mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
118 lines
4.6 KiB
Rust
118 lines
4.6 KiB
Rust
//! The MNIST hand-written digit dataset.
|
|
//!
|
|
//! The files can be obtained from the following link:
|
|
//! <http://yann.lecun.com/exdb/mnist/>
|
|
use candle::{DType, Device, Error, Result, Tensor};
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use parquet::file::reader::{FileReader, SerializedFileReader};
|
|
use std::fs::File;
|
|
use std::io::{self, BufReader, Read};
|
|
|
|
fn read_u32<T: Read>(reader: &mut T) -> std::io::Result<u32> {
|
|
use byteorder::ReadBytesExt;
|
|
reader.read_u32::<byteorder::BigEndian>()
|
|
}
|
|
|
|
fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> {
|
|
let magic_number = read_u32(reader)?;
|
|
if magic_number != expected {
|
|
Err(io::Error::other(format!(
|
|
"incorrect magic number {magic_number} != {expected}"
|
|
)))?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn read_labels(filename: &std::path::Path) -> Result<Tensor> {
|
|
let mut buf_reader = BufReader::new(File::open(filename)?);
|
|
check_magic_number(&mut buf_reader, 2049)?;
|
|
let samples = read_u32(&mut buf_reader)?;
|
|
let mut data = vec![0u8; samples as usize];
|
|
buf_reader.read_exact(&mut data)?;
|
|
let samples = data.len();
|
|
Tensor::from_vec(data, samples, &Device::Cpu)
|
|
}
|
|
|
|
fn read_images(filename: &std::path::Path) -> Result<Tensor> {
|
|
let mut buf_reader = BufReader::new(File::open(filename)?);
|
|
check_magic_number(&mut buf_reader, 2051)?;
|
|
let samples = read_u32(&mut buf_reader)? as usize;
|
|
let rows = read_u32(&mut buf_reader)? as usize;
|
|
let cols = read_u32(&mut buf_reader)? as usize;
|
|
let data_len = samples * rows * cols;
|
|
let mut data = vec![0u8; data_len];
|
|
buf_reader.read_exact(&mut data)?;
|
|
let tensor = Tensor::from_vec(data, (samples, rows * cols), &Device::Cpu)?;
|
|
tensor.to_dtype(DType::F32)? / 255.
|
|
}
|
|
|
|
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<crate::vision::Dataset> {
|
|
let dir = dir.as_ref();
|
|
let train_images = read_images(&dir.join("train-images-idx3-ubyte"))?;
|
|
let train_labels = read_labels(&dir.join("train-labels-idx1-ubyte"))?;
|
|
let test_images = read_images(&dir.join("t10k-images-idx3-ubyte"))?;
|
|
let test_labels = read_labels(&dir.join("t10k-labels-idx1-ubyte"))?;
|
|
Ok(crate::vision::Dataset {
|
|
train_images,
|
|
train_labels,
|
|
test_images,
|
|
test_labels,
|
|
labels: 10,
|
|
})
|
|
}
|
|
|
|
fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> {
|
|
let samples = parquet.metadata().file_metadata().num_rows() as usize;
|
|
let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 784);
|
|
let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples);
|
|
for row in parquet.into_iter().flatten() {
|
|
for (_name, field) in row.get_column_iter() {
|
|
if let parquet::record::Field::Group(subrow) = field {
|
|
for (_name, field) in subrow.get_column_iter() {
|
|
if let parquet::record::Field::Bytes(value) = field {
|
|
let image = image::load_from_memory(value.data()).unwrap();
|
|
buffer_images.extend(image.to_luma8().as_raw());
|
|
}
|
|
}
|
|
} else if let parquet::record::Field::Long(label) = field {
|
|
buffer_labels.push(*label as u8);
|
|
}
|
|
}
|
|
}
|
|
let images = (Tensor::from_vec(buffer_images, (samples, 784), &Device::Cpu)?
|
|
.to_dtype(DType::F32)?
|
|
/ 255.)?;
|
|
let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
|
|
Ok((images, labels))
|
|
}
|
|
|
|
pub fn load() -> Result<crate::vision::Dataset> {
|
|
let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let dataset_id = "ylecun/mnist".to_string();
|
|
let repo = Repo::with_revision(
|
|
dataset_id,
|
|
RepoType::Dataset,
|
|
"refs/convert/parquet".to_string(),
|
|
);
|
|
let repo = api.repo(repo);
|
|
let test_parquet_filename = repo
|
|
.get("mnist/test/0000.parquet")
|
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let train_parquet_filename = repo
|
|
.get("mnist/train/0000.parquet")
|
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?)
|
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
|
let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?)
|
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
|
let (test_images, test_labels) = load_parquet(test_parquet)?;
|
|
let (train_images, train_labels) = load_parquet(train_parquet)?;
|
|
Ok(crate::vision::Dataset {
|
|
train_images,
|
|
train_labels,
|
|
test_images,
|
|
test_labels,
|
|
labels: 10,
|
|
})
|
|
}
|