Quantized version of flux. (#2500)

* Quantized version of flux.

* More generic sampling.

* Hook the quantized model.

* Use the newly minted gguf file.

* Fix for the quantized model.

* Default to avoid the faster cuda kernels.
This commit is contained in:
Laurent Mazare
2024-09-26 10:23:43 +02:00
committed by GitHub
parent d01207dbf3
commit 10d47183c0
6 changed files with 555 additions and 26 deletions

View File

@ -13,7 +13,7 @@ descriptions,
```bash
cargo run --features cuda --example flux -r -- \
--height 1024 --width 1024
--height 1024 --width 1024 \
--prompt "a rusty robot walking on a beach holding a small torch, the robot has the word "rust" written on it, high quality, 4k"
```

View File

@ -23,6 +23,10 @@ struct Args {
#[arg(long)]
cpu: bool,
/// Use the quantized model.
#[arg(long)]
quantized: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
@ -40,6 +44,10 @@ struct Args {
#[arg(long, value_enum, default_value = "schnell")]
model: Model,
/// Use the faster kernels which are buggy at the moment.
#[arg(long)]
no_dmmv: bool,
}
#[derive(Debug, Clone, Copy, clap::ValueEnum, PartialEq, Eq)]
@ -60,6 +68,8 @@ fn run(args: Args) -> Result<()> {
tracing,
decode_only,
model,
quantized,
..
} = args;
let width = width.unwrap_or(1360);
let height = height.unwrap_or(768);
@ -146,38 +156,71 @@ fn run(args: Args) -> Result<()> {
};
println!("CLIP\n{clip_emb}");
let img = {
let model_file = match model {
Model::Schnell => bf_repo.get("flux1-schnell.safetensors")?,
Model::Dev => bf_repo.get("flux1-dev.safetensors")?,
};
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], dtype, &device)? };
let cfg = match model {
Model::Dev => flux::model::Config::dev(),
Model::Schnell => flux::model::Config::schnell(),
};
let img = flux::sampling::get_noise(1, height, width, &device)?.to_dtype(dtype)?;
let state = flux::sampling::State::new(&t5_emb, &clip_emb, &img)?;
let state = if quantized {
flux::sampling::State::new(
&t5_emb.to_dtype(candle::DType::F32)?,
&clip_emb.to_dtype(candle::DType::F32)?,
&img.to_dtype(candle::DType::F32)?,
)?
} else {
flux::sampling::State::new(&t5_emb, &clip_emb, &img)?
};
let timesteps = match model {
Model::Dev => {
flux::sampling::get_schedule(50, Some((state.img.dim(1)?, 0.5, 1.15)))
}
Model::Schnell => flux::sampling::get_schedule(4, None),
};
let model = flux::model::Flux::new(&cfg, vb)?;
println!("{state:?}");
println!("{timesteps:?}");
flux::sampling::denoise(
&model,
&state.img,
&state.img_ids,
&state.txt,
&state.txt_ids,
&state.vec,
&timesteps,
4.,
)?
if quantized {
let model_file = match model {
Model::Schnell => api
.repo(hf_hub::Repo::model("lmz/candle-flux".to_string()))
.get("flux1-schnell.gguf")?,
Model::Dev => todo!(),
};
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
model_file, &device,
)?;
let model = flux::quantized_model::Flux::new(&cfg, vb)?;
flux::sampling::denoise(
&model,
&state.img,
&state.img_ids,
&state.txt,
&state.txt_ids,
&state.vec,
&timesteps,
4.,
)?
.to_dtype(dtype)?
} else {
let model_file = match model {
Model::Schnell => bf_repo.get("flux1-schnell.safetensors")?,
Model::Dev => bf_repo.get("flux1-dev.safetensors")?,
};
let vb = unsafe {
VarBuilder::from_mmaped_safetensors(&[model_file], dtype, &device)?
};
let model = flux::model::Flux::new(&cfg, vb)?;
flux::sampling::denoise(
&model,
&state.img,
&state.img_ids,
&state.txt,
&state.txt_ids,
&state.vec,
&timesteps,
4.,
)?
}
};
flux::sampling::unpack(&img, height, width)?
}
@ -206,5 +249,7 @@ fn run(args: Args) -> Result<()> {
fn main() -> Result<()> {
let args = Args::parse();
#[cfg(feature = "cuda")]
candle::quantized::cuda::set_force_dmmv(!args.no_dmmv);
run(args)
}

