Add 1d upsampling. (#839)

* Add 1d upsampling.

* Add the interpolate functions.
This commit is contained in:
Laurent Mazare
2023-09-13 17:50:39 +02:00
committed by GitHub
parent 31ab2ddaeb
commit 9a465e1b26
8 changed files with 86 additions and 2 deletions

View File

@ -57,6 +57,7 @@ pub trait BackendStorage: Sized {
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self>;
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self>;
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>;

View File

@ -91,6 +91,7 @@ impl Tensor {
}
}
Op::Reshape(node)
| Op::UpsampleNearest1D(node)
| Op::UpsampleNearest2D(node)
| Op::AvgPool2D { arg: node, .. }
| Op::MaxPool2D { arg: node, .. }
@ -262,6 +263,9 @@ impl Tensor {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
}
Op::UpsampleNearest1D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest1d",
})?,
Op::UpsampleNearest2D { .. } => Err(Error::BackwardNotSupported {
op: "upsample-nearest2d",
})?,

View File

@ -727,6 +727,36 @@ impl Map1 for MaxPool2D {
}
}
struct UpsampleNearest1D(usize);
impl Map1 for UpsampleNearest1D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: Specialized implementation for the case 2*sz?
let dst_sz = self.0;
let (b_sz, c, src_sz) = layout.shape().dims3()?;
let stride = layout.stride();
let stride_sz = stride[2];
let src_index = layout.start_offset();
let scale_sz = src_sz as f64 / dst_sz as f64;
let mut dst = vec![T::zero(); b_sz * c * dst_sz];
let src_idxs = (0..dst_sz)
.map(|idx| usize::min(src_sz - 1, (idx as f64 * scale_sz) as usize))
.collect::<Vec<_>>();
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * dst_sz..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * dst_sz..];
let src_index = src_index + c_idx * stride[1];
for (idx, src_idx) in src_idxs.iter().enumerate() {
dst[idx] = src[src_index + src_idx * stride_sz]
}
}
}
Ok(dst)
}
}
struct UpsampleNearest2D(usize, usize);
impl Map1 for UpsampleNearest2D {
@ -2137,6 +2167,10 @@ impl BackendStorage for CpuStorage {
MaxPool2D(kernel_size, stride).map(self, layout)
}
fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
UpsampleNearest1D(sz).map(self, layout)
}
fn upsample_nearest2d(&self, layout: &Layout, h: usize, w: usize) -> Result<Self> {
UpsampleNearest2D(h, w).map(self, layout)
}

View File

@ -1954,6 +1954,10 @@ impl BackendStorage for CudaStorage {
Ok(Self { slice, device })
}
fn upsample_nearest1d(&self, _: &Layout, _out_sz: usize) -> Result<Self> {
crate::bail!("upsample-nearest1d is not supported on cuda")
}
fn upsample_nearest2d(&self, l: &Layout, out_w: usize, out_h: usize) -> Result<Self> {
let device = self.device().clone();
let slice = UpsampleNearest2D(out_w, out_h).map(&self.slice, &device, l)?;

View File

@ -152,6 +152,10 @@ impl crate::backend::BackendStorage for CudaStorage {
Err(Error::NotCompiledWithCudaSupport)
}
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}

View File

@ -116,6 +116,7 @@ pub enum Op {
stride: (usize, usize),
},
UpsampleNearest1D(Tensor),
UpsampleNearest2D(Tensor),
Cat(Vec<Tensor>, usize),

View File

@ -369,6 +369,19 @@ impl Storage {
}
}
pub(crate) fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
match self {
Storage::Cpu(storage) => {
let storage = storage.upsample_nearest1d(layout, sz)?;
Ok(Self::Cpu(storage))
}
Self::Cuda(storage) => {
let storage = storage.upsample_nearest1d(layout, sz)?;
Ok(Self::Cuda(storage))
}
}
}
pub(crate) fn upsample_nearest2d(&self, layout: &Layout, h: usize, w: usize) -> Result<Self> {
match self {
Storage::Cpu(storage) => {

View File

@ -854,12 +854,30 @@ impl Tensor {
self.maximum(min)?.minimum(max)
}
/// Upsample the input tensor to the `(target_h, target_w)` size, taking the value of the
/// Interpolate the input tensor to the `target_size` size, taking the value of the nearest element.
///
/// The input tensor should have three dimensions, `(batch, channels, l)`, the returned
/// tensor also has three dimensions, `(batch, channels, target_size)`.
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
let (n, c, _l) = self.dims3()?;
let op = BackpropOp::new1(self, Op::UpsampleNearest1D);
let storage = self
.storage()
.upsample_nearest1d(self.layout(), target_size)?;
Ok(from_storage(storage, (n, c, target_size), op, false))
}
/// Alias for `interpolate1d`.
pub fn upsample_nearest1d(&self, target_size: usize) -> Result<Self> {
self.interpolate1d(target_size)
}
/// Interpolate the input tensor to the `(target_h, target_w)` size, taking the value of the
/// nearest element.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, target_h, target_w)`.
pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, Op::UpsampleNearest2D);
let storage = self
@ -868,6 +886,11 @@ impl Tensor {
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
/// Alias for `interpolate2d`.
pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
self.interpolate2d(target_h, target_w)
}
/// 2D average pooling over an input tensor with multiple channels.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned