mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Compare commits
81 Commits
metal-mfa-
...
0.5.1
Author | SHA1 | Date | |
---|---|---|---|
7ff921c538 | |||
9b8537a62f | |||
7ebc3548e1 | |||
eefc1c77ef | |||
01545f7303 | |||
349c3e806a | |||
bdaa34216a | |||
cc80e065e5 | |||
13c64f6828 | |||
21f82a5155 | |||
9cff7bc3f4 | |||
d9bc5ec151 | |||
84328e2b60 | |||
82b641fd27 | |||
01794dc16e | |||
a75cd8164f | |||
b13a82a438 | |||
59b18d974e | |||
89f53b9d7b | |||
a09d451d11 | |||
fa06f5f5f9 | |||
09d4845aa8 | |||
a0d03aded1 | |||
3bbb88fcb4 | |||
ed7b99f525 | |||
287013ef28 | |||
eb26e2467e | |||
c68ed8963f | |||
e5c8b88f90 | |||
805f3be8e1 | |||
3b429f3023 | |||
96a48e5cc4 | |||
6cf82fd7a3 | |||
cfab6e7616 | |||
11d4a3c588 | |||
9d3f1c8af5 | |||
7211009179 | |||
6fadaf2eff | |||
8a05743a21 | |||
b2e816752b | |||
618ecf5e23 | |||
267601eec1 | |||
08a15cb79e | |||
c388be93e7 | |||
d22f1d4f4e | |||
0067fe00a8 | |||
587ee3bb6f | |||
dd78422701 | |||
9215e9ce8c | |||
52ae332910 | |||
8b390ddd29 | |||
c97d639fa0 | |||
b45c710dbf | |||
9c532aef47 | |||
f7a6468238 | |||
2b93dffe64 | |||
e6ee7ba4d4 | |||
1690ab45d2 | |||
8de0ce6cba | |||
ce6d08df94 | |||
2817643db9 | |||
4d14777673 | |||
f135b7963d | |||
af955f260c | |||
8ad822a983 | |||
e198bb0816 | |||
f7d5bf5b97 | |||
c119600d6e | |||
c449f65b12 | |||
db7dbf3071 | |||
4ecedb1598 | |||
53e5380bf6 | |||
50e49ecc5f | |||
4c88c3ce06 | |||
8b8fb630df | |||
fb805b8ca2 | |||
79e3bec789 | |||
e6d412b156 | |||
26cbbf8d84 | |||
2bf413caa3 | |||
3ad4770eb6 |
26
Cargo.toml
26
Cargo.toml
@ -20,7 +20,7 @@ exclude = [
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "0.5.0"
|
||||
version = "0.5.1"
|
||||
edition = "2021"
|
||||
description = "Minimalist ML framework."
|
||||
repository = "https://github.com/huggingface/candle"
|
||||
@ -33,21 +33,22 @@ ab_glyph = "0.2.23"
|
||||
accelerate-src = { version = "0.3.2" }
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.5.0" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.5.0" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.5.0" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.5.0" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.5.0" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.5.0" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.5.0" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.5.0" }
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.5.1" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.5.1" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.5.1" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.5.1" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.5.1" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.5.1" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.5.1" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.5.1" }
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
criterion = { version = "0.5.1", default-features=false }
|
||||
cudarc = { version = "0.10.0", features = ["f16"] }
|
||||
cudarc = { version = "0.11.1", features = ["std", "cublas", "cublaslt", "curand", "driver", "nvrtc", "f16", "cuda-version-from-build-system", "dynamic-linking"], default-features=false }
|
||||
fancy-regex = "0.13.0"
|
||||
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
|
||||
hf-hub = "0.3.0"
|
||||
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
hound = "3.5.1"
|
||||
image = { version = "0.25.0", default-features = false, features = ["jpeg", "png"] }
|
||||
imageproc = { version = "0.24.0", default-features = false }
|
||||
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
||||
@ -65,13 +66,12 @@ serde = { version = "1.0.171", features = ["derive"] }
|
||||
serde_plain = "1.0.2"
|
||||
serde_json = "1.0.99"
|
||||
thiserror = "1"
|
||||
tokenizers = { version = "0.15.0", default-features = false }
|
||||
tokenizers = { version = "0.19.1", default-features = false }
|
||||
tracing = "0.1.37"
|
||||
tracing-chrome = "0.7.1"
|
||||
tracing-subscriber = "0.3.7"
|
||||
wav = "1.0.0"
|
||||
yoke = { version = "0.7.2", features = ["derive"] }
|
||||
zip = { version = "0.6.6", default-features = false }
|
||||
zip = { version = "1.1.1", default-features = false }
|
||||
metal = { version = "0.27.0", features = ["mps"]}
|
||||
|
||||
[profile.release-with-debug]
|
||||
|
27
README.md
27
README.md
@ -60,12 +60,14 @@ These online demos run entirely in your browser:
|
||||
|
||||
We also provide a some command line based examples using state of the art models:
|
||||
|
||||
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
|
||||
- [LLaMA v1, v2, and v3](./candle-examples/examples/llama/): general LLM, includes
|
||||
the SOLAR-10.7B variant.
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google
|
||||
Deepmind.
|
||||
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
|
||||
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google Deepmind.
|
||||
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
|
||||
Griffin based models from Google that mix attention with a RNN like state.
|
||||
- [Phi-1, Phi-1.5, Phi-2, and Phi-3](./candle-examples/examples/phi/): 1.3b,
|
||||
2.7b, and 3.8b general LLMs with performance on par with 7b models.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
||||
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
|
||||
@ -110,7 +112,7 @@ We also provide a some command line based examples using state of the art models
|
||||
|
||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
||||
|
||||
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmantation model.
|
||||
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmentation model.
|
||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
|
||||
model using residual vector quantization.
|
||||
@ -199,10 +201,10 @@ If you have an addition to this list, please submit a pull request.
|
||||
- WASM support, run your models in a browser.
|
||||
- Included models.
|
||||
- Language Models.
|
||||
- LLaMA v1 and v2 with variants such as SOLAR-10.7B.
|
||||
- LLaMA v1, v2, and v3 with variants such as SOLAR-10.7B.
|
||||
- Falcon.
|
||||
- StarCoder, StarCoder2.
|
||||
- Phi 1, 1.5, and 2.
|
||||
- Phi 1, 1.5, 2, and 3.
|
||||
- Mamba, Minimal Mamba
|
||||
- Gemma 2b and 7b.
|
||||
- Mistral 7b v0.1.
|
||||
@ -374,9 +376,9 @@ git submodule update --init
|
||||
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’:
|
||||
```
|
||||
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
|
||||
```
|
||||
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
```
|
||||
|
||||
#### Linking error on windows when running rustdoc or mdbook tests
|
||||
@ -406,3 +408,10 @@ This may be caused by the models being loaded from `/mnt/c`, more details on
|
||||
|
||||
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
|
||||
error is generated.
|
||||
|
||||
#### CudaRC error
|
||||
|
||||
If you encounter an error like this one `called `Result::unwrap()` on an `Err` value: LoadLibraryExW { source: Os { code: 126, kind: Uncategorized, message: "The specified module could not be found." } }` on windows. To fix copy and rename these 3 files (make sure they are in path). The paths depend on your cuda version.
|
||||
`c:\Windows\System32\nvcuda.dll` -> `cuda.dll`
|
||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\cublas64_12.dll` -> `cublas.dll`
|
||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\curand64_10.dll` -> `curand.dll`
|
||||
|
@ -37,7 +37,6 @@ tokenizers = { workspace = true, features = ["onig"] }
|
||||
tracing = { workspace = true }
|
||||
tracing-chrome = { workspace = true }
|
||||
tracing-subscriber = { workspace = true }
|
||||
wav = { workspace = true }
|
||||
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
|
||||
parquet = { workspace = true }
|
||||
image = { workspace = true }
|
||||
|
@ -81,7 +81,7 @@ let mut tp_shape = view.shape().to_vec();
|
||||
let size = tp_shape[0];
|
||||
|
||||
if size % world_size != 0 {
|
||||
panic!("The dimension is not divisble by `world_size`");
|
||||
panic!("The dimension is not divisible by `world_size`");
|
||||
}
|
||||
let block_size = size / world_size;
|
||||
let start = rank * block_size;
|
||||
|
@ -7,4 +7,6 @@ criterion_main!(
|
||||
benchmarks::random::benches,
|
||||
benchmarks::where_cond::benches,
|
||||
benchmarks::conv_transpose2d::benches,
|
||||
benchmarks::qmatmul::benches,
|
||||
benchmarks::unary::benches
|
||||
);
|
||||
|
@ -1,7 +1,9 @@
|
||||
pub(crate) mod affine;
|
||||
pub(crate) mod conv_transpose2d;
|
||||
pub(crate) mod matmul;
|
||||
pub(crate) mod qmatmul;
|
||||
pub(crate) mod random;
|
||||
pub(crate) mod unary;
|
||||
pub(crate) mod where_cond;
|
||||
|
||||
use candle_core::{Device, Result};
|
||||
|
72
candle-core/benches/benchmarks/qmatmul.rs
Normal file
72
candle-core/benches/benchmarks/qmatmul.rs
Normal file
@ -0,0 +1,72 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{
|
||||
quantized::{self, GgmlDType, QMatMul},
|
||||
Device, Module, Tensor,
|
||||
};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(matmul: &QMatMul, x: &Tensor) {
|
||||
matmul.forward(&x).unwrap();
|
||||
}
|
||||
|
||||
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
|
||||
let b = 1;
|
||||
let m = 1;
|
||||
let n = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 / (m * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
let rhs = (0..(k * n))
|
||||
.map(|v| v as f32 / (n * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
|
||||
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
|
||||
|
||||
let flops = b * m * n * k;
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
|
||||
group.sample_size(200);
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&matmul), black_box(&lhs));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
for dtype in vec![
|
||||
GgmlDType::F32,
|
||||
GgmlDType::F16,
|
||||
GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0,
|
||||
GgmlDType::Q2K,
|
||||
GgmlDType::Q3K,
|
||||
GgmlDType::Q4K,
|
||||
GgmlDType::Q5K,
|
||||
GgmlDType::Q6K,
|
||||
] {
|
||||
run_bench(c, &device, dtype);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
49
candle-core/benches/benchmarks/unary.rs
Normal file
49
candle-core/benches/benchmarks/unary.rs
Normal file
@ -0,0 +1,49 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor) {
|
||||
a.sqrt().unwrap();
|
||||
}
|
||||
|
||||
fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, &device)
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap()
|
||||
.reshape((b, m, k))
|
||||
.unwrap();
|
||||
|
||||
let flops = b * m * k * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
for dtype in [DType::F32, DType::BF16, DType::F16] {
|
||||
let name = format!("sqrt_{:?}", dtype);
|
||||
run_unary_benchmark(c, &device, dtype, &name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -5,32 +5,26 @@ extern crate accelerate_src;
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Module, Tensor};
|
||||
|
||||
use candle_core::quantized::{QMatMul, QTensor};
|
||||
use candle_core::{Device, Tensor};
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let device = Device::new_cuda(0)?;
|
||||
let q = Tensor::randn(0f32, 1.0, (72, 256), &device)?;
|
||||
let q_cpu = q.to_device(&Device::Cpu)?;
|
||||
let q = QTensor::quantize(&q, candle_core::quantized::GgmlDType::Q8K)?;
|
||||
let q = QMatMul::from_qtensor(q)?;
|
||||
let x = Tensor::randn(0f32, 1.0, (5, 256), &device)?;
|
||||
let res_q_cuda = q.forward(&x)?;
|
||||
println!("{res_q_cuda}");
|
||||
|
||||
let q_cpu = QTensor::quantize(&q_cpu, candle_core::quantized::GgmlDType::Q8K)?;
|
||||
let q_cpu_tensor = q_cpu.dequantize(&Device::Cpu)?;
|
||||
let q_cpu = QMatMul::from_qtensor(q_cpu)?;
|
||||
let x_cpu = x.to_device(&Device::Cpu)?;
|
||||
let res_q_cpu = q_cpu.forward(&x_cpu)?;
|
||||
println!("{res_q_cpu}");
|
||||
|
||||
let res_mm = x_cpu.matmul(&q_cpu_tensor.t()?)?;
|
||||
let diff = (res_mm - res_q_cuda.to_device(&Device::Cpu))?
|
||||
.abs()?
|
||||
.flatten_all()?
|
||||
.max(0)?;
|
||||
println!("{diff}");
|
||||
let x = Tensor::randn(0f32, 1.0, (8 * 4096, 8 * 4096), &device)?;
|
||||
candle_core::cuda::set_gemm_reduced_precision_f32(false);
|
||||
let _x1 = x.matmul(&x)?;
|
||||
drop(_x1);
|
||||
let start_time = std::time::Instant::now();
|
||||
let _x1 = x.matmul(&x)?;
|
||||
device.synchronize()?;
|
||||
println!("fp32: {:?}", start_time.elapsed());
|
||||
drop(_x1);
|
||||
candle_core::cuda::set_gemm_reduced_precision_f32(true);
|
||||
let _x1 = x.matmul(&x)?;
|
||||
drop(_x1);
|
||||
let start_time = std::time::Instant::now();
|
||||
let _x1 = x.matmul(&x)?;
|
||||
device.synchronize()?;
|
||||
println!("tf32: {:?}", start_time.elapsed());
|
||||
drop(_x1);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -133,6 +133,8 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
/// after this call.
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
|
||||
@ -142,4 +144,7 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||
|
||||
fn set_seed(&self, _: u64) -> Result<()>;
|
||||
|
||||
/// Synchronize should block until all the operations on the device are completed.
|
||||
fn synchronize(&self) -> Result<()>;
|
||||
}
|
||||
|
@ -624,7 +624,7 @@ impl Tensor {
|
||||
Op::Unary(arg, UnaryOp::Silu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
|
||||
let sigmoid_arg = (*node / arg)?;
|
||||
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
|
||||
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
|
||||
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
pub mod erf;
|
||||
pub mod kernels;
|
||||
|
||||
#[allow(unused)]
|
||||
trait Cpu<const ARR: usize> {
|
||||
type Unit;
|
||||
type Array;
|
||||
@ -18,6 +19,7 @@ trait Cpu<const ARR: usize> {
|
||||
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
trait CpuF16<const ARR: usize> {
|
||||
type Unit;
|
||||
type Array;
|
||||
|
@ -26,6 +26,17 @@ pub enum CpuStorage {
|
||||
F64(Vec<f64>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum CpuStorageRef<'a> {
|
||||
U8(&'a [u8]),
|
||||
U32(&'a [u32]),
|
||||
I64(&'a [i64]),
|
||||
BF16(&'a [bf16]),
|
||||
F16(&'a [f16]),
|
||||
F32(&'a [f32]),
|
||||
F64(&'a [f64]),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CpuDevice;
|
||||
|
||||
@ -2445,6 +2456,10 @@ impl BackendDevice for CpuDevice {
|
||||
true
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
|
||||
Ok(T::to_cpu_storage(s))
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
|
||||
Ok(s.clone())
|
||||
}
|
||||
@ -2628,6 +2643,10 @@ impl BackendDevice for CpuDevice {
|
||||
};
|
||||
Ok(storage)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::backend::BackendDevice;
|
||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
|
||||
pub use candle_kernels as kernels;
|
||||
pub use cudarc;
|
||||
use cudarc::driver::{CudaFunction, LaunchAsync, LaunchConfig};
|
||||
@ -334,6 +334,43 @@ impl BackendDevice for CudaDevice {
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
|
||||
let slice = match T::cpu_storage_ref(s) {
|
||||
CpuStorageRef::U8(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorageRef::U32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorageRef::I64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorageRef::BF16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorageRef::F16(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorageRef::F32(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorageRef::F64(storage) => {
|
||||
let data = self.htod_sync_copy(storage).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
@ -407,4 +444,9 @@ impl BackendDevice for CudaDevice {
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
self.device.synchronize().map_err(crate::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -18,7 +18,7 @@ pub use device::{CudaDevice, DeviceId};
|
||||
pub use error::{CudaError, WrapErr};
|
||||
pub use utils::{Map1, Map1Any, Map2, Map2Any, Map2InPlace, S};
|
||||
|
||||
enum SlicePtrOrNull<T> {
|
||||
pub enum SlicePtrOrNull<T> {
|
||||
Ptr(CudaSlice<T>),
|
||||
Null,
|
||||
}
|
||||
@ -33,7 +33,7 @@ unsafe impl<T: DeviceRepr> DeviceRepr for &SlicePtrOrNull<T> {
|
||||
}
|
||||
|
||||
impl SlicePtrOrNull<usize> {
|
||||
fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
|
||||
pub fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
|
||||
let ds = if l.is_contiguous() {
|
||||
SlicePtrOrNull::Null
|
||||
} else {
|
||||
@ -250,44 +250,6 @@ impl Map1 for Powf {
|
||||
}
|
||||
}
|
||||
|
||||
struct Sum<'a>(&'a [usize]);
|
||||
impl<'a> Map1 for Sum<'a> {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
) -> Result<CudaSlice<T>> {
|
||||
let shape = layout.shape();
|
||||
let src_dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
let mut dst_el = el;
|
||||
for &sum_dim in self.0.iter() {
|
||||
dst_el /= src_dims[sum_dim];
|
||||
}
|
||||
let mut sum_dims = self.0.to_vec();
|
||||
// Sort the sum_dims as they have to be processed from left to right when converting the
|
||||
// indexes.
|
||||
sum_dims.sort();
|
||||
let sum_dims_l: Vec<usize> = sum_dims.iter().map(|&d| src_dims[d]).collect();
|
||||
let sum_dims_s: Vec<usize> = sum_dims
|
||||
.iter()
|
||||
.map(|&d| src_dims[d + 1..].iter().product::<usize>())
|
||||
.collect();
|
||||
let cfg = LaunchConfig::for_num_elems(el as u32);
|
||||
let ds = dev
|
||||
.htod_copy([src_dims, layout.stride(), &sum_dims_l, &sum_dims_s].concat())
|
||||
.w()?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("sum"), kernels::REDUCE)?;
|
||||
let out = dev.alloc_zeros::<T>(dst_el).w()?;
|
||||
let params = (el, src_dims.len(), sum_dims.len(), &ds, src, &out);
|
||||
// SAFETY: ffi.
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
struct FastReduce<'a>(&'a [usize], ReduceOp);
|
||||
impl<'a> Map1Any for FastReduce<'a> {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
@ -1635,12 +1597,8 @@ impl BackendStorage for CudaStorage {
|
||||
let rhs = &rhs.slice(rhs_l.start_offset()..);
|
||||
let cfg = gemm_config(bf16::ONE, bf16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
|
||||
let mut out = unsafe { dev.alloc::<bf16>(elem_count) }.w()?;
|
||||
unsafe {
|
||||
self.device
|
||||
.blas
|
||||
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
|
||||
}
|
||||
.w()?;
|
||||
unsafe { gemm_strided_batched_bf16(&self.device.blas, cfg, rhs, lhs, &mut out) }
|
||||
.w()?;
|
||||
CudaStorageSlice::BF16(out)
|
||||
}
|
||||
(CudaStorageSlice::F16(lhs), CudaStorageSlice::F16(rhs)) => {
|
||||
@ -1648,12 +1606,8 @@ impl BackendStorage for CudaStorage {
|
||||
let rhs = &rhs.slice(rhs_l.start_offset()..);
|
||||
let cfg = gemm_config(f16::ONE, f16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
|
||||
let mut out = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
|
||||
unsafe {
|
||||
self.device
|
||||
.blas
|
||||
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
|
||||
}
|
||||
.w()?;
|
||||
unsafe { gemm_strided_batched_f16(&self.device.blas, cfg, rhs, lhs, &mut out) }
|
||||
.w()?;
|
||||
CudaStorageSlice::F16(out)
|
||||
}
|
||||
(CudaStorageSlice::F32(lhs), CudaStorageSlice::F32(rhs)) => {
|
||||
@ -1661,12 +1615,8 @@ impl BackendStorage for CudaStorage {
|
||||
let rhs = &rhs.slice(rhs_l.start_offset()..);
|
||||
let cfg = gemm_config(1., 0., (b, m, n, k), lhs_l, rhs_l)?;
|
||||
let mut out = unsafe { dev.alloc::<f32>(elem_count) }.w()?;
|
||||
unsafe {
|
||||
self.device
|
||||
.blas
|
||||
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
|
||||
}
|
||||
.w()?;
|
||||
unsafe { gemm_strided_batched_f32(&self.device.blas, cfg, rhs, lhs, &mut out) }
|
||||
.w()?;
|
||||
CudaStorageSlice::F32(out)
|
||||
}
|
||||
(CudaStorageSlice::F64(lhs), CudaStorageSlice::F64(rhs)) => {
|
||||
@ -1856,3 +1806,205 @@ impl BackendStorage for CudaStorage {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// Default for the reduced precision setting is false, similar to pytorch.
|
||||
// https://github.com/pytorch/pytorch/issues/123157
|
||||
static MM_F16_REDUCED_PRECISION: std::sync::atomic::AtomicBool =
|
||||
std::sync::atomic::AtomicBool::new(false);
|
||||
static MM_BF16_REDUCED_PRECISION: std::sync::atomic::AtomicBool =
|
||||
std::sync::atomic::AtomicBool::new(false);
|
||||
static MM_F32_REDUCED_PRECISION: std::sync::atomic::AtomicBool =
|
||||
std::sync::atomic::AtomicBool::new(false);
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn gemm_reduced_precision_f32() -> bool {
|
||||
MM_F32_REDUCED_PRECISION.load(std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f32(b: bool) {
|
||||
MM_F32_REDUCED_PRECISION.store(b, std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn gemm_reduced_precision_f16() -> bool {
|
||||
MM_F16_REDUCED_PRECISION.load(std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f16(b: bool) {
|
||||
MM_F16_REDUCED_PRECISION.store(b, std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn gemm_reduced_precision_bf16() -> bool {
|
||||
MM_BF16_REDUCED_PRECISION.load(std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_bf16(b: bool) {
|
||||
MM_BF16_REDUCED_PRECISION.store(b, std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
unsafe fn gemm_strided_batched_f32(
|
||||
cublas: &cudarc::cublas::CudaBlas,
|
||||
cfg: StridedBatchedConfig<f32>,
|
||||
a: &cudarc::driver::CudaView<f32>,
|
||||
b: &cudarc::driver::CudaView<f32>,
|
||||
c: &mut CudaSlice<f32>,
|
||||
) -> std::result::Result<(), cudarc::cublas::result::CublasError> {
|
||||
use cudarc::cublas::sys;
|
||||
use cudarc::driver::DevicePtrMut;
|
||||
|
||||
let compute_type = if gemm_reduced_precision_f32() {
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
} else {
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F
|
||||
};
|
||||
let alpha = &cfg.gemm.alpha as *const f32 as *const _;
|
||||
let beta = &cfg.gemm.beta as *const f32 as *const _;
|
||||
|
||||
cudarc::cublas::result::gemm_strided_batched_ex(
|
||||
*cublas.handle(),
|
||||
cfg.gemm.transa,
|
||||
cfg.gemm.transb,
|
||||
cfg.gemm.m,
|
||||
cfg.gemm.n,
|
||||
cfg.gemm.k,
|
||||
alpha,
|
||||
*a.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_32F,
|
||||
cfg.gemm.lda,
|
||||
cfg.stride_a,
|
||||
*b.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_32F,
|
||||
cfg.gemm.ldb,
|
||||
cfg.stride_b,
|
||||
beta,
|
||||
*c.device_ptr_mut() as *mut _,
|
||||
sys::cudaDataType_t::CUDA_R_32F,
|
||||
cfg.gemm.ldc,
|
||||
cfg.stride_c,
|
||||
cfg.batch_size,
|
||||
compute_type,
|
||||
sys::cublasGemmAlgo_t::CUBLAS_GEMM_DEFAULT_TENSOR_OP,
|
||||
)
|
||||
}
|
||||
|
||||
unsafe fn gemm_strided_batched_f16(
|
||||
cublas: &cudarc::cublas::CudaBlas,
|
||||
cfg: StridedBatchedConfig<f16>,
|
||||
a: &cudarc::driver::CudaView<f16>,
|
||||
b: &cudarc::driver::CudaView<f16>,
|
||||
c: &mut CudaSlice<f16>,
|
||||
) -> std::result::Result<(), cudarc::cublas::result::CublasError> {
|
||||
use cudarc::cublas::sys;
|
||||
use cudarc::driver::DevicePtrMut;
|
||||
|
||||
let alpha = cfg.gemm.alpha;
|
||||
let beta = cfg.gemm.beta;
|
||||
let alpha_f32: f32 = cfg.gemm.alpha.to_f32();
|
||||
let beta_f32: f32 = cfg.gemm.beta.to_f32();
|
||||
let (compute_type, alpha, beta) = if gemm_reduced_precision_f16() {
|
||||
(
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_16F,
|
||||
(&alpha) as *const f16 as *const _,
|
||||
(&beta) as *const f16 as *const _,
|
||||
)
|
||||
} else {
|
||||
(
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F,
|
||||
(&alpha_f32) as *const f32 as *const _,
|
||||
(&beta_f32) as *const f32 as *const _,
|
||||
)
|
||||
};
|
||||
|
||||
cudarc::cublas::result::gemm_strided_batched_ex(
|
||||
*cublas.handle(),
|
||||
cfg.gemm.transa,
|
||||
cfg.gemm.transb,
|
||||
cfg.gemm.m,
|
||||
cfg.gemm.n,
|
||||
cfg.gemm.k,
|
||||
alpha,
|
||||
*a.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_16F,
|
||||
cfg.gemm.lda,
|
||||
cfg.stride_a,
|
||||
*b.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_16F,
|
||||
cfg.gemm.ldb,
|
||||
cfg.stride_b,
|
||||
beta,
|
||||
*c.device_ptr_mut() as *mut _,
|
||||
sys::cudaDataType_t::CUDA_R_16F,
|
||||
cfg.gemm.ldc,
|
||||
cfg.stride_c,
|
||||
cfg.batch_size,
|
||||
compute_type,
|
||||
sys::cublasGemmAlgo_t::CUBLAS_GEMM_DEFAULT_TENSOR_OP,
|
||||
)
|
||||
}
|
||||
|
||||
unsafe fn gemm_strided_batched_bf16(
|
||||
cublas: &cudarc::cublas::CudaBlas,
|
||||
cfg: StridedBatchedConfig<bf16>,
|
||||
a: &cudarc::driver::CudaView<bf16>,
|
||||
b: &cudarc::driver::CudaView<bf16>,
|
||||
c: &mut CudaSlice<bf16>,
|
||||
) -> std::result::Result<(), cudarc::cublas::result::CublasError> {
|
||||
use cudarc::cublas::sys;
|
||||
use cudarc::driver::DevicePtrMut;
|
||||
|
||||
let alpha_f32: f32 = cfg.gemm.alpha.to_f32();
|
||||
let beta_f32: f32 = cfg.gemm.beta.to_f32();
|
||||
let alpha = f16::from_f32(alpha_f32);
|
||||
let beta = f16::from_f32(beta_f32);
|
||||
// The type for alpha and beta depends on the computeType.
|
||||
// https://docs.nvidia.com/cuda/cublas/index.html#cublasgemmstridedbatchedex
|
||||
let (compute_type, alpha, beta) = if gemm_reduced_precision_bf16() {
|
||||
(
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_16F,
|
||||
(&alpha) as *const f16 as *const _,
|
||||
(&beta) as *const f16 as *const _,
|
||||
)
|
||||
} else {
|
||||
(
|
||||
sys::cublasComputeType_t::CUBLAS_COMPUTE_32F,
|
||||
(&alpha_f32) as *const f32 as *const _,
|
||||
(&beta_f32) as *const f32 as *const _,
|
||||
)
|
||||
};
|
||||
|
||||
cudarc::cublas::result::gemm_strided_batched_ex(
|
||||
*cublas.handle(),
|
||||
cfg.gemm.transa,
|
||||
cfg.gemm.transb,
|
||||
cfg.gemm.m,
|
||||
cfg.gemm.n,
|
||||
cfg.gemm.k,
|
||||
alpha,
|
||||
*a.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_16BF,
|
||||
cfg.gemm.lda,
|
||||
cfg.stride_a,
|
||||
*b.device_ptr() as *const _,
|
||||
sys::cudaDataType_t::CUDA_R_16BF,
|
||||
cfg.gemm.ldb,
|
||||
cfg.stride_b,
|
||||
beta,
|
||||
*c.device_ptr_mut() as *mut _,
|
||||
sys::cudaDataType_t::CUDA_R_16BF,
|
||||
cfg.gemm.ldc,
|
||||
cfg.stride_c,
|
||||
cfg.batch_size,
|
||||
compute_type,
|
||||
sys::cublasGemmAlgo_t::CUBLAS_GEMM_DEFAULT_TENSOR_OP,
|
||||
)
|
||||
}
|
||||
|
@ -306,6 +306,20 @@ impl Device {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn storage_from_slice<D: WithDType>(&self, data: &[D]) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => Ok(Storage::Cpu(data.to_cpu_storage())),
|
||||
Device::Cuda(device) => {
|
||||
let storage = device.storage_from_slice(data)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.storage_from_slice(data)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
|
||||
@ -337,4 +351,12 @@ impl Device {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn synchronize(&self) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu => Ok(()),
|
||||
Self::Cuda(d) => d.synchronize(),
|
||||
Self::Metal(d) => d.synchronize(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
//! Types for elements that can be stored and manipulated using tensors.
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{CpuStorage, Error, Result};
|
||||
use crate::{CpuStorage, CpuStorageRef, Error, Result};
|
||||
|
||||
/// The different types of elements allowed in tensors.
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
||||
@ -100,12 +100,14 @@ pub trait WithDType:
|
||||
+ 'static
|
||||
+ Send
|
||||
+ Sync
|
||||
+ std::any::Any
|
||||
+ crate::cpu::kernels::VecOps
|
||||
{
|
||||
const DTYPE: DType;
|
||||
|
||||
fn from_f64(v: f64) -> Self;
|
||||
fn to_f64(self) -> f64;
|
||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_>;
|
||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
|
||||
|
||||
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
|
||||
@ -129,6 +131,10 @@ macro_rules! with_dtype {
|
||||
$to_f64(self)
|
||||
}
|
||||
|
||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_> {
|
||||
CpuStorageRef::$dtype(data)
|
||||
}
|
||||
|
||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
|
||||
CpuStorage::$dtype(data)
|
||||
}
|
||||
|
@ -214,6 +214,10 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
@ -229,4 +233,38 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn gemm_reduced_precision_f16() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f16(_: bool) {}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn gemm_reduced_precision_bf16() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_bf16(_: bool) {}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn gemm_reduced_precision_f32() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f32(_b: bool) {}
|
||||
|
@ -226,6 +226,10 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
@ -241,4 +245,8 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -219,10 +219,14 @@ impl Error {
|
||||
Self::Wrapped(Box::new(err)).bt()
|
||||
}
|
||||
|
||||
pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self {
|
||||
pub fn msg(err: impl std::error::Error) -> Self {
|
||||
Self::Msg(err.to_string()).bt()
|
||||
}
|
||||
|
||||
pub fn debug(err: impl std::fmt::Debug) -> Self {
|
||||
Self::Msg(format!("{err:?}")).bt()
|
||||
}
|
||||
|
||||
pub fn bt(self) -> Self {
|
||||
let backtrace = std::backtrace::Backtrace::capture();
|
||||
match backtrace.status() {
|
||||
|
@ -47,7 +47,7 @@ mod custom_op;
|
||||
mod device;
|
||||
pub mod display;
|
||||
mod dtype;
|
||||
mod dummy_cuda_backend;
|
||||
pub mod dummy_cuda_backend;
|
||||
mod dummy_metal_backend;
|
||||
pub mod error;
|
||||
mod indexer;
|
||||
@ -63,6 +63,7 @@ pub mod quantized;
|
||||
pub mod safetensors;
|
||||
pub mod scalar;
|
||||
pub mod shape;
|
||||
mod sort;
|
||||
mod storage;
|
||||
mod strided_index;
|
||||
mod tensor;
|
||||
@ -74,7 +75,7 @@ mod variable;
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub use cuda_backend::cudnn;
|
||||
|
||||
pub use cpu_backend::CpuStorage;
|
||||
pub use cpu_backend::{CpuStorage, CpuStorageRef};
|
||||
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
|
||||
pub use device::{Device, DeviceLocation, NdArray};
|
||||
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
|
||||
@ -88,10 +89,12 @@ pub use tensor::{Tensor, TensorId};
|
||||
pub use variable::Var;
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
pub use cuda_backend::{CudaDevice, CudaStorage};
|
||||
pub use cuda_backend as cuda;
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
|
||||
pub use dummy_cuda_backend as cuda;
|
||||
|
||||
pub use cuda::{CudaDevice, CudaStorage};
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
|
||||
|
@ -100,11 +100,11 @@ impl MetalDevice {
|
||||
}
|
||||
|
||||
pub fn command_buffer(&self) -> Result<CommandBuffer> {
|
||||
let mut command_buffer_lock = self.command_buffer.try_write().map_err(MetalError::from)?;
|
||||
let mut command_buffer_lock = self.command_buffer.write().map_err(MetalError::from)?;
|
||||
let mut command_buffer = command_buffer_lock.to_owned();
|
||||
let mut index = self
|
||||
.command_buffer_index
|
||||
.try_write()
|
||||
.write()
|
||||
.map_err(MetalError::from)?;
|
||||
if *index > self.compute_per_buffer {
|
||||
command_buffer.commit();
|
||||
@ -119,7 +119,7 @@ impl MetalDevice {
|
||||
}
|
||||
|
||||
pub fn wait_until_completed(&self) -> Result<()> {
|
||||
let mut command_buffer = self.command_buffer.try_write().map_err(MetalError::from)?;
|
||||
let mut command_buffer = self.command_buffer.write().map_err(MetalError::from)?;
|
||||
match command_buffer.status() {
|
||||
metal::MTLCommandBufferStatus::Committed
|
||||
| metal::MTLCommandBufferStatus::Scheduled
|
||||
@ -179,7 +179,7 @@ impl MetalDevice {
|
||||
size,
|
||||
MTLResourceOptions::StorageModeManaged,
|
||||
);
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
let subbuffers = buffers
|
||||
.entry((size, MTLResourceOptions::StorageModeManaged))
|
||||
.or_insert(vec![]);
|
||||
@ -232,7 +232,7 @@ impl MetalDevice {
|
||||
}
|
||||
|
||||
fn drop_unused_buffers(&self) -> Result<()> {
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
for subbuffers in buffers.values_mut() {
|
||||
let newbuffers = subbuffers
|
||||
.iter()
|
||||
@ -251,7 +251,7 @@ impl MetalDevice {
|
||||
option: MTLResourceOptions,
|
||||
_name: &str,
|
||||
) -> Result<Arc<Buffer>> {
|
||||
let mut buffers = self.buffers.try_write().map_err(MetalError::from)?;
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
if let Some(b) = self.find_available_buffer(size, option, &buffers) {
|
||||
// Cloning also ensures we increment the strong count
|
||||
return Ok(b.clone());
|
||||
@ -283,5 +283,5 @@ impl MetalDevice {
|
||||
}
|
||||
|
||||
fn buf_size(size: NSUInteger) -> NSUInteger {
|
||||
(size - 1).next_power_of_two() as NSUInteger
|
||||
size.saturating_sub(1).next_power_of_two() as NSUInteger
|
||||
}
|
||||
|
@ -1,17 +1,17 @@
|
||||
use crate::backend::{BackendDevice, BackendStorage};
|
||||
use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose1D, ParamsConvTranspose2D};
|
||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
|
||||
use candle_metal_kernels::{BufferOffset, CallConvTranspose2dCfg, Kernels};
|
||||
use metal::{Buffer, MTLResourceOptions, NSUInteger};
|
||||
use std::collections::HashMap;
|
||||
use std::ffi::c_void;
|
||||
use std::sync::{Arc, Mutex, RwLock, TryLockError};
|
||||
use std::sync::{Arc, Mutex, PoisonError, RwLock, TryLockError};
|
||||
|
||||
mod device;
|
||||
pub use device::{DeviceId, MetalDevice};
|
||||
|
||||
fn buffer_o<'a>(buffer: &'a Buffer, l: &Layout, dtype: DType) -> BufferOffset<'a> {
|
||||
pub fn buffer_o<'a>(buffer: &'a Buffer, l: &Layout, dtype: DType) -> BufferOffset<'a> {
|
||||
BufferOffset {
|
||||
buffer,
|
||||
offset_in_bytes: l.start_offset() * dtype.size_in_bytes(),
|
||||
@ -36,6 +36,12 @@ impl<T> From<TryLockError<T>> for MetalError {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<PoisonError<T>> for MetalError {
|
||||
fn from(p: PoisonError<T>) -> Self {
|
||||
MetalError::LockError(LockError::Poisoned(p.to_string()))
|
||||
}
|
||||
}
|
||||
|
||||
/// Metal related errors
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum MetalError {
|
||||
@ -444,136 +450,238 @@ impl BackendStorage for MetalStorage {
|
||||
let command_buffer = device.command_buffer()?;
|
||||
command_buffer.set_label(B::KERNEL);
|
||||
let src = buffer_o(&self.buffer, layout, self.dtype);
|
||||
if layout.is_contiguous() {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("uabs", DType::F16) => contiguous::abs::HALF,
|
||||
("uabs", DType::F32) => contiguous::abs::FLOAT,
|
||||
("uabs", DType::BF16) => contiguous::abs::BFLOAT,
|
||||
("uceil", DType::F16) => contiguous::ceil::HALF,
|
||||
("uceil", DType::F32) => contiguous::ceil::FLOAT,
|
||||
("uceil", DType::BF16) => contiguous::ceil::BFLOAT,
|
||||
("ucos", DType::F16) => contiguous::cos::HALF,
|
||||
("ucos", DType::F32) => contiguous::cos::FLOAT,
|
||||
("ucos", DType::BF16) => contiguous::cos::BFLOAT,
|
||||
("uerf", DType::F16) => contiguous::erf::HALF,
|
||||
("uerf", DType::F32) => contiguous::erf::FLOAT,
|
||||
("uerf", DType::BF16) => contiguous::erf::BFLOAT,
|
||||
("uexp", DType::F16) => contiguous::exp::HALF,
|
||||
("uexp", DType::F32) => contiguous::exp::FLOAT,
|
||||
("uexp", DType::BF16) => contiguous::exp::BFLOAT,
|
||||
("ufloor", DType::F16) => contiguous::floor::HALF,
|
||||
("ufloor", DType::F32) => contiguous::floor::FLOAT,
|
||||
("ufloor", DType::BF16) => contiguous::floor::BFLOAT,
|
||||
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
|
||||
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
|
||||
("ugelu_erf", DType::BF16) => contiguous::gelu_erf::BFLOAT,
|
||||
("ugelu", DType::F16) => contiguous::gelu::HALF,
|
||||
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
|
||||
("ugelu", DType::BF16) => contiguous::gelu::BFLOAT,
|
||||
("ulog", DType::F16) => contiguous::log::HALF,
|
||||
("ulog", DType::F32) => contiguous::log::FLOAT,
|
||||
("ulog", DType::BF16) => contiguous::log::BFLOAT,
|
||||
("uneg", DType::F16) => contiguous::neg::HALF,
|
||||
("uneg", DType::F32) => contiguous::neg::FLOAT,
|
||||
("uneg", DType::BF16) => contiguous::neg::BFLOAT,
|
||||
("urecip", DType::F16) => contiguous::recip::HALF,
|
||||
("urecip", DType::F32) => contiguous::recip::FLOAT,
|
||||
("urecip", DType::BF16) => contiguous::recip::BFLOAT,
|
||||
("urelu", DType::F16) => contiguous::relu::HALF,
|
||||
("urelu", DType::F32) => contiguous::relu::FLOAT,
|
||||
("urelu", DType::BF16) => contiguous::relu::BFLOAT,
|
||||
("uround", DType::F16) => contiguous::round::HALF,
|
||||
("uround", DType::F32) => contiguous::round::FLOAT,
|
||||
("uround", DType::BF16) => contiguous::round::BFLOAT,
|
||||
("usilu", DType::F16) => contiguous::silu::HALF,
|
||||
("usilu", DType::F32) => contiguous::silu::FLOAT,
|
||||
("usilu", DType::BF16) => contiguous::silu::BFLOAT,
|
||||
("usin", DType::F16) => contiguous::sin::HALF,
|
||||
("usin", DType::F32) => contiguous::sin::FLOAT,
|
||||
("usin", DType::BF16) => contiguous::sin::BFLOAT,
|
||||
("usqr", DType::F16) => contiguous::sqr::HALF,
|
||||
("usqr", DType::F32) => contiguous::sqr::FLOAT,
|
||||
("usqr", DType::BF16) => contiguous::sqr::BFLOAT,
|
||||
("usqrt", DType::F16) => contiguous::sqrt::HALF,
|
||||
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
|
||||
("usqrt", DType::BF16) => contiguous::sqrt::BFLOAT,
|
||||
("utanh", DType::F16) => contiguous::tanh::HALF,
|
||||
("utanh", DType::F32) => contiguous::tanh::FLOAT,
|
||||
("utanh", DType::BF16) => contiguous::tanh::BFLOAT,
|
||||
("usign", DType::F16) => contiguous::sign::HALF,
|
||||
("usign", DType::F32) => contiguous::sign::FLOAT,
|
||||
("usign", DType::BF16) => contiguous::sign::BFLOAT,
|
||||
("usign", DType::I64) => contiguous::sign::I64,
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
src,
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
use candle_metal_kernels::unary::strided;
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("ucos", DType::F32) => strided::cos::FLOAT,
|
||||
("usin", DType::F32) => strided::sin::FLOAT,
|
||||
("usqr", DType::F32) => strided::sqr::FLOAT,
|
||||
("usqrt", DType::F32) => strided::sqrt::FLOAT,
|
||||
("uneg", DType::F32) => strided::neg::FLOAT,
|
||||
("uexp", DType::F32) => strided::exp::FLOAT,
|
||||
("ulog", DType::F32) => strided::log::FLOAT,
|
||||
("ugelu", DType::F32) => strided::gelu::FLOAT,
|
||||
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
|
||||
("uerf", DType::F32) => strided::erf::FLOAT,
|
||||
("usilu", DType::F32) => strided::silu::FLOAT,
|
||||
("uabs", DType::F32) => strided::abs::FLOAT,
|
||||
("uceil", DType::F32) => strided::ceil::FLOAT,
|
||||
("ufloor", DType::F32) => strided::floor::FLOAT,
|
||||
("urelu", DType::F32) => strided::relu::FLOAT,
|
||||
("uround", DType::F32) => strided::round::FLOAT,
|
||||
("utanh", DType::F32) => strided::tanh::FLOAT,
|
||||
("ucos", DType::F16) => strided::cos::HALF,
|
||||
("usin", DType::F16) => strided::sin::HALF,
|
||||
("usqr", DType::F16) => strided::sqr::HALF,
|
||||
("usqrt", DType::F16) => strided::sqrt::HALF,
|
||||
("uneg", DType::F16) => strided::neg::HALF,
|
||||
("uexp", DType::F16) => strided::exp::HALF,
|
||||
("ulog", DType::F16) => strided::log::HALF,
|
||||
("ugelu", DType::F16) => strided::gelu::HALF,
|
||||
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
|
||||
("uerf", DType::F16) => strided::erf::HALF,
|
||||
("usilu", DType::F16) => strided::silu::HALF,
|
||||
("uabs", DType::F16) => strided::abs::HALF,
|
||||
("uceil", DType::F16) => strided::ceil::HALF,
|
||||
("ufloor", DType::F16) => strided::floor::HALF,
|
||||
("urelu", DType::F16) => strided::relu::HALF,
|
||||
("uround", DType::F16) => strided::round::HALF,
|
||||
("utanh", DType::F16) => strided::tanh::HALF,
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal strided unary {name} {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
let dst = BufferOffset::zero_offset(&buffer);
|
||||
candle_metal_kernels::call_unary_strided(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
layout.dims(),
|
||||
src,
|
||||
layout.stride(),
|
||||
dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
match (el_count % 2, dtype, layout.is_contiguous()) {
|
||||
(0, DType::BF16 | DType::F16, true) => {
|
||||
use candle_metal_kernels::unary::contiguous_tiled;
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("uabs", DType::F16) => contiguous_tiled::abs::HALF,
|
||||
("uabs", DType::F32) => contiguous_tiled::abs::FLOAT,
|
||||
("uabs", DType::BF16) => contiguous_tiled::abs::BFLOAT,
|
||||
("uceil", DType::F16) => contiguous_tiled::ceil::HALF,
|
||||
("uceil", DType::F32) => contiguous_tiled::ceil::FLOAT,
|
||||
("uceil", DType::BF16) => contiguous_tiled::ceil::BFLOAT,
|
||||
("ucos", DType::F16) => contiguous_tiled::cos::HALF,
|
||||
("ucos", DType::F32) => contiguous_tiled::cos::FLOAT,
|
||||
("ucos", DType::BF16) => contiguous_tiled::cos::BFLOAT,
|
||||
("uerf", DType::F16) => contiguous_tiled::erf::HALF,
|
||||
("uerf", DType::F32) => contiguous_tiled::erf::FLOAT,
|
||||
("uerf", DType::BF16) => contiguous_tiled::erf::BFLOAT,
|
||||
("uexp", DType::F16) => contiguous_tiled::exp::HALF,
|
||||
("uexp", DType::F32) => contiguous_tiled::exp::FLOAT,
|
||||
("uexp", DType::BF16) => contiguous_tiled::exp::BFLOAT,
|
||||
("ufloor", DType::F16) => contiguous_tiled::floor::HALF,
|
||||
("ufloor", DType::F32) => contiguous_tiled::floor::FLOAT,
|
||||
("ufloor", DType::BF16) => contiguous_tiled::floor::BFLOAT,
|
||||
("ugelu_erf", DType::F16) => contiguous_tiled::gelu_erf::HALF,
|
||||
("ugelu_erf", DType::F32) => contiguous_tiled::gelu_erf::FLOAT,
|
||||
("ugelu_erf", DType::BF16) => contiguous_tiled::gelu_erf::BFLOAT,
|
||||
("ugelu", DType::F16) => contiguous_tiled::gelu::HALF,
|
||||
("ugelu", DType::F32) => contiguous_tiled::gelu::FLOAT,
|
||||
("ugelu", DType::BF16) => contiguous_tiled::gelu::BFLOAT,
|
||||
("ulog", DType::F16) => contiguous_tiled::log::HALF,
|
||||
("ulog", DType::F32) => contiguous_tiled::log::FLOAT,
|
||||
("ulog", DType::BF16) => contiguous_tiled::log::BFLOAT,
|
||||
("uneg", DType::F16) => contiguous_tiled::neg::HALF,
|
||||
("uneg", DType::F32) => contiguous_tiled::neg::FLOAT,
|
||||
("uneg", DType::BF16) => contiguous_tiled::neg::BFLOAT,
|
||||
("urecip", DType::F16) => contiguous_tiled::recip::HALF,
|
||||
("urecip", DType::F32) => contiguous_tiled::recip::FLOAT,
|
||||
("urecip", DType::BF16) => contiguous_tiled::recip::BFLOAT,
|
||||
("urelu", DType::F16) => contiguous_tiled::relu::HALF,
|
||||
("urelu", DType::F32) => contiguous_tiled::relu::FLOAT,
|
||||
("urelu", DType::BF16) => contiguous_tiled::relu::BFLOAT,
|
||||
("uround", DType::F16) => contiguous_tiled::round::HALF,
|
||||
("uround", DType::F32) => contiguous_tiled::round::FLOAT,
|
||||
("uround", DType::BF16) => contiguous_tiled::round::BFLOAT,
|
||||
("usilu", DType::F16) => contiguous_tiled::silu::HALF,
|
||||
("usilu", DType::F32) => contiguous_tiled::silu::FLOAT,
|
||||
("usilu", DType::BF16) => contiguous_tiled::silu::BFLOAT,
|
||||
("usin", DType::F16) => contiguous_tiled::sin::HALF,
|
||||
("usin", DType::F32) => contiguous_tiled::sin::FLOAT,
|
||||
("usin", DType::BF16) => contiguous_tiled::sin::BFLOAT,
|
||||
("usqr", DType::F16) => contiguous_tiled::sqr::HALF,
|
||||
("usqr", DType::F32) => contiguous_tiled::sqr::FLOAT,
|
||||
("usqr", DType::BF16) => contiguous_tiled::sqr::BFLOAT,
|
||||
("usqrt", DType::F16) => contiguous_tiled::sqrt::HALF,
|
||||
("usqrt", DType::F32) => contiguous_tiled::sqrt::FLOAT,
|
||||
("usqrt", DType::BF16) => contiguous_tiled::sqrt::BFLOAT,
|
||||
("utanh", DType::F16) => contiguous_tiled::tanh::HALF,
|
||||
("utanh", DType::F32) => contiguous_tiled::tanh::FLOAT,
|
||||
("utanh", DType::BF16) => contiguous_tiled::tanh::BFLOAT,
|
||||
("usign", DType::F16) => contiguous_tiled::sign::HALF,
|
||||
("usign", DType::F32) => contiguous_tiled::sign::FLOAT,
|
||||
("usign", DType::BF16) => contiguous_tiled::sign::BFLOAT,
|
||||
("usign", DType::I64) => contiguous_tiled::sign::I64,
|
||||
(name, dtype) => {
|
||||
crate::bail!(
|
||||
"Metal contiguous_tiled unary {name} {dtype:?} not implemented"
|
||||
)
|
||||
}
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous_tiled(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
src,
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
(_, _, true) => {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("uabs", DType::F16) => contiguous::abs::HALF,
|
||||
("uabs", DType::F32) => contiguous::abs::FLOAT,
|
||||
("uabs", DType::BF16) => contiguous::abs::BFLOAT,
|
||||
("uceil", DType::F16) => contiguous::ceil::HALF,
|
||||
("uceil", DType::F32) => contiguous::ceil::FLOAT,
|
||||
("uceil", DType::BF16) => contiguous::ceil::BFLOAT,
|
||||
("ucos", DType::F16) => contiguous::cos::HALF,
|
||||
("ucos", DType::F32) => contiguous::cos::FLOAT,
|
||||
("ucos", DType::BF16) => contiguous::cos::BFLOAT,
|
||||
("uerf", DType::F16) => contiguous::erf::HALF,
|
||||
("uerf", DType::F32) => contiguous::erf::FLOAT,
|
||||
("uerf", DType::BF16) => contiguous::erf::BFLOAT,
|
||||
("uexp", DType::F16) => contiguous::exp::HALF,
|
||||
("uexp", DType::F32) => contiguous::exp::FLOAT,
|
||||
("uexp", DType::BF16) => contiguous::exp::BFLOAT,
|
||||
("ufloor", DType::F16) => contiguous::floor::HALF,
|
||||
("ufloor", DType::F32) => contiguous::floor::FLOAT,
|
||||
("ufloor", DType::BF16) => contiguous::floor::BFLOAT,
|
||||
("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
|
||||
("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
|
||||
("ugelu_erf", DType::BF16) => contiguous::gelu_erf::BFLOAT,
|
||||
("ugelu", DType::F16) => contiguous::gelu::HALF,
|
||||
("ugelu", DType::F32) => contiguous::gelu::FLOAT,
|
||||
("ugelu", DType::BF16) => contiguous::gelu::BFLOAT,
|
||||
("ulog", DType::F16) => contiguous::log::HALF,
|
||||
("ulog", DType::F32) => contiguous::log::FLOAT,
|
||||
("ulog", DType::BF16) => contiguous::log::BFLOAT,
|
||||
("uneg", DType::F16) => contiguous::neg::HALF,
|
||||
("uneg", DType::F32) => contiguous::neg::FLOAT,
|
||||
("uneg", DType::BF16) => contiguous::neg::BFLOAT,
|
||||
("urecip", DType::F16) => contiguous::recip::HALF,
|
||||
("urecip", DType::F32) => contiguous::recip::FLOAT,
|
||||
("urecip", DType::BF16) => contiguous::recip::BFLOAT,
|
||||
("urelu", DType::F16) => contiguous::relu::HALF,
|
||||
("urelu", DType::F32) => contiguous::relu::FLOAT,
|
||||
("urelu", DType::BF16) => contiguous::relu::BFLOAT,
|
||||
("uround", DType::F16) => contiguous::round::HALF,
|
||||
("uround", DType::F32) => contiguous::round::FLOAT,
|
||||
("uround", DType::BF16) => contiguous::round::BFLOAT,
|
||||
("usilu", DType::F16) => contiguous::silu::HALF,
|
||||
("usilu", DType::F32) => contiguous::silu::FLOAT,
|
||||
("usilu", DType::BF16) => contiguous::silu::BFLOAT,
|
||||
("usin", DType::F16) => contiguous::sin::HALF,
|
||||
("usin", DType::F32) => contiguous::sin::FLOAT,
|
||||
("usin", DType::BF16) => contiguous::sin::BFLOAT,
|
||||
("usqr", DType::F16) => contiguous::sqr::HALF,
|
||||
("usqr", DType::F32) => contiguous::sqr::FLOAT,
|
||||
("usqr", DType::BF16) => contiguous::sqr::BFLOAT,
|
||||
("usqrt", DType::F16) => contiguous::sqrt::HALF,
|
||||
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
|
||||
("usqrt", DType::BF16) => contiguous::sqrt::BFLOAT,
|
||||
("utanh", DType::F16) => contiguous::tanh::HALF,
|
||||
("utanh", DType::F32) => contiguous::tanh::FLOAT,
|
||||
("utanh", DType::BF16) => contiguous::tanh::BFLOAT,
|
||||
("usign", DType::F16) => contiguous::sign::HALF,
|
||||
("usign", DType::F32) => contiguous::sign::FLOAT,
|
||||
("usign", DType::BF16) => contiguous::sign::BFLOAT,
|
||||
("usign", DType::I64) => contiguous::sign::I64,
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
src,
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
(_, _, false) => {
|
||||
use candle_metal_kernels::unary::strided;
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("ucos", DType::F32) => strided::cos::FLOAT,
|
||||
("usin", DType::F32) => strided::sin::FLOAT,
|
||||
("usqr", DType::F32) => strided::sqr::FLOAT,
|
||||
("usqrt", DType::F32) => strided::sqrt::FLOAT,
|
||||
("uneg", DType::F32) => strided::neg::FLOAT,
|
||||
("uexp", DType::F32) => strided::exp::FLOAT,
|
||||
("ulog", DType::F32) => strided::log::FLOAT,
|
||||
("ugelu", DType::F32) => strided::gelu::FLOAT,
|
||||
("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
|
||||
("uerf", DType::F32) => strided::erf::FLOAT,
|
||||
("usilu", DType::F32) => strided::silu::FLOAT,
|
||||
("uabs", DType::F32) => strided::abs::FLOAT,
|
||||
("uceil", DType::F32) => strided::ceil::FLOAT,
|
||||
("ufloor", DType::F32) => strided::floor::FLOAT,
|
||||
("urelu", DType::F32) => strided::relu::FLOAT,
|
||||
("uround", DType::F32) => strided::round::FLOAT,
|
||||
("utanh", DType::F32) => strided::tanh::FLOAT,
|
||||
|
||||
("ucos", DType::F16) => strided::cos::HALF,
|
||||
("usin", DType::F16) => strided::sin::HALF,
|
||||
("usqr", DType::F16) => strided::sqr::HALF,
|
||||
("usqrt", DType::F16) => strided::sqrt::HALF,
|
||||
("uneg", DType::F16) => strided::neg::HALF,
|
||||
("uexp", DType::F16) => strided::exp::HALF,
|
||||
("ulog", DType::F16) => strided::log::HALF,
|
||||
("ugelu", DType::F16) => strided::gelu::HALF,
|
||||
("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
|
||||
("uerf", DType::F16) => strided::erf::HALF,
|
||||
("usilu", DType::F16) => strided::silu::HALF,
|
||||
("uabs", DType::F16) => strided::abs::HALF,
|
||||
("uceil", DType::F16) => strided::ceil::HALF,
|
||||
("ufloor", DType::F16) => strided::floor::HALF,
|
||||
("urelu", DType::F16) => strided::relu::HALF,
|
||||
("uround", DType::F16) => strided::round::HALF,
|
||||
("utanh", DType::F16) => strided::tanh::HALF,
|
||||
|
||||
("ucos", DType::BF16) => strided::cos::BFLOAT,
|
||||
("usin", DType::BF16) => strided::sin::BFLOAT,
|
||||
("usqr", DType::BF16) => strided::sqr::BFLOAT,
|
||||
("usqrt", DType::BF16) => strided::sqrt::BFLOAT,
|
||||
("uneg", DType::BF16) => strided::neg::BFLOAT,
|
||||
("uexp", DType::BF16) => strided::exp::BFLOAT,
|
||||
("ulog", DType::BF16) => strided::log::BFLOAT,
|
||||
("ugelu", DType::BF16) => strided::gelu::BFLOAT,
|
||||
("ugelu_erf", DType::BF16) => strided::gelu_erf::BFLOAT,
|
||||
("uerf", DType::BF16) => strided::erf::BFLOAT,
|
||||
("usilu", DType::BF16) => strided::silu::BFLOAT,
|
||||
("uabs", DType::BF16) => strided::abs::BFLOAT,
|
||||
("uceil", DType::BF16) => strided::ceil::BFLOAT,
|
||||
("ufloor", DType::BF16) => strided::floor::BFLOAT,
|
||||
("urelu", DType::BF16) => strided::relu::BFLOAT,
|
||||
("uround", DType::BF16) => strided::round::BFLOAT,
|
||||
("utanh", DType::BF16) => strided::tanh::BFLOAT,
|
||||
|
||||
(name, dtype) => {
|
||||
crate::bail!("Metal strided unary {name} {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
let dst = BufferOffset::zero_offset(&buffer);
|
||||
candle_metal_kernels::call_unary_strided(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
layout.dims(),
|
||||
src,
|
||||
layout.stride(),
|
||||
dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(Self::new(buffer, device.clone(), el_count, dtype))
|
||||
}
|
||||
|
||||
@ -1682,6 +1790,19 @@ impl BackendDevice for MetalDevice {
|
||||
self.storage_from_cpu_storage(&cpu_storage)
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
|
||||
let (count, buffer) = match T::cpu_storage_ref(s) {
|
||||
CpuStorageRef::U8(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::U32(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::I64(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::BF16(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::F16(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::F32(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
CpuStorageRef::F64(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
};
|
||||
Ok(Self::Storage::new(buffer?, self.clone(), count, T::DTYPE))
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
|
||||
let (count, buffer) = match storage {
|
||||
CpuStorage::U8(storage) => (storage.len(), self.new_buffer_with_data(storage)),
|
||||
@ -1790,6 +1911,10 @@ impl BackendDevice for MetalDevice {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
self.wait_until_completed()
|
||||
}
|
||||
}
|
||||
|
||||
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
||||
|
@ -330,7 +330,7 @@ impl Tensor {
|
||||
path: P,
|
||||
) -> Result<()> {
|
||||
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
|
||||
let options =
|
||||
let options: zip::write::FileOptions<()> =
|
||||
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
|
||||
|
||||
for (name, tensor) in ts.iter() {
|
||||
|
@ -2,6 +2,7 @@ use super::{GgmlDType, QStorage};
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
|
||||
use crate::{CudaDevice, CudaStorage, Result};
|
||||
use half::f16;
|
||||
|
||||
use cudarc::driver::{CudaSlice, CudaView, DeviceSlice};
|
||||
|
||||
@ -40,6 +41,7 @@ fn quantize_q8_1(
|
||||
src: &CudaView<f32>,
|
||||
dst: &mut CudaSlice<u8>,
|
||||
elem_count: usize,
|
||||
ky: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
@ -49,7 +51,7 @@ fn quantize_q8_1(
|
||||
let num_blocks = ceil_div(kx_padded, CUDA_QUANTIZE_BLOCK_SIZE);
|
||||
let func = dev.get_or_load_func("quantize_q8_1", candle_kernels::QUANTIZED)?;
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, 1, 1),
|
||||
grid_dim: (num_blocks as u32, ky as u32, 1),
|
||||
block_dim: (CUDA_QUANTIZE_BLOCK_SIZE as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
@ -58,7 +60,7 @@ fn quantize_q8_1(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn dequantize(
|
||||
fn dequantize_f32(
|
||||
data: &CudaSlice<u8>,
|
||||
dtype: GgmlDType,
|
||||
elem_count: usize,
|
||||
@ -68,27 +70,27 @@ fn dequantize(
|
||||
|
||||
let nb = (elem_count + 255) / 256;
|
||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1", false, 32, nb),
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f32", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f32", false, 32, nb),
|
||||
GgmlDType::Q5_0 => (
|
||||
"dequantize_block_q5_0",
|
||||
"dequantize_block_q5_0_f32",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q5_1 => (
|
||||
"dequantize_block_q5_1",
|
||||
"dequantize_block_q5_1_f32",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K", true, 32, nb),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f32", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f32", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f32", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f32", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f32", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f32", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f32", true, 32, nb),
|
||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
@ -115,6 +117,63 @@ fn dequantize(
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn dequantize_f16(
|
||||
data: &CudaSlice<u8>,
|
||||
dtype: GgmlDType,
|
||||
elem_count: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let nb = (elem_count + 255) / 256;
|
||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f16", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f16", false, 32, nb),
|
||||
GgmlDType::Q5_0 => (
|
||||
"dequantize_block_q5_0_f16",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q5_1 => (
|
||||
"dequantize_block_q5_1_f16",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f16", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f16", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f16", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f16", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f16", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f16", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f16", true, 32, nb),
|
||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f16>(elem_count).w()? };
|
||||
// See e.g.
|
||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, 1, 1),
|
||||
block_dim: (block_dim as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
if is_k {
|
||||
let params = (data, &dst);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
} else {
|
||||
let nb32 = match dtype {
|
||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
||||
_ => elem_count / 32,
|
||||
};
|
||||
let params = (data, &dst, nb32 as i32);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
}
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn dequantize_mul_mat_vec(
|
||||
data: &CudaSlice<u8>,
|
||||
y: &CudaView<f32>,
|
||||
@ -165,6 +224,7 @@ fn mul_mat_vec_via_q8_1(
|
||||
dtype: GgmlDType,
|
||||
ncols: usize,
|
||||
nrows: usize,
|
||||
b_size: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
@ -173,14 +233,18 @@ fn mul_mat_vec_via_q8_1(
|
||||
if data_elems < ncols * nrows {
|
||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
||||
}
|
||||
if y.len() != ncols {
|
||||
if y.len() != ncols * b_size {
|
||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
||||
}
|
||||
if b_size == 0 || b_size > 8 {
|
||||
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
|
||||
}
|
||||
// Start by quantizing y
|
||||
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes = ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let y_size_in_bytes =
|
||||
b_size * ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
quantize_q8_1(y, &mut y_q8_1, ncols, dev)?;
|
||||
quantize_q8_1(y, &mut y_q8_1, ncols, b_size, dev)?;
|
||||
|
||||
let kernel_name = match dtype {
|
||||
GgmlDType::Q4_0 => "mul_mat_vec_q4_0_q8_1_cuda",
|
||||
@ -195,11 +259,19 @@ fn mul_mat_vec_via_q8_1(
|
||||
GgmlDType::Q6K => "mul_mat_vec_q6_K_q8_1_cuda",
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows).w()? };
|
||||
let kernel_name = format!("{kernel_name}{b_size}");
|
||||
let func = dev.get_or_load_func(&kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows * b_size).w()? };
|
||||
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
|
||||
let (nblocks, nwarps) = match b_size {
|
||||
1 => (nrows as u32, 4),
|
||||
2..=4 => ((nrows as u32 + 1) / 2, 4),
|
||||
5..=8 => ((nrows as u32 + 1) / 2, 2),
|
||||
_ => crate::bail!("unexpected bsize {b_size}"),
|
||||
};
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (nrows as u32, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, 4, 1),
|
||||
grid_dim: (nblocks, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, nwarps, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
@ -209,13 +281,83 @@ fn mul_mat_vec_via_q8_1(
|
||||
&dst,
|
||||
/* ncols_x */ ncols as i32,
|
||||
/* nrows_x */ nrows as i32,
|
||||
/* nrows_y */ ncols as i32,
|
||||
/* nrows_y */ ncols_padded as i32,
|
||||
/* nrows_dst */ nrows as i32,
|
||||
);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn mul_mat_via_q8_1(
|
||||
data: &CudaSlice<u8>,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
x_rows: usize,
|
||||
x_cols: usize,
|
||||
y_rows: usize,
|
||||
y_cols: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
use cudarc::driver::LaunchAsync;
|
||||
|
||||
let data_elems = data.len() / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < x_rows * x_cols {
|
||||
crate::bail!("unexpected lhs size {}, {x_rows} {x_cols}", data_elems)
|
||||
}
|
||||
if y.len() != y_rows * y_cols {
|
||||
crate::bail!("unexpected y size {}, {y_rows} {y_cols}", y.len())
|
||||
}
|
||||
if x_cols != y_rows {
|
||||
crate::bail!("unexpected x/y size {x_rows} {x_cols} {y_rows} {y_cols}")
|
||||
}
|
||||
let k = x_cols;
|
||||
// Start by quantizing y
|
||||
let k_padded = pad(k, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
k_padded * y_rows * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
quantize_q8_1(y, &mut y_q8_1, k, y_cols, dev)?;
|
||||
|
||||
let (kernel_name, mmq_x, mmq_y) = match dtype {
|
||||
GgmlDType::Q4_0 => ("mul_mat_q4_0", 64, 128),
|
||||
GgmlDType::Q4_1 => ("mul_mat_q4_1", 64, 128),
|
||||
GgmlDType::Q5_0 => ("mul_mat_q5_0", 128, 64),
|
||||
GgmlDType::Q5_1 => ("mul_mat_q5_1", 128, 64),
|
||||
GgmlDType::Q8_0 => ("mul_mat_q8_0", 128, 64),
|
||||
GgmlDType::Q2K => ("mul_mat_q2_K", 64, 128),
|
||||
GgmlDType::Q3K => ("mul_mat_q3_K", 128, 128),
|
||||
GgmlDType::Q4K => ("mul_mat_q4_K", 64, 128),
|
||||
GgmlDType::Q5K => ("mul_mat_q5_K", 64, 128),
|
||||
GgmlDType::Q6K => ("mul_mat_q6_K", 64, 64),
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(x_rows * y_cols).w()? };
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (
|
||||
ceil_div(x_rows, mmq_y) as u32,
|
||||
ceil_div(y_cols, mmq_x) as u32,
|
||||
1,
|
||||
),
|
||||
block_dim: (WARP_SIZE as u32, 4, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let params = (
|
||||
/* vx */ data,
|
||||
/* vy */ &y_q8_1,
|
||||
/* dst */ &dst,
|
||||
/* ncols_x */ x_cols as i32,
|
||||
/* nrows_x */ x_rows as i32,
|
||||
/* ncols_y */ y_cols as i32,
|
||||
/* nrows_y */ k_padded as i32,
|
||||
/* nrows_dst */ x_rows as i32,
|
||||
);
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> {
|
||||
let size_in_bytes = ceil_div(el_count, dtype.block_size()) * dtype.type_size();
|
||||
@ -257,7 +399,7 @@ impl QCudaStorage {
|
||||
| GgmlDType::Q8K
|
||||
);
|
||||
if fast_kernel {
|
||||
return dequantize(&self.data, self.dtype, elem_count, self.device());
|
||||
return dequantize_f32(&self.data, self.dtype, elem_count, self.device());
|
||||
}
|
||||
// Run the dequantization on cpu.
|
||||
|
||||
@ -285,6 +427,10 @@ impl QCudaStorage {
|
||||
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self, elem_count: usize) -> Result<CudaStorage> {
|
||||
dequantize_f16(&self.data, self.dtype, elem_count, self.device())
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
|
||||
// Run the quantization on cpu.