View File

@ -1,3 +1,20 @@
use candle::{Result, Tensor};
pub trait WithForward {
#[allow(clippy::too_many_arguments)]
fn forward(
&self,
img: &Tensor,
img_ids: &Tensor,
txt: &Tensor,
txt_ids: &Tensor,
timesteps: &Tensor,
y: &Tensor,
guidance: Option<&Tensor>,
) -> Result<Tensor>;
}
pub mod autoencoder;
pub mod model;
pub mod quantized_model;
pub mod sampling;

View File

@ -109,14 +109,14 @@ fn apply_rope(x: &Tensor, freq_cis: &Tensor) -> Result<Tensor> {
(fr0.broadcast_mul(&x0)? + fr1.broadcast_mul(&x1)?)?.reshape(dims.to_vec())
}
fn attention(q: &Tensor, k: &Tensor, v: &Tensor, pe: &Tensor) -> Result<Tensor> {
pub(crate) fn attention(q: &Tensor, k: &Tensor, v: &Tensor, pe: &Tensor) -> Result<Tensor> {
let q = apply_rope(q, pe)?.contiguous()?;
let k = apply_rope(k, pe)?.contiguous()?;
let x = scaled_dot_product_attention(&q, &k, v)?;
x.transpose(1, 2)?.flatten_from(2)
}
fn timestep_embedding(t: &Tensor, dim: usize, dtype: DType) -> Result<Tensor> {
pub(crate) fn timestep_embedding(t: &Tensor, dim: usize, dtype: DType) -> Result<Tensor> {
const TIME_FACTOR: f64 = 1000.;
const MAX_PERIOD: f64 = 10000.;
if dim % 2 == 1 {
@ -144,7 +144,7 @@ pub struct EmbedNd {
}
impl EmbedNd {
fn new(dim: usize, theta: usize, axes_dim: Vec<usize>) -> Self {
pub fn new(dim: usize, theta: usize, axes_dim: Vec<usize>) -> Self {
Self {
dim,
theta,
@ -575,9 +575,11 @@ impl Flux {
final_layer,
})
}
}
impl super::WithForward for Flux {
#[allow(clippy::too_many_arguments)]
pub fn forward(
fn forward(
&self,
img: &Tensor,
img_ids: &Tensor,

