Use HF Papers

This commit is contained in:
Quentin Gallouédec
2025-05-17 03:41:24 +00:00
parent 92106c8762
commit ffb8d63324
97 changed files with 113 additions and 113 deletions

View File

@ -4,7 +4,7 @@ Experimental, not instruction-tuned small LLM from the Hazy Research group, comb
[Blogpost](https://hazyresearch.stanford.edu/blog/2024-03-03-based)
[Simple linear attention language models balance the recall-throughput tradeoff](https://arxiv.org/abs/2402.18668)
[Simple linear attention language models balance the recall-throughput tradeoff](https://huggingface.co/papers/2402.18668)
## Running an example

View File

@ -1,6 +1,6 @@
# candle-beit
[Beit](https://arxiv.org/abs/2106.08254) is a computer vision model.
[Beit](https://huggingface.co/papers/2106.08254) is a computer vision model.
In this example, it is used as an ImageNet classifier: the model returns the
probability for the image to belong to each of the 1000 ImageNet categories.

View File

@ -3,7 +3,7 @@
[HuggingFace Model Card](https://huggingface.co/vidore/colpali-v1.2-merged)
```
wget https://arxiv.org/pdf/1706.03762.pdf
wget https://huggingface.co/papers/1706.03762
cargo run --features cuda,pdf2image --release --example colpali -- --prompt "What is Positional Encoding" --pdf "1706.03762.pdf"
```

View File

@ -2,7 +2,7 @@
A lightweight CNN architecture that processes image patches similar to a vision transformer, with separate spatial and channel convolutions.
ConvMixer from [Patches Are All You Need?](https://arxiv.org/pdf/2201.09792) and [ConvMixer](https://github.com/locuslab/convmixer).
ConvMixer from [Patches Are All You Need?](https://huggingface.co/papers/2201.09792) and [ConvMixer](https://github.com/locuslab/convmixer).
## Running an example

View File

@ -1,7 +1,7 @@
# candle-convnext
[A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) and
[ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808).
[A ConvNet for the 2020s](https://huggingface.co/papers/2201.03545) and
[ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://huggingface.co/papers/2301.00808).
This candle implementation uses a pre-trained ConvNeXt network for inference. The
classification head has been trained on the ImageNet dataset and returns the

View File

@ -1,6 +1,6 @@
# candle-dinov2-reg4
[DINOv2-reg4](https://arxiv.org/abs/2309.16588) is the lastest version of DINOv2 with registers.
[DINOv2-reg4](https://huggingface.co/papers/2309.16588) is the lastest version of DINOv2 with registers.
In this example, it is used as an plant species classifier: the model returns the
probability for the image to belong to each of the 7806 PlantCLEF2024 categories.

View File

@ -1,5 +1,5 @@
//! DINOv2 reg4 finetuned on PlantCLEF 2024
//! https://arxiv.org/abs/2309.16588
//! https://huggingface.co/papers/2309.16588
//! https://huggingface.co/spaces/BVRA/PlantCLEF2024
//! https://zenodo.org/records/10848263

View File

@ -1,6 +1,6 @@
//! EfficientNet implementation.
//!
//! https://arxiv.org/abs/1905.11946
//! https://huggingface.co/papers/1905.11946
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

View File

@ -1,6 +1,6 @@
# candle-efficientvit
[EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention](https://arxiv.org/abs/2305.07027).
[EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention](https://huggingface.co/papers/2305.07027).
This candle implementation uses a pre-trained EfficientViT (from Microsoft Research Asia) network for inference.
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.

View File

@ -1,6 +1,6 @@
# candle-eva2
[EVA-02](https://arxiv.org/abs/2303.11331) is a computer vision model.
[EVA-02](https://huggingface.co/papers/2303.11331) is a computer vision model.
In this example, it is used as an ImageNet classifier: the model returns the
probability for the image to belong to each of the 1000 ImageNet categories.

View File

@ -1,6 +1,6 @@
# candle-fastvit
[FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization](https://arxiv.org/abs/2303.14189).
[FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization](https://huggingface.co/papers/2303.14189).
This candle implementation uses a pre-trained FastViT network for inference. The
classification head has been trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.

View File

@ -3,7 +3,7 @@
gte-Qwen1.5-7B-instruct is a variant of the GTE embedding model family.
- [Model card](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) on the HuggingFace Hub.
- [Technical report](https://arxiv.org/abs/2308.03281) *Towards General Text Embeddings with Multi-stage Contrastive Learning*
- [Technical report](https://huggingface.co/papers/2308.03281) *Towards General Text Embeddings with Multi-stage Contrastive Learning*
## Running the example

View File

@ -1,6 +1,6 @@
# hiera
[Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles](https://arxiv.org/abs/2306.00989)
[Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles](https://huggingface.co/papers/2306.00989)
This candle implementation uses pre-trained Hiera models from timm for inference.
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.

View File

@ -5,7 +5,7 @@ the transformer architecture. It leverages State Space Models (SSMs) with the
goal of being computationally efficient on long sequences. The implementation is
based on [mamba.rs](https://github.com/LaurentMazare/mamba.rs).
- [1]. [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752).
- [1]. [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://huggingface.co/papers/2312.00752).
Compared to the mamba-minimal example, this version is far more efficient but
would only work for inference.

View File

@ -2,7 +2,7 @@
MobileCLIP is family of efficient CLIP-like models using FastViT-based image encoders.
See [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training](https://arxiv.org/abs/2311.17049)
See [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training](https://huggingface.co/papers/2311.17049)
## Running on an example on cpu

View File

@ -1,6 +1,6 @@
# candle-mobilenetv4
[MobileNetV4 - Universal Models for the Mobile Ecosystem](https://arxiv.org/abs/2404.10518)
[MobileNetV4 - Universal Models for the Mobile Ecosystem](https://huggingface.co/papers/2404.10518)
This candle implementation uses pre-trained MobileNetV4 models from timm for inference.
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.

