Compare commits

...

9 Commits

Author SHA1 Message Date
5341bf4cd5 Fixes for clippy 1.86. 2025-04-03 19:30:20 +02:00
8977c31b6d Generate some audio file. 2025-04-03 19:16:49 +02:00
3be12b8b50 Autoregressive generation. 2025-04-03 18:38:00 +02:00
825119ac4b Rope fix. 2025-04-03 18:01:25 +02:00
e319cd78d9 Get the sampling to work. 2025-04-03 14:58:44 +02:00
3fb67e0c2c Add frame generation. 2025-04-03 13:41:16 +02:00
d72c44705c Load the text tokenizer. 2025-04-03 12:25:41 +02:00
2203f0e3c9 Add some code to load the model. 2025-04-03 12:20:21 +02:00
01e895c1aa Add the CSM model. 2025-04-03 12:04:44 +02:00
4 changed files with 727 additions and 4 deletions

View File

@ -0,0 +1,221 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::csm::{Config, Model};
use candle::{DType, IndexOp, Tensor};
use candle_nn::VarBuilder;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "1b")]
Csm1b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long, default_value = "[0]Hey how are you doing?")]
prompt: String,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.7)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
/// The model size to use.
#[arg(long, default_value = "1b")]
which: Which,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
config: Option<String>,
#[arg(long)]
weights: Option<String>,
/// The mimi model weight file, in safetensor format.
#[arg(long)]
mimi_weights: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => {
let name = match args.which {
Which::Csm1b => "sesame/csm-1b",
};
name.to_string()
}
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let filenames = match args.weights {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => vec![repo.get("model.safetensors")?],
};
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("meta-llama/Llama-3.2-1B".to_string())
.get("tokenizer.json")?,
};
let mimi_filename = match args.mimi_weights {
Some(model) => std::path::PathBuf::from(model),
None => Api::new()?
.model("kyutai/mimi".to_string())
.get("model.safetensors")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config: Config = match args.config {
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
None => {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
}
};
let device = candle_examples::device(args.cpu)?;
let (mut model, device) = {
let dtype = DType::F32;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
(model, device)
};
let mut mimi_model = {
use candle_transformers::models::mimi;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[mimi_filename], DType::F32, &device)? };
let config = mimi::Config::v0_1(Some(32));
mimi::Model::new(config, vb)?
};
let cb = config.audio_num_codebooks;
println!("loaded the model in {:?}", start.elapsed());
if args.prompt.ends_with(".safetensors") {
let prompt = candle::safetensors::load(args.prompt, &device)?;
let mut tokens = prompt
.get("tokens")
.expect("no tokens in prompt")
.to_dtype(DType::U32)?;
let mut mask = prompt.get("mask").expect("no mask in prompt").clone();
println!("tokens:\n{tokens:?}");
println!("mask:\n{mask:?}");
let mut lp = candle_transformers::generation::LogitsProcessor::new(42, None, None);
let mut const_mask = vec![1u8; cb];
const_mask.push(0);
let const_mask = Tensor::from_vec(const_mask, (1, 1, cb + 1), &device)?;
let mut pos = 0;
let mut all_tokens = vec![];
for i in 0.. {
let mut frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
pos += tokens.dim(1)?;
frame.push(0);
if frame.iter().all(|&x| x == 0) {
break;
}
println!("frame {i} {pos}:\n{frame:?}");
tokens = Tensor::from_vec(frame, (1, 1, cb + 1), &device)?;
all_tokens.push(tokens.clone());
mask = const_mask.clone();
}
let all_tokens = Tensor::cat(&all_tokens, 1)?.narrow(2, 0, cb)?.t()?;
println!("all_tokens:\n{all_tokens:?}");
let pcm = mimi_model.decode(&all_tokens)?;
let pcm = pcm.i(0)?.i(0)?.to_dtype(DType::F32)?;
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
let pcm = pcm.to_vec1::<f32>()?;
let mut output = std::fs::File::create("out.wav")?;
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
} else {
let prompt = tokenizer.encode(args.prompt, true).map_err(E::msg)?;
println!("{prompt:?}");
}
Ok(())
}

View File

@ -7,7 +7,7 @@ use candle::{Result, Tensor};
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to contain log probabilities.
/// of categories. This is expected to contain log probabilities.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
@ -34,7 +34,7 @@ pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
@ -56,9 +56,9 @@ pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
/// of categories.
/// of categories.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {

