mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00

* Skeleton files for musicgen. * Add a musicgen model module. * Sketch the model loading. * Start adding the forward pass. * More forward pass. * Positional embeddings. * Forward for the decoder layers. * Add an empty function. * Fix the musicgen weight names. * More musicgen modeling. * Add the T5 loading bits. * Add the encodec config. * Add the encodec module hierarchy. * More Encodec modeling. * Encodec modeling. * Encodec modeling. * Add more to the encodec modeling. * Load the weights. * Populate the resnet blocks. * Also load the conv transpose weights. * Split musicgen in multiple files.
256 lines
7.0 KiB
Rust
256 lines
7.0 KiB
Rust
#![allow(dead_code)]
|
|
|
|
use anyhow::Result;
|
|
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
|
use std::collections::HashMap;
|
|
|
|
const MAX_SEQ_LEN: usize = 5000;
|
|
|
|
pub struct VarBuilder<'a> {
|
|
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
|
dtype: DType,
|
|
device: Device,
|
|
}
|
|
|
|
impl<'a> VarBuilder<'a> {
|
|
pub fn from_safetensors(
|
|
safetensors: Vec<SafeTensors<'a>>,
|
|
dtype: DType,
|
|
device: &Device,
|
|
) -> Self {
|
|
let mut routing = HashMap::new();
|
|
for (index, sf) in safetensors.iter().enumerate() {
|
|
for k in sf.names() {
|
|
routing.insert(k.to_string(), index);
|
|
}
|
|
}
|
|
Self {
|
|
safetensors: Some((routing, safetensors)),
|
|
device: device.clone(),
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn zeros(dtype: DType, device: &Device) -> Self {
|
|
Self {
|
|
safetensors: None,
|
|
device: device.clone(),
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
|
let s: Shape = s.into();
|
|
match &self.safetensors {
|
|
None => Tensor::zeros(s, self.dtype, &self.device),
|
|
Some((routing, safetensors)) => {
|
|
// Unwrap or 0 just to let the proper error flow.
|
|
let index = routing.get(tensor_name).unwrap_or(&0);
|
|
let tensor = safetensors[*index]
|
|
.tensor(tensor_name, &self.device)?
|
|
.to_dtype(self.dtype)?;
|
|
if *tensor.shape() != s {
|
|
let msg = format!("shape mismatch for {tensor_name}");
|
|
Err(candle::Error::UnexpectedShape {
|
|
msg,
|
|
expected: s,
|
|
got: tensor.shape().clone(),
|
|
})?
|
|
}
|
|
Ok(tensor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Linear {
|
|
weight: Tensor,
|
|
bias: Option<Tensor>,
|
|
}
|
|
|
|
impl Linear {
|
|
pub fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
|
let bias = if bias {
|
|
Some(vb.get(size2, &format!("{p}.bias"))?)
|
|
} else {
|
|
None
|
|
};
|
|
Ok(Self { weight, bias })
|
|
}
|
|
|
|
pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
|
let (bsize, _, _) = x.shape().r3()?;
|
|
let w = self.weight.broadcast_left(bsize)?.t()?;
|
|
let x = x.matmul(&w)?;
|
|
match &self.bias {
|
|
None => Ok(x),
|
|
Some(bias) => x.broadcast_add(bias),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct LayerNorm {
|
|
weight: Tensor,
|
|
bias: Tensor,
|
|
eps: f64,
|
|
}
|
|
|
|
impl LayerNorm {
|
|
pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
|
|
Self { weight, bias, eps }
|
|
}
|
|
|
|
pub fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let (weight, bias) = match (
|
|
vb.get(size, &format!("{p}.weight")),
|
|
vb.get(size, &format!("{p}.bias")),
|
|
) {
|
|
(Ok(weight), Ok(bias)) => (weight, bias),
|
|
(Err(err), _) | (_, Err(err)) => {
|
|
if let (Ok(weight), Ok(bias)) = (
|
|
vb.get(size, &format!("{p}.gamma")),
|
|
vb.get(size, &format!("{p}.beta")),
|
|
) {
|
|
(weight, bias)
|
|
} else {
|
|
return Err(err.into());
|
|
}
|
|
}
|
|
};
|
|
Ok(Self { weight, bias, eps })
|
|
}
|
|
|
|
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let dtype = x.dtype();
|
|
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
|
|
let x = x.to_dtype(DType::F32)?;
|
|
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
|
|
let x = x.broadcast_sub(&mean_x)?;
|
|
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
|
|
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
|
let x = x_normed
|
|
.to_dtype(dtype)?
|
|
.broadcast_mul(&self.weight)?
|
|
.broadcast_add(&self.bias)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Dropout {
|
|
pr: f64,
|
|
}
|
|
|
|
impl Dropout {
|
|
pub fn new(pr: f64) -> Self {
|
|
Self { pr }
|
|
}
|
|
|
|
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
// TODO
|
|
Ok(x.clone())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Embedding {
|
|
embeddings: Tensor,
|
|
hidden_size: usize,
|
|
}
|
|
|
|
impl Embedding {
|
|
pub fn new(embeddings: Tensor, hidden_size: usize) -> Self {
|
|
Self {
|
|
embeddings,
|
|
hidden_size,
|
|
}
|
|
}
|
|
|
|
pub fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
|
|
Ok(Self::new(embeddings, hidden_size))
|
|
}
|
|
|
|
pub fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
|
|
let mut final_dims = indexes.dims().to_vec();
|
|
final_dims.push(self.hidden_size);
|
|
let indexes = indexes.flatten_all()?;
|
|
let values = Tensor::embedding(&indexes, &self.embeddings)?;
|
|
let values = values.reshape(final_dims)?;
|
|
Ok(values)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub struct ConvConfig {
|
|
pub padding: usize,
|
|
pub stride: usize,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Conv1D {
|
|
weight: Tensor,
|
|
bias: Option<Tensor>,
|
|
config: ConvConfig,
|
|
}
|
|
|
|
impl Conv1D {
|
|
// Applies weight norm for inference by recomputing the weight tensor. This
|
|
// does not apply to training.
|
|
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
|
|
pub fn load_weight_norm(
|
|
in_c: usize,
|
|
out_c: usize,
|
|
kernel_size: usize,
|
|
config: ConvConfig,
|
|
p: &str,
|
|
vb: &VarBuilder,
|
|
) -> Result<Self> {
|
|
let weight_g = vb.get((out_c, 1, 1), &format!("{p}.weight_g"))?;
|
|
let weight_v = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight_v"))?;
|
|
let norm_v = (&weight_v * &weight_v)?.sum(&[1, 2])?.sqrt()?;
|
|
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
|
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
|
Ok(Self {
|
|
weight,
|
|
bias: Some(bias),
|
|
config,
|
|
})
|
|
}
|
|
|
|
pub fn load(
|
|
in_c: usize,
|
|
out_c: usize,
|
|
kernel_size: usize,
|
|
config: ConvConfig,
|
|
p: &str,
|
|
vb: &VarBuilder,
|
|
) -> Result<Self> {
|
|
let weight = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight"))?;
|
|
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
|
Ok(Self {
|
|
weight,
|
|
bias: Some(bias),
|
|
config,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub enum HiddenAct {
|
|
Gelu,
|
|
Relu,
|
|
}
|
|
|
|
impl HiddenAct {
|
|
pub fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::Gelu => xs.gelu(),
|
|
Self::Relu => xs.relu(),
|
|
}
|
|
}
|
|
}
|