View File

@ -0,0 +1,465 @@
use super::model::{attention, timestep_embedding, Config, EmbedNd};
use crate::quantized_nn::{linear, linear_b, Linear};
use crate::quantized_var_builder::VarBuilder;
use candle::{DType, IndexOp, Result, Tensor, D};
use candle_nn::{LayerNorm, RmsNorm};
fn layer_norm(dim: usize, vb: VarBuilder) -> Result<LayerNorm> {
let ws = Tensor::ones(dim, DType::F32, vb.device())?;
Ok(LayerNorm::new_no_bias(ws, 1e-6))
}
#[derive(Debug, Clone)]
pub struct MlpEmbedder {
in_layer: Linear,
out_layer: Linear,
}
impl MlpEmbedder {
fn new(in_sz: usize, h_sz: usize, vb: VarBuilder) -> Result<Self> {
let in_layer = linear(in_sz, h_sz, vb.pp("in_layer"))?;
let out_layer = linear(h_sz, h_sz, vb.pp("out_layer"))?;
Ok(Self {
in_layer,
out_layer,
})
}
}
impl candle::Module for MlpEmbedder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.in_layer)?.silu()?.apply(&self.out_layer)
}
}
#[derive(Debug, Clone)]
pub struct QkNorm {
query_norm: RmsNorm,
key_norm: RmsNorm,
}
impl QkNorm {
fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
let query_norm = vb.get(dim, "query_norm.scale")?.dequantize(vb.device())?;
let query_norm = RmsNorm::new(query_norm, 1e-6);
let key_norm = vb.get(dim, "key_norm.scale")?.dequantize(vb.device())?;
let key_norm = RmsNorm::new(key_norm, 1e-6);
Ok(Self {
query_norm,
key_norm,
})
}
}
struct ModulationOut {
shift: Tensor,
scale: Tensor,
gate: Tensor,
}
impl ModulationOut {
fn scale_shift(&self, xs: &Tensor) -> Result<Tensor> {
xs.broadcast_mul(&(&self.scale + 1.)?)?
.broadcast_add(&self.shift)
}
fn gate(&self, xs: &Tensor) -> Result<Tensor> {
self.gate.broadcast_mul(xs)
}
}
#[derive(Debug, Clone)]
struct Modulation1 {
lin: Linear,
}
impl Modulation1 {
fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
let lin = linear(dim, 3 * dim, vb.pp("lin"))?;
Ok(Self { lin })
}
fn forward(&self, vec_: &Tensor) -> Result<ModulationOut> {
let ys = vec_
.silu()?
.apply(&self.lin)?
.unsqueeze(1)?
.chunk(3, D::Minus1)?;
if ys.len() != 3 {
candle::bail!("unexpected len from chunk {ys:?}")
}
Ok(ModulationOut {
shift: ys[0].clone(),
scale: ys[1].clone(),
gate: ys[2].clone(),
})
}
}
#[derive(Debug, Clone)]
struct Modulation2 {
lin: Linear,
}
impl Modulation2 {
fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
let lin = linear(dim, 6 * dim, vb.pp("lin"))?;
Ok(Self { lin })
}
fn forward(&self, vec_: &Tensor) -> Result<(ModulationOut, ModulationOut)> {
let ys = vec_
.silu()?
.apply(&self.lin)?
.unsqueeze(1)?
.chunk(6, D::Minus1)?;
if ys.len() != 6 {
candle::bail!("unexpected len from chunk {ys:?}")
}
let mod1 = ModulationOut {
shift: ys[0].clone(),
scale: ys[1].clone(),
gate: ys[2].clone(),
};
let mod2 = ModulationOut {
shift: ys[3].clone(),
scale: ys[4].clone(),
gate: ys[5].clone(),
};
Ok((mod1, mod2))
}
}
#[derive(Debug, Clone)]
pub struct SelfAttention {
qkv: Linear,
norm: QkNorm,
proj: Linear,
num_heads: usize,
}
impl SelfAttention {
fn new(dim: usize, num_heads: usize, qkv_bias: bool, vb: VarBuilder) -> Result<Self> {
let head_dim = dim / num_heads;
