nips/47.md
Pablo Fernandez ff8e204061
Merge pull request #685 from benthecarman/nwc-extensions
NIP-47: Nostr Wallet Connect Extensions
2024-01-26 15:56:33 +00:00

412 lines
16 KiB
Markdown

NIP-47
======
Nostr Wallet Connect
--------------------
`draft` `optional`
## Rationale
This NIP describes a way for clients to access a remote Lightning wallet through a standardized protocol. Custodians may implement this, or the user may run a bridge that bridges their wallet/node and the Nostr Wallet Connect protocol.
## Terms
* **client**: Nostr app on any platform that wants to pay Lightning invoices.
* **user**: The person using the **client**, and want's to connect their wallet app to their **client**.
* **wallet service**: Nostr app that typically runs on an always-on computer (eg. in the cloud or on a Raspberry Pi). This app has access to the APIs of the wallets it serves.
## Theory of Operation
1. **Users** who wish to use this NIP to send lightning payments to other nostr users must first acquire a special "connection" URI from their NIP-47 compliant wallet application. The wallet application may provide this URI using a QR screen, or a pasteable string, or some other means.
2. The **user** should then copy this URI into their **client(s)** by pasting, or scanning the QR, etc. The **client(s)** should save this URI and use it later whenever the **user** makes a payment. The **client** should then request an `info` (13194) event from the relay(s) specified in the URI. The **wallet service** will have sent that event to those relays earlier, and the relays will hold it as a replaceable event.
3. When the **user** initiates a payment their nostr **client** create a `pay_invoice` request, encrypts it using a token from the URI, and sends it (kind 23194) to the relay(s) specified in the connection URI. The **wallet service** will be listening on those relays and will decrypt the request and then contact the **user's** wallet application to send the payment. The **wallet service** will know how to talk to the wallet application because the connection URI specified relay(s) that have access to the wallet app API.
4. Once the payment is complete the **wallet service** will send an encrypted `response` (kind 23195) to the **user** over the relay(s) in the URI.
## Events
There are three event kinds:
- `NIP-47 info event`: 13194
- `NIP-47 request`: 23194
- `NIP-47 response`: 23195
The info event should be a replaceable event that is published by the **wallet service** on the relay to indicate which commands it supports. The content should be
a plaintext string with the supported commands, space-separated, eg. `pay_invoice get_balance`. Only the `pay_invoice` command is described in this NIP, but other commands might be defined in different NIPs.
Both the request and response events SHOULD contain one `p` tag, containing the public key of the **wallet service** if this is a request, and the public key of the **user** if this is a response. The response event SHOULD contain an `e` tag with the id of the request event it is responding to.
Optionally, a request can have an `expiration` tag that has a unix timestamp in seconds. If the request is received after this timestamp, it should be ignored.
The content of requests and responses is encrypted with [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md), and is a JSON-RPCish object with a semi-fixed structure:
Request:
```jsonc
{
"method": "pay_invoice", // method, string
"params": { // params, object
"invoice": "lnbc50n1..." // command-related data
}
}
```
Response:
```jsonc
{
"result_type": "pay_invoice", //indicates the structure of the result field
"error": { //object, non-null in case of error
"code": "UNAUTHORIZED", //string error code, see below
"message": "human readable error message"
},
"result": { // result, object. null in case of error.
"preimage": "0123456789abcdef..." // command-related data
}
}
```
The `result_type` field MUST contain the name of the method that this event is responding to.
The `error` field MUST contain a `message` field with a human readable error message and a `code` field with the error code if the command was not successful.
If the command was successful, the `error` field must be null.
### Error codes
- `RATE_LIMITED`: The client is sending commands too fast. It should retry in a few seconds.
- `NOT_IMPLEMENTED`: The command is not known or is intentionally not implemented.
- `INSUFFICIENT_BALANCE`: The wallet does not have enough funds to cover a fee reserve or the payment amount.
- `QUOTA_EXCEEDED`: The wallet has exceeded its spending quota.
- `RESTRICTED`: This public key is not allowed to do this operation.
- `UNAUTHORIZED`: This public key has no wallet connected.
- `INTERNAL`: An internal error.