|
||||
let src = match &src.slice {
|
||||
@ -313,7 +459,17 @@ impl QCudaStorage {
|
||||
storage: &CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
if matches!(layout.shape().dims(), [1, 1, _] | [1, _]) {
|
||||
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
1
|
||||
} else {
|
||||
8
|
||||
};
|
||||
let use_vec_kernel = match layout.shape().dims() {
|
||||
[b, m, _k] => b * m <= max_bm,
|
||||
[b, _k] => *b <= max_bm,
|
||||
_ => false,
|
||||
};
|
||||
if use_vec_kernel {
|
||||
self.dequantize_matmul_vec(self_shape, storage, layout)
|
||||
} else {
|
||||
self.dequantize_matmul(self_shape, storage, layout)
|
||||
@ -334,25 +490,31 @@ impl QCudaStorage {
|
||||
Some((o1, o2)) => rhs.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?,
|
||||
};
|
||||
let (with_batch, k) = match rhs_l.shape().dims() {
|
||||
[1, 1, k] => (true, k),
|
||||
[1, k] => (false, k),
|
||||
let (b_size, k) = match rhs_l.shape().dims() {
|
||||
[b, m, k] => (b * m, *k),
|
||||
[b, k] => (*b, *k),
|
||||
_ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()),
|
||||
};
|
||||
if ncols != *k {
|
||||
if ncols != k {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape())
|
||||
}
|
||||
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
dequantize_mul_mat_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
|
||||
} else {
|
||||
mul_mat_vec_via_q8_1(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
|
||||
};
|
||||
let out_shape = if with_batch {
|
||||
vec![1, 1, nrows]
|
||||
} else {
|
||||
vec![1, nrows]
|
||||
mul_mat_vec_via_q8_1(
|
||||
&self.data,
|
||||
&rhs,
|
||||
self.dtype,
|
||||
ncols,
|
||||
nrows,
|
||||
b_size,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = rhs_l.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(nrows);
|
||||
Ok((out, out_shape.into()))
|
||||
}
|
||||
|
||||
@ -373,9 +535,30 @@ impl QCudaStorage {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape())
|
||||
}
|
||||
|
||||
let data_f32 = self.dequantize(n * k)?;
|
||||
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
|
||||
let out = storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?;
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
let data_f32 = self.dequantize(n * k)?;
|
||||
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
|
||||
storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?
|
||||
} else {
|
||||
let storage = storage.as_cuda_slice::<f32>()?;
|
||||
let storage = match layout.contiguous_offsets() {
|
||||
Some((o1, o2)) => storage.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous {
|
||||
op: "quantized-matmul",
|
||||
}
|
||||
.bt())?,
|
||||
};
|
||||
mul_mat_via_q8_1(
|
||||
&self.data,
|
||||
&storage,
|
||||
self.dtype,
|
||||
/* x_rows */ n,
|
||||
/* x_cols */ k,
|
||||
/* y_rows */ k,
|
||||
/* y_cols */ b * m,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = layout.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(n);
|
||||
@ -412,7 +595,7 @@ mod test {
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes).w()? };
|
||||
let vs: Vec<f32> = (0..el).map(|v| v as f32).collect();
|
||||
let y = dev.htod_sync_copy(&vs).w()?;
|
||||
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, &dev)?;
|
||||
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, 1, &dev)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -430,6 +613,7 @@ mod test {
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* ncols */ ncols,
|
||||
/* nrows */ 1,
|
||||
/* b_size */ 1,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
@ -453,4 +637,44 @@ mod test {
|
||||
assert_eq!(vs[0], 5561851.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cuda_mm_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let ncols = 256;
|
||||
let vs: Vec<f32> = (0..ncols * 4).map(|v| v as f32 / 4.).collect();
|
||||
let y = dev.htod_sync_copy(&vs).w()?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols * 4, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* x_rows */ 4,
|
||||
/* x_cols */ ncols,
|
||||
/* y_rows */ ncols,
|
||||
/* y_cols */ 4,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.dtoh_sync_copy(&vs.slice(..)).unwrap();
|
||||
|
||||
/*
|
||||
x = torch.tensor([float(v) for v in range(1024)]).reshape(4, 256)
|
||||
x @ x.t() / 16
|
||||
tensor([[ 347480.0000, 869720.0000, 1391960.0000, 1914200.0000],
|
||||
[ 869720.0000, 2440536.0000, 4011352.0000, 5582166.5000],
|
||||
[ 1391960.0000, 4011352.0000, 6630742.0000, 9250132.0000],
|
||||
[ 1914200.0000, 5582166.5000, 9250132.0000, 12918099.0000]])
|
||||
*/
|
||||
assert_eq!(vs.len(), 16);
|
||||
assert_eq!(vs[0], 347604.0);
|
||||
assert_eq!(vs[1], 888153.06);
|
||||
assert_eq!(vs[4], 869780.7);
|
||||
assert_eq!(vs[5], 2483145.0);
|
||||
assert_eq!(vs[11], 9407368.0);
|
||||
assert_eq!(vs[14], 9470856.0);
|
||||
assert_eq!(vs[15], 13138824.0);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -24,6 +24,10 @@ impl QCudaStorage {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self, _elem_count: usize) -> Result<CudaStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
@ -135,7 +135,6 @@ pub enum ValueType {
|
||||
// The value is a UTF-8 non-null-terminated string, with length prepended.
|
||||
String,
|
||||
// The value is an array of other values, with the length and type prepended.
|
||||
///
|
||||
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
|
||||
Array,
|
||||
}
|
||||
|
@ -152,9 +152,9 @@ impl QMetalStorage {
|
||||
// We always use a single batch dimension and stack all the tensors in the batch on the
|
||||
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
|
||||
// properly.
|
||||
let (b, m) = match dst_shape.len() {
|
||||
3 => (1, dst_shape[0] * dst_shape[1]),
|
||||
2 => (1, dst_shape[0]),
|
||||
let m = match dst_shape.len() {
|
||||
3 => dst_shape[0] * dst_shape[1],
|
||||
2 => dst_shape[0],
|
||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
||||
};
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
@ -166,18 +166,23 @@ impl QMetalStorage {
|
||||
let device = storage.device().clone();
|
||||
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
|
||||
let command_buffer = device.command_buffer()?;
|
||||
candle_metal_kernels::call_quantized_matmul_t(
|
||||
device.device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
self.dtype.into(),
|
||||
(b, m, n, k),
|
||||
storage.buffer(),
|
||||
layout.start_offset() * storage.dtype().size_in_bytes(),
|
||||
&self.buffer,
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
// In some cases it would be better to use the mm variant, though it has its drawbacks
|
||||
// around memory alignemnt.
|
||||
for batch_id in 0..m {
|
||||
candle_metal_kernels::call_quantized_matmul_mv_t(
|
||||
device.device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
self.dtype.into(),
|
||||
(1, 1, n, k),
|
||||
storage.buffer(),
|
||||
(layout.start_offset() + batch_id * k) * storage.dtype().size_in_bytes(),
|
||||
&self.buffer,
|
||||
batch_id * n * DType::F32.size_in_bytes(),
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
|
||||
Ok((dst_storage, dst_shape))
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use crate::{CpuStorage, Device, Result, Shape, Storage, Tensor};
|
||||
use crate::{CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
|
||||
use k_quants::*;
|
||||
use std::borrow::Cow;
|
||||
|
||||
@ -360,9 +360,24 @@ impl QTensor {
|
||||
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
|
||||
let storage = self.storage.dequantize(self.shape.elem_count())?;
|
||||
let none = crate::op::BackpropOp::none();
|
||||
let is_variable = false;
|
||||
crate::tensor::from_storage(storage, self.shape.clone(), none, is_variable)
|
||||
.to_device(device)
|
||||
crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
|
||||
// In the CUDA case, we have a specialized kernel as this can be useful for volta
|
||||
// architectures. https://github.com/huggingface/candle/issues/2136
|
||||
match &self.storage {
|
||||
QStorage::Cuda(s) => {
|
||||
let s = s.dequantize_f16(self.shape.elem_count())?;
|
||||
let none = crate::op::BackpropOp::none();
|
||||
crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
|
||||
.to_device(device)
|
||||
}
|
||||
_ => {
|
||||
let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
|
||||
Ok(s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
@ -378,6 +393,7 @@ impl QTensor {
|
||||
pub enum QMatMul {
|
||||
QTensor(std::sync::Arc<QTensor>),
|
||||
Tensor(Tensor),
|
||||
TensorF16(Tensor),
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
@ -391,6 +407,17 @@ thread_local! {
|
||||
}
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
static DEQUANTIZE_ALL_F16: bool = {
|
||||
match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
|
||||
Ok(s) => {
|
||||
!s.is_empty() && s != "0"
|
||||
},
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl QMatMul {
|
||||
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
|
||||
let dequantize = match qtensor.dtype() {
|
||||
@ -400,6 +427,9 @@ impl QMatMul {
|
||||
let t = if dequantize {
|
||||
let tensor = qtensor.dequantize(&qtensor.device())?;
|
||||
Self::Tensor(tensor)
|
||||
} else if DEQUANTIZE_ALL_F16.with(|b| *b) {
|
||||
let tensor = qtensor.dequantize_f16(&qtensor.device())?;
|
||||
Self::TensorF16(tensor)
|
||||
} else {
|
||||
Self::QTensor(qtensor)
|
||||
};
|
||||
@ -409,6 +439,25 @@ impl QMatMul {
|
||||
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
|
||||
Self::from_arc(std::sync::Arc::new(qtensor))
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::QTensor(t) => t.dequantize_f16(&t.device()),
|
||||
Self::Tensor(t) => t.to_dtype(DType::F16),
|
||||
Self::TensorF16(t) => Ok(t.clone()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let w = self.dequantize_f16()?;
|
||||
let in_dtype = xs.dtype();
|
||||
let w = match *xs.dims() {
|
||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
||||
_ => w.t()?,
|
||||
};
|
||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::CustomOp1 for QTensor {
|
||||
@ -486,6 +535,15 @@ impl crate::Module for QMatMul {
|
||||
};
|
||||
xs.matmul(&w)
|
||||
}
|
||||
Self::TensorF16(w) => {
|
||||
let in_dtype = xs.dtype();
|
||||
let w = match *xs.dims() {
|
||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
||||
_ => w.t()?,
|
||||
};
|
||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -349,6 +349,30 @@ impl MmapedSafetensors {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SliceSafetensors<'a> {
|
||||
safetensors: SafeTensors<'a>,
|
||||
}
|
||||
|
||||
impl<'a> SliceSafetensors<'a> {
|
||||
/// Creates a wrapper around a binary buffer and deserialize the safetensors header.
|
||||
pub fn new(buffer: &'a [u8]) -> Result<Self> {
|
||||
let safetensors = safetensors::SafeTensors::deserialize(buffer)?;
|
||||
Ok(Self { safetensors })
|
||||
}
|
||||
|
||||
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
|
||||
self.safetensors.tensor(name)?.load(dev)
|
||||
}
|
||||
|
||||
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
|
||||
self.safetensors.tensors()
|
||||
}
|
||||
|
||||
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
|
||||
Ok(self.safetensors.tensor(name)?)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BufferedSafetensors {
|
||||
safetensors: yoke::Yoke<SafeTensors_<'static>, Vec<u8>>,
|
||||
}
|
||||
|
239
candle-core/src/sort.rs
Normal file
239
candle-core/src/sort.rs
Normal file
@ -0,0 +1,239 @@
|
||||
use crate::{Result, Tensor};
|
||||
use rayon::prelude::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct ArgSort {
|
||||
asc: bool,
|
||||
last_dim: usize,
|
||||
}
|
||||
|
||||
impl ArgSort {
|
||||
fn asort<T: crate::WithDType>(&self, vs: &[T], layout: &crate::Layout) -> Vec<u32> {
|
||||
#[allow(clippy::uninit_vec)]
|
||||
// Safety: indexes are set later in the parallelized section.
|
||||
let mut sort_indexes = unsafe {
|
||||
let el_count = layout.shape().elem_count();
|
||||
let mut v = Vec::with_capacity(el_count);
|
||||
v.set_len(el_count);
|
||||
v
|
||||
};
|
||||
if self.asc {
|
||||
sort_indexes
|
||||
.par_chunks_exact_mut(self.last_dim)
|
||||
.zip(vs.par_chunks_exact(self.last_dim))
|
||||
.for_each(|(indexes, vs)| {
|
||||
indexes
|
||||
.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, v)| *v = i as u32);
|
||||
indexes.sort_by(|&i, &j| {
|
||||
vs[i as usize]
|
||||
.partial_cmp(&vs[j as usize])
|
||||
.unwrap_or(std::cmp::Ordering::Greater)
|
||||
})
|
||||
});
|
||||
} else {
|
||||
sort_indexes
|
||||
.par_chunks_exact_mut(self.last_dim)
|
||||
.zip(vs.par_chunks_exact(self.last_dim))
|
||||
.for_each(|(indexes, vs)| {
|
||||
indexes
|
||||
.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, v)| *v = i as u32);
|
||||
indexes.sort_by(|&j, &i| {
|
||||
vs[i as usize]
|
||||
.partial_cmp(&vs[j as usize])
|
||||
.unwrap_or(std::cmp::Ordering::Greater)
|
||||
})
|
||||
});
|
||||
}
|
||||
sort_indexes
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::CustomOp1 for ArgSort {
|
||||
fn name(&self) -> &'static str {
|
||||
"argsort"
|
||||
}
|
||||
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
storage: &crate::CpuStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CpuStorage, crate::Shape)> {
|
||||
let sort_indexes = match storage {
|
||||
crate::CpuStorage::U8(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::U32(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::I64(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::BF16(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F16(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F32(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F64(vs) => self.asort(vs, layout),
|
||||
};
|
||||
let sort_indexes = crate::CpuStorage::U32(sort_indexes);
|
||||
Ok((sort_indexes, layout.shape().into()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
storage: &crate::CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CudaStorage, crate::Shape)> {
|
||||
use crate::cuda_backend::cudarc::driver::{
|
||||
CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, ValidAsZeroBits,
|
||||
};
|
||||
use crate::cuda_backend::{kernel_name, kernels, CudaStorageSlice as S, Map1Any, WrapErr};
|
||||
use crate::{CudaDevice, WithDType};
|
||||
|
||||
impl Map1Any for ArgSort {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &crate::Layout,
|
||||
_wrap: W,
|
||||
) -> Result<S> {
|
||||
let slice = match layout.contiguous_offsets() {
|
||||
None => crate::bail!("input has to be contiguous"),
|
||||
Some((o1, o2)) => src.slice(o1..o2),
|
||||
};
|
||||
let elem_count = layout.shape().elem_count();
|
||||
let dst = unsafe { dev.alloc::<u32>(elem_count) }.w()?;
|
||||
let func = if self.asc {
|
||||
dev.get_or_load_func(&kernel_name::<T>("asort_asc"), kernels::SORT)?
|
||||
} else {
|
||||
dev.get_or_load_func(&kernel_name::<T>("asort_desc"), kernels::SORT)?
|
||||
};
|
||||
let ncols = self.last_dim;
|
||||
let nrows = elem_count / ncols;
|
||||
let ncols_pad = next_power_of_2(ncols);
|
||||
let params = (&slice, &dst, ncols as i32, ncols_pad as i32);
|
||||
let cfg = LaunchConfig {
|
||||
grid_dim: (1, nrows as u32, 1),
|
||||
block_dim: (ncols_pad as u32, 1, 1),
|
||||
shared_mem_bytes: (ncols_pad * std::mem::size_of::<u32>()) as u32,
|
||||
};
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(S::U32(dst))
|
||||
}
|
||||
}
|
||||
|
||||
use crate::backend::BackendStorage;
|
||||
let dev = storage.device();
|
||||
let slice = self.map(&storage.slice, dev, layout)?;
|
||||
let dst = crate::cuda_backend::CudaStorage {
|
||||
slice,
|
||||
device: dev.clone(),
|
||||
};
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &crate::MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::MetalStorage, crate::Shape)> {
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::DType;
|
||||
|
||||
let name = {
|
||||
if self.asc {
|
||||
match storage.dtype() {
|
||||
DType::BF16 => "asort_asc_bf16",
|
||||
DType::F16 => "asort_asc_f16",
|
||||
DType::F32 => "asort_asc_f32",
|
||||
DType::F64 => "asort_asc_f64",
|
||||
DType::U8 => "asort_asc_u8",
|
||||
DType::U32 => "asort_asc_u32",
|
||||
DType::I64 => "asort_asc_i64",
|
||||
}
|
||||
} else {
|
||||
match storage.dtype() {
|
||||
DType::BF16 => "asort_desc_bf16",
|
||||
DType::F16 => "asort_desc_f16",
|
||||
DType::F32 => "asort_desc_f32",
|
||||
DType::F64 => "asort_desc_f64",
|
||||
DType::U8 => "asort_desc_u8",
|
||||
DType::U32 => "asort_desc_u32",
|
||||
DType::I64 => "asort_desc_i64",
|
||||
}
|
||||
}
|
||||
};
|
||||
let device = storage.device();
|
||||
let kernels = device.kernels();
|
||||
let command_buffer = device.command_buffer()?;
|
||||
let el = layout.shape().elem_count();
|
||||
let ncols = self.last_dim;
|
||||
let nrows = el / ncols;
|
||||
let src = crate::metal_backend::buffer_o(storage.buffer(), layout, storage.dtype());
|
||||
let dst = device.new_buffer(el, DType::U32, "asort")?;
|
||||
let mut ncols_pad = 1;
|
||||
while ncols_pad < ncols {
|
||||
ncols_pad *= 2;
|
||||
}
|
||||
candle_metal_kernels::call_arg_sort(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
kernels,
|
||||
name,
|
||||
nrows,
|
||||
ncols,
|
||||
ncols_pad,
|
||||
src,
|
||||
&dst,
|
||||
)
|
||||
.map_err(crate::Error::wrap)?;
|
||||
let dst = crate::MetalStorage::new(dst, device.clone(), el, DType::U32);
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
fn next_power_of_2(x: usize) -> usize {
|
||||
let mut n = 1;
|
||||
while n < x {
|
||||
n *= 2
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Returns the indices that sort the tensor along the last dimension.
|
||||
///
|
||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
||||
/// comes to ties.
|
||||
pub fn arg_sort_last_dim(&self, asc: bool) -> Result<Tensor> {
|
||||
if !self.is_contiguous() {
|
||||
return Err(crate::Error::RequiresContiguous {
|
||||
op: "arg_sort_last_dim",
|
||||
});
|
||||
}
|
||||
let last_dim = match self.dims().last() {
|
||||
None => crate::bail!("empty last-dim in arg-sort"),
|
||||
Some(last_dim) => *last_dim,
|
||||
};
|
||||
// No need for a backward pass for arg sort.
|
||||
self.apply_op1_no_bwd(&ArgSort { asc, last_dim })
|
||||
}
|
||||
|
||||
/// Sorts the tensor along the last dimension, returns the sorted tensor together with the
|
||||
/// sorted indexes.
|
||||
///
|
||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
||||
/// comes to ties.
|
||||
pub fn sort_last_dim(&self, asc: bool) -> Result<(Tensor, Tensor)> {
|
||||
if !self.is_contiguous() {
|
||||
return Err(crate::Error::RequiresContiguous {
|
||||
op: "sort_last_dim",
|
||||
});
|
||||
}
|
||||
let asort = self.arg_sort_last_dim(asc)?;
|
||||
let sorted = self.gather(&asort, crate::D::Minus1)?;
|
||||
Ok((sorted, asort))
|
||||
}
|
||||
}
|
@ -79,6 +79,9 @@ macro_rules! unary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self) -> Result<Self> {
|
||||
let shape = self.shape();
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self
|
||||
.storage()
|
||||
.unary_impl::<crate::op::$op_name>(self.layout())?;
|
||||
@ -92,6 +95,9 @@ macro_rules! binary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
|
||||
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -114,6 +120,9 @@ macro_rules! binary_op_scalar {
|
||||
.broadcast_as(self.shape())?,
|
||||
};
|
||||
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -447,7 +456,15 @@ impl Tensor {
|
||||
shape: S,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
Self::new_impl(array, shape.into(), device, false)
|
||||
let shape = shape.into();
|
||||
let n: usize = shape.elem_count();
|
||||
let buffer_size: usize = array.len();
|
||||
if buffer_size != n {
|
||||
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
|
||||
}
|
||||
let storage = device.storage_from_slice(array)?;
|
||||
let none = BackpropOp::none();
|
||||
Ok(from_storage(storage, shape, none, false))
|
||||
}
|
||||
|
||||
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
|
||||
@ -646,6 +663,9 @@ impl Tensor {
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().affine(self.layout(), mul, add)?;
|
||||
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -653,6 +673,9 @@ impl Tensor {
|
||||
|
||||
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
|
||||
pub fn elu(&self, alpha: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().elu(self.layout(), alpha)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -660,6 +683,9 @@ impl Tensor {
|
||||
|
||||
/// Raise the tensor to some float exponent `e`.
|
||||
pub fn powf(&self, e: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().powf(self.layout(), e)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -1154,6 +1180,9 @@ impl Tensor {
|
||||
let n = b_dims[dim - 1];
|
||||
|
||||
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
|
||||
if c_shape.elem_count() == 0 || k == 0 {
|
||||
return Tensor::zeros(c_shape, self.dtype(), self.device());
|
||||
}
|
||||
let batching: usize = a_dims[..dim - 2].iter().product();
|
||||
let batching_b: usize = b_dims[..dim - 2].iter().product();
|
||||
if k != k2 || batching != batching_b {
|
||||
|
@ -235,4 +235,66 @@ impl Tensor {
|
||||
}
|
||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
/// Set the values on `self` using values from `src`. The copy starts at the specified
|
||||
/// `offset` for the target dimension `dim` on `self`.
|
||||
/// `self` and `src` must have the same shape except on dimension `dim` where the `self` size
|
||||
/// has to be greater than or equal to `offset` plus the `src` size.
|
||||
///
|
||||
/// Note that this modifies `self` in place and as such is not compatibel with
|
||||
/// back-propagation.
|
||||
pub fn slice_set<D: Dim>(&self, src: &Self, dim: D, offset: usize) -> Result<()> {
|
||||
let dim = dim.to_index(self.shape(), "slice-set")?;
|
||||
if !self.is_contiguous() || !src.is_contiguous() {
|
||||
Err(Error::RequiresContiguous { op: "slice-set" }.bt())?
|
||||
}
|
||||
if self.dtype() != src.dtype() {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: self.dtype(),
|
||||
rhs: src.dtype(),
|
||||
op: "slice-set",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.device().location() != src.device().location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: self.device().location(),
|
||||
rhs: src.device().location(),
|
||||
op: "slice-set",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.rank() != src.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: self.rank(),
|
||||
got: src.rank(),
|
||||
shape: self.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in self.dims().iter().zip(src.dims().iter()).enumerate() {
|
||||
if dim_idx == dim && *v2 + offset > *v1 {
|
||||
crate::bail!("shape mismatch on target dim, dst: {v1}, src: {v2} + {offset}")
|
||||
}
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
crate::bail!("shape mismatch on dim {dim_idx}, {v1} <> {v2}")
|
||||
}
|
||||
}
|
||||
let block_size: usize = src.dims().iter().skip(1 + dim).product();
|
||||
let d1: usize = src.dims().iter().take(dim).product();
|
||||
let d2 = block_size * src.dims()[dim];
|
||||
let dst_o = self.layout().start_offset() + offset * block_size;
|
||||
let src_o = src.layout().start_offset();
|
||||
src.storage().copy2d(
|
||||
&mut self.storage_mut(),
|
||||
d1,
|
||||
d2,
|
||||
/* src_s */ d2,
|
||||
/* dst_s */ block_size * self.dims()[dim],
|
||||
src_o,
|
||||
dst_o,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -34,9 +34,14 @@ impl Var {
|
||||
Ok(Self(inner))
|
||||
}
|
||||
|
||||
// Convert a tensor to a variable, if the tensor is already a variable then it is returned as is.
|
||||
pub fn from_tensor(t: &Tensor) -> Result<Self> {
|
||||
let inner = t.make_var()?;
|
||||
Ok(Self(inner))
|
||||
if t.is_variable() {
|
||||
Ok(Self(t.clone()))
|
||||
} else {
|
||||
let inner = t.make_var()?;
|
||||
Ok(Self(inner))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rand_f64<S: Into<Shape>>(
|
||||
|
@ -3,7 +3,7 @@ use candle_core::{
|
||||
quantized::{self, GgmlDType},
|
||||
test_device,
|
||||
test_utils::to_vec2_round,
|
||||
Device, Module, Result, Tensor,
|
||||
DType, Device, IndexOp, Module, Result, Tensor,
|
||||
};
|
||||
use quantized::{k_quants, GgmlType};
|
||||
use rand::prelude::*;
|
||||
@ -47,18 +47,14 @@ fn test_matmul(
|
||||
}
|
||||
|
||||
fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
let lhs_s = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -67,7 +63,7 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
]
|
||||
);
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
mm.to_vec2::<f32>()?,
|
||||
&[
|
||||
@ -79,7 +75,7 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
let res = matmul.forward(&lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
@ -89,7 +85,15 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
[341970.0, 994574.0, 1656181.0, 2302182.0]
|
||||
]
|
||||
),
|
||||
_ => assert_eq!(
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[84866.0, 214045.0, 344676.0, 473707.0],
|
||||
[213425.0, 604313.0, 1000431.0, 1387960.0],
|
||||
[342030.0, 994630.0, 1656248.0, 2302250.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[85120.0, 214562.0, 345455.0, 474748.0],
|
||||
@ -98,22 +102,16 @@ fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
]
|
||||
),
|
||||
}
|
||||
|
||||
test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
// TODO Enable this later when we enable cuda.
|
||||
if device.is_cuda() {
|
||||
return Ok(());
|
||||
}
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k))
|
||||
let lhs_s = (0..(m * k))
|
||||
.map(|v| v as f32 - (m * k) as f32 / 2.0)
|
||||
.collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..k * n)
|
||||
@ -121,7 +119,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
.collect::<Vec<_>>();
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -129,7 +127,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
-196472.0, 63012.0, 324585.0, 587902.0
|
||||
]
|
||||
);
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
to_vec2_round(&mm, 0)?,
|
||||
&[
|
||||
@ -141,7 +139,7 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
let res = matmul.forward(&lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
@ -151,7 +149,15 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
[-196102.0, 63022.0, 324233.0, 587191.0]
|
||||
]
|
||||
),
|
||||
_ => assert_eq!(
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243740.0, -19762.0, -285476.0, -550498.0],
|
||||
[23774.0, 21645.0, 19395.0, 18364.0],
|
||||
[-196045.0, 63030.0, 324120.0, 587079.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243524.0, -19596.0, -285051.0, -549815.0],
|
||||
@ -160,22 +166,58 @@ fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
]
|
||||
),
|
||||
}
|
||||
|
||||
let lhs2 = Tensor::stack(&[&lhs, &lhs], 0)?;
|
||||
let res2 = matmul.forward(&lhs2)?;
|
||||
let res2 = res2.i(1)?;
|
||||
let diff = (res - res2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if device.is_cuda() {
|
||||
assert!(diff < 0.1);
|
||||
} else {
|
||||
assert_eq!(diff, 0.);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(
|
||||
quantized_matmul,
|
||||
quantized_matmul_cpu,
|
||||
quantized_matmul_cuda,
|
||||
quantized_matmul_metal
|
||||
);
|
||||
test_device!(
|
||||
quantized_matmul_neg,
|
||||
quantized_matmul_neg_cpu,
|
||||
quantized_matmul_neg_cuda,
|
||||
quantized_matmul_neg_metal
|
||||
);
|
||||
fn qmm_batch(dev: &Device) -> Result<()> {
|
||||
let (lhs, rhs, _mm) = get_random_tensors(2, 256, 6, dev)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
assert_eq!(mm.shape().dims(), [2, 6]);
|
||||
let lhs2 = Tensor::cat(&[&lhs, &lhs], 0)?;
|
||||
let mm2 = rhs.forward(&lhs2)?;
|
||||
assert_eq!(mm2.shape().dims(), [4, 6]);
|
||||
let diff2 = (mm2.i(2..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff2, 0.0);
|
||||
let lhs3 = Tensor::cat(&[&lhs2, &lhs], 0)?;
|
||||
let mm3 = rhs.forward(&lhs3)?;
|
||||
assert_eq!(mm3.shape().dims(), [6, 6]);
|
||||
let diff3 = (mm3.i(2..4)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let diff3 = (mm3.i(4..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let lhs4 = Tensor::cat(&[&lhs3, &lhs3], 0)?;
|
||||
let mm4 = rhs.forward(&lhs4)?;
|
||||
assert_eq!(mm4.shape().dims(), [12, 6]);
|
||||
let diff4 = (mm4.i(..6)? - &mm3)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if dev.is_cuda() {
|
||||
// We use a different kernel for sizes from 1 to 8 on cuda which explains
|
||||
// the difference here.
|
||||
assert!(0. < diff4 && diff4 < 1e-4)
|
||||
} else {
|
||||
assert_eq!(diff4, 0.0)
|
||||
};
|
||||
let diff4 = (mm4.i(6..)? - &mm4.i(..6)?)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff4, 0.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(quantized_matmul, qmm_cpu, qmm_cuda, qmm_metal);
|
||||
test_device!(quantized_matmul_neg, qmm_n_cpu, qmm_n_cuda, qmm_n_metal);
|
||||
test_device!(qmm_batch, qmm_b_cpu, qmm_b_cuda, qmm_b_metal);
|
||||
|
||||
fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
@ -183,6 +225,13 @@ fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
dst.to_vec1::<f32>()?,
|
||||
&[
|
||||
@ -209,6 +258,13 @@ fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
@ -235,6 +291,13 @@ fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
@ -261,6 +324,13 @@ fn quantize_q5_1(device: &Device) -> Result<()> {
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
@ -345,6 +415,13 @@ fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f3
|
||||
let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?);
|
||||
if error > max_error {
|
||||
bail!(
|
||||
@ -362,6 +439,13 @@ fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -381,6 +465,13 @@ fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
@ -395,6 +486,13 @@ fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -414,6 +512,13 @@ fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
@ -428,6 +533,13 @@ fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -447,6 +559,13 @@ fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
@ -461,6 +580,13 @@ fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -480,6 +606,13 @@ fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
@ -494,6 +627,13 @@ fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -513,6 +653,13 @@ fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
@ -527,6 +674,13 @@ fn quantize_q8k(device: &Device) -> Result<()> {
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
@ -546,6 +700,13 @@ fn quantize_q8k(device: &Device) -> Result<()> {
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
|
@ -1,5 +1,31 @@
|
||||
use candle_core::{DType, Result, Tensor};
|
||||
|
||||
struct TmpFile(std::path::PathBuf);
|
||||
|
||||
impl TmpFile {
|
||||
fn create(base: &str) -> TmpFile {
|
||||
let filename = std::env::temp_dir().join(format!(
|
||||
"candle-{}-{}-{:?}",
|
||||
base,
|
||||
std::process::id(),
|
||||
std::thread::current().id(),
|
||||
));
|
||||
TmpFile(filename)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::AsRef<std::path::Path> for TmpFile {
|
||||
fn as_ref(&self) -> &std::path::Path {
|
||||
self.0.as_path()
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for TmpFile {
|
||||
fn drop(&mut self) {
|
||||
std::fs::remove_file(&self.0).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn npy() -> Result<()> {
|
||||
let npy = Tensor::read_npy("tests/test.npy")?;
|
||||
@ -22,3 +48,24 @@ fn npz() -> Result<()> {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn safetensors() -> Result<()> {
|
||||
use candle_core::safetensors::Load;
|
||||
|
||||
let tmp_file = TmpFile::create("st");
|
||||
let t = Tensor::arange(0f32, 24f32, &candle_core::Device::Cpu)?;
|
||||
t.save_safetensors("t", &tmp_file)?;
|
||||
// Load from file.
|
||||
let st = candle_core::safetensors::load(&tmp_file, &candle_core::Device::Cpu)?;
|
||||
let t2 = st.get("t").unwrap();
|
||||
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0f32);
|
||||
// Load from bytes.
|
||||
let bytes = std::fs::read(tmp_file)?;
|
||||
let st = candle_core::safetensors::SliceSafetensors::new(&bytes)?;
|
||||
let t2 = st.get("t").unwrap().load(&candle_core::Device::Cpu);
|
||||
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0f32);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -96,6 +96,40 @@ fn clamp(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn asort(device: &Device) -> Result<()> {
|
||||
let data = &[[3f32, 1., 4., 1.1, 5.], [2.1, 1., 7., 8., 2.]];
|
||||
let tensor = Tensor::new(data, device)?;
|
||||
let indexes = tensor.arg_sort_last_dim(true)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
|
||||
);
|
||||
let indexes = tensor.arg_sort_last_dim(false)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
|
||||
);
|
||||
let (sorted, indexes) = tensor.sort_last_dim(true)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
|
||||
);
|
||||
assert_eq!(
|
||||
sorted.to_vec2::<f32>()?,
|
||||
[[1.0, 1.1, 3.0, 4.0, 5.0], [1.0, 2.0, 2.1, 7.0, 8.0]]
|
||||
);
|
||||
let (sorted, indexes) = tensor.sort_last_dim(false)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
|
||||
);
|
||||
assert_eq!(
|
||||
sorted.to_vec2::<f32>()?,
|
||||
[[5.0, 4.0, 3.0, 1.1, 1.0], [8.0, 7.0, 2.1, 2.0, 1.0]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn unary_op(device: &Device) -> Result<()> {
|
||||
let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]];
|
||||
let tensor = Tensor::new(data, device)?;
|
||||
@ -631,6 +665,30 @@ fn broadcast(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn slice_set(device: &Device) -> Result<()> {
|
||||
let (b, h, max_t, d) = (2, 4, 7, 3);
|
||||
let cache = Tensor::zeros((b, h, max_t, d), DType::F32, device)?;
|
||||
let tensor = Tensor::randn(0f32, 1f32, (b, h, 4, d), device)?;
|
||||
cache.slice_set(&tensor, 2, 0)?;
|
||||
let cache_t = cache.narrow(2, 0, 4)?;
|
||||
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
cache.slice_set(&tensor, 2, 1)?;
|
||||
let cache_t = cache.narrow(2, 1, 4)?;
|
||||
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let ones = Tensor::ones((b, h, 1, d), DType::F32, device)?;
|
||||
cache.slice_set(&ones, 2, 6)?;
|
||||
let diff = cache.narrow(2, 5, 1)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let diff = (cache.narrow(2, 6, 1)? - 1.)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn cat(device: &Device) -> Result<()> {
|
||||
// 1D
|
||||
let t1 = Tensor::new(&[3f32, 1., 4.], device)?;
|
||||
@ -1083,6 +1141,27 @@ fn randn(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn zero_dim(device: &Device) -> Result<()> {
|
||||
let t = Tensor::zeros((4, 0, 1), DType::F32, device)?;
|
||||
assert_eq!(t.dims3()?, (4, 0, 1));
|
||||
let t2 = Tensor::zeros((4, 3, 1), DType::F32, device)?;
|
||||
let t_cat = Tensor::cat(&[&t, &t2], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 3, 1));
|
||||
let t_cat = Tensor::cat(&[&t, &t], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 0, 1));
|
||||
let t_unary = t.sqrt()?;
|
||||
assert_eq!(t_unary.dims3()?, (4, 0, 1));
|
||||
let t_plus = (&t + 1.)?;
|
||||
assert_eq!(t_plus.dims3()?, (4, 0, 1));
|
||||
let t_mm = t2.matmul(&t.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 3, 0));
|
||||
let t_mm = t.matmul(&t2.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 0, 3));
|
||||
let t_mm = t.t()?.matmul(&t)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 1, 1));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal);
|
||||
test_device!(ones, ones_cpu, ones_gpu, ones_metal);
|
||||
test_device!(full, full_cpu, full_gpu, full_metal);
|
||||
@ -1091,6 +1170,7 @@ test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal);
|
||||
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal);
|
||||
test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal);
|
||||
test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal);
|
||||
test_device!(slice_set, ss_cpu, ss_gpu, ss_metal);
|
||||
test_device!(cat, cat_cpu, cat_gpu, cat_metal);
|
||||
test_device!(sum, sum_cpu, sum_gpu, sum_metal);
|
||||
test_device!(min, min_cpu, min_gpu, min_metal);
|
||||
@ -1130,7 +1210,9 @@ test_device!(
|
||||
);
|
||||
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
|
||||
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
|
||||
test_device!(asort, asort_cpu, asort_gpu, asort_metal);
|
||||
test_device!(var, var_cpu, var_gpu, var_metal);
|
||||
test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal);
|
||||
|
||||
// There was originally a bug on the CPU implementation for randn
|
||||
// https://github.com/huggingface/candle/issues/381
|
||||
|
@ -193,6 +193,9 @@ struct Args {
|
||||
/// The model to use.