View File

@ -1,6 +1,6 @@
# candle-mobileone
[MobileOne: An Improved One millisecond Mobile Backbone](https://arxiv.org/abs/2206.04040).
[MobileOne: An Improved One millisecond Mobile Backbone](https://huggingface.co/papers/2206.04040).
This candle implementation uses a pre-trained MobileOne network for inference. The
classification head has been trained on the ImageNet dataset and returns the

View File

@ -1,6 +1,6 @@
# candle-musicgen
Candle implementation of musicgen from [Simple and Controllable Music Generation](https://arxiv.org/pdf/2306.05284).
Candle implementation of musicgen from [Simple and Controllable Music Generation](https://huggingface.co/papers/2306.05284).
## Running an example

View File

@ -3,7 +3,7 @@
OLMo is a series of Open Language Models designed to enable the science of language models.
- **Project Page:** https://allenai.org/olmo
- **Papers:** [OLMo](https://arxiv.org/abs/2402.00838) [OLMo 2](https://arxiv.org/abs/2501.00656)
- **Papers:** [OLMo](https://huggingface.co/papers/2402.00838) [OLMo 2](https://huggingface.co/papers/2501.00656)
- **Technical blog post:** https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
- **W&B Logs:** https://wandb.ai/ai2-llm/OLMo-1B/reports/OLMo-1B--Vmlldzo2NzY1Njk1
<!-- - **Press release:** TODO -->

View File

@ -2,7 +2,7 @@
This example demonstrates how to run [ONNX](https://github.com/onnx/onnx) based models in Candle.
It contains small variants of two models, [SqueezeNet](https://arxiv.org/pdf/1602.07360.pdf) (default) and [EfficientNet](https://arxiv.org/pdf/1905.11946.pdf).
It contains small variants of two models, [SqueezeNet](https://huggingface.co/papers/1602.07360) (default) and [EfficientNet](https://huggingface.co/papers/1905.11946).
You can run the examples with following commands:

View File

@ -51,7 +51,7 @@ cargo run --example quantized-t5 --release -- \
Note that a storm surge is what forecasters consider a hurricane's most dangerous part.
```
### [MADLAD-400](https://arxiv.org/abs/2309.04662)
### [MADLAD-400](https://huggingface.co/papers/2309.04662)
MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.

View File

@ -1,6 +1,6 @@
# candle-repvgg
[RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697).
[RepVGG: Making VGG-style ConvNets Great Again](https://huggingface.co/papers/2101.03697).
This candle implementation uses a pre-trained RepVGG network for inference. The
classification head has been trained on the ImageNet dataset and returns the

View File

@ -1,6 +1,6 @@
# candle-resnet
A candle implementation of inference using a pre-trained [ResNet](https://arxiv.org/abs/1512.03385).
A candle implementation of inference using a pre-trained [ResNet](https://huggingface.co/papers/1512.03385).
This uses a classification head trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.

View File

@ -7,7 +7,7 @@
Stable Diffusion 3 Medium is a text-to-image model based on Multimodal Diffusion Transformer (MMDiT) architecture.
- [huggingface repo](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
- [research paper](https://arxiv.org/pdf/2403.03206)
- [research paper](https://huggingface.co/papers/2403.03206)
- [announcement blog post](https://stability.ai/news/stable-diffusion-3-medium)
Stable Diffusion 3.5 is a family of text-to-image models with latest improvements:

View File

@ -69,7 +69,7 @@ pub fn euler_sample(
}
// The "Resolution-dependent shifting of timestep schedules" recommended in the SD3 tech report paper
// https://arxiv.org/pdf/2403.03206
// https://huggingface.co/papers/2403.03206
// Following the implementation in ComfyUI:
// https://github.com/comfyanonymous/ComfyUI/blob/3c60ecd7a83da43d694e26a77ca6b93106891251/
// comfy/model_sampling.py#L181

View File

@ -1,6 +1,6 @@
# candle-starcoder2
Candle implementation of Star Coder 2 family of code generation model from [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/pdf/2402.19173).
Candle implementation of Star Coder 2 family of code generation model from [StarCoder 2 and The Stack v2: The Next Generation](https://huggingface.co/papers/2402.19173).
## Running an example

View File

@ -16,7 +16,7 @@ $ cargo run --example stella-en-v5 --release -- --query "What are safetensors?"
> Tensor[[1, 1024], f32]
```
Stella_en_1.5B_v5 is trained by [MRL](https://arxiv.org/abs/2205.13147) enabling multiple embedding dimensions.
Stella_en_1.5B_v5 is trained by [MRL](https://huggingface.co/papers/2205.13147) enabling multiple embedding dimensions.
The following reproduces the example in the [model card](https://huggingface.co/dunzhang/stella_en_1.5B_v5) for a retrieval task (s2p). The sample queries and docs are hardcoded in the example.

View File

@ -13,7 +13,7 @@ $ cargo run --example t5 --release -- --model-id "t5-small" --prompt "translate
Variants such as [flan-t5](https://huggingface.co/google/flan-t5-small), [flan-ul2](https://huggingface.co/google/flan-ul2) (with `--revision "refs/pr/25"`), and [Co-EdIT](https://huggingface.co/grammarly/coedit-large) are also supported.
## Translation with [MADLAD-400](https://arxiv.org/abs/2309.04662)
## Translation with [MADLAD-400](https://huggingface.co/papers/2309.04662)
MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.