- `OTHER`: Other error.
## Nostr Wallet Connect URI
**client** discovers **wallet service** by scanning a QR code, handling a deeplink or pasting in a URI.
The **wallet service** generates this connection URI with protocol `nostr+walletconnect:` and base path it's hex-encoded `pubkey` with the following query string parameters:
- `relay` Required. URL of the relay where the **wallet service** is connected and will be listening for events. May be more than one.
- `secret` Required. 32-byte randomly generated hex encoded string. The **client** MUST use this to sign events and encrypt payloads when communicating with the **wallet service**.
- Authorization does not require passing keys back and forth.
- The user can have different keys for different applications. Keys can be revoked and created at will and have arbitrary constraints (eg. budgets).
- The key is harder to leak since it is not shown to the user and backed up.
- It improves privacy because the user's main key would not be linked to their payments.
- `lud16` Recommended. A lightning address that clients can use to automatically setup the `lud16` field on the user's profile if they have none configured.
The **client** should then store this connection and use it when the user wants to perform actions like paying an invoice. Due to this NIP using ephemeral events, it is recommended to pick relays that do not close connections on inactivity to not drop events.
### Example connection string
```sh
nostr+walletconnect:b889ff5b1513b641e2a139f661a661364979c5beee91842f8f0ef42ab558e9d4?relay=wss%3A%2F%2Frelay.damus.io&secret=71a8c14c1407c113601079c4302dab36460f0ccd0ad506f1f2dc73b5100e4f3c
```
## Commands
### `pay_invoice`
Description: Requests payment of an invoice.
Request:
```jsonc
{
"method": "pay_invoice",
"params": {
"invoice": "lnbc50n1...", // bolt11 invoice
"amount": 123, // invoice amount in msats, optional
}
}
```
Response:
```jsonc
{
"result_type": "pay_invoice",
"result": {
"preimage": "0123456789abcdef..." // preimage of the payment
}
}
```
Errors:
- `PAYMENT_FAILED`: The payment failed. This may be due to a timeout, exhausting all routes, insufficient capacity or similar.
### `multi_pay_invoice`
Description: Requests payment of multiple invoices.
Request:
```jsonc
{
"method": "multi_pay_invoice",
"params": {
"invoices": [
{"id":"4da52c32a1", "invoice": "lnbc1...", "amount": 123}, // bolt11 invoice and amount in msats, amount is optional
{"id":"3da52c32a1", "invoice": "lnbc50n1..."},
],
}
}
```
Response:
For every invoice in the request, a separate response event is sent. To differentiate between the responses, each
response event contains an `d` tag with the id of the invoice it is responding to, if no id was given, then the
payment hash of the invoice should be used.
```jsonc
{
"result_type": "multi_pay_invoice",
"result": {
"preimage": "0123456789abcdef..." // preimage of the payment
}
}
```
Errors:
- `PAYMENT_FAILED`: The payment failed. This may be due to a timeout, exhausting all routes, insufficient capacity or similar.
### `pay_keysend`
Request:
```jsonc
{
"method": "pay_keysend",
"params": {
"amount": 123, // invoice amount in msats, required
"pubkey": "03...", // payee pubkey, required
"preimage": "0123456789abcdef...", // preimage of the payment, optional
"tlv_records: [ // tlv records, optional
{
"type": 5482373484, // tlv type
"value": "0123456789abcdef" // hex encoded tlv value
}
]
}
}
```
Response:
```jsonc
{
"result_type": "pay_keysend",
"result": {
"preimage": "0123456789abcdef...", // preimage of the payment
}
}
```
Errors:
- `PAYMENT_FAILED`: The payment failed. This may be due to a timeout, exhausting all routes, insufficient capacity or similar.
### `multi_pay_keysend`
Description: Requests multiple keysend payments.
Has an array of keysends, these follow the same semantics as `pay_keysend`, just done in a batch
Request:
```jsonc
{
"method": "multi_pay_keysend",
"params": {
"keysends": [
{"id": "4c5b24a351", pubkey": "03...", "amount": 123},
{"id": "3da52c32a1", "pubkey": "02...", "amount": 567, "preimage": "abc123..", "tlv_records": [{"type": 696969, "value": "77616c5f6872444873305242454d353736"}]},
],
}
}
```
Response:
For every keysend in the request, a separate response event is sent. To differentiate between the responses, each
response event contains an `d` tag with the id of the keysend it is responding to, if no id was given, then the
pubkey should be used.