|
||||
#[arg(long, default_value = "2b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -270,7 +273,7 @@ fn main() -> Result<()> {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
let model = Model::new(args.use_flash_attn, &config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
|
19
candle-examples/examples/gte-qwen/README.md
Normal file
19
candle-examples/examples/gte-qwen/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
# gte-Qwen1.5-7B-instruct
|
||||
|
||||
gte-Qwen1.5-7B-instruct is a variant of the GTE embedding model family.
|
||||
|
||||
- [Model card](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) on the HuggingFace Hub.
|
||||
- [Technical report](https://arxiv.org/abs/2308.03281) *Towards General Text Embeddings with Multi-stage Contrastive Learning*
|
||||
|
||||
|
||||
## Running the example
|
||||
|
||||
Automatically download the model from the HuggingFace hub:
|
||||
```bash
|
||||
$ cargo run --example gte-qwen --release
|
||||
```
|
||||
|
||||
or, load the model from a local directory:
|
||||
```bash
|
||||
cargo run --example gte-qwen --release --features cuda -- --local-repo /path/to/gte_Qwen1.5-7B-instruct/
|
||||
```
|
178
candle-examples/examples/gte-qwen/main.rs
Normal file
178
candle-examples/examples/gte-qwen/main.rs
Normal file
@ -0,0 +1,178 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::qwen2::{Config, Model};
|
||||
|
||||
use candle::{DType, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::{
|
||||
utils::padding::{PaddingDirection, PaddingParams, PaddingStrategy},
|
||||
Tokenizer,
|
||||
};
|
||||
|
||||
// gte-Qwen1.5-7B-instruct use EOS token as padding token
|
||||
const EOS_TOKEN: &str = "<|endoftext|>";
|
||||
const EOS_TOKEN_ID: u32 = 151643;
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long, default_value = "Alibaba-NLP/gte-Qwen1.5-7B-instruct")]
|
||||
model_id: String,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
local_repo: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct ConfigFiles {
|
||||
pub config: std::path::PathBuf,
|
||||
pub tokenizer: std::path::PathBuf,
|
||||
pub weights: Vec<std::path::PathBuf>,
|
||||
}
|
||||
|
||||
// Loading the model from the HuggingFace Hub. Network access is required.
|
||||
fn load_from_hub(model_id: &str, revision: &str) -> Result<ConfigFiles> {
|
||||
let api = Api::new()?;
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id.to_string(),
|
||||
RepoType::Model,
|
||||
revision.to_string(),
|
||||
));
|
||||
Ok(ConfigFiles {
|
||||
config: repo.get("config.json")?,
|
||||
tokenizer: repo.get("tokenizer.json")?,
|
||||
weights: candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
})
|
||||
}
|
||||
|
||||
// Loading the model from a local directory.
|
||||
fn load_from_local(local_path: &str) -> Result<ConfigFiles> {
|
||||
let local_path = std::path::PathBuf::from(local_path);
|
||||
let weight_path = local_path.join("model.safetensors.index.json");
|
||||
let json: serde_json::Value = serde_json::from_str(&std::fs::read_to_string(weight_path)?)?;
|
||||
let weight_map = match json.get("weight_map") {
|
||||
Some(serde_json::Value::Object(map)) => map,
|
||||
Some(_) => panic!("`weight map` is not a map"),
|
||||
None => panic!("`weight map` not found"),
|
||||
};
|
||||
let mut safetensors_files = std::collections::HashSet::new();
|
||||
for value in weight_map.values() {
|
||||
safetensors_files.insert(
|
||||
value
|
||||
.as_str()
|
||||
.expect("Weight files should be parsed as strings"),
|
||||
);
|
||||
}
|
||||
let safetensors_paths = safetensors_files
|
||||
.iter()
|
||||
.map(|v| local_path.join(v))
|
||||
.collect::<Vec<_>>();
|
||||
Ok(ConfigFiles {
|
||||
config: local_path.join("config.json"),
|
||||
tokenizer: local_path.join("tokenizer.json"),
|
||||
weights: safetensors_paths,
|
||||
})
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// Fetch the model. Do this offline if local path provided.
|
||||
println!("Fetching model files...");
|
||||
let start = std::time::Instant::now();
|
||||
let config_files = match args.local_repo {
|
||||
Some(local_path) => load_from_local(&local_path)?,
|
||||
None => load_from_hub(&args.model_id, &args.revision)?,
|
||||
};
|
||||
println!("Model file retrieved in {:?}", start.elapsed());
|
||||
|
||||
// Inputs will be padded to the longest sequence in the batch.
|
||||
let padding = PaddingParams {
|
||||
strategy: PaddingStrategy::BatchLongest,
|
||||
direction: PaddingDirection::Left,
|
||||
pad_to_multiple_of: None,
|
||||
pad_id: EOS_TOKEN_ID,
|
||||
pad_type_id: 0,
|
||||
pad_token: String::from(EOS_TOKEN),
|
||||
};
|
||||
|
||||
// Tokenizer setup
|
||||
let mut tokenizer = Tokenizer::from_file(config_files.tokenizer).map_err(E::msg)?;
|
||||
tokenizer.with_padding(Some(padding));
|
||||
|
||||
// Model initialization
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_files.config)?)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&config_files.weights, dtype, &device)? };
|
||||
let mut model = Model::new(&config, vb)?;
|
||||
println!("Model loaded in {:?}", start.elapsed());
|
||||
|
||||
// Encode the queries and the targets
|
||||
let instruct = "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: ";
|
||||
let documents = vec![
|
||||
format!("{instruct}how much protein should a female eat{EOS_TOKEN}"),
|
||||
format!("{instruct}summit define{EOS_TOKEN}"),
|
||||
format!("As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.{EOS_TOKEN}"),
|
||||
format!("Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.{EOS_TOKEN}"),
|
||||
];
|
||||
let encoded = tokenizer.encode_batch(documents, true).map_err(E::msg)?;
|
||||
let tokens: Vec<&[u32]> = encoded.iter().map(|x| x.get_ids()).collect();
|
||||
let tokens = Tensor::new(tokens, &device)?;
|
||||
let mask: Vec<&[u32]> = encoded.iter().map(|x| x.get_attention_mask()).collect();
|
||||
let mask = Tensor::new(mask, &device)?;
|
||||
|
||||
// Inference
|
||||
let start_gen = std::time::Instant::now();
|
||||
let logits = model.forward(&tokens, 0, Some(&mask))?;
|
||||
|
||||
// Extract the last hidden states as embeddings since inputs are padded left.
|
||||
let (_, seq_len, _) = logits.dims3()?;
|
||||
let embd = logits
|
||||
.narrow(1, seq_len - 1, 1)?
|
||||
.squeeze(1)?
|
||||
.to_dtype(DType::F32)?;
|
||||
|
||||
// Calculate the relativity scores. Note the embeddings should be normalized.
|
||||
let norm = embd.broadcast_div(&embd.sqr()?.sum_keepdim(1)?.sqrt()?)?;
|
||||
let scores = norm.narrow(0, 0, 2)?.matmul(&norm.narrow(0, 2, 2)?.t()?)?;
|
||||
|
||||
// Print the results
|
||||
println!("Embedding done in {:?}", start_gen.elapsed());
|
||||
println!("Scores: {:?}", scores.to_vec2::<f32>()?);
|
||||
|
||||
Ok(())
|
||||
}
|
@ -17,7 +17,7 @@ use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use std::io::Write;
|
||||
|
||||
@ -31,6 +31,8 @@ const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
||||
enum Which {
|
||||
V1,
|
||||
V2,
|
||||
V3,
|
||||
V3Instruct,
|
||||
#[value(name = "solar-10.7b")]
|
||||
Solar10_7B,
|
||||
#[value(name = "tiny-llama-1.1b-chat")]
|
||||
@ -45,19 +47,23 @@ struct Args {
|
||||
cpu: bool,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, default_value_t = 10000)]
|
||||
#[arg(short = 'n', long, default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// Disable the key-value cache.
|
||||
@ -83,18 +89,18 @@ struct Args {
|
||||
revision: Option<String>,
|
||||
|
||||
/// The model size to use.
|
||||
#[arg(long, default_value = "v2")]
|
||||
#[arg(long, default_value = "v3")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
#[arg(long, default_value_t = 128)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
@ -120,11 +126,13 @@ fn main() -> Result<()> {
|
||||
Some(dtype) => bail!("Unsupported dtype {dtype}"),
|
||||
None => DType::F16,
|
||||
};
|
||||
let (llama, tokenizer_filename, mut cache) = {
|
||||
let (llama, tokenizer_filename, mut cache, config) = {
|
||||
let api = Api::new()?;
|
||||
let model_id = args.model_id.unwrap_or_else(|| match args.which {
|
||||
Which::V1 => "Narsil/amall-7b".to_string(),
|
||||
Which::V2 => "meta-llama/Llama-2-7b-hf".to_string(),
|
||||
Which::V3 => "meta-llama/Meta-Llama-3-8B".to_string(),
|
||||
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct".to_string(),
|
||||
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0".to_string(),
|
||||
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0".to_string(),
|
||||
});
|
||||
@ -138,7 +146,7 @@ fn main() -> Result<()> {
|
||||
let config = config.into_config(args.use_flash_attn);
|
||||
|
||||
let filenames = match args.which {
|
||||
Which::V1 | Which::V2 | Which::Solar10_7B => {
|
||||
Which::V1 | Which::V2 | Which::V3 | Which::V3Instruct | Which::Solar10_7B => {
|
||||
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
|
||||
}
|
||||
Which::TinyLlama1_1BChat => vec![api.get("model.safetensors")?],
|
||||
@ -146,10 +154,12 @@ fn main() -> Result<()> {
|
||||
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
||||
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
(Llama::load(vb, &config)?, tokenizer_filename, cache)
|
||||
(Llama::load(vb, &config)?, tokenizer_filename, cache, config)
|
||||
};
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let eos_token_id = tokenizer.token_to_id(EOS_TOKEN);
|
||||
let eos_token_id = config
|
||||
.eos_token_id
|
||||
.or_else(|| tokenizer.token_to_id(EOS_TOKEN));
|
||||
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
||||
let mut tokens = tokenizer
|
||||
.encode(prompt, true)
|
||||
@ -160,8 +170,22 @@ fn main() -> Result<()> {
|
||||
|
||||
println!("starting the inference loop");
|
||||
print!("{prompt}");
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature, args.top_p);
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut logits_processor = {
|
||||
let temperature = args.temperature;
|
||||
let sampling = if temperature <= 0. {
|
||||
Sampling::ArgMax
|
||||
} else {
|
||||
match (args.top_k, args.top_p) {
|
||||
(None, None) => Sampling::All { temperature },
|
||||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||||
}
|
||||
};
|
||||
LogitsProcessor::from_sampling(args.seed, sampling)
|
||||
};
|
||||
|
||||
let mut start_gen = std::time::Instant::now();
|
||||
let mut index_pos = 0;
|
||||
let mut token_generated = 0;
|
||||
for index in 0..args.sample_len {
|
||||
@ -170,6 +194,9 @@ fn main() -> Result<()> {
|
||||
} else {
|
||||
(tokens.len(), 0)
|
||||
};
|
||||
if index == 1 {
|
||||
start_gen = std::time::Instant::now()
|
||||
}
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = llama.forward(&input, context_index, &mut cache)?;
|
||||
@ -205,7 +232,7 @@ fn main() -> Result<()> {
|
||||
println!(
|
||||
"\n\n{} tokens generated ({} token/s)\n",
|
||||
token_generated,
|
||||
token_generated as f64 / dt.as_secs_f64(),
|
||||
(token_generated - 1) as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -10,7 +10,7 @@
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{bail, Error as E, Result};
|
||||
use clap::Parser;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
@ -24,57 +24,15 @@ mod model;
|
||||
use model::{Config, Llama};
|
||||
|
||||
const MAX_SEQ_LEN: usize = 4096;
|
||||
const DEFAULT_PROMPT: &str = r"
|
||||
EDWARD:
|
||||
I wonder how our princely father 'scaped,
|
||||
Or whether he be 'scaped away or no
|
||||
From Clifford's and Northumberland's pursuit:
|
||||
Had he been ta'en, we should have heard the news;
|
||||
Had he been slain, we should have heard the news;
|
||||
Or had he 'scaped, methinks we should have heard
|
||||
The happy tidings of his good escape.
|
||||
How fares my brother? why is he so sad?
|
||||
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
||||
|
||||
RICHARD:
|
||||
I cannot joy, until I be resolved
|
||||
Where our right valiant father is become.
|
||||
I saw him in the battle range about;
|
||||
And watch'd him how he singled Clifford forth.
|
||||
Methought he bore him in the thickest troop
|
||||
As doth a lion in a herd of neat;
|
||||
Or as a bear, encompass'd round with dogs,
|
||||
Who having pinch'd a few and made them cry,
|
||||
The rest stand all aloof, and bark at him.
|
||||
So fared our father with his enemies;
|
||||
So fled his enemies my warlike father:
|
||||
Methinks, 'tis prize enough to be his son.
|
||||
See how the morning opes her golden gates,
|
||||
And takes her farewell of the glorious sun!
|
||||
How well resembles it the prime of youth,
|
||||
Trimm'd like a younker prancing to his love!
|
||||
|
||||
EDWARD:
|
||||
Dazzle mine eyes, or do I see three suns?
|
||||
|
||||
RICHARD:
|
||||
Three glorious suns, each one a perfect sun;
|
||||
Not separated with the racking clouds,
|
||||
But sever'd in a pale clear-shining sky.
|
||||
See, see! they join, embrace, and seem to kiss,
|
||||
As if they vow'd some league inviolable:
|
||||
Now are they but one lamp, one light, one sun.
|
||||
In this the heaven figures some event.
|
||||
|
||||
EDWARD:
|
||||
'Tis wondrous strange, the like yet never heard of.
|
||||
I think it cites us, brother, to the field,
|
||||
That we, the sons of brave Plantagenet,
|
||||
Each one already blazing by our meeds,
|
||||
Should notwithstanding join our lights together
|
||||
And over-shine the earth as this the world.
|
||||
Whate'er it bodes, henceforward will I bear
|
||||
Upon my target three fair-shining suns.
|
||||
";
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||||
enum Which {
|
||||
V2_7b,
|
||||
V2_70b,
|
||||
V3_8b,
|
||||
V3_70b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
@ -86,8 +44,8 @@ struct Args {
|
||||
rank: Option<usize>,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
@ -117,6 +75,12 @@ struct Args {
|
||||
|
||||
#[arg(long)]
|
||||
dtype: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "v3-8b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long, default_value = "nccl_id.txt")]
|
||||
comm_file: String,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -129,14 +93,27 @@ fn main() -> Result<()> {
|
||||
Some("bf16") => DType::BF16,
|
||||
Some("f32") => DType::F32,
|
||||
Some(dtype) => bail!("Unsupported dtype {dtype}"),
|
||||
None => DType::F16,
|
||||
None => match args.which {
|
||||
Which::V2_7b | Which::V2_70b => DType::F16,
|
||||
Which::V3_8b | Which::V3_70b => DType::BF16,
|
||||
},
|
||||
};
|
||||
|
||||
let api = Api::new()?;
|
||||
let comm_file = std::path::PathBuf::from(&args.comm_file);
|
||||
if comm_file.exists() {
|
||||
bail!("comm file {comm_file:?} already exists, please remove it first")
|
||||
}
|
||||
|
||||
let model_id = args
|
||||
.model_id
|
||||
.unwrap_or_else(|| "meta-llama/Llama-2-7b-hf".to_string());
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model) => model,
|
||||
None => match args.which {
|
||||
Which::V2_7b => "meta-llama/Llama-2-7b-hf".to_string(),
|
||||
Which::V2_70b => "meta-llama/Llama-2-70b-hf".to_string(),
|
||||
Which::V3_8b => "meta-llama/Meta-Llama-3-8B".to_string(),
|
||||
Which::V3_70b => "meta-llama/Meta-Llama-3-70B".to_string(),
|
||||
},
|
||||
};
|
||||
println!("loading the model weights from {model_id}");
|
||||
let revision = args.revision.unwrap_or("main".to_string());
|
||||
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||
@ -145,39 +122,40 @@ fn main() -> Result<()> {
|
||||
let tokenizer_filename = api.get("tokenizer.json")?;
|
||||
let filenames = candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?;
|
||||
|
||||
if args.rank.is_none() {
|
||||
let children: Vec<_> = (0..args.num_shards)
|
||||
.map(|rank| {
|
||||
let mut args: std::collections::VecDeque<_> = std::env::args().collect();
|
||||
args.push_back("--rank".to_string());
|
||||
args.push_back(format!("{rank}"));
|
||||
let name = args.pop_front().unwrap();
|
||||
std::process::Command::new(name).args(args).spawn().unwrap()
|
||||
})
|
||||
.collect();
|
||||
for mut child in children {
|
||||
child.wait().unwrap();
|
||||
let rank = match args.rank {
|
||||
None => {
|
||||
println!("creating {} child processes", args.num_shards);
|
||||
let children: Vec<_> = (0..args.num_shards)
|
||||
.map(|rank| {
|
||||
let mut args: std::collections::VecDeque<_> = std::env::args().collect();
|
||||
args.push_back("--rank".to_string());
|
||||
args.push_back(format!("{rank}"));
|
||||
let name = args.pop_front().unwrap();
|
||||
std::process::Command::new(name).args(args).spawn().unwrap()
|
||||
})
|
||||
.collect();
|
||||
for mut child in children {
|
||||
child.wait()?;
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
Some(rank) => rank,
|
||||
};
|
||||
|
||||
let i = args.rank.unwrap();
|
||||
let num_shards = args.num_shards;
|
||||
let rank = i;
|
||||
// Primitive IPC
|
||||
let id = if rank == 0 {
|
||||
let id = Id::new().unwrap();
|
||||
std::fs::File::create("nccl_id.txt.tmp")?
|
||||
.write_all(&id.internal().iter().map(|&i| i as u8).collect::<Vec<_>>())
|
||||
.unwrap();
|
||||
std::fs::rename("nccl_id.txt.tmp", "nccl_id.txt")?;
|
||||
let tmp_file = comm_file.with_extension(".comm.tgz");
|
||||
std::fs::File::create(&tmp_file)?
|
||||
.write_all(&id.internal().iter().map(|&i| i as u8).collect::<Vec<_>>())?;
|
||||
std::fs::rename(&tmp_file, &comm_file)?;
|
||||
id
|
||||
} else {
|
||||
let path = std::path::PathBuf::from("nccl_id.txt");
|
||||
while !path.exists() {
|
||||
while !comm_file.exists() {
|
||||
std::thread::sleep(std::time::Duration::from_secs(1));
|
||||
}
|
||||
let data = std::fs::read("nccl_id.txt")?;
|
||||
let data = std::fs::read(&comm_file)?;
|
||||
let internal: [i8; 128] = data
|
||||
.into_iter()
|
||||
.map(|i| i as i8)
|
||||
@ -187,14 +165,17 @@ fn main() -> Result<()> {
|
||||
let id: Id = Id::uninit(internal);
|
||||
id
|
||||
};
|
||||
let device = CudaDevice::new(i)?;
|
||||
let comm = Rc::new(Comm::from_rank(device, i, num_shards, id).unwrap());
|
||||
let device = CudaDevice::new(rank)?;
|
||||
let comm = match Comm::from_rank(device, rank, num_shards, id) {
|
||||
Ok(comm) => Rc::new(comm),
|
||||
Err(err) => anyhow::bail!("nccl error {:?}", err.0),
|
||||
};
|
||||
if rank == 0 {
|
||||
std::fs::remove_file("nccl_id.txt")?;
|
||||
std::fs::remove_file(comm_file)?;
|
||||
}
|
||||
println!("Rank {rank:?} spawned");
|
||||
|
||||
let device = Device::new_cuda(i)?;
|
||||
let device = Device::new_cuda(rank)?;
|
||||
let cache = model::Cache::new(dtype, &config, &device)?;
|
||||
|
||||
println!("building the model");
|
||||
@ -210,14 +191,24 @@ fn main() -> Result<()> {
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
|
||||
|
||||
println!("starting the inference loop");
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature, args.top_p);
|
||||
let temperature = if args.temperature <= 0. {
|
||||
None
|
||||
} else {
|
||||
Some(args.temperature)
|
||||
};
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, temperature, args.top_p);
|
||||
let mut new_tokens = vec![];
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut start_gen = std::time::Instant::now();
|
||||
let mut index_pos = 0;
|
||||
for index in 0..args.sample_len {
|
||||
let start_gen = std::time::Instant::now();
|
||||
// Only start timing at the second token as processing the first token waits for all the
|
||||
// weights to be loaded in an async way.
|
||||
if index == 1 {
|
||||
start_gen = std::time::Instant::now()
|
||||
};
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
@ -228,25 +219,23 @@ fn main() -> Result<()> {
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
new_tokens.push(next_token);
|
||||
if Some(next_token) == config.eos_token_id {
|
||||
break;
|
||||
}
|
||||
if rank == 0 {
|
||||
println!("> {:?}", start_gen.elapsed());
|
||||
println!(
|
||||
"{} token: {} '{}'",
|
||||
index + 1,
|
||||
next_token,
|
||||
tokenizer.decode(&[next_token], true).map_err(E::msg)?
|
||||
);
|
||||
if let Some(t) = tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!();
|
||||
if rank == 0 {
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
||||
"\n\n{} tokens generated ({} token/s)\n",
|
||||
args.sample_len,
|
||||
args.sample_len as f64 / dt.as_secs_f64(),
|
||||
tokenizer
|
||||
.decode(new_tokens.as_slice(), true)
|
||||
.map_err(E::msg)?
|
||||
(args.sample_len - 1) as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
|
@ -1,15 +1,14 @@
|
||||
use candle::backend::BackendStorage;
|
||||
use candle::{CpuStorage, CustomOp1, DType, Device, IndexOp, Layout, Result, Shape, Tensor, D};
|
||||
use candle_nn::var_builder::ShardedVarBuilder as VarBuilder;
|
||||
use candle_nn::{Embedding, Linear, Module, RmsNorm};
|
||||
use cudarc::nccl::safe::{Comm, ReduceOp};
|
||||
use half::f16;
|
||||
use serde::Deserialize;
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use super::MAX_SEQ_LEN;
|
||||
|
||||
use candle_nn::var_builder::ShardedVarBuilder as VarBuilder;
|
||||
pub type Config = candle_transformers::models::llama::LlamaConfig;
|
||||
|
||||
struct TensorParallelColumnLinear {
|
||||
linear: Linear,
|
||||
@ -26,7 +25,7 @@ impl TensorParallelColumnLinear {
|
||||
|
||||
struct TensorParallelRowLinear {
|
||||
linear: Linear,
|
||||
comm: Rc<Comm>,
|
||||
all_reduce: AllReduce,
|
||||
}
|
||||
|
||||
struct AllReduce {
|
||||
@ -36,8 +35,6 @@ struct AllReduce {
|
||||
/// This is actually not safe: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/threadsafety.html
|
||||
/// But for this example purposes, this will work
|
||||
unsafe impl Sync for AllReduce {}
|
||||
/// This is actually not safe: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/threadsafety.html
|
||||
/// But for this example purposes, this will work
|
||||
unsafe impl Send for AllReduce {}
|
||||
|
||||
impl CustomOp1 for AllReduce {
|
||||
@ -46,7 +43,7 @@ impl CustomOp1 for AllReduce {
|
||||
}
|
||||
|
||||
fn cpu_fwd(&self, _s: &CpuStorage, _l: &Layout) -> Result<(CpuStorage, Shape)> {
|
||||
todo!("implement allreduce for cpu is not necessary for single node");
|
||||
candle::bail!("AllReduce is never used on cpu")
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
@ -56,31 +53,49 @@ impl CustomOp1 for AllReduce {
|
||||
l: &Layout,
|
||||
) -> Result<(candle::CudaStorage, Shape)> {
|
||||
use candle::cuda_backend::WrapErr;
|
||||
use cudarc::driver::DeviceSlice;
|
||||
use half::{bf16, f16};
|
||||
|
||||
let elem_count = l.shape().elem_count();
|
||||
let dev = s.device().clone();
|
||||
let s = s.as_cuda_slice::<f16>()?;
|
||||
// let s = match l.contiguous_offsets() {
|
||||
// None => Err(Error::Wrapped("input has to be contiguous".into()))?,
|
||||
// Some((o1, o2)) => s.slice(o1..o2),
|
||||
// };
|
||||
let mut dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
|
||||
self.comm.all_reduce(s, &mut dst, &ReduceOp::Sum).unwrap();
|
||||
let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev);
|
||||
let dst = match s.dtype() {
|
||||
DType::BF16 => {
|
||||
let s = s.as_cuda_slice::<bf16>()?;
|
||||
let s = match l.contiguous_offsets() {
|
||||
Some((0, l)) if l == s.len() => s,
|
||||
Some(_) | None => candle::bail!("input has to be contiguous"),
|
||||
};
|
||||
let mut dst = unsafe { dev.alloc::<bf16>(elem_count) }.w()?;
|
||||
self.comm
|
||||
.all_reduce(s, &mut dst, &ReduceOp::Sum)
|
||||
.map_err(candle::Error::debug)?;
|
||||
candle::CudaStorage::wrap_cuda_slice(dst, dev)
|
||||
}
|
||||
DType::F16 => {
|
||||
let s = s.as_cuda_slice::<f16>()?;
|
||||
let s = match l.contiguous_offsets() {
|
||||
Some((0, l)) if l == s.len() => s,
|
||||
Some(_) | None => candle::bail!("input has to be contiguous"),
|
||||
};
|
||||
let mut dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
|
||||
self.comm
|
||||
.all_reduce(s, &mut dst, &ReduceOp::Sum)
|
||||
.map_err(candle::Error::debug)?;
|
||||
candle::CudaStorage::wrap_cuda_slice(dst, dev)
|
||||
}
|
||||
dtype => candle::bail!("unsupported dtype {dtype:?}"),
|
||||
};
|
||||
Ok((dst, l.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
fn all_reduce_sum(x: &Tensor, comm: &Rc<Comm>) -> Result<Tensor> {
|
||||
x.apply_op1(AllReduce { comm: comm.clone() })
|
||||
}
|
||||
|
||||
impl TensorParallelRowLinear {
|
||||
fn new(linear: Linear, comm: Rc<Comm>) -> Self {
|
||||
Self { linear, comm }
|
||||
let all_reduce = AllReduce { comm };
|
||||
Self { linear, all_reduce }
|
||||
}
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = self.linear.forward(x)?;
|
||||
all_reduce_sum(&x, &self.comm)
|
||||
self.linear.forward(x)?.apply_op1_no_bwd(&self.all_reduce)
|
||||
}
|
||||
}
|
||||
|
||||
@ -121,23 +136,6 @@ impl TensorParallelRowLinear {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
pub struct Config {
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub vocab_size: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub rms_norm_eps: f64,
|
||||
#[serde(default = "default_rope")]
|
||||
pub rope_theta: f32,
|
||||
}
|
||||
|
||||
fn default_rope() -> f32 {
|
||||
10_000.0
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Cache {
|
||||
#[allow(clippy::type_complexity)]
|
||||
@ -161,7 +159,6 @@ impl Cache {
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
|
||||
let cos = idx_theta.cos()?.to_dtype(dtype)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(dtype)?;
|
||||
Ok(Self {
|
||||
@ -197,16 +194,10 @@ struct CausalSelfAttention {
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (b_sz, _, seq_len, hidden_size) = x.shape().dims4()?;
|
||||
let (_b_sz, _, seq_len, _hidden_size) = x.shape().dims4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
|
||||
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
|
||||
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
|
||||
Ok(rope)
|
||||
candle_nn::rotary_emb::rope(x, &cos, &sin)
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
@ -232,13 +223,16 @@ impl CausalSelfAttention {
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let mut v = v
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||
let mut k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
@ -269,25 +263,14 @@ impl CausalSelfAttention {
|
||||
let v = v.transpose(1, 2)?;
|
||||
let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
|
||||
let y = candle_flash_attn::flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?
|
||||
.transpose(1, 2)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
|
||||
.reshape((b_sz, seq_len, hidden_size))?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_attention_heads / self.num_key_value_heads;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
let (b_sz, n_kv_head, seq_len, head_dim) = x.shape().dims4()?;
|
||||
let x = x
|
||||
.unsqueeze(2)?
|
||||
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, n_kv_head, n_rep, seq_len, head_dim))?;
|
||||
Ok(x)
|
||||
}
|
||||
candle_transformers::utils::repeat_kv(x, n_rep)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
|
||||
@ -301,7 +284,7 @@ impl CausalSelfAttention {
|
||||
qkv_proj,
|
||||
o_proj,
|
||||
num_attention_heads: cfg.num_attention_heads / comm.world_size(),
|
||||
num_key_value_heads: cfg.num_key_value_heads / comm.world_size(),
|
||||
num_key_value_heads: cfg.num_key_value_heads() / comm.world_size(),
|
||||
head_dim: cfg.hidden_size / cfg.num_attention_heads,
|
||||
cache: cache.clone(),
|
||||
})
|
||||
@ -315,18 +298,6 @@ struct Mlp {
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(
|
||||
c_fc1: TensorParallelColumnLinear,
|
||||
c_fc2: TensorParallelColumnLinear,
|
||||
c_proj: TensorParallelRowLinear,
|
||||
) -> Self {
|
||||
Self {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
@ -336,7 +307,11 @@ impl Mlp {
|
||||
let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?;
|
||||
let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?;
|
||||
let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm)?;
|
||||
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
||||
Ok(Self {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@ -427,10 +402,8 @@ impl Llama {
|
||||
cfg,
|
||||
comm.clone(),
|
||||
)
|
||||
.unwrap()
|
||||
})
|
||||
.collect();
|
||||
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self::new(wte, blocks, norm, lm_head))
|
||||
}
|
||||
}
|
||||
|
36
candle-examples/examples/olmo/README.md
Normal file
36
candle-examples/examples/olmo/README.md
Normal file
@ -0,0 +1,36 @@
|
||||
# candle-olmo: Open Language Models designed to enable the science of language models
|
||||
|
||||
OLMo is a series of Open Language Models designed to enable the science of language models.
|
||||
|
||||
- **Project Page:** https://allenai.org/olmo
|
||||
- **Paper:** [Link](https://arxiv.org/abs/2402.00838)
|
||||
- **Technical blog post:** https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
|
||||
- **W&B Logs:** https://wandb.ai/ai2-llm/OLMo-1B/reports/OLMo-1B--Vmlldzo2NzY1Njk1
|
||||
<!-- - **Press release:** TODO -->
|
||||
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
$ cargo run --example olmo --release -- --prompt "It is only with the heart that one can see rightly"
|
||||
|
||||
avx: true, neon: false, simd128: false, f16c: true
|
||||
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
|
||||
retrieved the files in 354.977µs
|
||||
loaded the model in 19.87779666s
|
||||
It is only with the heart that one can see rightly; what is essential is invisible to the eye.
|
||||
```
|
||||
|
||||
Various model sizes are available via the `--model` argument.
|
||||
|
||||
```bash
|
||||
$ cargo run --example olmo --release -- --model 1.7-7b --prompt 'It is only with the heart that one can see rightly'
|
||||
|
||||
avx: true, neon: false, simd128: false, f16c: true
|
||||
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
|
||||
retrieved the files in 1.226087ms
|
||||
loaded the model in 171.274578609s
|
||||
It is only with the heart that one can see rightly; what is essential is invisible to the eye.”
|
||||
~ Antoine de Saint-Exupery, The Little Prince
|
||||
I am a big fan of this quote. It reminds me that I need to be open and aware of my surroundings in order to truly appreciate them.
|
||||
```
|
||||
|
284
candle-examples/examples/olmo/main.rs
Normal file
284
candle-examples/examples/olmo/main.rs
Normal file
@ -0,0 +1,284 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_transformers::models::olmo::{Config, Model as OLMo};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
OLMo(OLMo),
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, false)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <|endoftext|> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = match &mut self.model {
|
||||
Model::OLMo(m) => m.forward(&input, start_pos)?,
|
||||
};
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
|
||||
enum Which {
|
||||
#[value(name = "1b")]
|
||||
W1b,
|
||||
#[value(name = "7b")]
|
||||
W7b,
|
||||
#[value(name = "7b-twin-2t")]
|
||||
W7bTwin2T,
|
||||
#[value(name = "1.7-7b")]
|
||||
V1_7W7b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 1000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long, default_value = "1b")]
|
||||
model: Which,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => match args.model {
|
||||
Which::W1b => "allenai/OLMo-1B-hf".to_string(),
|
||||
Which::W7b => "allenai/OLMo-7B-hf".to_string(),
|
||||
Which::W7bTwin2T => "allenai/OLMo-7B-Twin-2T-hf".to_string(),
|
||||
Which::V1_7W7b => "allenai/OLMo-1.7-7B-hf".to_string(),
|
||||
},
|
||||
};
|
||||
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => match args.model {
|
||||
Which::W1b => {
|
||||
vec![repo.get("model.safetensors")?]