View File

@ -0,0 +1,501 @@
//! Implementation of the Conversational Speech Model (CSM) from Sesame
//!
//! See: [CSM](Conversational Speech Model)
//!
/// CSM (Conversational Speech Model) is a speech generation model from Sesame that generates RVQ
/// audio codes from text and audio inputs. The model architecture employs a Llama backbone and a
/// smaller audio decoder that produces Mimi audio codes.
///
use crate::generation::LogitsProcessor;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder};
use std::sync::Arc;
#[derive(serde::Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
pub enum Flavor {
#[serde(rename = "llama-1B")]
Llama1B,
#[serde(rename = "llama-100M")]
Llama100M,
}
#[derive(serde::Deserialize, Debug, Clone)]
pub struct Config {
pub audio_num_codebooks: usize,
pub audio_vocab_size: usize,
pub backbone_flavor: Flavor,
pub decoder_flavor: Flavor,
pub text_vocab_size: usize,
}
#[allow(unused)]
#[derive(Debug, Clone)]
pub struct LlamaConfig {
vocab_size: usize,
num_layers: usize,
num_heads: usize,
num_kv_heads: usize,
embed_dim: usize,
max_seq_len: usize,
intermediate_dim: usize,
norm_eps: f64,
rope_base: f32,
scale_factor: usize,
}
impl LlamaConfig {
pub fn from_flavor(flavor: Flavor) -> Self {
match flavor {
Flavor::Llama1B => Self {
vocab_size: 128256,
num_layers: 16,
num_heads: 32,
num_kv_heads: 8,
embed_dim: 2048,
max_seq_len: 2048,
intermediate_dim: 8192,
norm_eps: 1e-5,
rope_base: 500_000.,
scale_factor: 32,
},
Flavor::Llama100M => Self {
vocab_size: 128256,
num_layers: 4,
num_heads: 8,
num_kv_heads: 2,
embed_dim: 1024,
max_seq_len: 2048,
intermediate_dim: 8192,
norm_eps: 1e-5,
rope_base: 500_000.,
scale_factor: 32,
},
}
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
fn calculate_default_inv_freq(cfg: &LlamaConfig) -> Vec<f32> {
let head_dim = cfg.embed_dim / cfg.num_heads;
(0..head_dim)
.step_by(2)
.map(|i| 1f32 / cfg.rope_base.powf(i as f32 / head_dim as f32))
.collect()
}
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &LlamaConfig, dev: &Device) -> Result<Self> {
let low_freq_factor = 1.0;
let high_freq_factor = 4.0;
let original_max_position_embeddings = 8192;
let scale_factor = cfg.scale_factor as f32;
let theta = {
let low_freq_wavelen = original_max_position_embeddings as f32 / low_freq_factor;
let high_freq_wavelen = original_max_position_embeddings as f32 / high_freq_factor;
calculate_default_inv_freq(cfg)
.into_iter()
.map(|freq| {
let wavelen = 2. * std::f32::consts::PI / freq;
if wavelen < high_freq_wavelen {
freq
} else if wavelen > low_freq_wavelen {
freq / scale_factor
} else {
let smooth = (original_max_position_embeddings as f32 / wavelen
- low_freq_factor)
/ (high_freq_factor - low_freq_factor);
(1. - smooth) * freq / scale_factor + smooth * freq
}
})
.collect::<Vec<_>>()
};
let theta = Tensor::new(theta, dev)?;
let idx_theta = Tensor::arange(0, cfg.max_seq_len as u32, dev)?
.to_dtype(DType::F32)?
.reshape((cfg.max_seq_len, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
// This is different from the paper, see:
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
let cos = idx_theta.cos()?.to_dtype(dtype)?;
let sin = idx_theta.sin()?.to_dtype(dtype)?;
Ok(Self { cos, sin })
}
fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
seqlen_offset: usize,
) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope_i(q, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope_i(k, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
fn rms_norm(hidden_size: usize, eps: f64, vb: VarBuilder) -> Result<RmsNorm> {
let weight = vb.get((hidden_size,), "scale")?;
Ok(RmsNorm::new(weight, eps))
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
num_heads: usize,
head_dim: usize,
num_kv_heads: usize,
num_kv_groups: usize,
}
impl Attention {