let qkv = linear_b(dim, dim * 3, qkv_bias, vb.pp("qkv"))?;
let norm = QkNorm::new(head_dim, vb.pp("norm"))?;
let proj = linear(dim, dim, vb.pp("proj"))?;
Ok(Self {
qkv,
norm,
proj,
num_heads,
})
}
fn qkv(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
let qkv = xs.apply(&self.qkv)?;
let (b, l, _khd) = qkv.dims3()?;
let qkv = qkv.reshape((b, l, 3, self.num_heads, ()))?;
let q = qkv.i((.., .., 0))?.transpose(1, 2)?;
let k = qkv.i((.., .., 1))?.transpose(1, 2)?;
let v = qkv.i((.., .., 2))?.transpose(1, 2)?;
let q = q.apply(&self.norm.query_norm)?;
let k = k.apply(&self.norm.key_norm)?;
Ok((q, k, v))
}
#[allow(unused)]
fn forward(&self, xs: &Tensor, pe: &Tensor) -> Result<Tensor> {
let (q, k, v) = self.qkv(xs)?;
attention(&q, &k, &v, pe)?.apply(&self.proj)
}
}
#[derive(Debug, Clone)]
struct Mlp {
lin1: Linear,
lin2: Linear,
}
impl Mlp {
fn new(in_sz: usize, mlp_sz: usize, vb: VarBuilder) -> Result<Self> {
let lin1 = linear(in_sz, mlp_sz, vb.pp("0"))?;
let lin2 = linear(mlp_sz, in_sz, vb.pp("2"))?;
Ok(Self { lin1, lin2 })
}
}
impl candle::Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.lin1)?.gelu()?.apply(&self.lin2)
}
}
#[derive(Debug, Clone)]
pub struct DoubleStreamBlock {
img_mod: Modulation2,
img_norm1: LayerNorm,
img_attn: SelfAttention,
img_norm2: LayerNorm,
img_mlp: Mlp,
txt_mod: Modulation2,
txt_norm1: LayerNorm,
txt_attn: SelfAttention,
txt_norm2: LayerNorm,
txt_mlp: Mlp,
}
impl DoubleStreamBlock {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let h_sz = cfg.hidden_size;
let mlp_sz = (h_sz as f64 * cfg.mlp_ratio) as usize;
let img_mod = Modulation2::new(h_sz, vb.pp("img_mod"))?;
let img_norm1 = layer_norm(h_sz, vb.pp("img_norm1"))?;
let img_attn = SelfAttention::new(h_sz, cfg.num_heads, cfg.qkv_bias, vb.pp("img_attn"))?;
let img_norm2 = layer_norm(h_sz, vb.pp("img_norm2"))?;
let img_mlp = Mlp::new(h_sz, mlp_sz, vb.pp("img_mlp"))?;
let txt_mod = Modulation2::new(h_sz, vb.pp("txt_mod"))?;
let txt_norm1 = layer_norm(h_sz, vb.pp("txt_norm1"))?;
let txt_attn = SelfAttention::new(h_sz, cfg.num_heads, cfg.qkv_bias, vb.pp("txt_attn"))?;
let txt_norm2 = layer_norm(h_sz, vb.pp("txt_norm2"))?;
let txt_mlp = Mlp::new(h_sz, mlp_sz, vb.pp("txt_mlp"))?;
Ok(Self {
img_mod,
img_norm1,
img_attn,
img_norm2,
img_mlp,
txt_mod,
txt_norm1,
txt_attn,
txt_norm2,
txt_mlp,
})
}
fn forward(
&self,
img: &Tensor,
txt: &Tensor,
vec_: &Tensor,
pe: &Tensor,
) -> Result<(Tensor, Tensor)> {
let (img_mod1, img_mod2) = self.img_mod.forward(vec_)?; // shift, scale, gate
let (txt_mod1, txt_mod2) = self.txt_mod.forward(vec_)?; // shift, scale, gate
let img_modulated = img.apply(&self.img_norm1)?;
let img_modulated = img_mod1.scale_shift(&img_modulated)?;
let (img_q, img_k, img_v) = self.img_attn.qkv(&img_modulated)?;
let txt_modulated = txt.apply(&self.txt_norm1)?;
let txt_modulated = txt_mod1.scale_shift(&txt_modulated)?;
let (txt_q, txt_k, txt_v) = self.txt_attn.qkv(&txt_modulated)?;
let q = Tensor::cat(&[txt_q, img_q], 2)?;
let k = Tensor::cat(&[txt_k, img_k], 2)?;