|
||||
}
|
||||
_ => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
},
|
||||
};
|
||||
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config = {
|
||||
let config_filename = repo.get("config.json")?;
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
||||
config
|
||||
};
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = {
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = OLMo::new(&config, vb)?;
|
||||
Model::OLMo(model)
|
||||
};
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -1,8 +1,9 @@
|
||||
# candle-phi: 1.3b and 2.7b LLM with state of the art performance for <10b models.
|
||||
|
||||
[Phi-1.5](https://huggingface.co/microsoft/phi-1_5) and
|
||||
[Phi-2](https://huggingface.co/microsoft/phi-2) are language models using
|
||||
only 1.3 and 2.7 billion parameters but with state of the art performance compared to
|
||||
[Phi-1.5](https://huggingface.co/microsoft/phi-1_5),
|
||||
[Phi-2](https://huggingface.co/microsoft/phi-2), and
|
||||
[Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) are language models using
|
||||
only 1.3, 2.7, and 3.8 billion parameters but with state of the art performance compared to
|
||||
models with up to 10 billion parameters.
|
||||
|
||||
The candle implementation provides both the standard version as well as a
|
||||
|
@ -7,11 +7,13 @@ extern crate accelerate_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
||||
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
|
||||
use candle_transformers::models::phi3::{Config as Phi3Config, Model as Phi3};
|
||||
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle::{DType, Device, IndexOp, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
@ -20,13 +22,14 @@ use tokenizers::Tokenizer;
|
||||
enum Model {
|
||||
MixFormer(MixFormer),
|
||||
Phi(Phi),
|
||||
Phi3(Phi3),
|
||||
Quantized(QMixFormer),
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
@ -49,7 +52,7 @@ impl TextGeneration {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
@ -61,7 +64,11 @@ impl TextGeneration {
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
let tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
||||
}
|
||||
@ -73,13 +80,14 @@ impl TextGeneration {
|
||||
}
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||
Some(token) => *token,
|
||||
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the endoftext token"),
|
||||
};
|
||||
print!("{prompt}");
|
||||
std::io::stdout().flush()?;
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut pos = 0;
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
@ -88,6 +96,7 @@ impl TextGeneration {
|
||||
Model::MixFormer(m) => m.forward(&input)?,
|
||||
Model::Phi(m) => m.forward(&input)?,
|
||||
Model::Quantized(m) => m.forward(&input)?,
|
||||
Model::Phi3(m) => m.forward(&input, pos)?.i((.., 0, ..))?,
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
@ -107,9 +116,11 @@ impl TextGeneration {
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||
print!("{token}");
|
||||
std::io::stdout().flush()?;
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
pos += context_size;
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
@ -128,6 +139,8 @@ enum WhichModel {
|
||||
V1_5,
|
||||
#[value(name = "2")]
|
||||
V2,
|
||||
#[value(name = "3")]
|
||||
V3,
|
||||
#[value(name = "2-old")]
|
||||
V2Old,
|
||||
PuffinPhiV2,
|
||||
@ -196,6 +209,10 @@ struct Args {
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The dtype to be used for running the model, e.g. f32, bf16, or f16.
|
||||
#[arg(long)]
|
||||
dtype: Option<String>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -236,6 +253,7 @@ fn main() -> Result<()> {
|
||||
WhichModel::V1 => "microsoft/phi-1".to_string(),
|
||||
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
|
||||
WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(),
|
||||
WhichModel::V3 => "microsoft/Phi-3-mini-4k-instruct".to_string(),
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
"lmz/candle-quantized-phi".to_string()
|
||||
}
|
||||
@ -253,9 +271,10 @@ fn main() -> Result<()> {
|
||||
WhichModel::V1 => "refs/pr/8".to_string(),
|
||||
WhichModel::V1_5 => "refs/pr/73".to_string(),
|
||||
WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
|
||||
WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
"main".to_string()
|
||||
}
|
||||
WhichModel::V2
|
||||
| WhichModel::V3
|
||||
| WhichModel::PuffinPhiV2
|
||||
| WhichModel::PhiHermes => "main".to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -264,9 +283,11 @@ fn main() -> Result<()> {
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2Old => {
|
||||
repo.get("tokenizer.json")?
|
||||
}
|
||||
WhichModel::V1
|
||||
| WhichModel::V1_5
|
||||
| WhichModel::V2
|
||||
| WhichModel::V2Old
|
||||
| WhichModel::V3 => repo.get("tokenizer.json")?,
|
||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||
repo.get("tokenizer-puffin-phi-v2.json")?
|
||||
}
|
||||
@ -282,14 +303,19 @@ fn main() -> Result<()> {
|
||||
WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?],
|
||||
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
|
||||
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
|
||||
WhichModel::V3 => anyhow::bail!(
|
||||
"use the quantized or quantized-phi examples for quantized phi-v3"
|
||||
),
|
||||
}
|
||||
} else {
|
||||
match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
|
||||
WhichModel::V2 | WhichModel::V2Old => candle_examples::hub_load_safetensors(
|
||||
&repo,
|
||||
"model.safetensors.index.json",
|
||||
)?,
|
||||
WhichModel::V2 | WhichModel::V2Old | WhichModel::V3 => {
|
||||
candle_examples::hub_load_safetensors(
|
||||
&repo,
|
||||
"model.safetensors.index.json",
|
||||
)?
|
||||
}
|
||||
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2.safetensors")?],
|
||||
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B.safetensors")?],
|
||||
}
|
||||
@ -306,6 +332,9 @@ fn main() -> Result<()> {
|
||||
WhichModel::V2 | WhichModel::V2Old => Config::v2(),
|
||||
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
|
||||
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
|
||||
WhichModel::V3 => {
|
||||
panic!("use the quantized or quantized-phi examples for quantized phi-v3")
|
||||
}
|
||||
};
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let model = if args.quantized {
|
||||
@ -320,7 +349,17 @@ fn main() -> Result<()> {
|
||||
};
|
||||
Model::Quantized(model)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
||||
let dtype = match args.dtype {
|
||||
Some(dtype) => std::str::FromStr::from_str(&dtype)?,
|
||||
None => {
|
||||
if args.model == WhichModel::V3 && device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
}
|
||||
}
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
match args.model {
|
||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => {
|
||||
let config_filename = repo.get("config.json")?;
|
||||
@ -329,6 +368,13 @@ fn main() -> Result<()> {
|
||||
let phi = Phi::new(&config, vb)?;
|
||||
Model::Phi(phi)
|
||||
}
|
||||
WhichModel::V3 => {
|
||||
let config_filename = repo.get("config.json")?;
|
||||
let config = std::fs::read_to_string(config_filename)?;
|
||||
let config: Phi3Config = serde_json::from_str(&config)?;
|
||||
let phi3 = Phi3::new(&config, vb)?;
|
||||
Model::Phi3(phi3)
|
||||
}
|
||||
WhichModel::V2Old => {
|
||||
let config = config();
|
||||
Model::MixFormer(MixFormer::new_v2(&config, vb)?)
|
||||
@ -421,6 +467,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input)?
|
||||
}
|
||||
Model::Phi3(m) => {
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input, 0)?
|
||||
}
|
||||
Model::Quantized(m) => {
|
||||
m.clear_kv_cache();
|
||||
m.forward(&input)?
|
||||
|
326
candle-examples/examples/quantized-phi/main.rs
Normal file
326
candle-examples/examples/quantized-phi/main.rs
Normal file
@ -0,0 +1,326 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use candle::quantized::gguf_file;
|
||||
use candle::Tensor;
|
||||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||||
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_transformers::models::quantized_llama::ModelWeights as Phi3b;
|
||||
use candle_transformers::models::quantized_phi::ModelWeights as Phi2;
|
||||
use candle_transformers::models::quantized_phi3::ModelWeights as Phi3;
|
||||
|
||||
const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "phi-2")]
|
||||
Phi2,
|
||||
#[value(name = "phi-3")]
|
||||
Phi3,
|
||||
/// Alternative implementation of phi-3, based on llama.
|
||||
#[value(name = "phi-3b")]
|
||||
Phi3b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
|
||||
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
|
||||
/// is preserved.
|
||||
#[arg(long)]
|
||||
prompt: Option<String>,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(short = 'n', long, default_value_t = 1000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// The tokenizer config in json format.
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
/// The temperature used to generate samples, use 0 for greedy sampling.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Process prompt elements separately.
|
||||
#[arg(long)]
|
||||
split_prompt: bool,
|
||||
|
||||
/// Run on CPU rather than GPU even if a GPU is available.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The model size to use.
|
||||
#[arg(long, default_value = "phi-3b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
||||
let tokenizer_path = match &self.tokenizer {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let repo = match self.which {
|
||||
Which::Phi2 => "microsoft/phi-2",
|
||||
Which::Phi3 | Which::Phi3b => "microsoft/Phi-3-mini-4k-instruct",
|
||||
};
|
||||
let api = api.model(repo.to_string());
|
||||
api.get("tokenizer.json")?
|
||||
}
|
||||
};
|
||||
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
||||
}
|
||||
|
||||
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
||||
let model_path = match &self.model {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let (repo, filename, revision) = match self.which {
|
||||
Which::Phi2 => ("TheBloke/phi-2-GGUF", "phi-2.Q4_K_M.gguf", "main"),
|
||||
Which::Phi3 => (
|
||||
"microsoft/Phi-3-mini-4k-instruct-gguf",
|
||||
"Phi-3-mini-4k-instruct-q4.gguf",
|
||||
"main",
|
||||
),
|
||||
Which::Phi3b => (
|
||||
"microsoft/Phi-3-mini-4k-instruct-gguf",
|
||||
"Phi-3-mini-4k-instruct-q4.gguf",
|
||||
"5eef2ce24766d31909c0b269fe90c817a8f263fb",
|
||||
),
|
||||
};
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
api.repo(hf_hub::Repo::with_revision(
|
||||
repo.to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
revision.to_string(),
|
||||
))
|
||||
.get(filename)?
|
||||
}
|
||||
};
|
||||
Ok(model_path)
|
||||
}
|
||||
}
|
||||
|
||||
fn format_size(size_in_bytes: usize) -> String {
|
||||
if size_in_bytes < 1_000 {
|
||||
format!("{}B", size_in_bytes)
|
||||
} else if size_in_bytes < 1_000_000 {
|
||||
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
|
||||
} else if size_in_bytes < 1_000_000_000 {
|
||||
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
|
||||
} else {
|
||||
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
|
||||
}
|
||||
}
|
||||
|
||||
enum Model {
|
||||
Phi2(Phi2),
|
||||
Phi3(Phi3),
|
||||
Phi3b(Phi3b),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Phi2(m) => m.forward(xs, pos),
|
||||
Self::Phi3(m) => m.forward(xs, pos),
|
||||
Self::Phi3b(m) => m.forward(xs, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature, args.repeat_penalty, args.repeat_last_n
|
||||
);
|
||||
|
||||
let model_path = args.model()?;
|
||||
let mut file = std::fs::File::open(&model_path)?;
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let mut model = {
|
||||
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
|
||||
let mut total_size_in_bytes = 0;
|
||||
for (_, tensor) in model.tensor_infos.iter() {
|
||||
let elem_count = tensor.shape.elem_count();
|
||||
total_size_in_bytes +=
|
||||
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
|
||||
}
|
||||
println!(
|
||||
"loaded {:?} tensors ({}) in {:.2}s",
|
||||
model.tensor_infos.len(),
|
||||
&format_size(total_size_in_bytes),
|
||||
start.elapsed().as_secs_f32(),
|
||||
);
|
||||
match args.which {
|
||||
Which::Phi2 => Model::Phi2(Phi2::from_gguf(model, &mut file, &device)?),
|
||||
Which::Phi3 => Model::Phi3(Phi3::from_gguf(
|
||||
1,
|
||||
args.use_flash_attn,
|
||||
model,
|
||||
&mut file,
|
||||
&device,
|
||||
)?),
|
||||
Which::Phi3b => Model::Phi3b(Phi3b::from_gguf(model, &mut file, &device)?),
|
||||
}
|
||||
};
|
||||
println!("model built");
|
||||
|
||||
let tokenizer = args.tokenizer()?;
|
||||
let mut tos = TokenOutputStream::new(tokenizer);
|
||||
let prompt_str = args.prompt.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
|
||||
print!("{}", &prompt_str);
|
||||
let tokens = tos
|
||||
.tokenizer()
|
||||
.encode(prompt_str, true)
|
||||
.map_err(anyhow::Error::msg)?;
|
||||
let tokens = tokens.get_ids();
|
||||
let to_sample = args.sample_len.saturating_sub(1);
|
||||
let mut all_tokens = vec![];
|
||||
let mut logits_processor = {
|
||||
let temperature = args.temperature;
|
||||
let sampling = if temperature <= 0. {
|
||||
Sampling::ArgMax
|
||||
} else {
|
||||
match (args.top_k, args.top_p) {
|
||||
(None, None) => Sampling::All { temperature },
|
||||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||||
}
|
||||
};
|
||||
LogitsProcessor::from_sampling(args.seed, sampling)
|
||||
};
|
||||
|
||||
let start_prompt_processing = std::time::Instant::now();
|
||||
let mut next_token = if !args.split_prompt {
|
||||
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, 0)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
logits_processor.sample(&logits)?
|
||||
} else {
|
||||
let mut next_token = 0;
|
||||
for (pos, token) in tokens.iter().enumerate() {
|
||||
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
next_token = logits_processor.sample(&logits)?
|
||||
}
|
||||
next_token
|
||||
};
|
||||
let prompt_dt = start_prompt_processing.elapsed();
|
||||
all_tokens.push(next_token);
|
||||
if let Some(t) = tos.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
let eos_token = *tos
|
||||
.tokenizer()
|
||||
.get_vocab(true)
|
||||
.get("<|endoftext|>")
|
||||
.unwrap();
|
||||
let start_post_prompt = std::time::Instant::now();
|
||||
let mut sampled = 0;
|
||||
for index in 0..to_sample {
|
||||
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, tokens.len() + index)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
args.repeat_penalty,
|
||||
&all_tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
next_token = logits_processor.sample(&logits)?;
|
||||
all_tokens.push(next_token);
|
||||
if let Some(t) = tos.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
sampled += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
};
|
||||
}
|
||||
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
let dt = start_post_prompt.elapsed();
|
||||
println!(
|
||||
"\n\n{:4} prompt tokens processed: {:.2} token/s",
|
||||
tokens.len(),
|
||||
tokens.len() as f64 / prompt_dt.as_secs_f64(),
|
||||
);
|
||||
println!(
|
||||
"{sampled:4} tokens generated: {:.2} token/s",
|
||||
sampled as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
@ -67,6 +67,10 @@ enum Which {
|
||||
Mixtral,
|
||||
#[value(name = "mixtral-instruct")]
|
||||
MixtralInstruct,
|
||||
#[value(name = "llama3-8b")]
|
||||
L8b,
|
||||
#[value(name = "phi3")]
|
||||
Phi3,
|
||||
}
|
||||
|
||||
impl Which {
|
||||
@ -82,7 +86,9 @@ impl Which {
|
||||
| Self::L13bCode
|
||||
| Self::L34bCode
|
||||
| Self::Leo7b
|
||||
| Self::Leo13b => false,
|
||||
| Self::Leo13b
|
||||
| Self::L8b
|
||||
| Self::Phi3 => false,
|
||||
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
|
||||
// same way. Starling is a fine tuned version of OpenChat.
|
||||
Self::OpenChat35
|
||||
@ -116,7 +122,9 @@ impl Which {
|
||||
| Self::Mistral7bInstruct
|
||||
| Self::Mistral7bInstructV02
|
||||
| Self::OpenChat35
|
||||
| Self::Starling7bAlpha => false,
|
||||
| Self::Starling7bAlpha
|
||||
| Self::L8b
|
||||
| Self::Phi3 => false,
|
||||
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
|
||||
}
|
||||
}
|
||||
@ -140,33 +148,37 @@ impl Which {
|
||||
| Self::Mistral7bInstruct
|
||||
| Self::Mistral7bInstructV02
|
||||
| Self::Zephyr7bAlpha
|
||||
| Self::Zephyr7bBeta => false,
|
||||
| Self::Zephyr7bBeta
|
||||
| Self::L8b
|
||||
| Self::Phi3 => false,
|
||||
Self::OpenChat35 | Self::Starling7bAlpha => true,
|
||||
}
|
||||
}
|
||||
|
||||
fn tokenizer_repo(&self) -> &'static str {
|
||||
match self {
|
||||
Which::L7b
|
||||
| Which::L13b
|
||||
| Which::L70b
|
||||
| Which::L7bChat
|
||||
| Which::L13bChat
|
||||
| Which::L70bChat
|
||||
| Which::L7bCode
|
||||
| Which::L13bCode
|
||||
| Which::L34bCode => "hf-internal-testing/llama-tokenizer",
|
||||
Which::Leo7b => "LeoLM/leo-hessianai-7b",
|
||||
Which::Leo13b => "LeoLM/leo-hessianai-13b",
|
||||
Which::Mixtral => "mistralai/Mixtral-8x7B-v0.1",
|
||||
Which::MixtralInstruct => "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
Which::Mistral7b
|
||||
| Which::Mistral7bInstruct
|
||||
| Which::Mistral7bInstructV02
|
||||
| Which::Zephyr7bAlpha
|
||||
| Which::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
|
||||
Which::OpenChat35 => "openchat/openchat_3.5",
|
||||
Which::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
|
||||
Self::L7b
|
||||
| Self::L13b
|
||||
| Self::L70b
|
||||
| Self::L7bChat
|
||||
| Self::L13bChat
|
||||
| Self::L70bChat
|
||||
| Self::L7bCode
|
||||
| Self::L13bCode
|
||||
| Self::L34bCode => "hf-internal-testing/llama-tokenizer",
|
||||
Self::Leo7b => "LeoLM/leo-hessianai-7b",
|
||||
Self::Leo13b => "LeoLM/leo-hessianai-13b",
|
||||
Self::Mixtral => "mistralai/Mixtral-8x7B-v0.1",
|
||||
Self::MixtralInstruct => "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
Self::Mistral7b
|
||||
| Self::Mistral7bInstruct
|
||||
| Self::Mistral7bInstructV02
|
||||
| Self::Zephyr7bAlpha
|
||||
| Self::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
|
||||
Self::OpenChat35 => "openchat/openchat_3.5",
|
||||
Self::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
|
||||
Self::L8b => "meta-llama/Meta-Llama-3-8B",
|
||||
Self::Phi3 => "microsoft/Phi-3-mini-4k-instruct",
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -322,10 +334,28 @@ impl Args {
|
||||
"TheBloke/Starling-LM-7B-alpha-GGUF",
|
||||
"starling-lm-7b-alpha.Q4_K_M.gguf",
|
||||
),
|
||||
// TODO: swap to TheBloke model when available
|
||||
Which::L8b => (
|
||||
"QuantFactory/Meta-Llama-3-8B-GGUF",
|
||||
"Meta-Llama-3-8B.Q4_K_S.gguf",
|
||||
),
|
||||
Which::Phi3 => (
|
||||
"microsoft/Phi-3-mini-4k-instruct-gguf",
|
||||
"Phi-3-mini-4k-instruct-q4.gguf",
|
||||
),
|
||||
};
|
||||
let revision = if self.which == Which::Phi3 {
|
||||
"5eef2ce24766d31909c0b269fe90c817a8f263fb"
|
||||
} else {
|
||||
"main"
|
||||
};
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model(repo.to_string());
|
||||
api.get(filename)?
|
||||
api.repo(hf_hub::Repo::with_revision(
|
||||
repo.to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
revision.to_string(),
|
||||
))
|
||||
.get(filename)?
|
||||
}
|
||||
};
|
||||
Ok(model_path)
|
||||
@ -353,6 +383,9 @@ fn main() -> anyhow::Result<()> {
|
||||
#[cfg(feature = "cuda")]
|
||||
candle::quantized::cuda::set_force_dmmv(args.force_dmmv);
|
||||
|
||||
candle::cuda::set_gemm_reduced_precision_f16(true);
|
||||
candle::cuda::set_gemm_reduced_precision_bf16(true);
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
@ -420,7 +453,9 @@ fn main() -> anyhow::Result<()> {
|
||||
| Which::L13bCode
|
||||
| Which::L34bCode
|
||||
| Which::Leo7b
|
||||
| Which::Leo13b => 1,
|
||||
| Which::Leo13b
|
||||
| Which::L8b
|
||||
| Which::Phi3 => 1,
|
||||
Which::Mixtral
|
||||
| Which::MixtralInstruct
|
||||
| Which::Mistral7b
|
||||
@ -537,11 +572,14 @@ fn main() -> anyhow::Result<()> {
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let eos_token = if args.which.is_open_chat() {
|
||||
"<|end_of_turn|>"
|
||||
} else {
|
||||
"</s>"
|
||||
let eos_token = match args.which {
|
||||
Which::L8b => "<|end_of_text|>",
|
||||
_ => match args.which.is_open_chat() {
|
||||
true => "<|end_of_turn|>",
|
||||
false => "</s>",
|
||||
},
|
||||
};
|
||||
|
||||
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
|
||||
let start_post_prompt = std::time::Instant::now();
|
||||
let mut sampled = 0;
|
||||
|
@ -7,7 +7,7 @@ extern crate accelerate_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::qwen2::{Config as ConfigBase, Model as ModelBase};
|
||||
use candle_transformers::models::qwen2::{Config as ConfigBase, ModelForCausalLM as ModelBase};
|
||||
use candle_transformers::models::qwen2_moe::{Config as ConfigMoe, Model as ModelMoe};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
|
9
candle-examples/examples/recurrent-gemma/README.md
Normal file
9
candle-examples/examples/recurrent-gemma/README.md
Normal file
@ -0,0 +1,9 @@
|
||||
# candle-recurrent-gemma
|
||||
|
||||
This model card corresponds to the 2B base version of the RecurrentGemma model
|
||||
[huggingface model card](https://huggingface.co/google/recurrentgemma-2b).
|
||||
|
||||
```bash
|
||||
cargo run --features cuda -r --example recurrent-gemma -- \
|
||||
--prompt "Write me a poem about Machine Learning."
|
||||
```
|
321
candle-examples/examples/recurrent-gemma/main.rs
Normal file
321
candle-examples/examples/recurrent-gemma/main.rs
Normal file
@ -0,0 +1,321 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::quantized_recurrent_gemma::Model as QModel;
|
||||
use candle_transformers::models::recurrent_gemma::{Config, Model as BModel};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
B(BModel),
|
||||
Q(QModel),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::B(m) => m.forward(xs, pos),
|
||||
Self::Q(m) => m.forward(xs, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "2b")]
|
||||
Base2B,
|
||||
#[value(name = "2b-it")]
|
||||
Instruct2B,
|
||||
}
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
top_k: usize,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let sampling = match temp {
|
||||
None => candle_transformers::generation::Sampling::ArgMax,
|
||||
Some(temperature) => match top_p {
|
||||
None => candle_transformers::generation::Sampling::TopK {
|
||||
temperature,
|
||||
k: top_k,
|
||||
},
|
||||
Some(top_p) => candle_transformers::generation::Sampling::TopKThenTopP {
|
||||
temperature,
|
||||
k: top_k,
|
||||
p: top_p,
|
||||
},
|
||||
},
|
||||
};
|
||||
let logits_processor = LogitsProcessor::from_sampling(seed, sampling);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
#[arg(long, default_value_t = 250)]
|
||||
top_k: usize,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 8000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The model to use.
|
||||
#[arg(long, default_value = "2b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => match args.which {
|
||||
Which::Base2B => "google/recurrentgemma-2b".to_string(),
|
||||
Which::Instruct2B => "google/recurrentgemma-2b-it".to_string(),
|
||||
},
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let config_filename = match args.config_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => {
|
||||
if args.quantized {
|
||||
let filename = match args.which {
|
||||
Which::Base2B => "recurrent-gemma-2b-q4k.gguf",
|
||||
Which::Instruct2B => "recurrent-gemma-7b-q4k.gguf",
|
||||
};
|
||||
let filename = api.model("lmz/candle-gemma".to_string()).get(filename)?;
|
||||
vec![filename]
|
||||
} else {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let model = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&filenames[0],
|
||||
&device,
|
||||
)?;
|
||||
Model::Q(QModel::new(&config, vb.pp("model"))?)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
Model::B(BModel::new(&config, vb.pp("model"))?)
|
||||
};
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.top_k,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -39,7 +39,7 @@ struct Args {
|
||||
|
||||
/// The detection threshold for the mask, 0 is the default value, negative values mean a larger
|
||||
/// mask, positive makes the mask more selective.
|
||||
#[arg(long, default_value_t = 0.)]
|
||||
#[arg(long, allow_hyphen_values = true, default_value_t = 0.)]
|
||||
threshold: f32,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
|
@ -46,7 +46,8 @@ The default scheduler for the XL Turbo version is the Euler Ancestral scheduler.
|
||||
- `--cpu`: use the cpu rather than the gpu (much slower).
|
||||
- `--height`, `--width`: set the height and width for the generated image.
|
||||
- `--n-steps`: the number of steps to be used in the diffusion process.
|
||||
- `--num-samples`: the number of samples to generate.
|
||||
- `--num-samples`: the number of samples to generate iteratively.
|
||||
- `--bsize`: the numbers of samples to generate simultaneously.
|
||||
- `--final-image`: the filename for the generated image(s).
|
||||
|
||||
### Using flash-attention
|
||||
|
@ -9,6 +9,7 @@ use candle_transformers::models::stable_diffusion;
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, IndexOp, Module, Tensor, D};
|
||||
use clap::Parser;
|
||||
use stable_diffusion::vae::AutoEncoderKL;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Parser)]
|
||||
@ -64,9 +65,13 @@ struct Args {
|
||||
#[arg(long)]
|
||||
n_steps: Option<usize>,
|
||||
|
||||
/// The number of samples to generate.
|
||||
/// The number of samples to generate iteratively.
|
||||
#[arg(long, default_value_t = 1)]
|
||||
num_samples: i64,
|
||||
num_samples: usize,
|
||||
|
||||
/// The numbers of samples to generate simultaneously.
|
||||
#[arg[long, default_value_t = 1]]
|
||||
bsize: usize,
|
||||
|
||||
/// The name of the final image to generate.
|
||||
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
||||
@ -236,8 +241,8 @@ impl ModelFile {
|
||||
|
||||
fn output_filename(
|
||||
basename: &str,
|
||||
sample_idx: i64,
|
||||
num_samples: i64,
|
||||
sample_idx: usize,
|
||||
num_samples: usize,
|
||||
timestep_idx: Option<usize>,
|
||||
) -> String {
|
||||
let filename = if num_samples > 1 {
|
||||
@ -261,6 +266,33 @@ fn output_filename(
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn save_image(
|
||||
vae: &AutoEncoderKL,
|
||||
latents: &Tensor,
|
||||
vae_scale: f64,
|
||||
bsize: usize,
|
||||
idx: usize,
|
||||
final_image: &str,
|
||||
num_samples: usize,
|
||||
timestep_ids: Option<usize>,
|
||||
) -> Result<()> {
|
||||
let images = vae.decode(&(latents / vae_scale)?)?;
|
||||
let images = ((images / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let images = (images.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?;
|
||||
for batch in 0..bsize {
|
||||
let image = images.i(batch)?;
|
||||
let image_filename = output_filename(
|
||||
final_image,
|
||||
(bsize * idx) + batch + 1,
|
||||
batch + num_samples,
|
||||
timestep_ids,
|
||||
);
|
||||
candle_examples::save_image(&image, image_filename)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn text_embeddings(
|
||||
prompt: &str,
|
||||
@ -382,6 +414,7 @@ fn run(args: Args) -> Result<()> {
|
||||
final_image,
|
||||
sliced_attention_size,
|
||||
num_samples,
|
||||
bsize,
|
||||
sd_version,
|
||||
clip_weights,
|
||||
vae_weights,
|
||||
@ -475,6 +508,7 @@ fn run(args: Args) -> Result<()> {
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let text_embeddings = Tensor::cat(&text_embeddings, D::Minus1)?;
|
||||
let text_embeddings = text_embeddings.repeat((bsize, 1, 1))?;
|
||||
println!("{text_embeddings:?}");
|
||||
|
||||
println!("Building the autoencoder.");
|
||||
@ -496,7 +530,6 @@ fn run(args: Args) -> Result<()> {
|
||||
} else {
|
||||
0
|
||||
};
|
||||
let bsize = 1;
|
||||
|
||||
let vae_scale = match sd_version {
|
||||
StableDiffusionVersion::V1_5
|
||||
@ -560,12 +593,16 @@ fn run(args: Args) -> Result<()> {
|
||||
println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt);
|
||||
|
||||
if args.intermediary_images {
|
||||
let image = vae.decode(&(&latents / vae_scale)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
save_image(
|
||||
&vae,
|
||||
&latents,
|
||||
vae_scale,
|
||||
bsize,
|
||||
idx,
|
||||
&final_image,
|
||||
num_samples,
|
||||
Some(timestep_index + 1),
|
||||
)?;
|
||||
}
|
||||
}
|
||||
|
||||
@ -574,11 +611,16 @@ fn run(args: Args) -> Result<()> {
|
||||
idx + 1,
|
||||
num_samples
|
||||
);
|
||||
let image = vae.decode(&(&latents / vae_scale)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
save_image(
|
||||
&vae,
|
||||
&latents,
|
||||
vae_scale,
|
||||
bsize,
|
||||
idx,
|
||||
&final_image,
|
||||
num_samples,
|
||||
None,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -115,7 +115,7 @@ pub fn main() -> anyhow::Result<()> {
|
||||
let processor = image_processor::ViTImageProcessor::new(&processor_config);
|
||||
|
||||
let image = vec![args.image.as_str()];
|
||||
let image = processor.preprocess(image)?;
|
||||
let image = processor.preprocess(image)?.to_device(&device)?;
|
||||
|
||||
let encoder_xs = model.encoder().forward(&image)?;
|
||||
|
||||
|
@ -13,7 +13,7 @@ struct Block {
|
||||
|
||||
impl Block {
|
||||
fn get(&self, key: &str) -> Result<&str> {
|
||||
match self.parameters.get(&key.to_string()) {
|
||||
match self.parameters.get(key) {
|
||||
None => candle::bail!("cannot find {} in {}", key, self.block_type),
|
||||
Some(value) => Ok(value),
|
||||
}
|
||||
@ -28,7 +28,7 @@ pub struct Darknet {
|
||||
|
||||
impl Darknet {
|
||||
fn get(&self, key: &str) -> Result<&str> {
|
||||
match self.parameters.get(&key.to_string()) {
|
||||
match self.parameters.get(key) {
|
||||
None => candle::bail!("cannot find {} in net parameters", key),
|
||||
Some(value) => Ok(value),
|
||||
}
|
||||
|
@ -448,9 +448,9 @@ pub fn reduce_stereo_in_place(left: Windows100ms<&mut [Power]>, right: Windows10
|
||||
/// Perform gating and averaging for a BS.1770-4 integrated loudness measurement.
|
||||
///
|
||||
/// The integrated loudness measurement is not just the average power over the
|
||||
/// entire signal. BS.1770-4 defines defines two stages of gating that exclude
|
||||
/// entire signal. BS.1770-4 defines two stages of gating that exclude
|
||||
/// parts of the signal, to ensure that silent parts do not contribute to the
|
||||
/// loudness measurment. This function performs that gating, and returns the
|
||||
/// loudness measurement. This function performs that gating, and returns the
|
||||
/// average power over the windows that were not excluded.
|
||||
///
|
||||
/// The result of this function is the integrated loudness measurement.