View File

@ -8,7 +8,7 @@ The candle implementation reproduces the same structure/files for models and
pipelines. Useful resources:
- [Official implementation](https://github.com/dome272/Wuerstchen).
- [Arxiv paper](https://arxiv.org/abs/2306.00637).
- [Arxiv paper](https://huggingface.co/papers/2306.00637).
- Blog post: [Introducing Würstchen: Fast Diffusion for Image Generation](https://huggingface.co/blog/wuerstchen).
## Getting the weights

View File

@ -858,7 +858,7 @@ struct finalize_softmax {
};
// Welford's algorithm approach for an online softmax implementation.
// Same as the Online normalizer calculation for softmax: https://arxiv.org/pdf/1805.02867.pdf
// Same as the Online normalizer calculation for softmax: https://huggingface.co/papers/1805.02867
template<typename T, ushort BLOCKSIZE>
METAL_FUNC void softmax(
constant uint &src_numel,

View File

@ -6,7 +6,7 @@
//! Note that this implementation is for inference only, there is no possibility to track the
//! running stats.
//!
//! [`Batch Normalization`]: https://arxiv.org/abs/1502.03167
//! [`Batch Normalization`]: https://huggingface.co/papers/1502.03167
use candle::{DType, Result, Tensor, Var};
#[derive(Debug, Clone, Copy, PartialEq)]

View File

@ -27,7 +27,7 @@
//! # Ok(()) }
//! ```
//!
//! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450
//! [`Layer Normalization`]: https://huggingface.co/papers/1607.06450
use candle::{DType, Module, Result, Tensor, D};
#[derive(Debug, Clone, Copy, PartialEq)]

View File

@ -512,8 +512,8 @@ message TensorProto {
BFLOAT16 = 16;
// Non-IEEE floating-point format based on papers
// FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
// 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
// FP8 Formats for Deep Learning, https://huggingface.co/papers/2209.05433,
// 8-bit Numerical Formats For Deep Neural Networks, https://huggingface.co/papers/2206.02915.
// Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
// The computation usually happens inside a block quantize / dequantize
// fused by the runtime.

View File

@ -9,7 +9,7 @@ import numbers
class LayerNorm(Module):
r"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`
the paper `Layer Normalization <https://huggingface.co/papers/1607.06450>`
math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

View File

@ -1,7 +1,7 @@
//! Based from the Stanford Hazy Research group.
//!
//! See "Simple linear attention language models balance the recall-throughput tradeoff", Arora et al. 2024
//! - Simple linear attention language models balance the recall-throughput tradeoff. [Arxiv](https://arxiv.org/abs/2402.18668)
//! - Simple linear attention language models balance the recall-throughput tradeoff. [Arxiv](https://huggingface.co/papers/2402.18668)
//! - [Github Rep](https://github.com/HazyResearch/based)
//! - [Blogpost](https://hazyresearch.stanford.edu/blog/2024-03-03-based)

View File

@ -1,7 +1,7 @@
//! Based on the BEIT vision-language model.
//!
//! See "BEIT: BERT Pre-Training of Image Transformers", Bao et al. 2021
//! - [Arxiv](https://arxiv.org/abs/2106.08254)
//! - [Arxiv](https://huggingface.co/papers/2106.08254)
//! - [Github](https://github.com/microsoft/unilm/tree/master/beit)
//!

View File

@ -3,7 +3,7 @@
//! Bert is a general large language model that can be used for various language tasks:
//! - Compute sentence embeddings for a prompt.
//! - Compute similarities between a set of sentences.
//! - [Arxiv](https://arxiv.org/abs/1810.04805) "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
//! - [Arxiv](https://huggingface.co/papers/1810.04805) "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
//! - Upstream [Github repo](https://github.com/google-research/bert).
//! - See bert in [candle-examples](https://github.com/huggingface/candle/tree/main/candle-examples/) for runnable code
//!

View File

@ -3,7 +3,7 @@
//! [StarCoder/BigCode](https://huggingface.co/bigcode/starcoderbase-1b) is a LLM
//! model specialized to code generation. The initial model was trained on 80
//! programming languages. See "StarCoder: A State-of-the-Art LLM for Code", Mukherjee et al. 2023
//! - [Arxiv](https://arxiv.org/abs/2305.06161)
//! - [Arxiv](https://huggingface.co/papers/2305.06161)
//! - [Github](https://github.com/bigcode-project/starcoder)
//!
//! ## Running some example

View File

@ -5,7 +5,7 @@
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning)
//! - 💻 [GH Link](https://github.com/salesforce/BLIP)
//! - 🤗 [HF Link](https://huggingface.co/Salesforce/blip-image-captioning-base)
//! - 📝 [Paper](https://arxiv.org/abs/2201.12086)
//! - 📝 [Paper](https://huggingface.co/papers/2201.12086)
//!
use super::blip_text;

View File

@ -1,11 +1,11 @@
//! Implementation of BLIP text encoder/decoder.
//!
//! - 📝 [Paper](https://arxiv.org/abs/2201.12086). BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation"
//! - 📝 [Paper](https://huggingface.co/papers/2201.12086). BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation"
//!
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning)
//! - 💻 [GH Link](https://github.com/salesforce/BLIP)
//! - 🤗 [HF Link](https://huggingface.co/Salesforce/blip-image-captioning-base)
//! - 📝 [Paper](https://arxiv.org/abs/2201.12086)
//! - 📝 [Paper](https://huggingface.co/papers/2201.12086)
//!
use super::with_tracing::{linear, Embedding, Linear};
use candle::{Module, Result, Tensor, D};

View File

@ -13,9 +13,9 @@ use super::Activation;
/// Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
/// positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
/// [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
/// [Self-Attention with Relative Position Representations (Shaw et al.)](https://huggingface.co/papers/1803.02155).
/// For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
/// with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
/// with Better Relative Position Embeddings (Huang et al.)](https://huggingface.co/papers/2009.13658).
#[derive(Clone, Debug)]
pub enum PositionEmbeddingType {
Absolute,

View File

@ -2,7 +2,7 @@
//!
//! A Pre-Trained Model For Code Generation with Multilingual Evaluations on HumanEval-X"
//!
//! - 📝 [Arxiv](https://arxiv.org/abs/2303.17568)
//! - 📝 [Arxiv](https://huggingface.co/papers/2303.17568)
//! - 💻 [Github](https://github.com/THUDM/CodeGeeX)
//!