let v = Tensor::cat(&[txt_v, img_v], 2)?;
let attn = attention(&q, &k, &v, pe)?;
let txt_attn = attn.narrow(1, 0, txt.dim(1)?)?;
let img_attn = attn.narrow(1, txt.dim(1)?, attn.dim(1)? - txt.dim(1)?)?;
let img = (img + img_mod1.gate(&img_attn.apply(&self.img_attn.proj)?))?;
let img = (&img
+ img_mod2.gate(
&img_mod2
.scale_shift(&img.apply(&self.img_norm2)?)?
.apply(&self.img_mlp)?,
)?)?;
let txt = (txt + txt_mod1.gate(&txt_attn.apply(&self.txt_attn.proj)?))?;
let txt = (&txt
+ txt_mod2.gate(
&txt_mod2
.scale_shift(&txt.apply(&self.txt_norm2)?)?
.apply(&self.txt_mlp)?,
)?)?;
Ok((img, txt))
}
}
#[derive(Debug, Clone)]
pub struct SingleStreamBlock {
linear1: Linear,
linear2: Linear,
norm: QkNorm,
pre_norm: LayerNorm,
modulation: Modulation1,
h_sz: usize,
mlp_sz: usize,
num_heads: usize,
}
impl SingleStreamBlock {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let h_sz = cfg.hidden_size;
let mlp_sz = (h_sz as f64 * cfg.mlp_ratio) as usize;
let head_dim = h_sz / cfg.num_heads;
let linear1 = linear(h_sz, h_sz * 3 + mlp_sz, vb.pp("linear1"))?;
let linear2 = linear(h_sz + mlp_sz, h_sz, vb.pp("linear2"))?;
let norm = QkNorm::new(head_dim, vb.pp("norm"))?;
let pre_norm = layer_norm(h_sz, vb.pp("pre_norm"))?;
let modulation = Modulation1::new(h_sz, vb.pp("modulation"))?;
Ok(Self {
linear1,
linear2,
norm,
pre_norm,
modulation,
h_sz,
mlp_sz,
num_heads: cfg.num_heads,
})
}
fn forward(&self, xs: &Tensor, vec_: &Tensor, pe: &Tensor) -> Result<Tensor> {
let mod_ = self.modulation.forward(vec_)?;
let x_mod = mod_.scale_shift(&xs.apply(&self.pre_norm)?)?;
let x_mod = x_mod.apply(&self.linear1)?;
let qkv = x_mod.narrow(D::Minus1, 0, 3 * self.h_sz)?;
let (b, l, _khd) = qkv.dims3()?;
let qkv = qkv.reshape((b, l, 3, self.num_heads, ()))?;
let q = qkv.i((.., .., 0))?.transpose(1, 2)?;
let k = qkv.i((.., .., 1))?.transpose(1, 2)?;
let v = qkv.i((.., .., 2))?.transpose(1, 2)?;
let mlp = x_mod.narrow(D::Minus1, 3 * self.h_sz, self.mlp_sz)?;
let q = q.apply(&self.norm.query_norm)?;
let k = k.apply(&self.norm.key_norm)?;
let attn = attention(&q, &k, &v, pe)?;
let output = Tensor::cat(&[attn, mlp.gelu()?], 2)?.apply(&self.linear2)?;
xs + mod_.gate(&output)
}
}
#[derive(Debug, Clone)]
pub struct LastLayer {
norm_final: LayerNorm,
linear: Linear,
ada_ln_modulation: Linear,
}
impl LastLayer {
fn new(h_sz: usize, p_sz: usize, out_c: usize, vb: VarBuilder) -> Result<Self> {
let norm_final = layer_norm(h_sz, vb.pp("norm_final"))?;
let linear_ = linear(h_sz, p_sz * p_sz * out_c, vb.pp("linear"))?;
let ada_ln_modulation = linear(h_sz, 2 * h_sz, vb.pp("adaLN_modulation.1"))?;
Ok(Self {
norm_final,
linear: linear_,
ada_ln_modulation,
})
}
fn forward(&self, xs: &Tensor, vec: &Tensor) -> Result<Tensor> {
let chunks = vec.silu()?.apply(&self.ada_ln_modulation)?.chunk(2, 1)?;
let (shift, scale) = (&chunks[0], &chunks[1]);
let xs = xs
.apply(&self.norm_final)?
.broadcast_mul(&(scale.unsqueeze(1)? + 1.0)?)?
.broadcast_add(&shift.unsqueeze(1)?)?;
xs.apply(&self.linear)
}
}
#[derive(Debug, Clone)]
pub struct Flux {