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-flash-attn"
|
||||
version = "0.5.0"
|
||||
version = "0.5.1"
|
||||
edition = "2021"
|
||||
|
||||
description = "Flash attention layer for the candle ML framework."
|
||||
@ -11,7 +11,7 @@ license = "MIT OR Apache-2.0"
|
||||
readme = "README.md"
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.5.0" }
|
||||
candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.5.1" }
|
||||
half = { version = "2.3.1", features = ["num-traits"] }
|
||||
|
||||
[build-dependencies]
|
||||
|
@ -42,6 +42,10 @@ void run_flash_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
|
||||
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, false, true, true, false>;
|
||||
// printf("IsEvenMNConst = %d, IsEvenKConst = %d, Is_local = %d, Is_causal = %d, ReturnSoftmaxConst = %d, Is_dropout = %d\n", int(IsEvenMNConst), int(IsEvenKConst), int(Is_local), int(Is_causal), int(ReturnSoftmaxConst), int(Is_dropout));
|
||||
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>;
|
||||
if (smem_size >= 48 * 1024) {
|
||||
cudaFuncSetAttribute(
|
||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);
|
||||
}
|
||||
// int ctas_per_sm;
|
||||
// cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
||||
// &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);
|
||||
|
@ -139,7 +139,9 @@ impl FlashAttn {
|
||||
|
||||
let elem_count = out_shape.elem_count();
|
||||
let dst = unsafe { dev.alloc::<T>(elem_count) }.w()?;
|
||||
let softmax_lse = dev.alloc_zeros::<f32>(b_sz * num_heads * seqlen_q).w()?;
|
||||
let softmax_lse = dev
|
||||
.alloc_zeros::<f32>(b_sz * 128 * num_heads * seqlen_q)
|
||||
.w()?;
|
||||
|
||||
let is_bf16 = if is_bf16 { 1 } else { 0 };
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-kernels"
|
||||
version = "0.5.0"
|
||||
version = "0.5.1"
|
||||
edition = "2021"
|
||||
|
||||
description = "CUDA kernels for Candle"
|
||||
|
@ -6,5 +6,6 @@ pub const FILL: &str = include_str!(concat!(env!("OUT_DIR"), "/fill.ptx"));
|
||||
pub const INDEXING: &str = include_str!(concat!(env!("OUT_DIR"), "/indexing.ptx"));
|
||||
pub const QUANTIZED: &str = include_str!(concat!(env!("OUT_DIR"), "/quantized.ptx"));
|
||||
pub const REDUCE: &str = include_str!(concat!(env!("OUT_DIR"), "/reduce.ptx"));
|
||||
pub const SORT: &str = include_str!(concat!(env!("OUT_DIR"), "/sort.ptx"));
|
||||
pub const TERNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/ternary.ptx"));
|
||||
pub const UNARY: &str = include_str!(concat!(env!("OUT_DIR"), "/unary.ptx"));
|
||||
|
File diff suppressed because it is too large
Load Diff
88
candle-kernels/src/sort.cu
Normal file
88
candle-kernels/src/sort.cu
Normal file
@ -0,0 +1,88 @@
|
||||
// Adapted from https://github.com/ggerganov/llama.cpp/blob/master/ggml-cuda/argsort.cu
|
||||
#define SORT_ORDER_ASC 1
|
||||
#define SORT_ORDER_DESC 0
|
||||
#include "cuda_utils.cuh"
|
||||
#include<stdint.h>
|
||||
|
||||
template<typename T>
|
||||
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||
T tmp = a;
|
||||
a = b;
|
||||
b = tmp;
|
||||
}
|
||||
|
||||
template<int order, typename T>
|
||||
static __device__ void k_argsort(const T * x, uint32_t * dst, const int ncols, int ncols_pad) {
|
||||
// bitonic sort
|
||||
int col = threadIdx.x;
|
||||
int row = blockIdx.y;
|
||||
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const T * x_row = x + row * ncols;
|
||||
extern __shared__ int dst_row[];
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
|
||||
#define ASORT_OP(TYPENAME, RUST_NAME) \
|
||||
extern "C" __global__ void asort_asc_##RUST_NAME( \
|
||||
const TYPENAME * x, uint32_t * dst, const int ncols, int ncols_pad \
|
||||
) { \
|
||||
k_argsort<SORT_ORDER_ASC>(x, dst, ncols, ncols_pad); \
|
||||
} \
|
||||
extern "C" __global__ void asort_desc_##RUST_NAME( \
|
||||
const TYPENAME * x, uint32_t * dst, const int ncols, int ncols_pad \
|
||||
) { \
|
||||
k_argsort<SORT_ORDER_DESC>(x, dst, ncols, ncols_pad); \
|
||||
} \
|
||||
|
||||
#if __CUDA_ARCH__ >= 800
|
||||
ASORT_OP(__nv_bfloat16, bf16)
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
ASORT_OP(__half, f16)
|
||||
#endif
|
||||
|
||||
ASORT_OP(float, f32)
|
||||
ASORT_OP(double, f64)
|
||||
ASORT_OP(uint8_t, u8)
|
||||
ASORT_OP(uint32_t, u32)
|
||||
ASORT_OP(int64_t, i64)
|
@ -60,6 +60,11 @@ __device__ __forceinline__ T silu_fwd(T x) {
|
||||
return x / (static_cast<T>(1) + expg(-x));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T sigmoid_fwd(T x) {
|
||||
return recipg(static_cast<T>(1) + expg(-x));
|
||||
}
|
||||
|
||||
#define UNARY_OP1(TYPENAME, FN_NAME, FUNC) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t numel, \
|
||||
@ -116,6 +121,7 @@ UNARY_OP1(__nv_bfloat16, uelu_bf16, elu_fwd(x, param))
|
||||
UNARY_OP(__nv_bfloat16, usilu_bf16, silu_fwd(x))
|
||||
UNARY_OP1(__nv_bfloat16, upowf_bf16, powg(x, param))
|
||||
UNARY_OP(__nv_bfloat16, usign_bf16, sign_(x))
|
||||
UNARY_OP(__nv_bfloat16, usigmoid_bf16, sigmoid_fwd(x))
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
@ -142,6 +148,7 @@ UNARY_OP1(__half, uelu_f16, elu_fwd(x, param))
|
||||
UNARY_OP(__half, usilu_f16, silu_fwd(x))
|
||||
UNARY_OP1(__half, upowf_f16, powg(x, param))
|
||||
UNARY_OP(__half, usign_f16, sign_(x))
|
||||
UNARY_OP(__half, usigmoid_f16, sigmoid_fwd(x))
|
||||
#endif
|
||||
|
||||
UNARY_OP(uint8_t, ucopy_u8, x)
|
||||
@ -193,3 +200,5 @@ UNARY_OP1(float, upowf_f32, powg(x, param))
|
||||
UNARY_OP1(double, upowf_f64, powg(x, param))
|
||||
UNARY_OP(float, usign_f32, sign_(x))
|
||||
UNARY_OP(double, usign_f64, sign_(x))
|
||||
UNARY_OP(float, usigmoid_f32, sigmoid_fwd(x))
|
||||
UNARY_OP(double, usigmoid_f64, sigmoid_fwd(x))
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-metal-kernels"
|
||||
version = "0.5.0"
|
||||
version = "0.5.1"
|
||||
edition = "2021"
|
||||
|
||||
description = "Metal kernels for Candle"
|
||||
|
@ -21,6 +21,7 @@ const REDUCE: &str = include_str!("reduce.metal");
|
||||
const RANDOM: &str = include_str!("random.metal");
|
||||
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
|
||||
const QUANTIZED: &str = include_str!("quantized.metal");
|
||||
const SORT: &str = include_str!("sort.metal");
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum Source {
|
||||
@ -35,6 +36,7 @@ pub enum Source {
|
||||
Conv,
|
||||
Random,
|
||||
Quantized,
|
||||
Sort,
|
||||
}
|
||||
|
||||
pub mod copy2d {
|
||||
@ -74,6 +76,30 @@ macro_rules! ops{
|
||||
}
|
||||
}
|
||||
|
||||
pub mod contiguous_tiled {
|
||||
pub struct Kernel(pub &'static str);
|
||||
$(
|
||||
pub mod $name {
|
||||
use super::Kernel;
|
||||
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32_tiled"));
|
||||
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16_tiled"));
|
||||
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16_tiled"));
|
||||
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64_tiled"));
|
||||
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32_tiled"));
|
||||
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8_tiled"));
|
||||
}
|
||||
)+
|
||||
pub mod copy {
|
||||
use super::Kernel;
|
||||
pub const FLOAT: Kernel = Kernel("copy_f32_tiled");
|
||||
pub const HALF: Kernel = Kernel("copy_f16_tiled");
|
||||
pub const BFLOAT: Kernel = Kernel("copy_bf16_tiled");
|
||||
pub const I64: Kernel = Kernel("copy_i64_tiled");
|
||||
pub const U32: Kernel = Kernel("copy_u32_tiled");
|
||||
pub const U8: Kernel = Kernel("copy_u8_tiled");
|
||||
}
|
||||
}
|
||||
|
||||
pub mod strided {
|
||||
pub struct Kernel(pub &'static str);
|
||||
$(
|
||||
@ -103,7 +129,7 @@ macro_rules! ops{
|
||||
pub mod unary {
|
||||
ops!(
|
||||
cos, sin, exp, sqr, sqrt, neg, log, gelu, abs, ceil, floor, relu, round, erf, gelu_erf,
|
||||
tanh, recip, silu, sign
|
||||
tanh, recip, silu, sign, sigmoid
|
||||
);
|
||||
}
|
||||
pub mod binary {
|
||||
@ -173,6 +199,7 @@ impl Kernels {
|
||||
Source::Conv => CONV,
|
||||
Source::Random => RANDOM,
|
||||
Source::Quantized => QUANTIZED,
|
||||
Source::Sort => SORT,
|
||||
Source::Mfa => panic!("Invalid lib"),
|
||||
}
|
||||
}
|
||||
@ -267,30 +294,6 @@ impl Kernels {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_unary_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: unary::contiguous::Kernel,
|
||||
length: usize,
|
||||
input: BufferOffset,
|
||||
output: &Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
set_params!(encoder, (length, &input, output));
|
||||
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
|
||||
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output, metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_copy2d(
|
||||
device: &Device,
|
||||
@ -334,6 +337,58 @@ pub fn call_copy2d(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_unary_contiguous_tiled(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: unary::contiguous_tiled::Kernel,
|
||||
length: usize,
|
||||
input: BufferOffset,
|
||||
output: &Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
let tile_size = 2;
|
||||
let tiles = (length + tile_size - 1) / tile_size;
|
||||
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
set_params!(encoder, (length, &input, output));
|
||||
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, tiles);
|
||||
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output, metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_unary_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: unary::contiguous::Kernel,
|
||||
length: usize,
|
||||
input: BufferOffset,
|
||||
output: &Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
set_params!(encoder, (length, &input, output));
|
||||
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
|
||||
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output, metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_unary_strided(
|
||||
device: &Device,
|
||||
@ -347,16 +402,13 @@ pub fn call_unary_strided(
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
let num_dims: usize = shape.len();
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
|
||||
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
set_params!(encoder, (length, num_dims, shape, strides, &input, &output));
|
||||
|
||||
let width: usize = shape.iter().product();
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
|
||||
|
||||
encoder.use_resource(input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output.buffer, metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
@ -410,10 +462,10 @@ pub fn call_binary_strided(
|
||||
let num_dims: usize = shape.len();
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
let width: usize = shape.iter().product();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
|
||||
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
set_params!(
|
||||
encoder,
|
||||
(
|
||||
@ -427,14 +479,12 @@ pub fn call_binary_strided(
|
||||
output
|
||||
)
|
||||
);
|
||||
|
||||
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
|
||||
|
||||
encoder.use_resource(left_input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(right_input.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output, metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1699,7 +1749,7 @@ pub enum GgmlDType {
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_quantized_matmul_t(
|
||||
pub fn call_quantized_matmul_mv_t(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
@ -1708,7 +1758,8 @@ pub fn call_quantized_matmul_t(
|
||||
lhs: &Buffer,
|
||||
lhs_offset: usize,
|
||||
rhs: &Buffer,
|
||||
output: &Buffer,
|
||||
dst_offset: usize,
|
||||
dst: &Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// Everything is in reverse
|
||||
let ne00 = k as i64;
|
||||
@ -1748,8 +1799,9 @@ pub fn call_quantized_matmul_t(
|
||||
}
|
||||
GgmlDType::Q2K => {
|
||||
// Fixing a bug in Metal for GGML
|
||||
let nth0 = 4;
|
||||
let nth1 = 8;
|
||||
// https://github.com/ggerganov/llama.cpp/blob/b8109bc0139f15a5b321909f47510b89dca47ffc/ggml-metal.m#L1576
|
||||
let nth0 = 2;
|
||||
let nth1 = 32;
|
||||
let align = 4;
|
||||
(nth0, nth1, align)
|
||||
}
|
||||
@ -1821,7 +1873,7 @@ pub fn call_quantized_matmul_t(
|
||||
(
|
||||
rhs,
|
||||
(lhs, lhs_offset),
|
||||
output,
|
||||
(dst, dst_offset),
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
@ -1840,10 +1892,9 @@ pub fn call_quantized_matmul_t(
|
||||
r3
|
||||
)
|
||||
);
|
||||
encoder.set_threadgroup_memory_length(0, 8192);
|
||||
encoder.use_resource(lhs, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(rhs, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(output, metal::MTLResourceUsage::Write);
|
||||
encoder.use_resource(dst, metal::MTLResourceUsage::Write);
|
||||
|
||||
encoder.dispatch_thread_groups(thread_groups_count, threads_per_threadgroup);
|
||||
encoder.end_encoding();
|
||||
@ -2000,5 +2051,42 @@ pub fn call_conv_transpose2d(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_arg_sort(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
name: &'static str,
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
ncols_pad: usize,
|
||||
src: BufferOffset,
|
||||
dst: &Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let pipeline = kernels.load_pipeline(device, Source::Sort, name)?;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
set_params!(encoder, (&src, dst, ncols as i64, ncols_pad as i64));
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: nrows as u64,
|
||||
depth: 1,
|
||||
};
|
||||
let thread_group_size = MTLSize {
|
||||
width: ncols_pad as u64,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.use_resource(src.buffer, metal::MTLResourceUsage::Read);
|
||||
encoder.use_resource(dst, metal::MTLResourceUsage::Write);
|
||||
encoder.set_threadgroup_memory_length(0, (ncols_pad * 4).max(16) as u64);
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
@ -1,3 +1,4 @@
|
||||
// Imported from https://github.com/ggerganov/llama.cpp/blob/master/ggml-metal.metal
|
||||
#include <metal_stdlib>
|
||||
|
||||
using namespace metal;
|
||||
|
97
candle-metal-kernels/src/sort.metal
Normal file
97
candle-metal-kernels/src/sort.metal
Normal file
@ -0,0 +1,97 @@
|
||||
// Imported from https://github.com/ggerganov/llama.cpp/blob/master/ggml-metal.metal
|
||||
#include <metal_stdlib>
|
||||
using namespace metal;
|
||||
|
||||
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
|
||||
#define SORT_ASC 1
|
||||
#define SORT_DESC 0
|
||||
|
||||
template<int order, typename T>
|
||||
METAL_FUNC void argsort(
|
||||
device const T * x,
|
||||
device uint32_t * dst,
|
||||
constant int64_t & ncols,
|
||||
constant int64_t & ncols_pad,
|
||||
threadgroup uint32_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]]) {
|
||||
int col = tpitg[0];
|
||||
int row = tgpig[1];
|
||||
|
||||
if (col >= ncols_pad) return;
|
||||
|
||||
device const T * x_row = x + row * ncols;
|
||||
threadgroup uint32_t * dst_row = shared_values;
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == SORT_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
SWAP(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == SORT_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
SWAP(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
|
||||
#define ARGSORT(T, RUST_T) \
|
||||
kernel void asort_asc_##RUST_T( \
|
||||
device const T * x, \
|
||||
device uint32_t * dst, \
|
||||
constant int64_t & ncols, \
|
||||
constant int64_t & ncols_pad, \
|
||||
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
|
||||
uint3 tgpig[[threadgroup_position_in_grid]], \
|
||||
uint3 tpitg[[thread_position_in_threadgroup]] \
|
||||
) { \
|
||||
argsort<SORT_ASC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
|
||||
} \
|
||||
kernel void asort_desc_##RUST_T( \
|
||||
device const T * x, \
|
||||
device uint32_t * dst, \
|
||||
constant int64_t & ncols, \
|
||||
constant int64_t & ncols_pad, \
|
||||
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
|
||||
uint3 tgpig[[threadgroup_position_in_grid]], \
|
||||
uint3 tpitg[[thread_position_in_threadgroup]] \
|
||||
) { \
|
||||
argsort<SORT_DESC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
|
||||
} \
|
||||
|
||||
ARGSORT(float, f32)
|
||||
ARGSORT(half, f16)
|
||||
ARGSORT(uint8_t, u8)
|
||||
ARGSORT(uint32_t, u32)
|
||||
|
||||
#if __METAL_VERSION__ >= 220
|
||||
ARGSORT(int64_t, i64)
|
||||
#endif
|
||||
#if defined(__HAVE_BFLOAT__)
|
||||
ARGSORT(bfloat, bf16)
|
||||
#endif
|
@ -67,6 +67,11 @@ template <typename T> METAL_FUNC T relu(T in){
|
||||
template <typename T> METAL_FUNC T silu(T in){
|
||||
return in / (static_cast<T>(1) + exp(-in));
|
||||
}
|
||||
template <typename T> METAL_FUNC T sigmoid(T in) {
|
||||
return recip(static_cast<T>(1) + exp(-in));
|
||||
}
|
||||
|
||||
#define TILE_SIZE 2
|
||||
|
||||
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
|
||||
kernel void FN_NAME( \
|
||||
@ -79,8 +84,8 @@ kernel void FN_NAME( \
|
||||
return; \
|
||||
} \
|
||||
output[tid] = TYPENAME(FN(float(input[tid]))); \
|
||||
}\
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
} \
|
||||
kernel void FN_NAME##_##strided( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
@ -93,6 +98,17 @@ kernel void FN_NAME_STRIDED( \
|
||||
return; \
|
||||
} \
|
||||
output[tid] = TYPENAME(FN(float(input[get_strided_index(tid, num_dims, dims, strides)]))); \
|
||||
} \
|
||||
kernel void FN_NAME##_##tiled( \
|
||||
constant size_t &dim, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint tid [[ thread_position_in_grid ]] \
|
||||
) { \
|
||||
for (uint i = 0; i < TILE_SIZE; i++) { \
|
||||
const uint idx = tid * TILE_SIZE + i; \
|
||||
output[idx] = TYPENAME(FN(float(input[idx]))); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define UNARY_OP(NAME) \
|
||||
@ -142,6 +158,7 @@ UNARY_OP(tanh)
|
||||
UNARY_OP(recip)
|
||||
UNARY_OP(relu)
|
||||
UNARY_OP(sign)
|
||||
UNARY_OP(sigmoid)
|
||||
UNARY(id, float, copy_f32, copy_f32_strided)
|
||||
UNARY(id, half, copy_f16, copy_f16_strided)
|
||||
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
|
||||
@ -172,8 +189,9 @@ BFLOAT_UNARY_OP(tanh)
|
||||
BFLOAT_UNARY_OP(recip)
|
||||
BFLOAT_UNARY_OP(relu)
|
||||
BFLOAT_UNARY_OP(sign)
|
||||
BFLOAT_UNARY_OP(sigmoid)
|
||||
|
||||
UNARY(id, bfloat, copy_bf16, copy_bf16_strided)
|
||||
|
||||
COPY2D(copy2d_bf64, bfloat)
|
||||
COPY2D(copy2d_bf16, bfloat)
|
||||
#endif
|
||||
|
101
candle-nn/src/kv_cache.rs
Normal file
101
candle-nn/src/kv_cache.rs
Normal file
@ -0,0 +1,101 @@
|
||||
use candle::{DType, Device, Result, Shape, Tensor};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Cache {
|
||||
all_data: Tensor,
|
||||
dim: usize,
|
||||
current_seq_len: usize,
|
||||
max_seq_len: usize,
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new<S: Into<Shape>, D: candle::shape::Dim>(
|
||||
dim: D,
|
||||
shape: S,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
let dim = dim.to_index(&shape, "kv-cache")?;
|
||||
let max_seq_len = shape.dims()[dim];
|
||||
let all_data = Tensor::zeros(shape, dtype, dev)?;
|
||||
Ok(Self {
|
||||
all_data,
|
||||
dim,
|
||||
current_seq_len: 0,
|
||||
max_seq_len,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
self.dim
|
||||
}
|
||||
|
||||
pub fn current_seq_len(&self) -> usize {
|
||||
self.current_seq_len
|
||||
}
|
||||
|
||||
pub fn max_seq_len(&self) -> usize {
|
||||
self.max_seq_len
|
||||
}
|
||||
|
||||
pub fn all_data(&self) -> &Tensor {
|
||||
&self.all_data
|
||||
}
|
||||
|
||||
pub fn current_data(&self) -> Result<Tensor> {
|
||||
self.all_data.narrow(self.dim, 0, self.current_seq_len)
|
||||
}
|
||||
|
||||
pub fn append(&mut self, src: &Tensor) -> Result<()> {
|
||||
let seq_len = src.dim(self.dim)?;
|
||||
if self.current_seq_len + seq_len > self.max_seq_len {
|
||||
candle::bail!(
|
||||
"kv-cache: above max-seq-len {}+{seq_len}>{}",
|
||||
self.current_seq_len,
|
||||
self.max_seq_len
|
||||
)
|
||||
}
|
||||
self.all_data
|
||||
.slice_set(src, self.dim, self.current_seq_len)?;
|
||||
self.current_seq_len += seq_len;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct KvCache {
|
||||
k: Cache,
|
||||
v: Cache,
|
||||
}
|
||||
|
||||
impl KvCache {
|
||||
pub fn new<S: Into<Shape>, D: candle::shape::Dim>(
|
||||
dim: D,
|
||||
shape: S,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
let dim = dim.to_index(&shape, "kv-cache")?;
|
||||
let k = Cache::new(dim, &shape, dtype, dev)?;
|
||||
let v = Cache::new(dim, &shape, dtype, dev)?;
|
||||
Ok(Self { k, v })
|
||||
}
|
||||
|
||||
pub fn k(&self) -> Result<Tensor> {
|
||||
self.k.current_data()
|
||||
}
|
||||
|
||||
pub fn v(&self) -> Result<Tensor> {
|
||||
self.v.current_data()
|
||||
}
|
||||
|
||||
pub fn append(&mut self, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||
self.k.append(k)?;
|
||||
self.v.append(v)?;
|
||||
let k = self.k.current_data()?;
|
||||
let v = self.v.current_data()?;
|
||||
Ok((k, v))
|
||||
}
|
||||
}
|
@ -28,7 +28,7 @@
|
||||
//! ```
|
||||
//!
|
||||
//! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450
|
||||
use candle::{DType, Result, Tensor, D};
|
||||
use candle::{DType, Module, Result, Tensor, D};
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
pub struct LayerNormConfig {
|
||||
@ -105,7 +105,7 @@ impl LayerNorm {
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::Module for LayerNorm {
|
||||
impl Module for LayerNorm {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x_dtype = x.dtype();
|
||||
let internal_dtype = match x_dtype {
|
||||
@ -162,11 +162,20 @@ impl RmsNorm {
|
||||
pub fn into_inner(self) -> LayerNorm {
|
||||
self.0
|
||||
}
|
||||
|
||||
/// Faster variant of the forward kernel, this can only be used on contiguous tensors though.
|
||||
pub fn forward_diff(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
self.0.forward(xs)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::Module for RmsNorm {
|
||||
impl Module for RmsNorm {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
self.0.forward(xs)
|
||||
if xs.is_contiguous() {
|
||||
crate::ops::rms_norm(xs, &self.0.weight, self.0.eps as f32)
|
||||
} else {
|
||||
self.0.forward(xs)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,7 @@ pub mod encoding;
|
||||
pub mod func;
|
||||
pub mod group_norm;
|
||||
pub mod init;
|
||||
pub mod kv_cache;
|
||||
pub mod layer_norm;
|
||||
pub mod linear;
|
||||
pub mod loss;
|
||||
|
@ -43,9 +43,193 @@ pub fn swiglu(xs: &Tensor) -> Result<Tensor> {
|
||||
&xs[0].silu()? * &xs[1]
|
||||
}
|
||||
|
||||
struct Sigmoid;
|
||||
|
||||
impl candle::CustomOp1 for Sigmoid {
|
||||
fn name(&self) -> &'static str {
|
||||
"sigmoid"
|
||||
}
|
||||
|
||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
|
||||
use candle::backend::BackendStorage;
|
||||
|
||||
fn fwd<T: num_traits::Float>(v: T) -> T {
|
||||
(v.neg().exp() + T::one()).recip()
|
||||
}
|
||||
|
||||
// FIXME: using `candle::map_dtype` causes compilation errors.
|
||||
let storage = match storage {
|
||||
CpuStorage::BF16(slice) => {
|
||||
CpuStorage::BF16(candle::cpu_backend::unary_map(slice, layout, fwd))
|
||||
}
|
||||
CpuStorage::F16(slice) => {
|
||||
CpuStorage::F16(candle::cpu_backend::unary_map(slice, layout, fwd))
|
||||
}
|
||||
CpuStorage::F32(slice) => {
|
||||
CpuStorage::F32(candle::cpu_backend::unary_map(slice, layout, fwd))
|
||||
}
|
||||
CpuStorage::F64(slice) => {
|
||||
CpuStorage::F64(candle::cpu_backend::unary_map(slice, layout, fwd))
|
||||
}
|
||||
_ => Err(candle::Error::UnsupportedDTypeForOp(
|
||||
storage.dtype(),
|
||||
self.name(),
|
||||
))?,
|
||||
};
|
||||
Ok((storage, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
storage: &candle::CudaStorage,
|
||||
layout: &Layout,
|
||||
) -> Result<(candle::CudaStorage, Shape)> {
|
||||
use candle::backend::BackendStorage;
|
||||
use candle::cuda_backend::cudarc::driver::{
|
||||
CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, ValidAsZeroBits,
|
||||
};
|
||||
use candle::cuda_backend::SlicePtrOrNull;
|
||||
use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr};
|
||||
use candle::{CudaDevice, WithDType};
|
||||
|
||||
struct S;
|
||||
impl Map1 for S {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
) -> Result<CudaSlice<T>> {
|
||||
let shape = layout.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(el_count as u32);
|
||||
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
|
||||
let src = &src.slice(layout.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("usigmoid"), kernels::UNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
let out = unsafe { dev.alloc::<T>(el_count) }.w()?;
|
||||
|
||||
let params = (el_count, dims.len(), &ds, src, &out);
|
||||
// SAFETY: ffi.
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
let dev = storage.device();
|
||||
let slice = S.map(&storage.slice, dev, layout)?;
|
||||
let dst = candle::CudaStorage {
|
||||
slice,
|
||||
device: dev.clone(),
|
||||
};
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &candle::MetalStorage,
|
||||
layout: &Layout,
|
||||
) -> Result<(candle::MetalStorage, Shape)> {
|
||||
use candle::backend::BackendStorage;
|
||||
use candle::MetalError;
|
||||
let device = storage.device();
|
||||
let dtype = storage.dtype();
|
||||
let shape = layout.shape();
|
||||
let el_count = shape.elem_count();
|
||||
let buffer = device.new_buffer(el_count, dtype, "sigmoid")?;
|
||||
let command_buffer = device.command_buffer()?;
|
||||
command_buffer.set_label("sigmoid");
|
||||
let src = candle_metal_kernels::BufferOffset {
|
||||
buffer: storage.buffer(),
|
||||
offset_in_bytes: layout.start_offset() * storage.dtype().size_in_bytes(),
|
||||
};
|
||||
|
||||
match (el_count % 2, dtype, layout.is_contiguous()) {
|
||||
(0, DType::BF16 | DType::F16, true) => {
|
||||
use candle_metal_kernels::unary::contiguous_tiled;
|
||||
let kernel_name = match dtype {
|
||||
DType::F16 => contiguous_tiled::sigmoid::HALF,
|
||||
DType::F32 => contiguous_tiled::sigmoid::FLOAT,
|
||||
DType::BF16 => contiguous_tiled::sigmoid::BFLOAT,
|
||||
dtype => {
|
||||
candle::bail!(
|
||||
"Metal contiguous_tiled unary sigmoid {dtype:?} not implemented"
|
||||
)
|
||||
}
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous_tiled(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
kernel_name,
|
||||
el_count,
|
||||
src,
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
(_, _, true) => {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
let kernel_name = match dtype {
|
||||
DType::F16 => contiguous::sigmoid::HALF,
|
||||
DType::F32 => contiguous::sigmoid::FLOAT,
|
||||
DType::BF16 => contiguous::sigmoid::BFLOAT,
|
||||
dtype => {
|
||||
candle::bail!("Metal contiguous unary sigmoid {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
candle_metal_kernels::call_unary_contiguous(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
kernel_name,
|
||||
el_count,
|
||||
src,
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
(_, _, false) => {
|
||||
use candle_metal_kernels::unary::strided;
|
||||
let kernel_name = match dtype {
|
||||
DType::F16 => strided::sigmoid::HALF,
|
||||
DType::F32 => strided::sigmoid::FLOAT,
|
||||
DType::BF16 => strided::sigmoid::BFLOAT,
|
||||
dtype => {
|
||||
candle::bail!("Metal strided unary sigmoid {dtype:?} not implemented")
|
||||
}
|
||||
};
|
||||
let dst = candle_metal_kernels::BufferOffset::zero_offset(&buffer);
|
||||
candle_metal_kernels::call_unary_strided(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
kernel_name,
|
||||
layout.dims(),
|
||||
src,
|
||||
layout.stride(),
|
||||
dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
}
|
||||
|
||||
let new_storage = candle::MetalStorage::new(buffer, device.clone(), el_count, dtype);
|
||||
Ok((new_storage, layout.shape().clone()))
|
||||
}
|
||||
|
||||
fn bwd(&self, _arg: &Tensor, res: &Tensor, grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||
// d/dx sigmoid(x) = (1 - sigmoid(x)) * sigmoid(x)
|
||||
let d_dx_sigmoid = res.ones_like()?.sub(res)?.mul(res)?;
|
||||
Ok(Some(grad_res.mul(&d_dx_sigmoid)?))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
|
||||
// TODO: Should we have a specialized op for this?
|
||||
(xs.neg()?.exp()? + 1.0)?.recip()
|
||||
xs.apply_op1(Sigmoid)
|
||||
}
|
||||
|
||||
pub fn hard_sigmoid(xs: &Tensor) -> Result<Tensor> {
|
||||
@ -70,7 +254,7 @@ pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> {
|
||||
let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?;
|
||||
let scale = 1.0 / (1.0 - drop_p as f64);
|
||||
let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?;
|
||||
let mask = (rand.ge(&drop_p)? * scale)?.to_dtype(xs.dtype())?;
|
||||
let mask = (rand.ge(&drop_p)?.to_dtype(xs.dtype())? * scale)?;
|
||||
xs * mask
|
||||
}
|
||||
|
||||
|
@ -264,7 +264,7 @@ impl SimpleBackend for VarMap {
|
||||
}
|
||||
}
|
||||
|
||||
struct SafeTensorWithRouting<'a> {
|
||||
pub struct SafeTensorWithRouting<'a> {
|
||||
routing: HashMap<String, usize>,
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
}
|
||||
@ -422,6 +422,32 @@ impl SimpleBackend for candle::safetensors::BufferedSafetensors {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> SimpleBackend for candle::safetensors::SliceSafetensors<'a> {
|
||||
fn get(
|
||||
&self,
|
||||
s: Shape,
|
||||
name: &str,
|
||||
_: crate::Init,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let tensor = self.load(name, dev)?.to_dtype(dtype)?;
|
||||
if tensor.shape() != &s {
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg: format!("shape mismatch for {name}"),
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn contains_tensor(&self, name: &str) -> bool {
|
||||
self.get(name).is_ok()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
/// Initializes a `VarBuilder` using a custom backend.
|
||||
///
|
||||
@ -481,12 +507,18 @@ impl<'a> VarBuilder<'a> {
|
||||
Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
|
||||
}
|
||||
|
||||
/// Initializes a `VarBuilder` from a binary builder in the safetensor format.
|
||||
/// Initializes a `VarBuilder` from a binary buffer in the safetensor format.
|
||||
pub fn from_buffered_safetensors(data: Vec<u8>, dtype: DType, dev: &Device) -> Result<Self> {
|
||||
let tensors = candle::safetensors::BufferedSafetensors::new(data)?;
|
||||
Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
|
||||
}
|
||||
|
||||
/// Initializes a `VarBuilder` from a binary slice in the safetensor format.
|
||||
pub fn from_slice_safetensors(data: &'a [u8], dtype: DType, dev: &Device) -> Result<Self> {
|
||||
let tensors = candle::safetensors::SliceSafetensors::new(data)?;
|
||||
Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
|
||||
}
|
||||
|
||||
/// Initializes a `VarBuilder` that retrieves tensors stored in a numpy npz file.
|
||||
pub fn from_npz<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
|
||||
let npz = candle::npy::NpzTensors::new(p)?;
|
||||
@ -498,6 +530,53 @@ impl<'a> VarBuilder<'a> {
|
||||
let pth = candle::pickle::PthTensors::new(p, None)?;
|
||||
Ok(Self::from_backend(Box::new(pth), dtype, dev.clone()))
|
||||
}
|
||||
|
||||
/// Gets a VarBuilder that applies some renaming function on tensor it gets queried for before
|
||||
/// passing the new names to the inner VarBuilder.
|
||||
///
|
||||
/// ```rust
|
||||
/// use candle::{Tensor, DType, Device};
|
||||
///
|
||||
/// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
|
||||
/// let tensors: std::collections::HashMap<_, _> = [
|
||||
/// ("foo".to_string(), a),
|
||||
/// ]
|
||||
/// .into_iter()
|
||||
/// .collect();
|
||||
/// let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, &Device::Cpu);
|
||||
/// assert!(vb.contains_tensor("foo"));
|
||||
/// assert!(vb.get((2, 3), "foo").is_ok());
|
||||
/// assert!(!vb.contains_tensor("bar"));
|
||||
/// let vb = vb.rename_f(|f: &str| if f == "bar" { "foo".to_string() } else { f.to_string() });
|
||||
/// assert!(vb.contains_tensor("bar"));
|
||||
/// assert!(vb.contains_tensor("foo"));
|
||||
/// assert!(vb.get((2, 3), "bar").is_ok());
|
||||
/// assert!(vb.get((2, 3), "foo").is_ok());
|
||||
/// assert!(!vb.contains_tensor("baz"));
|
||||
/// # Ok::<(), candle::Error>(())
|
||||
/// ```
|
||||
pub fn rename_f<F: Fn(&str) -> String + Sync + Send + 'static>(self, f: F) -> Self {
|
||||
let f: Box<dyn Fn(&str) -> String + Sync + Send + 'static> = Box::new(f);
|
||||
self.rename(f)
|
||||
}
|
||||
|
||||
pub fn rename<R: Renamer + Send + Sync + 'a>(self, renamer: R) -> Self {
|
||||
let dtype = self.dtype();
|
||||
let device = self.device().clone();
|
||||
let path = self.path.clone();
|
||||
let backend = Rename::new(self, renamer);
|
||||
let backend: Box<dyn SimpleBackend + 'a> = Box::new(backend);
|
||||
let data = TensorData {
|
||||
backend,
|
||||
dtype,
|
||||
device,
|
||||
};
|
||||
Self {
|
||||
data: Arc::new(data),
|
||||
path,
|
||||
_phantom: std::marker::PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ShardedSafeTensors(candle::safetensors::MmapedSafetensors);
|
||||
@ -618,3 +697,49 @@ impl Backend for ShardedSafeTensors {
|
||||
self.0.get(name).is_ok()
|
||||
}
|
||||
}
|
||||
|
||||
/// This traits specifies a way to rename the queried names into names that are stored in an inner
|
||||
/// VarBuilder.
|
||||
pub trait Renamer {
|
||||
/// This is applied to the name obtained by a name call and the resulting name is passed to the
|
||||
/// inner VarBuilder.
|
||||
fn rename(&self, v: &str) -> std::borrow::Cow<'_, str>;
|
||||
}
|
||||
|
||||
pub struct Rename<'a, R: Renamer> {
|
||||
inner: VarBuilder<'a>,
|
||||
renamer: R,
|
||||
}
|
||||
|
||||
impl<'a, R: Renamer + Sync + Send> SimpleBackend for Rename<'a, R> {
|
||||
fn get(
|
||||
&self,
|
||||
s: Shape,
|
||||
name: &str,
|
||||
h: crate::Init,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let name = self.renamer.rename(name);
|
||||
self.inner
|
||||
.get_with_hints_dtype(s, &name, h, dtype)?
|
||||
.to_device(dev)
|
||||
}
|
||||
|
||||
fn contains_tensor(&self, name: &str) -> bool {
|
||||
let name = self.renamer.rename(name);
|
||||
self.inner.contains_tensor(&name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, R: Renamer> Rename<'a, R> {
|
||||
pub fn new(inner: VarBuilder<'a>, renamer: R) -> Self {
|
||||
Self { inner, renamer }
|
||||
}
|
||||
}
|
||||
|
||||
impl Renamer for Box<dyn Fn(&str) -> String + Sync + Send> {
|
||||
fn rename(&self, v: &str) -> std::borrow::Cow<'_, str> {
|
||||
std::borrow::Cow::Owned(self(v))
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,7 @@ extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{test_utils, DType, Device, Tensor};
|
||||
use candle_nn::BatchNorm;
|
||||
use candle_nn::{batch_norm, BatchNorm, BatchNormConfig, VarBuilder, VarMap};
|
||||
|
||||
/* The test below has been generated using the following PyTorch code:
|
||||
import torch
|
||||
@ -20,7 +20,7 @@ print(m.running_mean)
|
||||
print(m.running_var)
|
||||
*/
|
||||
#[test]
|
||||
fn batch_norm() -> Result<()> {
|
||||
fn batch_norm_test() -> Result<()> {
|
||||
let running_mean = Tensor::zeros(5, DType::F32, &Device::Cpu)?;
|
||||
let running_var = Tensor::ones(5, DType::F32, &Device::Cpu)?;
|
||||
let bn = BatchNorm::new_no_bias(5, running_mean.clone(), running_var.clone(), 1e-8)?;
|
||||
@ -84,3 +84,45 @@ fn batch_norm() -> Result<()> {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// This test makes sure that we can train a batch norm layer using a VarMap.
|
||||
#[test]
|
||||
fn train_batch_norm() -> Result<()> {
|
||||
let vm = VarMap::new();
|
||||
let vb = VarBuilder::from_varmap(&vm, DType::F32, &Device::Cpu);
|
||||
let bn = batch_norm(1, BatchNormConfig::default(), vb)?;
|
||||
// Get a copy of the original mean to ensure it is being updated.
|
||||
let original_mean = bn.running_mean().detach().copy()?;
|
||||
let var_map_mean = {
|
||||
vm.data()
|
||||
.lock()
|
||||
.unwrap()
|
||||
.get("running_mean")
|
||||
.unwrap()
|
||||
.clone()
|
||||
};
|
||||
// Ensure the var map mean is the same as the running mean.
