* Add Pixtral.
* More pixtral vision encoder.
* Sketch a pixtral example.
* Sketch a pixtral example.
* Better image loading.
* Support loading images embedded in safetensor files.
* Clippy fixes.
* Add the llava multimodal adapter.
* Add more of the llava bits.
* Add the pixtral config.
* More pixtral inference.
* Add the text generation bits.
* Get the example to work.
* Bugfix.
* Run some bits of the model in f32.
* Blessed version :)
* Better rope frequency computations.
* README update.
* Add the SigLIP model.
* Add more to the forward pass of the vision model.
* Complete the forward pass.
* Add the siglip example.
* Fix.
* Another fix.
* Get everything in place.
* Add a readme.
* Quantized version of flux.
* More generic sampling.
* Hook the quantized model.
* Use the newly minted gguf file.
* Fix for the quantized model.
* Default to avoid the faster cuda kernels.
* Add a RotatingKVCache.
* Add some KvCache tests.
* Test the reset too.
* More kv-cache testing.
* More tests for the rotating kv-cache.
* Improve the api for the rotating cache so that the whole src tensor gets returned when it's overlarge.
* Handle contiguity + bugfix + use in mimi.
* Add a way to test the mimi streaming mode.
* Mimi streaming fixes.
* More rotating kv-cache.
* Fix the attn mask generation.
* Handle the abs case.
* Add some tests for the generated mask.
* Adding Granite 7b Instruct model example
* Minor refactoring to make it a little more idiomatic
* Clippy fixes.
* * Adding a README with some information about supported Granite models
* Changing the default prompt to accomodate better the Language
modality of the Granite 7b Instruct model
---------
Co-authored-by: Laurent <laurent.mazare@gmail.com>
* Add the mimi audio-tokenizer.
* Formatting tweaks.
* Add a full example.
* Use the transformers names.
* More renamings.
* Get encoding and decoding to work.
* Clippy fixes.
* Allow loading images with given std and mean
* OpenCLIP text encoder component
* Two MobileCLIP models
* Clippy fixes.
---------
Co-authored-by: Laurent <laurent.mazare@gmail.com>
* Start sketching parler-tts support.
* Implement the attention.
* Add the example code.
* Fix the example.
* Add the description + t5 encode it.
* More of the parler forward pass.
* Fix the positional embeddings.
* Support random sampling in generation.
* Handle EOS.
* Add the python decoder.
* Proper causality mask.
* Soft NMS with thresholds
* NMS Test
* Soft nms w/ boxes removed below threshold
* Soft nms test
* No longer removing bounding boxes to fit Soft-NMS focus
* Initialize confidence
* Added comments
* Refactored out updating based on IOU/sigma
* Score_threshold -> confidence_threshold for clarity
* Remove bboxes below confidence threshold
* Softnms basic functionality test
* Softnms confidence decay test
* Softnms confidence threshold test
* Softnms no overlapping bbox test
* Testing confidence after no overlap test
* Single bbox and no bbox tests
* Signify test completion
* Handling result of test functions
* Checking all pairs of bboxes instead of a forward pass
* Equal confidence overlap test
* Clarified tests for implementation
* No longer dropping boxes, just setting to 0.0
* Formatted w/ cargo
* Add the flux autoencoder.
* Add the encoder down-blocks.
* Upsampling in the decoder.
* Sketch the flow matching model.
* More flux model.
* Add some of the positional embeddings.
* Add the rope embeddings.
* Add the sampling functions.
* Add the flux example.
* Fix the T5 bits.
* Proper T5 tokenizer.
* Clip encoder path fix.
* Get the clip embeddings.
* No configurable weights in layer norm.
* More weights related fixes.
* Yet another shape fix.
* DType fix.
* Fix a couple more shape issues.
* DType fixes.
* Fix the latent dims.
* Fix more shape issues.
* Autoencoder fixes.
* Get some generations out.
* Bugfix.
* T5 padding.
* Clippy fix.
* Add the decode only mode.
* Fix.
* More fixes.
* Finally get some generations to work.
* Add readme.
* bert attention mask
* Allow for using None as a mask.
* Revert part of the changes so that the proper default mask applies.
* Cosmetic change.
* Another cosmetic tweak.
---------
Co-authored-by: Laurent <laurent.mazare@gmail.com>
* Add Llama 3.1 rope
* Clippy
* Format
* Clippy
* Add support for multiple eos tokens:
* Untagged either
* Remove either dep and fix settings.json
* Make the max positional embeddings configurable
* Add: DINOv2Reg4 with PlantCLEF2024 weights and example ( See https://arxiv.org/abs/2309.16588 and https://zenodo.org/records/10848263 )
* Remove extra files + update README to download them + remove extra lines
* minor fix (README remove extra spaces)
* minor fix (README: Fix image url)
* Modif: Add back interpolate_pos_encoding() + fix when no interpolation + remove extra comments + Update README ( source image changed and so the predictions )
* Fix: Improve code lisibility with '$ cargo clippy' and '$ cargo fmt'
* Another clippy fix.
---------
Co-authored-by: x-VEspit <vincent.espitalier@cirad.fr>
Co-authored-by: laurent <laurent.mazare@gmail.com>
* define structs
* construct ResidualConvUnit
* forward() for ResidualConvUnit
* implement FeatureFusionBlock
* implement Scratch
* implement DPTHead
* add identity module
* implement forward for DTPHead
* add get_intermediate_layers to DinoVisionTransformer
* implement DepthAnythingV2
* some minor tweaks
* fix compile errors
* fix var builder prefixes
* setup initial example
* use fixed patch size of 37 (518 / 14)
* debugged until output
* print min and max values
* add some dynamism to the output location
* scale input image
* extract prep function
* extract output path function
* normalize image with magic mean and std
* add spectral coloring
* squeeze in the right place
* make enterpolation optional
* use bail instead of panic
* omit unnecessary Shape call
* remove empty curly braces
* use bail instead of assert
* use vb and pp
* remove closures
* extract config object
* Apply rustfmt.
* Fix some clippy lints.
* More lints.
* Use the array methods.
---------
Co-authored-by: laurent <laurent.mazare@gmail.com>
* Add a slice_set op.
* Add some testing.
* Add the dedicated kv-cache module.
* Derive debug and clone.
* Expose more kv-cache functions.
* Return the current data when appending.
* Use the new cache in the quantized phi3 model.