```jsonc
{
"result_type": "multi_pay_keysend",
"result": {
"preimage": "0123456789abcdef..." // preimage of the payment
}
}
```
Errors:
- `PAYMENT_FAILED`: The payment failed. This may be due to a timeout, exhausting all routes, insufficient capacity or similar.
### `make_invoice`
Request:
```jsonc
{
"method": "make_invoice",
"params": {
"amount": 123, // value in msats
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"expiry": 213 // expiry in seconds from time invoice is created, optional
}
}
```
Response:
```jsonc
{
"result_type": "make_invoice",
"result": {
"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment
"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a payer name/comment/etc.
}
}
```
### `lookup_invoice`
Request:
```jsonc
{
"method": "lookup_invoice",
"params": {
"payment_hash": "31afdf1..", // payment hash of the invoice, one of payment_hash or invoice is required
"invoice": "lnbc50n1..." // invoice to lookup
}
}
```
Response:
```jsonc
{
"result_type": "lookup_invoice",
"result": {
"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment
"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"settled_at": unixtimestamp, // invoice/payment settlement time, optional if unpaid
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a payer name/comment/etc.
}
}
```
Errors:
- `NOT_FOUND`: The invoice could not be found by the given parameters.
### `list_transactions`
Lists invoices and payments. If `type` is not specified, both invoices and payments are returned.
The `from` and `until` parameters are timestamps in seconds since epoch. If `from` is not specified, it defaults to 0.
If `until` is not specified, it defaults to the current time. Transactions are returned in descending order of creation
time.
Request:
```jsonc
{
"method": "list_transactions",
"params": {
"from": 1693876973, // starting timestamp in seconds since epoch (inclusive), optional
"until": 1703225078, // ending timestamp in seconds since epoch (inclusive), optional
"limit": 10, // maximum number of invoices to return, optional
"offset": 0, // offset of the first invoice to return, optional
"unpaid": true, // include unpaid invoices, optional, default false
"type": "incoming", // "incoming" for invoices, "outgoing" for payments, undefined for both
}
}
```
Response:
```jsonc
{
"result_type": "list_transactions",
"result": {
"transactions": [
{
"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment
"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"settled_at": unixtimestamp, // invoice/payment settlement time, optional if unpaid
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a payer name/comment/etc.
}
],
},
}
```
### `get_balance`
Request:
```jsonc
{
"method": "get_balance",
"params": {
}
}
```
Response:
```jsonc
{
"result_type": "get_balance",
"result": {
"balance": 10000, // user's balance in msats
}
}
```
### `get_info`
Request:
```jsonc
{
"method": "get_info",
"params": {
}
}
```
Response:
```jsonc
{
"result_type": "get_info",
"result": {
"alias": "string",
"color": "hex string",
"pubkey": "hex string",
"network": "string", // mainnet, testnet, signet, or regtest
"block_height": 1,
"block_hash": "hex string",
"methods": ["pay_invoice", "get_balance", "make_invoice", "lookup_invoice", "list_transactions", "get_info"], // list of supported methods for this connection
}
}
```
## Example pay invoice flow
0. The user scans the QR code generated by the **wallet service** with their **client** application, they follow a `nostr+walletconnect:` deeplink or configure the connection details manually.
1. **client** sends an event to the **wallet service** with kind `23194`. The content is a `pay_invoice` request. The private key is the secret from the connection string above.
2. **wallet service** verifies that the author's key is authorized to perform the payment, decrypts the payload and sends the payment.
3. **wallet service** responds to the event by sending an event with kind `23195` and content being a response either containing an error message or a preimage.
## Using a dedicated relay
This NIP does not specify any requirements on the type of relays used. However, if the user is using a custodial service it might make sense to use a relay that is hosted by the custodial service. The relay may then enforce authentication to prevent metadata leaks. Not depending on a 3rd party relay would also improve reliability in this case.