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(bn.running_mean(), 4)?,
|
||||
test_utils::to_vec1_round(var_map_mean.as_tensor(), 4)?,
|
||||
);
|
||||
// Train with a something guaranteed to be different from the running mean.
|
||||
let mean_plus_one = {
|
||||
let one = original_mean.ones_like()?;
|
||||
original_mean.add(&one)?.reshape((1, 1))?
|
||||
};
|
||||
|
||||
bn.forward_train(&mean_plus_one)?;
|
||||
// Assert that the running mean has been updated.
|
||||
assert_ne!(
|
||||
test_utils::to_vec1_round(bn.running_mean(), 4)?,
|
||||
test_utils::to_vec1_round(&original_mean, 4)?,
|
||||
);
|
||||
|
||||
// Assert that the var map mean has been updated.
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(bn.running_mean(), 4)?,
|
||||
test_utils::to_vec1_round(var_map_mean.as_tensor(), 4)?,
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -170,8 +170,19 @@ fn rope_thd(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn sigmoid(device: &Device) -> Result<()> {
|
||||
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
|
||||
let tensor = Tensor::new(data, device)?;
|
||||
let s1 = candle_nn::ops::sigmoid(&tensor)?;
|
||||
let s2 = (1. / (1. + tensor.neg()?.exp()?)?)?;
|
||||
let diff = (s1 - s2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(ropei, ropei_cpu, ropei_gpu, ropei_metal);
|
||||
test_device!(rope, rope_cpu, rope_gpu, rope_metal);
|
||||
test_device!(rope_thd, rope_thd_cpu, rope_thd_gpu, rope_thd_metal);
|
||||
test_device!(softmax, softmax_cpu, softmax_gpu, softmax_metal);
|
||||
test_device!(rms_norm, rms_norm_cpu, rms_norm_gpu, rms_norm_metal);
|
||||
test_device!(sigmoid, sigmoid_cpu, sigmoid_gpu, sigmoid_metal);
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "candle-onnx"
|
||||
version = "0.5.0"
|
||||
version = "0.5.1"
|
||||
edition = "2021"
|
||||
|
||||
description = "ONNX support for Candle"
|
||||
@ -10,8 +10,8 @@ categories = ["science"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../candle-core", package = "candle-core", version = "0.5.0" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.5.0" }
|
||||
candle = { path = "../candle-core", package = "candle-core", version = "0.5.1" }
|
||||
candle-nn = { path = "../candle-nn", version = "0.5.1" }
|
||||
prost = "0.12.1"
|
||||
|
||||
[build-dependencies]
|
||||
|
@ -2,7 +2,7 @@ use crate::onnx;
|
||||
use crate::onnx::attribute_proto::AttributeType;
|
||||
use crate::onnx::tensor_proto::DataType;
|
||||
use candle::{bail, DType, Device, Result, Tensor};
|
||||
use std::collections::HashMap;
|
||||
use std::{collections::HashMap, usize};
|
||||
|
||||
pub type Value = Tensor;
|
||||
|
||||
@ -23,6 +23,11 @@ trait Attr {
|
||||
fn get(attr: &onnx::AttributeProto) -> Result<&Self>;
|
||||
}
|
||||
|
||||
trait AttrOwned: Sized {
|
||||
const TYPE: AttributeType;
|
||||
fn get(attr: &onnx::AttributeProto) -> Result<Self>;
|
||||
}
|
||||
|
||||
impl Attr for i64 {
|
||||
const TYPE: AttributeType = AttributeType::Int;
|
||||
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
|
||||
@ -51,6 +56,50 @@ impl Attr for str {
|
||||
}
|
||||
}
|
||||
|
||||
impl AttrOwned for Tensor {
|
||||
const TYPE: AttributeType = AttributeType::Tensor;
|
||||
fn get(attr: &onnx::AttributeProto) -> Result<Self> {
|
||||
let tensor_proto = match &attr.t {
|
||||
Some(value) => value,
|
||||
None => bail!(
|
||||
"attribute {} was of type TENSOR, but no tensor was found",
|
||||
attr.name
|
||||
),
|
||||
};
|
||||
|
||||
let data_type = match DataType::try_from(tensor_proto.data_type) {
|
||||
Ok(value) => value,
|
||||
Err(_) => bail!(
|
||||
"attribute {} of type TENSOR was an invalid data_type number {}",
|
||||
attr.name,
|
||||
tensor_proto.data_type
|
||||
),
|
||||
};
|
||||
|
||||
let dtype = match dtype(data_type) {
|
||||
Some(value) => value,
|
||||
None => bail!(
|
||||
"attribute {} of type TENSOR has an unsupported data_type {}",
|
||||
attr.name,
|
||||
data_type.as_str_name()
|
||||
),
|
||||
};
|
||||
|
||||
let mut dims = Vec::with_capacity(tensor_proto.dims.len());
|
||||
for dim in &tensor_proto.dims {
|
||||
if dim < &0 {
|
||||
bail!(
|
||||
"attribute {} of type TENSOR has a negative dimension, which is unsupported",
|
||||
attr.name
|
||||
)
|
||||
}
|
||||
dims.push(*dim as usize)
|
||||
}
|
||||
|
||||
Tensor::from_raw_buffer(&tensor_proto.raw_data, dtype, &dims, &Device::Cpu)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_attr_<'a>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a onnx::AttributeProto> {
|
||||
match node.attribute.iter().find(|attr| attr.name == name) {
|
||||
None => {
|
||||
@ -98,6 +147,24 @@ fn get_attr_opt<'a, T: Attr + ?Sized>(
|
||||
}
|
||||
}
|
||||
|
||||
fn get_attr_opt_owned<T: AttrOwned>(node: &onnx::NodeProto, name: &str) -> Result<Option<T>> {
|
||||
match node.attribute.iter().find(|attr| attr.name == name) {
|
||||
None => Ok(None),
|
||||
Some(attr) => {
|
||||
if attr.r#type() != T::TYPE {
|
||||
bail!(
|
||||
"unsupported type {:?} for '{name}' attribute in '{}' for {}",
|
||||
attr.r#type,
|
||||
node.op_type,
|
||||
node.name
|
||||
)
|
||||
}
|
||||
let val = T::get(attr)?;
|
||||
Ok(Some(val))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_tensor(t: &onnx::TensorProto, name: &str) -> Result<Tensor> {
|
||||
let dims: Vec<usize> = t.dims.iter().map(|&x| x as usize).collect();
|
||||
match DataType::try_from(t.data_type) {
|
||||
@ -260,6 +327,11 @@ pub fn simple_eval(
|
||||
let output = input0.broadcast_pow(input1)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Exp" => {
|
||||
let xs = get(&node.input[0])?;
|
||||
let output = xs.exp()?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Equal" => {
|
||||
let input0 = get(&node.input[0])?;
|
||||
let input1 = get(&node.input[1])?;
|
||||
@ -458,14 +530,17 @@ pub fn simple_eval(
|
||||
}
|
||||
values.insert(node.output[0].clone(), xs);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#ConstantOfShape
|
||||
"ConstantOfShape" => {
|
||||
let dims = get(&node.input[0])?;
|
||||
let shape = dims
|
||||
.to_vec1::<i64>()?
|
||||
.into_iter()
|
||||
.map(|v| v as usize)
|
||||
.collect::<Vec<_>>();
|
||||
let xs = Tensor::zeros(shape, DType::F32, dims.device())?;
|
||||
let input = get(&node.input[0])?;
|
||||
let value = get_attr_opt_owned::<Tensor>(node, "value")?.unwrap_or(Tensor::zeros(
|
||||
(),
|
||||
DType::F32,
|
||||
&Device::Cpu,
|
||||
)?);
|
||||
|
||||
let xs = Tensor::ones(input.shape(), value.dtype(), input.device())?
|
||||
.broadcast_mul(&value)?;
|
||||
values.insert(node.output[0].clone(), xs);
|
||||
}
|
||||
"Unsqueeze" => {
|
||||
@ -552,6 +627,82 @@ pub fn simple_eval(
|
||||
let dims = Tensor::from_vec(dims, xs.rank(), xs.device())?;
|
||||
values.insert(node.output[0].clone(), dims);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sqrt
|
||||
"Sqrt" => {
|
||||
let xs = get(&node.input[0])?;
|
||||
let output = xs.sqrt()?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Range
|
||||
"Range" => {
|
||||
let start = get(&node.input[0])?;
|
||||
let limit = get(&node.input[1])?;
|
||||
let delta = get(&node.input[2])?;
|
||||
|
||||
macro_rules! arange_step {
|
||||
($t: ty) => {
|
||||
Tensor::arange_step(
|
||||
start.to_vec0::<$t>()?,
|
||||
limit.to_vec0::<$t>()?,
|
||||
delta.to_vec0::<$t>()?,
|
||||
&Device::Cpu,
|
||||
)?
|
||||
};
|
||||
}
|
||||
|
||||
let output = match start.dtype() {
|
||||
DType::U8 => arange_step!(u8),
|
||||
DType::U32 => arange_step!(u32),
|
||||
DType::I64 => arange_step!(i64),
|
||||
DType::BF16 => arange_step!(f32),
|
||||
DType::F16 => arange_step!(f32),
|
||||
DType::F32 => arange_step!(f32),
|
||||
DType::F64 => arange_step!(f64),
|
||||
};
|
||||
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Greater
|
||||
"Greater" => {
|
||||
let a = get(&node.input[0])?;
|
||||
let b = get(&node.input[1])?;
|
||||
|
||||
let output = a.broadcast_gt(b)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Less
|
||||
"Less" => {
|
||||
let a = get(&node.input[0])?;
|
||||
let b = get(&node.input[1])?;
|
||||
|
||||
let output = a.broadcast_lt(b)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Log
|
||||
"Log" => {
|
||||
let a = get(&node.input[0])?;
|
||||
|
||||
let output = a.log()?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Min
|
||||
"Min" => {
|
||||
let mut output = get(&node.input[0])?.clone();
|
||||
for input in node.input.iter() {
|
||||
let input = get(input)?;
|
||||
output = output.broadcast_minimum(input)?
|
||||
}
|
||||
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Where
|
||||
"Where" => {
|
||||
let cond = get(&node.input[0])?;
|
||||
let a = get(&node.input[1])?;
|
||||
let b = get(&node.input[2])?;
|
||||
let output = cond.where_cond(a, b)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Conv" => {
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv
|
||||
let dilations = get_attr_opt::<[i64]>(node, "dilations")?;
|
||||
@ -797,6 +948,75 @@ pub fn simple_eval(
|
||||
let input = get(&node.input[0])?;
|
||||
values.insert(node.output[0].clone(), input.clone());
|
||||
}
|
||||
// https://onnx.ai/onnx/operators/onnx__ReduceMean.html#reducemean-13
|
||||
// TODO: This version is only compatible with ReduceMean V13 and below.
|
||||
"ReduceMean" => {
|
||||
let input = get(&node.input[0])?;
|
||||
let axes = get_attr_opt::<[i64]>(node, "axes")?;
|
||||
let keepdims = get_attr_opt::<i64>(node, "keepdims")?.copied().unwrap_or(1);
|
||||
|
||||
let n_dims = input.dims().len();
|
||||
|
||||
let axes: Vec<usize> = if let Some(axes) = axes {
|
||||
axes.iter()
|
||||
.map(|e| (if e < &0 { (n_dims as i64) + *e } else { *e }) as usize)
|
||||
.collect()
|
||||
} else {
|
||||
(0..n_dims).collect()
|
||||
};
|
||||
let output = if keepdims == 1 {
|
||||
input.mean_keepdim(axes)?
|
||||
} else {
|
||||
input.mean(axes)?
|
||||
};
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
random_type @ ("RandomUniform" | "RandomNormal") => {
|
||||
let dt: i64 = get_attr_opt(node, "dtype")?.copied().unwrap_or(1); // 1 is float
|
||||
// type by
|
||||
// default
|
||||
let dtype = match DataType::try_from(dt as i32) {
|
||||
Ok(dt) => match dtype(dt) {
|
||||
Some(DType::U8 | DType::U32 | DType::I64) => {
|
||||
bail!(
|
||||
"unsupported 'dtype' value {dt:?}, only floats are allowed, for {random_type} {}",
|
||||
node.name
|
||||
)
|
||||
}
|
||||
Some(dt) => dt,
|
||||
None => {
|
||||
bail!(
|
||||
"unsupported 'dtype' value {dt:?} for {random_type} {}",
|
||||
node.name
|
||||
)
|
||||
}
|
||||
},
|
||||
Err(_) => {
|
||||
bail!(
|
||||
"unsupported 'dtype' value {dt:?} for {random_type} {}",
|
||||
node.name
|
||||
)
|
||||
}
|
||||
};
|
||||
let seed: Option<f32> = get_attr_opt(node, "seed")?.copied();
|
||||
if seed.is_some() {
|
||||
bail!("seed for {random_type} is currently not supported")
|
||||
};
|
||||
let shape: Vec<usize> = get_attr::<[i64]>(node, "shape")?
|
||||
.iter()
|
||||
.map(|x| *x as usize)
|
||||
.collect();
|
||||
let output = if random_type == "RandomUniform" {
|
||||
let low: f32 = get_attr_opt(node, "low")?.copied().unwrap_or(0.0);
|
||||
let high: f32 = get_attr_opt(node, "high")?.copied().unwrap_or(1.0);
|
||||
Tensor::rand(low, high, shape, &Device::Cpu)?.to_dtype(dtype)?
|
||||
} else {
|
||||
let mean: f32 = get_attr_opt(node, "mean")?.copied().unwrap_or(0.0);
|
||||
let scale: f32 = get_attr_opt(node, "scale")?.copied().unwrap_or(1.0);
|
||||
Tensor::randn(mean, scale, shape, &Device::Cpu)?.to_dtype(dtype)?
|
||||
};
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
op_type => bail!("unsupported op_type {op_type} for op {node:?}"),
|
||||
}
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -120,7 +120,7 @@ fn rotate_half(x: &Tensor) -> Result<Tensor> {
|
||||
Ok(x21)
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct FalconRotaryEmbedding {
|
||||
inv_freq: Tensor,
|
||||
cache: Option<(usize, Tensor, Tensor)>,
|
||||
@ -186,7 +186,7 @@ fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor>
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct FalconAttention {
|
||||
query_key_value: Linear,
|
||||
dense: Linear,
|
||||
@ -315,9 +315,13 @@ impl FalconAttention {
|
||||
let attn_output = self.dense.forward(&attn_output)?;
|
||||
Ok(attn_output)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct FalconMlp {
|
||||
dense_h_to_4h: Linear,
|
||||
dense_4h_to_h: Linear,
|
||||
@ -342,7 +346,7 @@ impl FalconMlp {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Clone)]
|
||||
struct FalconDecoderLayer {
|
||||
inp_layernorm: LayerNorm,
|
||||
self_attention: FalconAttention,
|
||||
@ -402,9 +406,13 @@ impl FalconDecoderLayer {
|
||||
let output = (mlp_output + residual)?;
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.self_attention.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Falcon {
|
||||
word_embeddings: Embedding,
|
||||
blocks: Vec<FalconDecoderLayer>,
|
||||
@ -477,4 +485,10 @@ impl Falcon {
|
||||
let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?;
|
||||
Ok(logits)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for block in self.blocks.iter_mut() {
|
||||
block.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -73,13 +73,6 @@ struct RotaryEmbedding {
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
|
||||
let last_dim = xs.dim(D::Minus1)?;
|
||||
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
|
||||
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
|
||||
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = cfg.head_dim;
|
||||
@ -94,7 +87,6 @@ impl RotaryEmbedding {
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
@ -110,10 +102,8 @@ impl RotaryEmbedding {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
|
||||
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
|
||||
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
@ -163,10 +153,16 @@ struct Attention {
|
||||
head_dim: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
use_flash_attn: bool,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
fn new(
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
use_flash_attn: bool,
|
||||
cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let hidden_sz = cfg.hidden_size;
|
||||
let num_heads = cfg.num_attention_heads;
|
||||
let num_kv_heads = cfg.num_key_value_heads;
|
||||
@ -188,21 +184,10 @@ impl Attention {
|
||||
head_dim,
|
||||
rotary_emb,
|
||||
kv_cache: None,
|
||||
use_flash_attn,
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -239,10 +224,18 @@ impl Attention {
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let attn_output = if self.use_flash_attn {
|
||||
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
|
||||
let q = query_states.transpose(1, 2)?;
|
||||
let k = key_states.transpose(1, 2)?;
|
||||
let v = value_states.transpose(1, 2)?;
|
||||
let scale = 1f32 / (self.head_dim as f32).sqrt();
|
||||
flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)?
|
||||
} else {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||
|
||||
@ -264,6 +257,22 @@ impl Attention {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
fn flash_attn(
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
v: &Tensor,
|
||||
softmax_scale: f32,
|
||||
causal: bool,
|
||||
) -> Result<Tensor> {
|
||||
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "flash-attn"))]
|
||||
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
|
||||
unimplemented!("compile with '--features flash-attn'")
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
@ -273,8 +282,13 @@ struct DecoderLayer {
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
||||
fn new(
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
use_flash_attn: bool,
|
||||
cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?;
|
||||
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
||||
let input_layernorm =
|
||||
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
@ -323,7 +337,7 @@ pub struct Model {
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_m = vb.pp("model");
|
||||
let embed_tokens =
|
||||
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||
@ -331,7 +345,8 @@ impl Model {
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_l = vb_m.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
||||
let layer =
|
||||
DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
||||
|
@ -16,6 +16,14 @@ pub struct LlamaConfig {
|
||||
pub rms_norm_eps: f64,
|
||||
#[serde(default = "default_rope")]
|
||||
pub rope_theta: f32,
|
||||
pub bos_token_id: Option<u32>,
|
||||
pub eos_token_id: Option<u32>,
|
||||
}
|
||||
|
||||
impl LlamaConfig {
|
||||
pub fn num_key_value_heads(&self) -> usize {
|
||||
self.num_key_value_heads.unwrap_or(self.num_attention_heads)
|
||||
}
|
||||
}
|
||||
|
||||
fn default_rope() -> f32 {
|
||||
@ -30,10 +38,12 @@ impl LlamaConfig {
|
||||
vocab_size: self.vocab_size,
|
||||
num_hidden_layers: self.num_hidden_layers,
|
||||
num_attention_heads: self.num_attention_heads,
|
||||
num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
|
||||
num_key_value_heads: self.num_key_value_heads(),
|
||||
rms_norm_eps: self.rms_norm_eps,
|
||||
rope_theta: self.rope_theta,
|
||||
use_flash_attn,
|
||||
bos_token_id: self.bos_token_id,
|
||||
eos_token_id: self.eos_token_id,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -49,6 +59,8 @@ pub struct Config {
|
||||
pub use_flash_attn: bool,
|
||||
pub rms_norm_eps: f64,
|
||||
pub rope_theta: f32,
|
||||
pub bos_token_id: Option<u32>,
|
||||
pub eos_token_id: Option<u32>,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
@ -63,6 +75,8 @@ impl Config {
|
||||
use_flash_attn,
|
||||
rms_norm_eps: 1e-6,
|
||||
rope_theta: 10_000.0,
|
||||
bos_token_id: None,
|
||||
eos_token_id: None,
|
||||
}
|
||||
}
|
||||
|
||||
@ -77,6 +91,8 @@ impl Config {
|
||||
use_flash_attn,
|
||||
rms_norm_eps: 1e-5,
|
||||
rope_theta: 10_000.0,
|
||||
bos_token_id: None,
|
||||
eos_token_id: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -106,7 +122,6 @@ impl Cache {
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
|
||||
let cos = idx_theta.cos()?.to_dtype(dtype)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(dtype)?;
|
||||
Ok(Self {
|
||||
@ -166,16 +181,10 @@ fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Ten
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize, cache: &Cache) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
|
||||
let (_b_sz, _, seq_len, _hidden_size) = x.dims4()?;
|
||||
let cos = cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
|
||||
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
|
||||
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
|
||||
Ok(rope)
|
||||
candle_nn::rotary_emb::rope(x, &cos, &sin)
|
||||
}
|
||||
|
||||
fn forward(
|
||||
@ -193,10 +202,12 @@ impl CausalSelfAttention {
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let mut v = v
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
@ -256,17 +267,7 @@ impl CausalSelfAttention {
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_attention_heads / self.num_key_value_heads;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
|
||||
let x = x
|
||||
.unsqueeze(2)?
|
||||
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
|
||||
Ok(x)
|
||||
}
|
||||
crate::utils::repeat_kv(x, self.num_attention_heads / self.num_key_value_heads)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
|
@ -216,18 +216,6 @@ impl Attention {
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -266,8 +254,8 @@ impl Attention {
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?;
|
||||
let value_states = self.repeat_kv(value_states)?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
|
||||
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
|
||||
|
||||
let attn_output = if self.use_flash_attn {
|
||||
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
|
||||
|
@ -158,18 +158,6 @@ impl Attention {
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -206,8 +194,8 @@ impl Attention {
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?;
|
||||
let value_states = self.repeat_kv(value_states)?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
|
||||
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
|
||||
|
||||
let attn_output = if self.use_flash_attn {
|
||||
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
|
||||
|
@ -26,8 +26,10 @@ pub mod mixtral;
|
||||
pub mod mobileone;
|
||||
pub mod moondream;
|
||||
pub mod mpt;
|
||||
pub mod olmo;
|
||||
pub mod persimmon;
|
||||
pub mod phi;
|
||||
pub mod phi3;
|
||||
pub mod quantized_blip;
|
||||
pub mod quantized_blip_text;
|
||||
pub mod quantized_llama;
|
||||
@ -37,12 +39,16 @@ pub mod quantized_mistral;
|
||||
pub mod quantized_mixformer;
|
||||
pub mod quantized_moondream;
|
||||
pub mod quantized_mpt;
|
||||
pub mod quantized_phi;
|
||||
pub mod quantized_phi3;
|
||||
pub mod quantized_recurrent_gemma;
|
||||
pub mod quantized_rwkv_v5;
|
||||
pub mod quantized_rwkv_v6;
|
||||
pub mod quantized_stable_lm;
|
||||
pub mod quantized_t5;
|
||||
pub mod qwen2;
|
||||
pub mod qwen2_moe;
|
||||
pub mod recurrent_gemma;
|
||||
pub mod repvgg;
|
||||
pub mod resnet;
|
||||
pub mod rwkv_v5;
|
||||
|
@ -302,6 +302,7 @@ impl Module for VisionEncoder {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
pub text_model: PhiModel,
|
||||
pub vision_encoder: VisionEncoder,
|
||||
|
@ -104,8 +104,8 @@ impl GroupedQueryAttention {
|
||||
};
|
||||
self.kv_cache = Some((key.clone(), value.clone()));
|
||||
let query = query.contiguous()?;
|
||||
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let key = crate::utils::repeat_kv(key, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let value = crate::utils::repeat_kv(value, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
|
||||
let attn_bias = {
|
||||
let s_q = query.dim(D::Minus2)?;
|
||||
@ -134,20 +134,6 @@ impl GroupedQueryAttention {
|
||||
}
|
||||
}
|
||||
|
||||
// This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
||||
// The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
|
||||
// (batch, num_attention_heads, seqlen, head_dim)
|
||||
pub(crate) fn repeat_kv(xs: Tensor, n_rep: usize) -> Result<Tensor> {
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Ffn {
|
||||
up_proj: Linear,
|
||||
|
337
candle-transformers/src/models/olmo.rs
Normal file
337
candle-transformers/src/models/olmo.rs
Normal file
@ -0,0 +1,337 @@
|
||||
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||
use candle_nn::{linear_b, linear_no_bias, Activation, LayerNorm, Linear, VarBuilder};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
pub struct Config {
|
||||
pub vocab_size: usize,
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub attention_bias: bool,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub hidden_act: candle_nn::Activation,
|
||||
pub max_position_embeddings: usize,
|
||||
pub rope_theta: f64,
|
||||
pub tie_word_embeddings: bool,
|
||||
pub clip_qkv: Option<f64>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = cfg.hidden_size / cfg.num_attention_heads;
|
||||
let max_seq_len = cfg.max_position_embeddings;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
fn apply_rotary_emb_qkv(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
struct MLP {
|
||||
gate_proj: Linear,
|
||||
up_proj: Linear,
|
||||
down_proj: Linear,
|
||||
act_fn: Activation,
|
||||
}
|
||||
|
||||
impl MLP {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let hidden_sz = cfg.hidden_size;
|
||||
let intermediate_sz = cfg.intermediate_size;
|
||||
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
|
||||
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
|
||||
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
gate_proj,
|
||||
up_proj,
|
||||
down_proj,
|
||||
act_fn: cfg.hidden_act,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for MLP {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
||||
let rhs = xs.apply(&self.up_proj)?;
|
||||
(lhs * rhs)?.apply(&self.down_proj)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Attention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
head_dim: usize,
|
||||
hidden_size: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
qkv_clip: Option<f64>,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let hidden_sz = cfg.hidden_size;
|
||||
let num_heads = cfg.num_attention_heads;
|
||||
let num_kv_heads = cfg.num_key_value_heads;
|
||||
let num_kv_groups = num_heads / num_kv_heads;
|
||||
let head_dim = hidden_sz / num_heads;
|
||||
let b = cfg.attention_bias;
|
||||
let qkv_clip = cfg.clip_qkv;
|
||||
let q_proj = linear_b(hidden_sz, num_heads * head_dim, b, vb.pp("q_proj"))?;
|
||||
let k_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("k_proj"))?;
|
||||
let v_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("v_proj"))?;
|
||||
let o_proj = linear_b(num_heads * head_dim, hidden_sz, b, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
num_kv_groups,
|
||||
head_dim,
|
||||
hidden_size: hidden_sz,
|
||||
rotary_emb,
|
||||
qkv_clip,
|
||||
kv_cache: None,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (b_sz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let query_states = self.q_proj.forward(xs)?;
|
||||
let key_states = self.k_proj.forward(xs)?;
|
||||
let value_states = self.v_proj.forward(xs)?;
|
||||
|
||||
let (query_states, key_states, value_states) = match &self.qkv_clip {
|
||||
None => (query_states, key_states, value_states),
|
||||
Some(qkv_clip) => {
|
||||
let query_states = Tensor::clamp(&query_states, -qkv_clip, *qkv_clip)?;
|
||||
let key_states = Tensor::clamp(&key_states, -qkv_clip, *qkv_clip)?;
|
||||
let value_states = Tensor::clamp(&value_states, -qkv_clip, *qkv_clip)?;
|
||||
(query_states, key_states, value_states)
|
||||
}
|
||||
};
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let (query_states, key_states) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||
|
||||
let attn_weights = match attention_mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||
};
|
||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||
attn_weights.matmul(&value_states)?
|
||||
};
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_sz, q_len, self.hidden_size))?
|
||||
.apply(&self.o_proj)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
mlp: MLP,
|
||||
input_layernorm: LayerNorm,
|
||||
post_attention_layernorm: LayerNorm,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
||||
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
||||
let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?;
|
||||
let input_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5);
|
||||
let post_attention_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5);
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
mlp,
|
||||
input_layernorm,
|
||||
post_attention_layernorm,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = self.input_layernorm.forward(xs)?;
|
||||
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
|
||||
residual + xs
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.self_attn.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: candle_nn::Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
norm: LayerNorm,
|
||||
lm_head: Linear,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_m = vb.pp("model");
|
||||
let embed_tokens =
|
||||
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_l = vb_m.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?;
|
||||
let norm = LayerNorm::new_no_bias(ln_weight, 1e-5);
|
||||
let lm_head = if cfg.tie_word_embeddings {
|
||||
Linear::new(embed_tokens.embeddings().clone(), None)
|
||||
} else {
|
||||
linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?
|
||||
};
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
norm,
|
||||
lm_head,
|
||||
device: vb.device().clone(),
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
// Sliding window mask?
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), self.dtype, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = input_ids.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
||||
Some(mask)
|
||||
};
|
||||
let mut xs = self.embed_tokens.forward(input_ids)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
||||
}
|
||||
xs.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
}
|
@ -72,7 +72,7 @@ impl RotaryEmbedding {
|
||||
let (xs1, xs2) = (&xs12[0], &xs12[1]);
|
||||
let c = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let s = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let rotate_half = Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)?;
|
||||
let rotate_half = Tensor::cat(&[&xs2.neg()?, xs1], D::Minus1)?;
|
||||
let xs_rot = (xs_rot.broadcast_mul(&c)? + rotate_half.broadcast_mul(&s)?)?;
|
||||
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
|
||||
}
|
||||
@ -174,15 +174,7 @@ impl Attention {
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_heads / self.num_kv_heads;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
crate::utils::repeat_kv(xs, self.num_heads / self.num_kv_heads)
|
||||
}
|
||||
|
||||
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
|
329
candle-transformers/src/models/phi3.rs
Normal file
329
candle-transformers/src/models/phi3.rs
Normal file
@ -0,0 +1,329 @@
|
||||
// This implementation is based on:
|
||||
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
|
||||
use crate::models::with_tracing::{linear_no_bias as linear, Linear, RmsNorm};
|
||||
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||
use candle_nn::VarBuilder;
|
||||
use std::sync::Arc;
|
||||
|
||||
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
pub struct Config {
|
||||
pub vocab_size: usize,
|
||||
pub hidden_act: candle_nn::Activation,
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub rms_norm_eps: f64,
|
||||
pub rope_theta: f64,
|
||||
pub bos_token_id: Option<u32>,
|
||||
pub eos_token_id: Option<u32>,
|
||||
pub rope_scaling: Option<String>,
|
||||
pub max_position_embeddings: usize,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn head_dim(&self) -> usize {
|
||||
self.hidden_size / self.num_attention_heads
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
pub fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = cfg.head_dim();
|
||||
let max_seq_len = cfg.max_position_embeddings;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn apply_rotary_emb_qkv(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Attention {
|
||||
qkv_proj: Linear,
|
||||
o_proj: Linear,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
head_dim: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let num_heads = cfg.num_attention_heads;
|
||||
let num_kv_heads = cfg.num_key_value_heads;
|
||||
let head_dim = cfg.head_dim();
|
||||
let op_size = num_heads * head_dim + 2 * num_kv_heads * head_dim;
|
||||
let qkv_proj = linear(cfg.hidden_size, op_size, vb.pp("qkv_proj"))?;
|
||||
let o_proj = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
qkv_proj,
|
||||
o_proj,
|
||||
rotary_emb,
|
||||
kv_cache: None,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
num_kv_groups: num_heads / num_kv_heads,
|
||||
head_dim,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (b_sz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let qkv = self.qkv_proj.forward(xs)?;
|
||||
let query_pos = self.num_heads * self.head_dim;
|
||||
let query_states = qkv.narrow(D::Minus1, 0, query_pos)?;
|
||||
let key_states = qkv.narrow(D::Minus1, query_pos, self.num_kv_heads * self.head_dim)?;
|
||||
let value_states = qkv.narrow(
|
||||
D::Minus1,
|
||||
query_pos + self.num_kv_heads * self.head_dim,
|
||||
self.num_kv_heads * self.head_dim,
|
||||
)?;
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let (query_states, key_states) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||
|
||||
let attn_weights = match attention_mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||
};
|
||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||
attn_weights.matmul(&value_states)?
|
||||
};
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_sz, q_len, ()))?
|
||||
.apply(&self.o_proj)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
gate_up_proj: Linear,
|
||||
down_proj: Linear,
|
||||
act_fn: candle_nn::Activation,
|
||||
i_size: usize,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let hidden_size = cfg.hidden_size;
|
||||
let i_size = cfg.intermediate_size;
|
||||
let gate_up_proj = linear(hidden_size, 2 * i_size, vb.pp("gate_up_proj"))?;
|
||||
let down_proj = linear(i_size, hidden_size, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
gate_up_proj,
|
||||
down_proj,
|
||||
act_fn: cfg.hidden_act,
|
||||
i_size,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let up_states = xs.apply(&self.gate_up_proj)?;
|
||||
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
|
||||
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
|
||||
let up_states = (up_states * gate.apply(&self.act_fn))?;
|
||||
up_states.apply(&self.down_proj)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
mlp: Mlp,
|
||||
input_layernorm: RmsNorm,
|
||||
post_attention_layernorm: RmsNorm,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
||||
let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
|
||||
let input_layernorm =
|
||||
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
let post_attention_layernorm = RmsNorm::new(
|
||||
cfg.hidden_size,
|
||||
cfg.rms_norm_eps,
|
||||
vb.pp("post_attention_layernorm"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
mlp,
|
||||
input_layernorm,
|
||||
post_attention_layernorm,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = self.input_layernorm.forward(xs)?;
|
||||
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
|
||||
residual + xs
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.self_attn.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: candle_nn::Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
norm: RmsNorm,
|
||||
lm_head: Linear,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_m = vb.pp("model");
|
||||
let embed_tokens =
|
||||
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_l = vb_m.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
norm,
|
||||
lm_head,
|
||||
device: vb.device().clone(),
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = input_ids.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
||||
Some(mask)
|
||||
};
|
||||
let mut xs = self.embed_tokens.forward(input_ids)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
||||
}
|
||||
xs.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
}
|
@ -205,9 +205,9 @@ impl LayerWeights {
|
||||
};
|
||||
self.kv_cache = Some((k.clone(), v.clone()));
|
||||
|
||||
// Support for MQA, useful for 70B models.
