wte, blocks, norm, lm_head))
|
|
}
|
|
}
|