View File

@ -2,7 +2,7 @@
//!
//! See "Patches Are All You Need?" by Trockman et al. 2022
//!
//! - 📝 [Arxiv](https://arxiv.org/abs/2201.09792)
//! - 📝 [Arxiv](https://huggingface.co/papers/2201.09792)
//! - 💻 [Github](https://github.com/locuslab/convmixer)
//!
use candle::Result;

View File

@ -8,8 +8,8 @@
//! - 💻 [ConvNeXt](https://github.com/facebookresearch/ConvNeXt/)
//! - 💻 [ConvNeXt-V2](https://github.com/facebookresearch/ConvNeXt-V2/)
//! - 💻 [timm](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/convnext.py)
//! - 📝 [Paper](https://arxiv.org/abs/2201.03545) A ConvNet for the 2020s
//! - 📝 [Paper](https://arxiv.org/abs/2301.00808) ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
//! - 📝 [Paper](https://huggingface.co/papers/2201.03545) A ConvNet for the 2020s
//! - 📝 [Paper](https://huggingface.co/papers/2301.00808) ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
//!
use candle::shape::ShapeWithOneHole;

View File

@ -4,7 +4,7 @@
//! original architecture. This implementation is specifically trained for plant species
//! classification on the PlantCLEF2024 dataset with 7,806 classes.
//!
//! - [Paper](https://arxiv.org/abs/2309.16588). DINOv2: Learning Robust Visual Features without Supervision
//! - [Paper](https://huggingface.co/papers/2309.16588). DINOv2: Learning Robust Visual Features without Supervision
//! - [GH Repo](https://github.com/facebookresearch/dinov2)
//!
//! # Example

View File

@ -1,7 +1,7 @@
//! Implementation of DistilBert, a distilled version of BERT.
//!
//! See:
//! - ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108)
//! - ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://huggingface.co/papers/1910.01108)
//!
use super::with_tracing::{layer_norm, linear, LayerNorm, Linear};
use candle::{DType, Device, Result, Tensor};

View File

@ -1,7 +1,7 @@
//! Implementation of EfficientBert, an efficient variant of BERT for computer vision tasks.
//!
//! See:
//! - ["EfficientBERT: Progressively Searching Multilayer Perceptron Architectures for BERT"](https://arxiv.org/abs/2201.00462)
//! - ["EfficientBERT: Progressively Searching Multilayer Perceptron Architectures for BERT"](https://huggingface.co/papers/2201.00462)
//!
use candle::{Context, Result, Tensor, D};
use candle_nn as nn;

View File

@ -5,7 +5,7 @@
//! to achieve strong performance while maintaining low memory usage.
//!
//! The model was originally described in the paper:
//! ["EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention"](https://arxiv.org/abs/2305.07027)
//! ["EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention"](https://huggingface.co/papers/2305.07027)
//!
//! This implementation is based on the reference implementation from
//! [pytorch-image-models](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientvit_msra.py).

View File

@ -1,6 +1,6 @@
//! EnCodec neural audio codec based on the Encodec implementation.
//!
//! See ["High Fidelity Neural Audio Compression"](https://arxiv.org/abs/2210.13438)
//! See ["High Fidelity Neural Audio Compression"](https://huggingface.co/papers/2210.13438)
//!
//! Based on implementation from [huggingface/transformers](https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py)

View File

@ -4,7 +4,7 @@
//! The model returns the probability for an image to belong to each of the 1000
//! ImageNet categories.
//!
//! - [Paper](https://arxiv.org/abs/2303.11331). EVA-02: A Visual Representation for Neon Genesis
//! - [Paper](https://huggingface.co/papers/2303.11331). EVA-02: A Visual Representation for Neon Genesis
//! - [Code](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/eva2.py)
//!
//! # Example

View File

@ -1,7 +1,7 @@
//! # FastViT inference implementation based on timm
//!
//! ## Description
//! See ["FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization"](https://arxiv.org/pdf/2303.14189)
//! See ["FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization"](https://huggingface.co/papers/2303.14189)
//!
//! Implementation based on [timm model](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/fastvit.py)

View File

@ -2,7 +2,7 @@
//!
//!
//! - 💻 [Hiera](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/hiera.py)
//! - 📝 [Paper](https://arxiv.org/abs/2306.00989). Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
//! - 📝 [Paper](https://huggingface.co/papers/2306.00989). Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
use candle::{Result, D};
use candle_nn::{conv2d, layer_norm, linear, ops::softmax, Conv2dConfig, Func, VarBuilder};

View File

@ -1,6 +1,6 @@
//! Llama inference implementation.
//!
//! See ["LLaMA: Open and Efficient Foundation Language Models"](https://arxiv.org/abs/2302.13971)
//! See ["LLaMA: Open and Efficient Foundation Language Models"](https://huggingface.co/papers/2302.13971)
//!
//! Implementation based on Hugging Face's [transformers](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py)

View File

@ -1,6 +1,6 @@
//! Llama2 inference implementation.
//!
//! See ["LLaMA 2: Open Foundation and Fine-Tuned Chat Models"](https://arxiv.org/abs/2307.09288)
//! See ["LLaMA 2: Open Foundation and Fine-Tuned Chat Models"](https://huggingface.co/papers/2307.09288)
//!
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/lmz/candle-llama2)
//! - 💻 llama2.c [GH Link](https://github.com/karpathy/llama2.c)