|
||||
let k = self.repeat_kv(k)?;
|
||||
let v = self.repeat_kv(v)?;
|
||||
// Support for MQA, useful for 70B models and mistral.
|
||||
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
|
||||
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
|
||||
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = match mask {
|
||||
@ -224,20 +224,6 @@ impl LayerWeights {
|
||||
let y = self.attention_wo.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_head / self.n_kv_head;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
|
||||
let x = x
|
||||
.unsqueeze(2)?
|
||||
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
|
@ -122,18 +122,6 @@ impl Attention {
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -172,8 +160,8 @@ impl Attention {
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?;
|
||||
let value_states = self.repeat_kv(value_states)?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
|
||||
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
|
@ -71,8 +71,8 @@ impl GroupedQueryAttention {
|
||||
};
|
||||
self.kv_cache = Some((key.clone(), value.clone()));
|
||||
let query = query.contiguous()?;
|
||||
let key = super::mpt::repeat_kv(key, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let value = super::mpt::repeat_kv(value, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let key = crate::utils::repeat_kv(key, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let value = crate::utils::repeat_kv(value, self.n_heads / self.kv_n_heads)?.contiguous()?;
|
||||
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
|
||||
let attn_bias = {
|
||||
let s_q = query.dim(D::Minus2)?;
|
||||
|
288
candle-transformers/src/models/quantized_phi.rs
Normal file
288
candle-transformers/src/models/quantized_phi.rs
Normal file
@ -0,0 +1,288 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use candle::quantized::gguf_file;
|
||||
use candle::quantized::QTensor;
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm};
|
||||
|
||||
pub const MAX_SEQ_LEN: usize = 4096;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct QLinear {
|
||||
inner: candle::quantized::QMatMul,
|
||||
bias: Tensor,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl QLinear {
|
||||
fn new<R: std::io::Read + std::io::Seek>(
|
||||
ct: &gguf_file::Content,
|
||||
r: &mut R,
|
||||
name: &str,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
|
||||
let w = ct.tensor(r, &format!("{name}.weight"), device)?;
|
||||
let b = ct.tensor(r, &format!("{name}.bias"), device)?;
|
||||
let inner = candle::quantized::QMatMul::from_qtensor(w)?;
|
||||
let bias = b.dequantize(device)?;
|
||||
Ok(Self { inner, bias, span })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for QLinear {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(xs)?.broadcast_add(&self.bias)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
ffn_up: QLinear,
|
||||
ffn_down: QLinear,
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs.apply(&self.ffn_up)?.gelu()?.apply(&self.ffn_down)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LayerWeights {
|
||||
attn_qkv: QLinear,
|
||||
attn_output: QLinear,
|
||||
attn_norm: LayerNorm,
|
||||
mlp: Mlp,
|
||||
n_head: usize,
|
||||
n_kv_head: usize,
|
||||
head_dim: usize,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
rope_dim: usize,
|
||||
neg_inf: Tensor,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
span_attn: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
impl LayerWeights {
|
||||
fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (_b_sz, _n_head, seq_len, _n_embd) = xs.dims4()?;
|
||||
let xs_rot = xs.i((.., .., .., ..self.rope_dim))?;
|
||||
let xs_pass = xs.i((.., .., .., self.rope_dim..))?;
|
||||
let cos = self.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.sin.narrow(0, index_pos, seq_len)?;
|
||||
let xs_rot = candle_nn::rotary_emb::rope(&xs_rot.contiguous()?, &cos, &sin)?;
|
||||
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
|
||||
}
|
||||
|
||||
fn forward_attn(
|
||||
&mut self,
|
||||
x: &Tensor,
|
||||
mask: Option<&Tensor>,
|
||||
index_pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span_attn.enter();
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let qkv =
|
||||
self.attn_qkv
|
||||
.forward(x)?
|
||||
.reshape((b_sz, seq_len, 3, self.n_head, self.head_dim))?;
|
||||
|
||||
let q = qkv.i((.., .., 0))?.transpose(1, 2)?;
|
||||
let k = qkv.i((.., .., 1))?.transpose(1, 2)?;
|
||||
let v = qkv.i((.., .., 2))?.transpose(1, 2)?;
|
||||
// This call to contiguous ensures that the fast kernel can be called below. It's
|
||||
// actually a no-op except when processing the initial prompt so has no significant
|
||||
// impact on performance.
|
||||
let v = v.contiguous()?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
|
||||
let k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
|
||||
let (k, v) = match &self.kv_cache {
|
||||
None => (k.contiguous()?, v.contiguous()?),
|
||||
Some((k_cache, v_cache)) => {
|
||||
if index_pos == 0 {
|
||||
(k.contiguous()?, v.contiguous()?)
|
||||
} else {
|
||||
let k = Tensor::cat(&[k_cache, &k], 2)?;
|
||||
let v = Tensor::cat(&[v_cache, &v], 2)?;
|
||||
(k.contiguous()?, v.contiguous()?)
|
||||
}
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((k.clone(), v.clone()));
|
||||
|
||||
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
|
||||
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
|
||||
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = match mask {
|
||||
None => att,
|
||||
Some(mask) => {
|
||||
let mask = mask.broadcast_as(att.shape())?;
|
||||
masked_fill(&att, &mask, &self.neg_inf)?
|
||||
}
|
||||
};
|
||||
let att = candle_nn::ops::softmax_last_dim(&att)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = att.matmul(&v.contiguous()?)?;
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = self.attn_output.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelWeights {
|
||||
tok_embeddings: Embedding,
|
||||
layers: Vec<LayerWeights>,
|
||||
output_norm: LayerNorm,
|
||||
output: QLinear,
|
||||
masks: HashMap<usize, Tensor>,
|
||||
span: tracing::Span,
|
||||
span_output: tracing::Span,
|
||||
}
|
||||
|
||||
fn precomput_freqs_cis(
|
||||
head_dim: usize,
|
||||
freq_base: f32,
|
||||
device: &Device,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let theta: Vec<_> = (0..head_dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), device)?;
|
||||
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((MAX_SEQ_LEN, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
let cos = idx_theta.cos()?;
|
||||
let sin = idx_theta.sin()?;
|
||||
Ok((cos, sin))
|
||||
}
|
||||
|
||||
fn layer_norm(w: QTensor, b: QTensor, eps: f64) -> Result<LayerNorm> {
|
||||
let w = w.dequantize(&w.device())?;
|
||||
let b = b.dequantize(&b.device())?;
|
||||
let ln = LayerNorm::new(w, b, eps);
|
||||
Ok(ln)
|
||||
}
|
||||
|
||||
impl ModelWeights {
|
||||
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
|
||||
ct: gguf_file::Content,
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let md_get = |s: &str| match ct.metadata.get(s) {
|
||||
None => candle::bail!("cannot find {s} in metadata"),
|
||||
Some(v) => Ok(v),
|
||||
};
|
||||
|
||||
// Parameter extraction from metadata.
|
||||
let head_count = md_get("phi2.attention.head_count")?.to_u32()? as usize;
|
||||
let head_count_kv = md_get("phi2.attention.head_count_kv")?.to_u32()? as usize;
|
||||
let block_count = md_get("phi2.block_count")?.to_u32()? as usize;
|
||||
let embedding_length = md_get("phi2.embedding_length")?.to_u32()? as usize;
|
||||
let rope_dim = md_get("phi2.rope.dimension_count")?.to_u32()? as usize;
|
||||
let ln_eps = md_get("phi2.attention.layer_norm_epsilon")?.to_f32()? as f64;
|
||||
let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device)?;
|
||||
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
|
||||
|
||||
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
|
||||
let tok_embeddings = tok_embeddings.dequantize(device)?;
|
||||
let output_norm = layer_norm(
|
||||
ct.tensor(reader, "output_norm.weight", device)?,
|
||||
ct.tensor(reader, "output_norm.bias", device)?,
|
||||
ln_eps,
|
||||
)?;
|
||||
let output = QLinear::new(&ct, reader, "output", device)?;
|
||||
let mut layers = Vec::with_capacity(block_count);
|
||||
for layer_idx in 0..block_count {
|
||||
let prefix = format!("blk.{layer_idx}");
|
||||
let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
|
||||
let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
|
||||
let mlp = Mlp { ffn_up, ffn_down };
|
||||
let attn_norm = layer_norm(
|
||||
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
|
||||
ct.tensor(reader, &format!("{prefix}.attn_norm.bias"), device)?,
|
||||
ln_eps,
|
||||
)?;
|
||||
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
layers.push(LayerWeights {
|
||||
attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
|
||||
attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
|
||||
attn_norm,
|
||||
mlp,
|
||||
n_head: head_count,
|
||||
n_kv_head: head_count_kv,
|
||||
head_dim: embedding_length / head_count,
|
||||
cos: cos.clone(),
|
||||
sin: sin.clone(),
|
||||
rope_dim,
|
||||
neg_inf: neg_inf.clone(),
|
||||
kv_cache: None,
|
||||
span_attn,
|
||||
span_rot,
|
||||
})
|
||||
}
|
||||
let span = tracing::span!(tracing::Level::TRACE, "model");
|
||||
let span_output = tracing::span!(tracing::Level::TRACE, "output");
|
||||
Ok(Self {
|
||||
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
|
||||
layers,
|
||||
output_norm,
|
||||
output,
|
||||
masks: HashMap::new(),
|
||||
span,
|
||||
span_output,
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
|
||||
if let Some(mask) = self.masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), device)?;
|
||||
self.masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = xs.dims2()?;
|
||||
let mask = if seq_len == 1 {
|
||||
None
|
||||
} else {
|
||||
Some(self.mask(seq_len, xs.device())?)
|
||||
};
|
||||
let _enter = self.span.enter();
|
||||
let mut xs = self.tok_embeddings.forward(xs)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
let residual = &xs;
|
||||
let xs_norm = xs.apply(&layer.attn_norm)?;
|
||||
let attn_outputs = layer.forward_attn(&xs_norm, mask.as_ref(), index_pos)?;
|
||||
let feed_forward_hidden_states = layer.mlp.forward(&xs_norm)?;
|
||||
xs = (attn_outputs + feed_forward_hidden_states + residual)?
|
||||
}
|
||||
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
|
||||
let _enter = self.span_output.enter();
|
||||
self.output.forward(&xs)
|
||||
}
|
||||
}
|
328
candle-transformers/src/models/quantized_phi3.rs
Normal file
328
candle-transformers/src/models/quantized_phi3.rs
Normal file
@ -0,0 +1,328 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use candle::quantized::gguf_file;
|
||||
use candle::quantized::QTensor;
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use candle_nn::{kv_cache::KvCache, Embedding, RmsNorm};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct QLinear {
|
||||
inner: candle::quantized::QMatMul,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl QLinear {
|
||||
fn new<R: std::io::Read + std::io::Seek>(
|
||||
ct: &gguf_file::Content,
|
||||
r: &mut R,
|
||||
name: &str,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
|
||||
let w = ct.tensor(r, &format!("{name}.weight"), device)?;
|
||||
let inner = candle::quantized::QMatMul::from_qtensor(w)?;
|
||||
Ok(Self { inner, span })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for QLinear {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
ffn_up: QLinear,
|
||||
ffn_down: QLinear,
|
||||
i_size: usize,
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let up_states = xs.apply(&self.ffn_up)?;
|
||||
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
|
||||
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
|
||||
let up_states = (up_states * gate.silu()?)?;
|
||||
up_states.apply(&self.ffn_down)
|
||||
}
|
||||
}
|
||||
|
||||
fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> {
|
||||
let w = w.dequantize(&w.device())?;
|
||||
let rms = RmsNorm::new(w, eps);
|
||||
Ok(rms)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LayerWeights {
|
||||
attn_qkv: QLinear,
|
||||
attn_output: QLinear,
|
||||
attn_norm: RmsNorm,
|
||||
ffn_norm: RmsNorm,
|
||||
mlp: Mlp,
|
||||
n_head: usize,
|
||||
n_kv_head: usize,
|
||||
head_dim: usize,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
neg_inf: Tensor,
|
||||
kv_cache: KvCache,
|
||||
use_flash_attn: bool,
|
||||
span_attn: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
impl LayerWeights {
|
||||
fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?;
|
||||
let cos = self.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.sin.narrow(0, index_pos, seq_len)?;
|
||||
candle_nn::rotary_emb::rope(&xs.contiguous()?, &cos, &sin)
|
||||
}
|
||||
|
||||
fn forward_attn(
|
||||
&mut self,
|
||||
x: &Tensor,
|
||||
mask: Option<&Tensor>,
|
||||
index_pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span_attn.enter();
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let qkv = self.attn_qkv.forward(x)?;
|
||||
|
||||
let query_pos = self.n_head * self.head_dim;
|
||||
let q = qkv.narrow(D::Minus1, 0, query_pos)?;
|
||||
let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?;
|
||||
let v = qkv.narrow(
|
||||
D::Minus1,
|
||||
query_pos + self.n_kv_head * self.head_dim,
|
||||
self.n_kv_head * self.head_dim,
|
||||
)?;
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let v = v
|
||||
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
|
||||
let k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
|
||||
let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?;
|
||||
|
||||
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
|
||||
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
|
||||
|
||||
let y = if self.use_flash_attn {
|
||||
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
|
||||
let q = q.to_dtype(DType::BF16)?.transpose(1, 2)?;
|
||||
let k = k.to_dtype(DType::BF16)?.transpose(1, 2)?;
|
||||
let v = v.to_dtype(DType::BF16)?.transpose(1, 2)?;
|
||||
let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
|
||||
flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?
|
||||
.to_dtype(DType::F32)?
|
||||
.transpose(1, 2)?
|
||||
} else {
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = match mask {
|
||||
None => att,
|
||||
Some(mask) => {
|
||||
let mask = mask.broadcast_as(att.shape())?;
|
||||
masked_fill(&att, &mask, &self.neg_inf)?
|
||||
}
|
||||
};
|
||||
let att = candle_nn::ops::softmax_last_dim(&att)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
att.matmul(&v.contiguous()?)?
|
||||
};
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = self.attn_output.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
fn flash_attn(
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
v: &Tensor,
|
||||
softmax_scale: f32,
|
||||
causal: bool,
|
||||
) -> Result<Tensor> {
|
||||
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "flash-attn"))]
|
||||
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
|
||||
unimplemented!("compile with '--features flash-attn'")
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelWeights {
|
||||
tok_embeddings: Embedding,
|
||||
layers: Vec<LayerWeights>,
|
||||
output_norm: RmsNorm,
|
||||
output: QLinear,
|
||||
masks: HashMap<usize, Tensor>,
|
||||
span: tracing::Span,
|
||||
span_output: tracing::Span,
|
||||
}
|
||||
|
||||
fn precomput_freqs_cis(
|
||||
head_dim: usize,
|
||||
max_seq_len: usize,
|
||||
freq_base: f32,
|
||||
device: &Device,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let theta: Vec<_> = (0..head_dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), device)?;
|
||||
let idx_theta = Tensor::arange(0, max_seq_len as u32, device)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((max_seq_len, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
let cos = idx_theta.cos()?;
|
||||
let sin = idx_theta.sin()?;
|
||||
Ok((cos, sin))
|
||||
}
|
||||
|
||||
impl ModelWeights {
|
||||
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
|
||||
batch_size: usize,
|
||||
use_flash_attn: bool,
|
||||
ct: gguf_file::Content,
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let md_get = |s: &str| match ct.metadata.get(s) {
|
||||
None => candle::bail!("cannot find {s} in metadata"),
|
||||
Some(v) => Ok(v),
|
||||
};
|
||||
|
||||
// Parameter extraction from metadata.
|
||||
let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize;
|
||||
let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize;
|
||||
let block_count = md_get("phi3.block_count")?.to_u32()? as usize;
|
||||
let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize;
|
||||
let max_seq_len = md_get("phi3.context_length")?.to_u32()? as usize;
|
||||
let head_dim = embedding_length / head_count;
|
||||
let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize;
|
||||
let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize;
|
||||
let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
|
||||
let (cos, sin) = precomput_freqs_cis(rope_dim, max_seq_len, 10_000., device)?;
|
||||
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
|
||||
|
||||
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
|
||||
let tok_embeddings = tok_embeddings.dequantize(device)?;
|
||||
let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?;
|
||||
let output = QLinear::new(&ct, reader, "output", device)?;
|
||||
|
||||
let mut layers = Vec::with_capacity(block_count);
|
||||
for layer_idx in 0..block_count {
|
||||
let prefix = format!("blk.{layer_idx}");
|
||||
let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
|
||||
let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
|
||||
let mlp = Mlp {
|
||||
ffn_up,
|
||||
ffn_down,
|
||||
i_size,
|
||||
};
|
||||
let attn_norm = rms_norm(
|
||||
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
|
||||
rms_eps,
|
||||
)?;
|
||||
let ffn_norm = rms_norm(
|
||||
ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
|
||||
rms_eps,
|
||||
)?;
|
||||
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let kv_cache = KvCache::new(
|
||||
2,
|
||||
(batch_size, head_count_kv, max_seq_len, head_dim),
|
||||
DType::F32,
|
||||
device,
|
||||
)?;
|
||||
layers.push(LayerWeights {
|
||||
attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
|
||||
attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
|
||||
attn_norm,
|
||||
ffn_norm,
|
||||
mlp,
|
||||
n_head: head_count,
|
||||
n_kv_head: head_count_kv,
|
||||
head_dim,
|
||||
cos: cos.clone(),
|
||||
sin: sin.clone(),
|
||||
neg_inf: neg_inf.clone(),
|
||||
kv_cache,
|
||||
use_flash_attn,
|
||||
span_attn,
|
||||
span_rot,
|
||||
})
|
||||
}
|
||||
let span = tracing::span!(tracing::Level::TRACE, "model");
|
||||
let span_output = tracing::span!(tracing::Level::TRACE, "output");
|
||||
Ok(Self {
|
||||
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
|
||||
layers,
|
||||
output_norm,
|
||||
output,
|
||||
masks: HashMap::new(),
|
||||
span,
|
||||
span_output,
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
|
||||
if let Some(mask) = self.masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), device)?;
|
||||
self.masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = xs.dims2()?;
|
||||
let mask = if seq_len == 1 {
|
||||
None
|
||||
} else {
|
||||
Some(self.mask(seq_len, xs.device())?)
|
||||
};
|
||||
let _enter = self.span.enter();
|
||||
let mut xs = self.tok_embeddings.forward(xs)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
let residual = &xs;
|
||||
let ys = xs.apply(&layer.attn_norm)?;
|
||||
let ys = layer.forward_attn(&ys, mask.as_ref(), index_pos)?;
|
||||
let ys = (ys + residual)?;
|
||||
let residual = &ys;
|
||||
let ys = ys.apply(&layer.ffn_norm)?;
|
||||
let ys = layer.mlp.forward(&ys)?;
|
||||
xs = (ys + residual)?
|
||||
}
|
||||
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
|
||||
let _enter = self.span_output.enter();
|
||||
self.output.forward(&xs)
|
||||
}
|
||||
}
|
412
candle-transformers/src/models/quantized_recurrent_gemma.rs
Normal file
412
candle-transformers/src/models/quantized_recurrent_gemma.rs
Normal file
@ -0,0 +1,412 @@
|
||||
use crate::quantized_nn::{linear_b as linear, Embedding, Linear};
|
||||
pub use crate::quantized_var_builder::VarBuilder;
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::models::recurrent_gemma::{Config, Rglru, RmsNorm, RotaryEmbedding, TemporalBlockType};
|
||||
|
||||
fn rms_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<RmsNorm> {
|
||||
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
|
||||
Ok(RmsNorm::from_weight(weight, eps))
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
gate_proj: Linear,
|
||||
up_proj: Linear,
|
||||
down_proj: Linear,
|
||||
act_fn: candle_nn::Activation,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let intermediate_size = cfg.intermediate_size / 2;
|
||||
let gate_proj = linear(h, intermediate_size, true, vb.pp("gate_proj"))?;
|
||||
let up_proj = linear(h, intermediate_size, true, vb.pp("up_proj"))?;
|
||||
let down_proj = linear(intermediate_size, h, true, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
gate_proj,
|
||||
up_proj,
|
||||
down_proj,
|
||||
act_fn: cfg.hidden_activation,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let gate = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
||||
(gate * xs.apply(&self.up_proj))?.apply(&self.down_proj)
|
||||
}
|
||||
}
|
||||
|
||||
fn rglru(cfg: &Config, vb: VarBuilder) -> Result<Rglru> {
|
||||
let h = cfg.hidden_size;
|
||||
let lru_width = cfg.lru_width.unwrap_or(h);
|
||||
let n_heads = cfg.num_attention_heads;
|
||||
let block_width = lru_width / n_heads;
|
||||
let recurrent_param = vb.get((lru_width,), "recurrent_param")?;
|
||||
let input_gate_weight = vb.get((n_heads, block_width, block_width), "input_gate_weight")?;
|
||||
let input_gate_bias = vb.get((n_heads, block_width), "input_gate_bias")?;
|
||||
let recurrent_gate_weight =
|
||||
vb.get((n_heads, block_width, block_width), "recurrent_gate_weight")?;
|
||||
let recurrent_gate_bias = vb.get((n_heads, block_width), "recurrent_gate_bias")?;
|
||||
Ok(Rglru {
|
||||
recurrent_param: recurrent_param.dequantize(vb.device())?,
|
||||
input_gate_bias: input_gate_bias.dequantize(vb.device())?,
|
||||
input_gate_weight: input_gate_weight.dequantize(vb.device())?,
|
||||
recurrent_gate_bias: recurrent_gate_bias.dequantize(vb.device())?,
|
||||
recurrent_gate_weight: recurrent_gate_weight.dequantize(vb.device())?,
|
||||
block_width,
|
||||
n_heads,
|
||||
recurrent_states: None,
|
||||
})
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RecurrentBlock {
|
||||
linear_y: Linear,
|
||||
linear_x: Linear,
|
||||
linear_out: Linear,
|
||||
conv_1d: candle_nn::Conv1d,
|
||||
conv1d_state: Option<Tensor>,
|
||||
conv1d_width: usize,
|
||||
rg_lru: Rglru,
|
||||
act_fn: candle_nn::Activation,
|
||||
}
|
||||
|
||||
impl RecurrentBlock {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let lru_width = cfg.lru_width.unwrap_or(h);
|
||||
let linear_y = linear(h, lru_width, true, vb.pp("linear_y"))?;
|
||||
let linear_x = linear(h, lru_width, true, vb.pp("linear_x"))?;
|
||||
let linear_out = linear(lru_width, h, true, vb.pp("linear_out"))?;
|
||||
|
||||
let conv_1d = {
|
||||
let ws = vb
|
||||
.get((lru_width, 1, cfg.conv1d_width), "conv_1d.weight")?
|
||||
.dequantize(vb.device())?;
|
||||
let bs = vb.get(lru_width, "conv_1d.bias")?.dequantize(vb.device())?;
|
||||
let config = candle_nn::Conv1dConfig {
|
||||
groups: lru_width,
|
||||
padding: cfg.conv1d_width - 1,
|
||||
..Default::default()
|
||||
};
|
||||
candle_nn::Conv1d::new(ws, Some(bs), config)
|
||||
};
|
||||
let rg_lru = rglru(cfg, vb.pp("rg_lru"))?;
|
||||
Ok(Self {
|
||||
linear_y,
|
||||
linear_x,
|
||||
linear_out,
|
||||
conv_1d,
|
||||
conv1d_state: None,
|
||||
conv1d_width: cfg.conv1d_width,
|
||||
rg_lru,
|
||||
act_fn: cfg.hidden_activation,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len, _) = xs.dims3()?;
|
||||
|
||||
let y_branch = xs.apply(&self.linear_y)?.apply(&self.act_fn)?;
|
||||
let x_branch = xs.apply(&self.linear_x)?.transpose(1, 2)?;
|
||||
let x_branch = if pos == 0 {
|
||||
let x_len = x_branch.dim(D::Minus1)?;
|
||||
let pad = self.conv1d_width as i64 - x_len as i64 - 1;
|
||||
let padded = match pad.cmp(&0) {
|
||||
std::cmp::Ordering::Equal => x_branch.clone(),
|
||||
std::cmp::Ordering::Less => {
|
||||
let rev_pad = (-pad) as usize;
|
||||
x_branch.narrow(D::Minus1, rev_pad, x_len - rev_pad)?
|
||||
}
|
||||
std::cmp::Ordering::Greater => {
|
||||
x_branch.pad_with_zeros(D::Minus1, pad as usize, 0)?
|
||||
}
|
||||
};
|
||||
self.conv1d_state = Some(padded);
|
||||
x_branch
|
||||
.apply(&self.conv_1d)?
|
||||
.narrow(D::Minus1, 0, seq_len)?
|
||||
} else {
|
||||
let conv_state = match self.conv1d_state.as_ref() {
|
||||
None => candle::bail!("empty cache despite pos > 0"),
|
||||
Some(s) => Tensor::cat(&[s, &x_branch], D::Minus1)?,
|
||||
};
|
||||
let w = self.conv_1d.weight().i((.., 0, ..))?;
|
||||
let x_branch = conv_state.broadcast_mul(&w)?.sum(D::Minus1)?;
|
||||
let x_branch = match self.conv_1d.bias() {
|
||||
None => x_branch,
|
||||
Some(b) => x_branch.broadcast_add(b)?,
|
||||
};
|
||||
let x_branch = x_branch.unsqueeze(D::Minus1)?;
|
||||
self.conv1d_state = Some(conv_state.i((.., .., 1..))?);
|
||||
x_branch
|
||||
};
|
||||
let x_branch = x_branch.transpose(1, 2)?;
|
||||
let x_branch = self.rg_lru.forward(&x_branch, pos)?;
|
||||
(x_branch * y_branch)?.apply(&self.linear_out)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct SdpaAttention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
n_heads: usize,
|
||||
n_kv_heads: usize,
|
||||
head_dim: usize,
|
||||
hidden_size: usize,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
}
|
||||
|
||||
impl SdpaAttention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let n_heads = cfg.num_attention_heads;
|
||||
let n_kv_heads = cfg.num_key_value_heads;
|
||||
let hd = cfg.head_dim;
|
||||
let q_proj = linear(h, n_heads * hd, cfg.attention_bias, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("v_proj"))?;
|
||||
let o_proj = linear(n_heads * hd, h, true, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
head_dim: hd,
|
||||
hidden_size: h,
|
||||
kv_cache: None,
|
||||
rotary_emb,
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_heads / self.n_kv_heads;
|
||||
crate::utils::repeat_kv(x, n_rep)
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (bsz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let query_states = xs.apply(&self.q_proj)?;
|
||||
let key_states = xs.apply(&self.k_proj)?;
|
||||
let value_states = xs.apply(&self.v_proj)?;
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((bsz, q_len, self.n_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let query_states = query_states.chunk(2, D::Minus1)?;
|
||||
let key_states = key_states.chunk(2, D::Minus1)?;
|
||||
let (query_rot, key_rot) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states[0], &key_states[0], pos)?;
|
||||
let query_states = Tensor::cat(&[&query_rot, &query_states[1]], D::Minus1)?.contiguous()?;
|
||||
let key_states = Tensor::cat(&[&key_rot, &key_states[1]], D::Minus1)?.contiguous()?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?;
|
||||
let value_states = self.repeat_kv(value_states)?;
|
||||
let xs = {
|
||||
let att = (query_states.matmul(&key_states.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = if q_len == 1 {
|
||||
att
|
||||
} else {
|
||||
match attention_mask {
|
||||
None => att,
|
||||
Some(mask) => att.broadcast_add(mask)?,
|
||||
}
|
||||
};
|
||||
let att = candle_nn::ops::softmax_last_dim(&att)?;
|
||||
att.matmul(&value_states.contiguous()?)?
|
||||
};
|
||||
|
||||
let xs = xs
|
||||
.transpose(1, 2)?
|
||||
.reshape((bsz, q_len, self.hidden_size))?;
|
||||
self.o_proj.forward(&xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
enum TemporalBlock {
|
||||
Recurrent(RecurrentBlock),
|
||||
Attention(SdpaAttention),
|
||||
}
|
||||
|
||||
impl TemporalBlock {
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::Recurrent(b) => b.forward(xs, pos),
|
||||
Self::Attention(b) => b.forward(xs, attention_mask, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
temporal_pre_norm: RmsNorm,
|
||||
channel_pre_norm: RmsNorm,
|
||||
temporal_block: TemporalBlock,
|
||||
mlp_block: Mlp,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(
|
||||
block_idx: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let temporal_pre_norm = rms_norm(h, cfg.rms_norm_eps, vb.pp("temporal_pre_norm"))?;
|
||||
let channel_pre_norm = rms_norm(h, cfg.rms_norm_eps, vb.pp("channel_pre_norm"))?;
|
||||
let temporal_block = match cfg.block_types[block_idx % cfg.block_types.len()] {
|
||||
TemporalBlockType::Recurrent => {
|
||||
let block = RecurrentBlock::new(cfg, vb.pp("temporal_block"))?;
|
||||
TemporalBlock::Recurrent(block)
|
||||
}
|
||||
TemporalBlockType::Attention => {
|
||||
let block = SdpaAttention::new(rotary_emb, cfg, vb.pp("temporal_block"))?;
|
||||
TemporalBlock::Attention(block)
|
||||
}
|
||||
};
|
||||
let mlp_block = Mlp::new(cfg, vb.pp("mlp_block"))?;
|
||||
Ok(Self {
|
||||
temporal_pre_norm,
|
||||
channel_pre_norm,
|
||||
temporal_block,
|
||||
mlp_block,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = xs.apply(&self.temporal_pre_norm)?;
|
||||
let xs = self.temporal_block.forward(&xs, attention_mask, pos)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.channel_pre_norm)?.apply(&self.mlp_block)?;
|
||||
xs + residual
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
final_norm: RmsNorm,
|
||||
lm_head: Linear,
|
||||
hidden_size: usize,
|
||||
logits_soft_cap: f64,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let embed_tokens = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb.pp("embed_tokens"))?;
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(DType::F32, cfg, vb.device())?);
|
||||
let vb_b = vb.pp("layers");
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
for idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(idx, rotary_emb.clone(), cfg, vb_b.pp(idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let final_norm = rms_norm(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("final_norm"))?;
|
||||
let lm_head = linear(
|
||||
cfg.hidden_size,
|
||||
cfg.vocab_size,
|
||||
false,
|
||||
vb.pp("embed_tokens"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
final_norm,
|
||||
lm_head,
|
||||
hidden_size: cfg.hidden_size,
|
||||
logits_soft_cap: cfg.logits_soft_cap,
|
||||
device: vb.device().clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(DType::F32)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = xs.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, pos)?;
|
||||
Some(mask)
|
||||
};
|
||||
let xs = xs.apply(&self.embed_tokens)?;
|
||||
let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), pos)?;
|
||||
}
|
||||
let logits = xs
|
||||
.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.final_norm)?
|
||||
.apply(&self.lm_head)?;
|
||||
let logits = ((logits / self.logits_soft_cap)?.tanh()? * self.logits_soft_cap)?;
|
||||
Ok(logits)
|
||||
}
|
||||
}
|
@ -94,18 +94,6 @@ impl Attention {
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -152,8 +140,9 @@ impl Attention {
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
}
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm};
|
||||
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use candle_nn::{Activation, VarBuilder};
|
||||
use std::sync::Arc;
|
||||
|
||||
@ -27,13 +27,6 @@ struct RotaryEmbedding {
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
|
||||
let last_dim = xs.dim(D::Minus1)?;
|
||||
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
|
||||
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
|
||||
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = cfg.hidden_size / cfg.num_attention_heads;
|
||||
@ -48,7 +41,6 @@ impl RotaryEmbedding {
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
@ -64,10 +56,8 @@ impl RotaryEmbedding {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
|
||||
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
|
||||
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
@ -146,18 +136,6 @@ impl Attention {
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
@ -194,8 +172,9 @@ impl Attention {
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
@ -271,7 +250,6 @@ pub struct Model {
|
||||
embed_tokens: candle_nn::Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
norm: RmsNorm,
|
||||
lm_head: Linear,
|
||||
sliding_window: usize,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
@ -290,19 +268,17 @@ impl Model {
|
||||
layers.push(layer)
|
||||
}
|
||||
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
||||
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
norm,
|
||||
lm_head,
|
||||
sliding_window: cfg.sliding_window,
|
||||
device: vb.device().clone(),
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
fn prepare_causal_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
@ -322,7 +298,7 @@ impl Model {
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), self.dtype, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
@ -331,21 +307,42 @@ impl Model {
|
||||
.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
fn prepare_attention_mask(&self, attn_mask: &Tensor) -> Result<Tensor> {
|
||||
let (b_sz, sql_len) = attn_mask.dims2()?;
|
||||
let mut mask: Vec<Tensor> = vec![];
|
||||
for b in 0..b_sz {
|
||||
mask.push(attn_mask.i((b, ..))?.expand((1, 1, sql_len, sql_len))?);
|
||||
}
|
||||
let mask = Tensor::cat(&mask, 0)?;
|
||||
let on_true = mask.zeros_like()?.to_dtype(self.dtype)?;
|
||||
let on_false = Tensor::new(f32::NEG_INFINITY, &self.device)?
|
||||
.broadcast_as(mask.shape())?
|
||||
.to_dtype(self.dtype)?;
|
||||
mask.where_cond(&on_true, &on_false)
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&mut self,
|
||||
input_ids: &Tensor,
|
||||
seqlen_offset: usize,
|
||||
attn_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = input_ids.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
||||
Some(mask)
|
||||
let attention_mask: Option<Tensor> = match attn_mask {
|
||||
Some(mask) => Some(self.prepare_attention_mask(mask)?),
|
||||
None => {
|
||||
if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
Some(self.prepare_causal_attention_mask(b_size, seq_len, seqlen_offset)?)
|
||||
}
|
||||
}
|
||||
};
|
||||
let mut xs = self.embed_tokens.forward(input_ids)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
||||
}
|
||||
xs.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
xs.apply(&self.norm)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
@ -354,3 +351,32 @@ impl Model {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelForCausalLM {
|
||||
base_model: Model,
|
||||
lm_head: Linear,
|
||||
}
|
||||
|
||||
impl ModelForCausalLM {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let base_model = Model::new(cfg, vb)?;
|
||||
Ok(Self {
|
||||
base_model,
|
||||
lm_head,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (_b_size, seq_len) = input_ids.dims2()?;
|
||||
self.base_model
|
||||
.forward(input_ids, seqlen_offset, None)?
|
||||
.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.base_model.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user