fn new(cfg: &LlamaConfig, rotary_emb: Arc<RotaryEmbedding>, vb: VarBuilder) -> Result<Self> {
let head_dim = cfg.embed_dim / cfg.num_heads;
let kv_dim = cfg.num_kv_heads * head_dim;
let q_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("q_proj"))?;
let k_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("k_proj"))?;
let v_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("v_proj"))?;
let o_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("output_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
rotary_emb,
kv_cache: None,
num_heads: cfg.num_heads,
num_kv_heads: cfg.num_kv_heads,
num_kv_groups: cfg.num_heads / cfg.num_kv_heads,
head_dim,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (b_sz, q_len, _) = xs.dims3()?;
let query_states = self.q_proj.forward(xs)?;
let key_states = self.k_proj.forward(xs)?;
let value_states = self.v_proj.forward(xs)?;
let query_states = query_states
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let key_states = key_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let value_states = value_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let (query_states, key_states) =
self.rotary_emb
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.num_heads * self.head_dim))?
.apply(&self.o_proj)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct Mlp {
w1: Linear,
w2: Linear,
w3: Linear,
}
impl Mlp {
fn new(cfg: &LlamaConfig, vb: VarBuilder) -> Result<Self> {
let w1 = linear_b(cfg.embed_dim, cfg.intermediate_dim, false, vb.pp("w1"))?;
let w2 = linear_b(cfg.intermediate_dim, cfg.embed_dim, false, vb.pp("w2"))?;
let w3 = linear_b(cfg.embed_dim, cfg.intermediate_dim, false, vb.pp("w3"))?;
Ok(Self { w1, w2, w3 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let lhs = xs.apply(&self.w1)?.silu()?;
let rhs = xs.apply(&self.w3)?;
(lhs * rhs)?.apply(&self.w2)
}
}
#[derive(Debug, Clone)]
struct Layer {
mlp_norm: RmsNorm,
sa_norm: RmsNorm,
attn: Attention,
mlp: Mlp,
}
impl Layer {
fn new(cfg: &LlamaConfig, rotary_emb: Arc<RotaryEmbedding>, vb: VarBuilder) -> Result<Self> {
let mlp_norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("mlp_norm"))?;
let sa_norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("sa_norm"))?;
let attn = Attention::new(cfg, rotary_emb, vb.pp("attn"))?;
let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
Ok(Self {
mlp_norm,
sa_norm,
attn,
mlp,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let residual = xs;
let xs = self.sa_norm.forward(xs)?;
let xs = self.attn.forward(&xs, attention_mask, seqlen_offset)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = xs.apply(&self.mlp_norm)?.apply(&self.mlp)?;
residual + xs
}
fn clear_kv_cache(&mut self) {
self.attn.clear_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct LlamaModel {
layers: Vec<Layer>,
norm: RmsNorm,
device: Device,
dtype: DType,
}
impl LlamaModel {
pub fn new(cfg: &LlamaConfig, vb: VarBuilder) -> Result<Self> {
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb.device())?);
let mut layers = Vec::with_capacity(cfg.num_layers);
let vb_l = vb.pp("layers");
for layer_idx in 0..cfg.num_layers {
let layer = Layer::new(cfg, rotary_emb.clone(), vb_l.pp(layer_idx))?;
layers.push(layer);
}
let norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("norm"))?;
Ok(Self {
layers,
norm,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
}
}
fn prepare_decoder_attention_mask(
&self,
tgt_len: usize,
seqlen_offset: usize,
) -> Result<Tensor> {
let mask: Vec<_> = (0..tgt_len)
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
let mask = if seqlen_offset > 0 {
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((1, 1, tgt_len, tgt_len + seqlen_offset))?
.to_dtype(self.dtype)
}
pub fn forward(&mut self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (_b_size, seq_len, _embed_dim) = xs.dims3()?;