View File

@ -1,6 +1,6 @@
//! Llama2 inference implementation.
//!
//! See ["LLaMA 2: Open Foundation and Fine-Tuned Chat Models"](https://arxiv.org/abs/2307.09288)
//! See ["LLaMA 2: Open Foundation and Fine-Tuned Chat Models"](https://huggingface.co/papers/2307.09288)
//!
//! Based on the [llama2.c](https://github.com/karpathy/llama2.c) implementation

View File

@ -4,7 +4,7 @@
//! language model (Llama) for multimodal capabilities. The architecture implements the training-free projection technique.
//!
//! - 💻[GH Link](https://github.com/haotian-liu/LLaVA/tree/main)
//! - 📝 [Paper](https://arxiv.org/abs/2304.08485)/ Visual Instruction Tuning
//! - 📝 [Paper](https://huggingface.co/papers/2304.08485)/ Visual Instruction Tuning
//!
pub mod config;

View File

@ -1,6 +1,6 @@
//! Mamba inference implementation.
//!
//! See ["Mamba: Linear-Time Sequence Modeling with Selective State Spaces"](https://arxiv.org/abs/2312.00752)
//! See ["Mamba: Linear-Time Sequence Modeling with Selective State Spaces"](https://huggingface.co/papers/2312.00752)
//!
//! Based on reference implementation from the AlbertMamba project
//! A fast implementation of mamba for inference only.
@ -122,7 +122,7 @@ impl MambaBlock {
let proj_for_conv = candle_nn::ops::silu(&proj_for_conv)?;
// SSM + Selection, we're doing inference here so only need the last step of
// the sequence.
// Algorithm 3.2 on page 6, https://arxiv.org/pdf/2312.00752.pdf
// Algorithm 3.2 on page 6, https://huggingface.co/papers/2312.00752
let x_proj = self.x_proj.forward(&proj_for_conv)?;
let delta = x_proj.narrow(D::Minus1, 0, self.dt_rank)?.contiguous()?;

View File

@ -1,14 +1,14 @@
//! MixFormer (Microsoft's Phi Architecture)
//!
//! See "Textbooks Are All You Need II: phi-1.5 technical report", Lin et al. 2023
//! - [Arxiv](https://arxiv.org/abs/2309.05463)
//! - [Arxiv](https://huggingface.co/papers/2309.05463)
//! - [Github](https://huggingface.co/microsoft/phi-1_5)
//!
use crate::models::with_tracing::{linear, Embedding as E, Linear};
/// MixFormer model.
/// https://huggingface.co/microsoft/phi-1_5
/// https://arxiv.org/abs/2309.05463
/// https://huggingface.co/papers/2309.05463
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
use serde::Deserialize;

View File

@ -3,14 +3,14 @@
//! Mix of Multi-scale Dilated and Traditional Convolutions (MMDiT) is an architecture
//! introduced for Stable Diffusion 3, with the MMDiT-X variant used in Stable Diffusion 3.5.
//!
//! - 📝 [Research Paper](https://arxiv.org/abs/2403.03206)
//! - 📝 [Research Paper](https://huggingface.co/papers/2403.03206)
//! - 💻 ComfyUI [reference implementation](https://github.com/comfyanonymous/ComfyUI/blob/78e133d0415784924cd2674e2ee48f3eeca8a2aa/comfy/ldm/modules/diffusionmodules/mmdit.py)
//! - 💻 Stability-AI [MMDiT-X implementation](https://github.com/Stability-AI/sd3.5/blob/4e484e05308d83fb77ae6f680028e6c313f9da54/mmditx.py)
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning)
//! - 💻 [GH Link](https://github.com/salesforce/BLIP)
//! - 🤗 [HF Link](https://huggingface.co/Salesforce/blip-image-captioning-base)
//! - 📝 [Paper](https://arxiv.org/abs/2201.12086)
//! - 📝 [Paper](https://huggingface.co/papers/2201.12086)
//!
pub mod blocks;

View File

@ -1,4 +1,4 @@
// Implement the MMDiT model originally introduced for Stable Diffusion 3 (https://arxiv.org/abs/2403.03206),
// Implement the MMDiT model originally introduced for Stable Diffusion 3 (https://huggingface.co/papers/2403.03206),
// as well as the MMDiT-X variant introduced for Stable Diffusion 3.5-medium (https://huggingface.co/stabilityai/stable-diffusion-3.5-medium)
// This follows the implementation of the MMDiT model in the ComfyUI repository.
// https://github.com/comfyanonymous/ComfyUI/blob/78e133d0415784924cd2674e2ee48f3eeca8a2aa/comfy/ldm/modules/diffusionmodules/mmdit.py#L1

View File

@ -6,12 +6,12 @@
//! - Projection layers to align the feature spaces
//!
//! See model details at:
//! - [FastViT](https://arxiv.org/abs/2303.14189)
//! - [FastViT](https://huggingface.co/papers/2303.14189)
//! - [OpenCLIP](https://github.com/mlfoundations/open_clip)
//!
//! References:
//! - [MobileVLM](https://huggingface.co/mobileVLM)
//! - [MetaCLIP](https://arxiv.org/abs/2309.16671)
//! - [MetaCLIP](https://huggingface.co/papers/2309.16671)
//!
use super::fastvit;

View File

@ -4,7 +4,7 @@
//!
//! ## Paper
//!
//! ["MobileNetV4 - Universal Models for the Mobile Ecosystem"](https://arxiv.org/abs/2404.10518)
//! ["MobileNetV4 - Universal Models for the Mobile Ecosystem"](https://huggingface.co/papers/2404.10518)
//!
//! ## References
//!

