* Start processing images.
* Add LayerNorm2d.
* Properly use LayerNorm2d.
* Tweak eps.
* Use LayerNorm on inputs with a rank different from 3.
* Window partitioning.
* Fix a couple todos.
* More todos.
* Hard-code the einsums.
* More padding support.
* Some sizes tweaks.
* Use the hub to get the weights.
* Use a batch matmul.
* Tweaks.
* More fixes.
* Get some predictions to be generated.
* Add a custom softmax implementation.
* Add softmaxlastdim to the benchmarks.
* And add a test.
* Support more dtypes.
* Polish the code.
* Use the slow implementation on cuda.
* Add a todo for the cuda kernel.
* Add the dilation parameter.
* Restore the basic optimizer example.
* Dilation support in cudnn.
* Use the dilation parameter in the cpu backend.
* More dilation support.
* No support for dilation in transposed convolutions.
* Add dilation to a test.
* Remove a print.
* Helper function.
* Add some group parameter to convolutions.
* Avoid some unnecessary groups checks.
* Move the tensor convolution bits.
* Properh handling of groups.
* Bump the crate version.
* And add a changelog.
* Some fixes for yolo-v3.
* Use the running stats for inference in the batch-norm layer.
* Get some proper predictions for yolo.
* Avoid the quadratic insertion.
* Start adding a stable-diffusion example.
* Proper computation of the causal mask.
* Add the chunk operation.
* Work in progress: port the attention module.
* Add some dummy modules for conv2d and group-norm, get the attention module to compile.
* Re-enable the 2d convolution.
* Add the embeddings module.
* Add the resnet module.
* Add the unet blocks.
* Add the unet.
* And add the variational auto-encoder.
* Use the pad function from utils.
* Move the vision datasets to a separate crate.
* Move the batcher bits.
* Update the readme.
* Move the tiny-stories bits.
---------
Co-authored-by: Jane Doe <jane.doe@example.org>
* Rework the var-builder to handle initializations.
* Add some helper functions for layer creation.
* Improve the layer initializations.
* Get initialized variables.
* Precompute the rot embeddings when training lamas.