Files
candle/candle-nn/tests/kv_cache.rs
Laurent Mazare d01207dbf3 Add a RotatingKVCache. (#2493)
* Add a RotatingKVCache.

* Add some KvCache tests.

* Test the reset too.

* More kv-cache testing.

* More tests for the rotating kv-cache.

* Improve the api for the rotating cache so that the whole src tensor gets returned when it's overlarge.

* Handle contiguity + bugfix + use in mimi.

* Add a way to test the mimi streaming mode.

* Mimi streaming fixes.

* More rotating kv-cache.

* Fix the attn mask generation.

* Handle the abs case.

* Add some tests for the generated mask.
2024-09-23 13:14:32 +02:00

111 lines
4.1 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{Device, Result, Tensor};
#[test]
fn kv_cache() -> Result<()> {
let mut cache = candle_nn::kv_cache::Cache::new(0, 16);
for _ in [0, 1] {
assert_eq!(cache.current_seq_len(), 0);
let data = cache.current_data()?;
assert!(data.is_none());
let t = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
cache.append(&t)?;
let data = cache.current_data()?.unwrap();
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3.]);
let t = Tensor::new(&[4f32], &Device::Cpu)?;
cache.append(&t)?;
let data = cache.current_data()?.unwrap();
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4.]);
let t = Tensor::new(&[0f32, 5., 6., 7.], &Device::Cpu)?;
cache.append(&t)?;
let data = cache.current_data()?.unwrap();
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4., 0., 5., 6., 7.]);
assert_eq!(cache.current_seq_len(), 8);
cache.reset();
}
Ok(())
}
#[test]
fn rotating_kv_cache() -> Result<()> {
let mut cache = candle_nn::kv_cache::RotatingCache::new(0, 6);
for _ in [0, 1] {
assert_eq!(cache.offset(), 0);
assert_eq!(cache.current_seq_len(), 0);
let data = cache.current_data()?;
assert!(data.is_none());
let t = Tensor::new(&[1., 2., 3.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3.]);
let t = Tensor::new(&[4.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3., 4.]);
let t = Tensor::new(&[0., 5., 6., 7.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 3., 4., 0., 5.]);
assert_eq!(cache.current_seq_len(), 8);
assert_eq!(cache.offset(), 2);
let t = Tensor::new(&[8.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 4., 0., 5.]);
assert_eq!(cache.current_seq_len(), 9);
assert_eq!(cache.offset(), 3);
let t = Tensor::new(&[9., 10., 11.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 9., 10., 11.]);
assert_eq!(cache.current_seq_len(), 12);
assert_eq!(cache.offset(), 0);
let t = Tensor::new(&[12.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [12., 7., 8., 9., 10., 11.]);
assert_eq!(cache.current_seq_len(), 13);
assert_eq!(cache.offset(), 1);
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
assert_eq!(
mask.to_vec2::<u8>()?,
&[[0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
);
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
assert_eq!(
mask.to_vec2::<u8>()?,
&[[0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]],
);
let t = Tensor::new(&[0., 1., 2., 3., 4., 5., 6., 7., 8.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [0., 1., 2., 3., 4., 5., 6., 7., 8.]);
assert_eq!(cache.current_seq_len(), 22);
assert_eq!(cache.offset(), 0);
let mask = cache.attn_mask(1, &Device::Cpu)?;
assert!(mask.is_none());
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
assert_eq!(
mask.to_vec2::<u8>()?,
&[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
);
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
assert_eq!(
mask.to_vec2::<u8>()?,
&[[0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
);
let t = Tensor::new(&[42.], &Device::Cpu)?;
let data = cache.append(&t)?;
assert_eq!(data.to_vec1::<f64>()?, [42., 4., 5., 6., 7., 8.]);
assert_eq!(cache.current_seq_len(), 23);
assert_eq!(cache.offset(), 1);
cache.reset();
}
Ok(())
}