mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Add Resize to onnx ops (#2946)
* added resize to candle-onnx, not currently working * changed unreachable to bail, and bailed when both scales and sizes are set * cleanup and added other unused options for this op * cleanup * fixed image loading to make output work * cleanup and removed unused variables * removed path path creation code, and changed unwrap to ?
This commit is contained in:
@ -5,12 +5,14 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{IndexOp, D};
|
||||
use candle_examples::save_image;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
SqueezeNet,
|
||||
EfficientNet,
|
||||
EsrGan,
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
@ -28,10 +30,21 @@ struct Args {
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
let image = match args.which {
|
||||
Which::SqueezeNet | Which::EfficientNet => {
|
||||
candle_examples::imagenet::load_image224(&args.image)?
|
||||
}
|
||||
Which::EsrGan => candle_examples::imagenet::load_image_with_std_mean(
|
||||
&args.image,
|
||||
128,
|
||||
&[0.0f32, 0.0, 0.0],
|
||||
&[1.0f32, 1.0, 1.0],
|
||||
)?,
|
||||
};
|
||||
let image = match args.which {
|
||||
Which::SqueezeNet => image,
|
||||
Which::EfficientNet => image.permute((1, 2, 0))?,
|
||||
Which::EsrGan => image,
|
||||
};
|
||||
|
||||
println!("loaded image {image:?}");
|
||||
@ -45,6 +58,9 @@ pub fn main() -> anyhow::Result<()> {
|
||||
Which::EfficientNet => hf_hub::api::sync::Api::new()?
|
||||
.model("onnx/EfficientNet-Lite4".into())
|
||||
.get("efficientnet-lite4-11.onnx")?,
|
||||
Which::EsrGan => hf_hub::api::sync::Api::new()?
|
||||
.model("qualcomm/Real-ESRGAN-x4plus".into())
|
||||
.get("Real-ESRGAN-x4plus.onnx")?,
|
||||
},
|
||||
};
|
||||
|
||||
@ -57,21 +73,40 @@ pub fn main() -> anyhow::Result<()> {
|
||||
let prs = match args.which {
|
||||
Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?,
|
||||
Which::EfficientNet => output,
|
||||
Which::EsrGan => output,
|
||||
};
|
||||
let prs = prs.i(0)?.to_vec1::<f32>()?;
|
||||
|
||||
// Sort the predictions and take the top 5
|
||||
let mut top: Vec<_> = prs.iter().enumerate().collect();
|
||||
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
|
||||
let top = top.into_iter().take(5).collect::<Vec<_>>();
|
||||
match args.which {
|
||||
Which::EfficientNet | Which::SqueezeNet => {
|
||||
let prs = prs.i(0)?.to_vec1::<f32>()?;
|
||||
|
||||
// Print the top predictions
|
||||
for &(i, p) in &top {
|
||||
println!(
|
||||
"{:50}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[i],
|
||||
p * 100.0
|
||||
);
|
||||
// Sort the predictions and take the top 5
|
||||
let mut top: Vec<_> = prs.iter().enumerate().collect();
|
||||
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
|
||||
let top = top.into_iter().take(5).collect::<Vec<_>>();
|
||||
|
||||
// Print the top predictions
|
||||
for &(i, p) in &top {
|
||||
println!(
|
||||
"{:50}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[i],
|
||||
p * 100.0
|
||||
);
|
||||
}
|
||||
}
|
||||
Which::EsrGan => {
|
||||
let max_pixel_val = candle::Tensor::try_from(255.0f32)?
|
||||
.to_device(prs.device())?
|
||||
.broadcast_as(prs.shape())?;
|
||||
let out = (prs * max_pixel_val)?.i(0)?.to_dtype(candle::DType::U8)?;
|
||||
|
||||
let pb = std::path::PathBuf::from(args.image);
|
||||
let input_file_name = pb.file_name().unwrap();
|
||||
let mut output_file_name = std::ffi::OsString::from("super_");
|
||||
output_file_name.push(input_file_name);
|
||||
|
||||
save_image(&out, output_file_name)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -1960,6 +1960,76 @@ fn simple_eval_(
|
||||
let output = input.sign()?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Resize" => {
|
||||
let input = get(&node.input[0])?;
|
||||
|
||||
if input.rank() != 4 {
|
||||
bail!("Unsupported rank for nearest resize: {}", input.rank());
|
||||
}
|
||||
|
||||
let scales = if node.input.len() > 2 && !node.input[2].is_empty() {
|
||||
Some(get(&node.input[2])?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let sizes = if node.input.len() > 3 && !node.input[3].is_empty() {
|
||||
Some(get(&node.input[3])?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let output_dims = match (scales, sizes) {
|
||||
(Some(_), Some(_)) => {
|
||||
bail!("Scales and sizes cannot both be set for Resize operation")
|
||||
}
|
||||
(Some(scales_tensor), None) => {
|
||||
let scale_values = scales_tensor.to_vec1::<f32>()?;
|
||||
input
|
||||
.dims()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, &d)| (d as f32 * scale_values[i]) as usize)
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
(None, Some(sizes_tensor)) => sizes_tensor
|
||||
.to_vec1::<i64>()?
|
||||
.iter()
|
||||
.map(|&d| d as usize)
|
||||
.collect::<Vec<_>>(),
|
||||
(None, None) => bail!("Either scales or sizes should be present"),
|
||||
};
|
||||
|
||||
let coordinate_transformation_mode =
|
||||
get_attr_opt::<str>(node, "coordinate_transformation_mode")?
|
||||
.unwrap_or("half_pixel");
|
||||
// Interpolation mode: nearest, linear, or cubic.
|
||||
let mode = get_attr_opt::<str>(node, "mode")?.unwrap_or("nearest");
|
||||
// How to determine the "nearest" pixel in nearest interpolation mode.
|
||||
let nearest_mode =
|
||||
get_attr_opt::<str>(node, "nearest_mode")?.unwrap_or("round_prefer_floor");
|
||||
|
||||
if mode != "nearest" {
|
||||
bail!("Unsupported resize mode: {}", mode);
|
||||
}
|
||||
|
||||
if nearest_mode != "floor" {
|
||||
bail!("Unsupported nearest_mode for resize: {}", nearest_mode);
|
||||
}
|
||||
|
||||
if coordinate_transformation_mode != "asymmetric" {
|
||||
bail!(
|
||||
"Unsupported coordinate_transformation_mode for resize: {}",
|
||||
coordinate_transformation_mode
|
||||
);
|
||||
}
|
||||
|
||||
let h = output_dims[2];
|
||||
let w = output_dims[3];
|
||||
let output = input.upsample_nearest2d(h, w)?;
|
||||
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
op_type => bail!("unsupported op_type {op_type} for op {node:?}"),
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user