View File

@ -2,7 +2,7 @@
//!
//! MobileOne inference implementation based on timm and candle-repvgg
//!
//! See ["MobileOne: An Improved One millisecond Mobile Backbone"](https://arxiv.org/abs/2206.04040)
//! See ["MobileOne: An Improved One millisecond Mobile Backbone"](https://huggingface.co/papers/2206.04040)
use candle::{DType, Result, Tensor, D};
use candle_nn::{

View File

@ -1,7 +1,7 @@
//! ModernBERT
//!
//! ModernBERT is a modernized bidirectional encoder-only Transformer model.
//! - [Arxiv](https://arxiv.org/abs/2412.13663) "Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference"
//! - [Arxiv](https://huggingface.co/papers/2412.13663) "Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference"
//! - Upstream [Github repo](https://github.com/AnswerDotAI/ModernBERT).
//! - See modernbert in [candle-examples](https://github.com/huggingface/candle/tree/main/candle-examples/) for runnable code
//!

View File

@ -2,7 +2,7 @@
//!
//! NV-Embed-v2 is a text embedding model that combines a Mistral decoder with a latent attention mechanism to produce high-quality text embeddings.
//!
//! This implementation is based on the [paper](https://arxiv.org/pdf/2405.17428) and [weights](https://huggingface.co/nvidia/NV-Embed-v2)
//! This implementation is based on the [paper](https://huggingface.co/papers/2405.17428) and [weights](https://huggingface.co/nvidia/NV-Embed-v2)
//!
//! # Query-Passage Retrieval Example
//! ```bash

View File

@ -2,7 +2,7 @@
//!
//! See OLMo 2 model details at:
//! - [Hugging Face Collection](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc)
//! - [OLMo 2 Paper](https://arxiv.org/abs/2501.00656)
//! - [OLMo 2 Paper](https://huggingface.co/papers/2501.00656)
//!
//!
use candle::{DType, Device, Module, Result, Tensor, D};

View File

@ -4,7 +4,7 @@
//! pairs of images with related texts.
//!
//! - 💻 [GH Link](https://github.com/mlfoundations/open_clip)
//! - 📝 [Paper](https://arxiv.org/abs/2212.07143)
//! - 📝 [Paper](https://huggingface.co/papers/2212.07143)
//!
//! ## Overview
//!

View File

@ -1,7 +1,7 @@
//! Multimodal multi-purpose model combining Gemma-based language model with SigLIP image understanding
//!
//! See PaLiGemma details at:
//! - [Paper](https://arxiv.org/abs/2402.05257)
//! - [Paper](https://huggingface.co/papers/2402.05257)
//! - [Google Blog Post](https://blog.research.google/2024/02/paligemma-scaling-language-image.html)
//!
//! The model is a multimodal combination of:
@ -11,7 +11,7 @@
//!
//! References:
//! - [HuggingFace Implementation](https://huggingface.co/google/paligemma-3b)
//! - [Paper: PaLI-3 and Beyond: Scaling Language-Image Learning](https://arxiv.org/abs/2402.05257)
//! - [Paper: PaLI-3 and Beyond: Scaling Language-Image Learning](https://huggingface.co/papers/2402.05257)
//!
use crate::models::{gemma, siglip};

View File

@ -10,7 +10,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - [BLIP Paper](https://arxiv.org/abs/2201.12086)
//! - [BLIP Paper](https://huggingface.co/papers/2201.12086)
//! - [Hugging Face Implementation](https://huggingface.co/docs/transformers/model_doc/blip)
//!

View File

@ -11,7 +11,7 @@
//! - Quantized linear transformations
//!
//! References:
//! - [BLIP Paper](https://arxiv.org/abs/2201.12086)
//! - [BLIP Paper](https://huggingface.co/papers/2201.12086)
//! - [Hugging Face Implementation](https://huggingface.co/docs/transformers/model_doc/blip)
//!

View File

@ -11,7 +11,7 @@
//! - Configurable model sizes and parameter counts
//!
//! - 💻 [GH Link](https://github.com/facebookresearch/llama)
//! - 📝 [Paper](https://arxiv.org/abs/2302.13971)
//! - 📝 [Paper](https://huggingface.co/papers/2302.13971)
//!
//! ![](https://raw.githubusercontent.com/huggingface/candle/main/candle-examples/examples/quantized/assets/aoc.gif)
//!

View File

@ -10,7 +10,7 @@
//! - 8-bit quantization of weights
//!
//! References:
//! - [LLaMA2 Paper](https://arxiv.org/abs/2307.09288)
//! - [LLaMA2 Paper](https://huggingface.co/papers/2307.09288)
//! - [LLaMA2 Technical Report](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
//!

View File

@ -11,7 +11,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - [Mistral Paper](https://arxiv.org/abs/2310.06825)
//! - [Mistral Paper](https://huggingface.co/papers/2310.06825)
//! - [Model Card](https://huggingface.co/mistralai/Mistral-7B-v0.1)
//!

View File

@ -11,7 +11,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - [Phi2 Paper](https://arxiv.org/abs/2309.05463)
//! - [Phi2 Paper](https://huggingface.co/papers/2309.05463)
//! - [Model Card](https://huggingface.co/microsoft/phi-2)
//!

View File

@ -11,7 +11,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - [Gemma Paper](https://arxiv.org/abs/2401.06751)
//! - [Gemma Paper](https://huggingface.co/papers/2401.06751)
//! - [Model Card](https://ai.google.dev/gemma)
//!