let attention_mask = if seq_len <= 1 {
None
} else {
let mask = self.prepare_decoder_attention_mask(seq_len, seqlen_offset)?;
Some(mask)
};
let mut xs = xs.clone();
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?;
}
let ys = xs.narrow(1, seq_len - 1, 1)?.apply(&self.norm)?;
Ok(ys)
}
}
#[derive(Debug, Clone)]
pub struct Model {
backbone: LlamaModel,
decoder: LlamaModel,
codebook0_head: Linear,
audio_embeddings: Embedding,
text_embeddings: Embedding,
projection: Linear,
audio_head: Tensor,
config: Config,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let backbone_cfg = LlamaConfig::from_flavor(cfg.backbone_flavor);
let backbone = LlamaModel::new(&backbone_cfg, vb.pp("backbone"))?;
let decoder_cfg = LlamaConfig::from_flavor(cfg.decoder_flavor);
let decoder = LlamaModel::new(&decoder_cfg, vb.pp("decoder"))?;
let backbone_dim = backbone_cfg.embed_dim;
let decoder_dim = decoder_cfg.embed_dim;
let audio_embeddings = embedding(
cfg.audio_vocab_size * cfg.audio_num_codebooks,
backbone_dim,
vb.pp("audio_embeddings"),
)?;
let text_embeddings =
embedding(cfg.text_vocab_size, backbone_dim, vb.pp("text_embeddings"))?;
let projection = linear_b(backbone_dim, decoder_dim, false, vb.pp("projection"))?;
let codebook0_head = linear_b(
backbone_dim,
cfg.audio_vocab_size,
false,
vb.pp("codebook0_head"),
)?;
let audio_head = vb.get(
(
cfg.audio_num_codebooks - 1,
decoder_dim,
cfg.audio_vocab_size,
),
"audio_head",
)?;
Ok(Self {
backbone,
decoder,
codebook0_head,
audio_embeddings,
text_embeddings,
projection,
audio_head,
config: cfg.clone(),
})
}
pub fn clear_kv_cache(&mut self) {
self.backbone.clear_kv_cache();
self.decoder.clear_kv_cache();
}
pub fn generate_frame(
&mut self,
tokens: &Tensor,
tokens_mask: &Tensor,
input_pos: usize,
lp: &mut LogitsProcessor,
) -> Result<Vec<u32>> {
let (b_sz, seq_len, _cb_plus_one) = tokens.dims3()?;
let audio_tokens = tokens.narrow(2, 0, self.config.audio_num_codebooks)?;
let text_tokens = tokens.narrow(2, self.config.audio_num_codebooks, 1)?;
let text_embeds = self.text_embeddings.forward(&text_tokens)?;
let arange = (Tensor::arange(
0u32,
self.config.audio_num_codebooks as u32,
&self.decoder.device,
)? * self.config.audio_vocab_size as f64)?;
let audio_tokens = audio_tokens.broadcast_add(&arange.reshape((1, 1, ()))?)?;
let audio_embeds = self.audio_embeddings.forward(&audio_tokens)?.reshape((
b_sz,
seq_len,
self.config.audio_num_codebooks,
(),
))?;
let embeds = Tensor::cat(&[&audio_embeds, &text_embeds], D::Minus2)?;
let embeds = embeds.broadcast_mul(
&tokens_mask
.to_dtype(self.backbone.dtype)?
.unsqueeze(D::Minus1)?,
)?;
let embeds = embeds.sum(2)?;
let h = self.backbone.forward(&embeds, input_pos)?;
let c0_logits = h.apply(&self.codebook0_head)?;
let c0_sample = lp.sample(&c0_logits.i((0, 0))?)?;
let mut all_samples = vec![c0_sample];
let c0_sample = Tensor::from_slice(&[c0_sample], (1, 1), &self.decoder.device)?;
let c0_embed = self.audio_embeddings.forward(&c0_sample)?;
let mut curr_h = Tensor::cat(&[h, c0_embed], 1)?;
self.decoder.clear_kv_cache();
let mut decoder_pos = 0;
for i in 1..self.config.audio_num_codebooks {
let proj_h = curr_h.apply(&self.projection)?;
let decoder_h = self.decoder.forward(&proj_h, decoder_pos)?;
decoder_pos += curr_h.dim(1)?;
let ci_logits = decoder_h.broadcast_matmul(&self.audio_head.get(i - 1)?)?;
let ci_sample = lp.sample(&ci_logits.i((0, 0))?)?;
all_samples.push(ci_sample);
let ci_sample = Tensor::from_slice(
&[ci_sample + (i * self.config.audio_vocab_size) as u32],
(1, 1),
&self.decoder.device,
)?;
let ci_embed = self.audio_embeddings.forward(&ci_sample)?;
curr_h = ci_embed
}
Ok(all_samples)
}
}

View File

@ -27,6 +27,7 @@ pub mod codegeex4_9b;
pub mod colpali;
pub mod convmixer;
pub mod convnext;
pub mod csm;
pub mod dac;
pub mod debertav2;
pub mod deepseek2;