img_in: Linear,
txt_in: Linear,
time_in: MlpEmbedder,
vector_in: MlpEmbedder,
guidance_in: Option<MlpEmbedder>,
pe_embedder: EmbedNd,
double_blocks: Vec<DoubleStreamBlock>,
single_blocks: Vec<SingleStreamBlock>,
final_layer: LastLayer,
}
impl Flux {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let img_in = linear(cfg.in_channels, cfg.hidden_size, vb.pp("img_in"))?;
let txt_in = linear(cfg.context_in_dim, cfg.hidden_size, vb.pp("txt_in"))?;
let mut double_blocks = Vec::with_capacity(cfg.depth);
let vb_d = vb.pp("double_blocks");
for idx in 0..cfg.depth {
let db = DoubleStreamBlock::new(cfg, vb_d.pp(idx))?;
double_blocks.push(db)
}
let mut single_blocks = Vec::with_capacity(cfg.depth_single_blocks);
let vb_s = vb.pp("single_blocks");
for idx in 0..cfg.depth_single_blocks {
let sb = SingleStreamBlock::new(cfg, vb_s.pp(idx))?;
single_blocks.push(sb)
}
let time_in = MlpEmbedder::new(256, cfg.hidden_size, vb.pp("time_in"))?;
let vector_in = MlpEmbedder::new(cfg.vec_in_dim, cfg.hidden_size, vb.pp("vector_in"))?;
let guidance_in = if cfg.guidance_embed {
let mlp = MlpEmbedder::new(256, cfg.hidden_size, vb.pp("guidance_in"))?;
Some(mlp)
} else {
None
};
let final_layer =
LastLayer::new(cfg.hidden_size, 1, cfg.in_channels, vb.pp("final_layer"))?;
let pe_dim = cfg.hidden_size / cfg.num_heads;
let pe_embedder = EmbedNd::new(pe_dim, cfg.theta, cfg.axes_dim.to_vec());
Ok(Self {
img_in,
txt_in,
time_in,
vector_in,
guidance_in,
pe_embedder,
double_blocks,
single_blocks,
final_layer,
})
}
}
impl super::WithForward for Flux {
#[allow(clippy::too_many_arguments)]
fn forward(
&self,
img: &Tensor,
img_ids: &Tensor,
txt: &Tensor,
txt_ids: &Tensor,
timesteps: &Tensor,
y: &Tensor,
guidance: Option<&Tensor>,
) -> Result<Tensor> {
if txt.rank() != 3 {
candle::bail!("unexpected shape for txt {:?}", txt.shape())
}
if img.rank() != 3 {
candle::bail!("unexpected shape for img {:?}", img.shape())
}
let dtype = img.dtype();
let pe = {
let ids = Tensor::cat(&[txt_ids, img_ids], 1)?;
ids.apply(&self.pe_embedder)?
};
let mut txt = txt.apply(&self.txt_in)?;
let mut img = img.apply(&self.img_in)?;
let vec_ = timestep_embedding(timesteps, 256, dtype)?.apply(&self.time_in)?;
let vec_ = match (self.guidance_in.as_ref(), guidance) {
(Some(g_in), Some(guidance)) => {
(vec_ + timestep_embedding(guidance, 256, dtype)?.apply(g_in))?
}
_ => vec_,
};
let vec_ = (vec_ + y.apply(&self.vector_in))?;
// Double blocks
for block in self.double_blocks.iter() {
(img, txt) = block.forward(&img, &txt, &vec_, &pe)?
}
// Single blocks
let mut img = Tensor::cat(&[&txt, &img], 1)?;
for block in self.single_blocks.iter() {
img = block.forward(&img, &vec_, &pe)?;
}
let img = img.i((.., txt.dim(1)?..))?;
self.final_layer.forward(&img, &vec_)
}
}

View File

@ -92,8 +92,8 @@ pub fn unpack(xs: &Tensor, height: usize, width: usize) -> Result<Tensor> {
}
#[allow(clippy::too_many_arguments)]
pub fn denoise(
model: &super::model::Flux,
pub fn denoise<M: super::WithForward>(
model: &M,
img: &Tensor,
img_ids: &Tensor,
txt: &Tensor,