View File

@ -11,7 +11,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - 📝 [T5 Paper](https://arxiv.org/abs/1910.10683)
//! - 📝 [T5 Paper](https://huggingface.co/papers/1910.10683)
//! - 🤗 [Model Card](https://huggingface.co/t5-base)
//! - 🤗 Original model from [T5](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py)

View File

@ -12,7 +12,7 @@
//! - Rotary positional embeddings (RoPE)
//!
//! References:
//! - [Qwen2 Paper](https://arxiv.org/abs/2401.08985)
//! - [Qwen2 Paper](https://huggingface.co/papers/2401.08985)
//! - [Model Card](https://huggingface.co/Qwen/Qwen2-7B-beta)
//!

View File

@ -12,7 +12,7 @@
//!
//! References:
//! - [Gemma: Open Models Based on Gemini Technology](https://blog.google/technology/developers/gemma-open-models/)
//! - [Recurrent Memory model architecture](https://arxiv.org/abs/2402.00441)
//! - [Recurrent Memory model architecture](https://huggingface.co/papers/2402.00441)
//!
//! This implementation is based on the python version from huggingface/transformers.
//! https://github.com/huggingface/transformers/blob/b109257f4fb8b1166e7c53cc5418632014ed53a5/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py#L2

View File

@ -7,7 +7,7 @@
//! - High accuracy with VGG-like plain architecture and training
//!
//! References:
//! - [RepVGG Paper](https://arxiv.org/abs/2101.03697). RepVGG: Making VGG-style ConvNets Great Again
//! - [RepVGG Paper](https://huggingface.co/papers/2101.03697). RepVGG: Making VGG-style ConvNets Great Again
//! - [Official Implementation](https://github.com/DingXiaoH/RepVGG)
//!

View File

@ -4,7 +4,7 @@
//!
//! ## Reference
//!
//! [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
//! [Deep Residual Learning for Image Recognition](https://huggingface.co/papers/1512.03385)
//! He et al. (2015)
//!
//! This paper introduced ResNet, a deep neural network architecture that utilizes

View File

@ -10,7 +10,7 @@
//! - Lightweight all-MLP decode head
//!
//! References:
//! - [SegFormer Paper](https://arxiv.org/abs/2105.15203)
//! - [SegFormer Paper](https://huggingface.co/papers/2105.15203)
//! - [Model Card](https://huggingface.co/nvidia/mit-b0)
//!

View File

@ -8,7 +8,7 @@
//!
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/candle-segment-anything-wasm)
//! - 💻 [GH Link](https://github.com/facebookresearch/segment-anything)
//! - 📝 [Paper](https://arxiv.org/abs/2304.02643)
//! - 📝 [Paper](https://huggingface.co/papers/2304.02643)
//! - 💡 The default backbone can be replaced by the smaller and faster TinyViT model based on [MobileSAM](https://github.com/ChaoningZhang/MobileSAM).
//!
//!

View File

@ -4,7 +4,7 @@
//! See: [SNAC](https://github.com/hubertsiuzdak/snac)
//!
/// Multi-Scale Neural Audio Codec (SNAC) compresses audio into discrete codes at a low bitrate.
/// For more information, read the paper: https://arxiv.org/abs/2410.14411
/// For more information, read the paper: https://huggingface.co/papers/2410.14411
///
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{

View File

@ -6,7 +6,7 @@
//! this to non-Markovian guidance.
//!
//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
//! https://arxiv.org/abs/2010.02502
//! https://huggingface.co/papers/2010.02502
use super::schedulers::{
betas_for_alpha_bar, BetaSchedule, PredictionType, Scheduler, SchedulerConfig, TimestepSpacing,
};

View File

@ -104,7 +104,7 @@ impl DDPMScheduler {
};
let current_beta_t = 1. - alpha_prod_t / alpha_prod_t_prev;
// For t > 0, compute predicted variance βt (see formula (6) and (7) from [the pdf](https://arxiv.org/pdf/2006.11239.pdf))
// For t > 0, compute predicted variance βt (see formula (6) and (7) from [the pdf](https://huggingface.co/papers/2006.11239))
// and sample from it to get previous sample
// x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
let variance = (1. - alpha_prod_t_prev) / (1. - alpha_prod_t) * current_beta_t;
@ -112,7 +112,7 @@ impl DDPMScheduler {
// retrieve variance
match self.config.variance_type {
DDPMVarianceType::FixedSmall => variance.max(1e-20),
// for rl-diffuser https://arxiv.org/abs/2205.09991
// for rl-diffuser https://huggingface.co/papers/2205.09991
DDPMVarianceType::FixedSmallLog => {
let variance = variance.max(1e-20).ln();
(variance * 0.5).exp()
@ -166,12 +166,12 @@ impl DDPMScheduler {
}
// 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
// See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
// See formula (7) from https://huggingface.co/papers/2006.11239
let pred_original_sample_coeff = (alpha_prod_t_prev.sqrt() * current_beta_t) / beta_prod_t;
let current_sample_coeff = current_alpha_t.sqrt() * beta_prod_t_prev / beta_prod_t;
// 5. Compute predicted previous sample µ_t
// See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
// See formula (7) from https://huggingface.co/papers/2006.11239
let pred_prev_sample = ((&pred_original_sample * pred_original_sample_coeff)?
+ sample * current_sample_coeff)?;

View File

@ -3,7 +3,7 @@
//! Some Residual Network blocks used in UNet models.
//!
//! Denoising Diffusion Implicit Models, K. He and al, 2015.
//! - [Paper](https://arxiv.org/abs/1512.03385)
//! - [Paper](https://huggingface.co/papers/1512.03385)
//!
use crate::models::with_tracing::{conv2d, Conv2d};
use candle::{Result, Tensor, D};

View File

@ -43,7 +43,7 @@ pub enum PredictionType {
/// Time step spacing for the diffusion process.
///
/// "linspace", "leading", "trailing" corresponds to annotation of Table 2. of the [paper](https://arxiv.org/abs/2305.08891)
/// "linspace", "leading", "trailing" corresponds to annotation of Table 2. of the [paper](https://huggingface.co/papers/2305.08891)
#[derive(Debug, Clone, Copy)]
pub enum TimestepSpacing {
Leading,

View File

@ -10,7 +10,7 @@
//!
//! For more information, see the original publication:
//! UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models, W. Zhao et al, 2023.
//! https://arxiv.org/abs/2302.04867
//! https://huggingface.co/papers/2302.04867
//!
//! This work is based largely on UniPC implementation from the diffusers python package:
//! https://raw.githubusercontent.com/huggingface/diffusers/e8aacda762e311505ba05ae340af23b149e37af3/src/diffusers/schedulers/scheduling_unipc_multistep.py

View File

@ -11,7 +11,7 @@
//! - Support for 8-bit quantization
//!
//! References:
//! - 📝 [StarCoder Paper](https://arxiv.org/abs/2305.06161)
//! - 📝 [StarCoder Paper](https://huggingface.co/papers/2305.06161)
//! - 🤗 [Model Card](https://huggingface.co/bigcode/starcoder)
//!

View File

@ -11,7 +11,7 @@
//! - Rotary positional embeddings (RoPE)
//!
//! References:
//! - [MRL Framework](https://arxiv.org/abs/2205.13147)
//! - [MRL Framework](https://huggingface.co/papers/2205.13147)
//! - [Model Card](https://huggingface.co/dunzhang/stella_en_1.5B_v5)
//!
@ -56,7 +56,7 @@ pub struct Config {
}
// Excerpt from `stella` model card:
// `Stella_en_1.5B_v5` models have been trained on [MRL](https://arxiv.org/abs/2205.13147) enabling multiple output dimensions
// `Stella_en_1.5B_v5` models have been trained on [MRL](https://huggingface.co/papers/2205.13147) enabling multiple output dimensions
// Embed head represents the config for various embedding dims supported
#[derive(Debug, Default, Clone, PartialEq, serde::Deserialize)]
pub struct EmbedHead {

View File

@ -14,7 +14,7 @@
//! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm)
//! - 💻[GH Model](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py)
//! - 🤗 [HF Link](https://huggingface.co/docs/transformers/model_doc/t5)
//! - 📝 [T5 Paper](https://arxiv.org/abs/1910.10683)
//! - 📝 [T5 Paper](https://huggingface.co/papers/1910.10683)
//!
//! # Encoder-decoder example:
//!
@ -33,7 +33,7 @@
//! # Translation with MADLAD
//!
//!
//! [MADLAD-400](https://arxiv.org/abs/2309.04662) is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.
//! [MADLAD-400](https://huggingface.co/papers/2309.04662) is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.
//!
//! ```bash
//! cargo run --example t5 --release -- \

View File

@ -10,7 +10,7 @@
//! - Layer normalization and self-attention
//!
//! References:
//! - [Paper](https://arxiv.org/abs/2109.10282)
//! - [Paper](https://huggingface.co/papers/2109.10282)
//! - [Model Card](https://huggingface.co/microsoft/trocr-base-handwritten)
//!

View File

@ -10,7 +10,7 @@
//! - ReLU activation and dropout
//!
//! References:
//! - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
//! - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://huggingface.co/papers/1409.1556)
//!
use candle::{ModuleT, Result, Tensor};

View File

@ -11,7 +11,7 @@
//! - Layer normalization
//!
//! References:
//! - [ViT Paper](https://arxiv.org/abs/2010.11929)
//! - [ViT Paper](https://huggingface.co/papers/2010.11929)
//! - [Model Card](https://huggingface.co/google/vit-base-patch16-224)
//!

View File

@ -6,7 +6,7 @@
//! Original code:
//! - 💻 [Yi Model](https://huggingface.co/01-ai/Yi-6B)
//! - 💻 [Yi Modeling Code](https://huggingface.co/01-ai/Yi-6B/blob/main/modeling_yi.py)
//! - 📝 [Technical Report](https://arxiv.org/abs/2403.04652) Yi: Open Foundation Models by 01.AI
//! - 📝 [Technical Report](https://huggingface.co/papers/2403.04652) Yi: Open Foundation Models by 01.AI
//!
//! Key characteristics:
//! - Multi-head attention with rotary positional embeddings

View File

@ -70,7 +70,7 @@ fn update_confidences<D>(
for index in (current_index + 1)..len {
let iou_val = iou(current_bbox, &bboxes_for_class[index]);
if iou_val > iou_threshold {
// Decay calculation from page 4 of: https://arxiv.org/pdf/1704.04503
// Decay calculation from page 4 of: https://huggingface.co/papers/1704.04503
let decay = (-iou_val * iou_val / sigma).exp();
let updated_confidence = bboxes_for_class[index].confidence * decay;
updated_confidences[index] = updated_confidence;
@ -80,7 +80,7 @@ fn update_confidences<D>(
}
// Sorts the bounding boxes by confidence and applies soft non-maximum suppression.
// This function is based on the algorithm described in https://arxiv.org/pdf/1704.04503
// This function is based on the algorithm described in https://huggingface.co/papers/1704.04503
pub fn soft_non_maximum_suppression<D>(
bboxes: &mut [Vec<Bbox<D>>],
iou_threshold: Option<f32>,

View File

@ -376,7 +376,7 @@ Very polite review:`,
billion parameters. Here you can try the quantized versions.
Additional prompt examples are available in the
<a
href="https://arxiv.org/pdf/2309.05463.pdf#page=8"
href="https://huggingface.co/papers/2309.05463#page=8"
class="link"
target="_blank"
>