mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Compare commits
675 Commits
bug_q4k
...
0.9.0-alph
Author | SHA1 | Date | |
---|---|---|---|
7f0f83a7c1 | |||
76e565c4ab | |||
e4e7b0b2da | |||
b01ebbad8a | |||
1d1d6d4fe6 | |||
2653002f29 | |||
a52b76ae82 | |||
fb660b8d43 | |||
2f9606b187 | |||
f3a73f80d1 | |||
b44d38de0e | |||
d9198deb37 | |||
15ed0b11ce | |||
34505fdf3a | |||
d7b7ce16e4 | |||
19fb6dac1f | |||
acc5bd335f | |||
eb478ece92 | |||
d339b01726 | |||
2f3bf42bcb | |||
e3370c6316 | |||
338f6a102e | |||
bc33df77e1 | |||
cf9d7bf24c | |||
9d31361c4f | |||
648596c073 | |||
d9904a3baf | |||
d6db305829 | |||
b4daa03e59 | |||
9541467d6b | |||
6429609090 | |||
ba473290da | |||
59c26195db | |||
cb02b389d5 | |||
0d4097031c | |||
10853b803c | |||
f3d472952f | |||
67b85f79f1 | |||
0b24f7f0a4 | |||
3afb04925a | |||
cbf5fc80c2 | |||
468d1d525f | |||
c930ab7e1a | |||
111edbc4ea | |||
e286cf7cc9 | |||
e4ffb85228 | |||
37db86ff79 | |||
add3a714aa | |||
26c16923b9 | |||
9e8bf70333 | |||
ac9cdbd448 | |||
e6cc76fc37 | |||
fd7f7242a1 | |||
3ddd20a5aa | |||
2423d633fc | |||
7c2449f623 | |||
0af3e428ec | |||
43017539ab | |||
e142bf9530 | |||
d2c53f4f2f | |||
2a2852d1c1 | |||
8f20f2a722 | |||
ab9019425a | |||
da02b59516 | |||
27996a1a9e | |||
1a32107fab | |||
333d94a19a | |||
3164a19a5d | |||
e6cd499e98 | |||
77db8396d0 | |||
85f0aaefe5 | |||
e4c3a71f11 | |||
17cbbe4286 | |||
6fd2f63a15 | |||
efd0e6822f | |||
158817f230 | |||
309cd0f7c7 | |||
ab7ff7081e | |||
461e8c1685 | |||
2344c4e4b8 | |||
32defdb7d5 | |||
236c35e578 | |||
6f8351dfda | |||
57f41da13b | |||
cbaa0ad46f | |||
b12c7c2888 | |||
94ffc2ec6f | |||
7354afc673 | |||
2a705e6f37 | |||
a594ef669c | |||
71cd6d5533 | |||
d60eba1408 | |||
e38e2a85dd | |||
460616fc84 | |||
91f1f019b1 | |||
cd639131f0 | |||
11aa30be10 | |||
1be6b090c7 | |||
62ced44ea9 | |||
5c2f893e5a | |||
67cab7d6b8 | |||
1807be84f4 | |||
145aa7193c | |||
6f715f9256 | |||
dba7a9c93e | |||
b52c2c6050 | |||
4f59ed38b0 | |||
54e7fc3c97 | |||
23ed8a9ded | |||
21c686387c | |||
b4deb5c5a9 | |||
c12db594e3 | |||
f86f4d6224 | |||
3159f91b90 | |||
1a0f9ccf16 | |||
e86565624b | |||
386fd8abb4 | |||
12d7e7b145 | |||
a3f200e369 | |||
00d8a0c178 | |||
f689ce5d39 | |||
0ed24b9852 | |||
06350c31c7 | |||
9453cc3095 | |||
3769206583 | |||
e2b6b367fa | |||
6454597943 | |||
3fba2b5fc4 | |||
530ab96036 | |||
7ac0de15a9 | |||
d232e132f6 | |||
139ff56aeb | |||
498bc2cdc9 | |||
0e2c8c17fb | |||
594d984f9c | |||
37e0ab8c64 | |||
07849aa595 | |||
3699c1a053 | |||
a2e9d41b20 | |||
7c09215ef4 | |||
dcd83336b6 | |||
a01aa89799 | |||
3d1dc06cdb | |||
f553ab5eb4 | |||
41ade774e8 | |||
6eab6b57f5 | |||
ca7cf5cb3b | |||
0d96ec31e8 | |||
937e8eda74 | |||
edf7668291 | |||
e4a96f9e7c | |||
f856b5c3a7 | |||
d2e432914e | |||
410c89f72a | |||
56aacb05da | |||
6faecaa616 | |||
90d04ff622 | |||
7b60bda4ed | |||
936300678d | |||
f479840ce6 | |||
fd08d3d0a4 | |||
a2bcc227df | |||
def4c6cdee | |||
888d886dd8 | |||
6110ad8d4f | |||
aa35bf2ff5 | |||
724650446c | |||
dfe9a00683 | |||
683ab698de | |||
2f49e1b534 | |||
0ebb38813b | |||
3a3c48b14b | |||
261ed65f36 | |||
62525e8352 | |||
2c25754281 | |||
ed48f54b54 | |||
ad8a4c5e5a | |||
c3c392f45c | |||
a0184a4fe4 | |||
10d47183c0 | |||
d01207dbf3 | |||
8097559c1a | |||
829dcfa8dc | |||
c2fca0ca11 | |||
844d45cde4 | |||
af2104078f | |||
5fc4f17727 | |||
c58c5d5b01 | |||
382c6b51af | |||
6eea45a761 | |||
ebf722b446 | |||
c09afc211c | |||
b60faebea4 | |||
72d649058b | |||
0cb0bd1dfa | |||
afb6575835 | |||
5635650d38 | |||
13b2a8a4a0 | |||
e3261216b1 | |||
c02b7c3272 | |||
86613c00e2 | |||
29e25c458d | |||
aafa24ed93 | |||
fdc2622686 | |||
ccdbe87639 | |||
2ec8729d51 | |||
e3c146ada6 | |||
1e96b8b695 | |||
a8288b7a72 | |||
6070278a31 | |||
b47c0bc475 | |||
14fd2d97e0 | |||
31a1075f4b | |||
236b29ff15 | |||
58197e1896 | |||
736d8eb752 | |||
7cff5898ec | |||
b75ef051cf | |||
c1b9e07e35 | |||
69fdcfe96a | |||
2b75dd9551 | |||
53ce65f706 | |||
68aa9c7320 | |||
35e5f31397 | |||
d3fe989d08 | |||
14db029494 | |||
6e6c1c99b0 | |||
b7d9af00cc | |||
59bbc0d287 | |||
dfdce2b602 | |||
500c9f2882 | |||
2be9bd211e | |||
89eae41efd | |||
c0a559d427 | |||
aa7ac1832d | |||
19db6b9723 | |||
0fcb40b229 | |||
6991a37b94 | |||
9ca277a9d7 | |||
2e9c010609 | |||
ac51f477eb | |||
d4b6f6eef6 | |||
957d604a78 | |||
ce90287f45 | |||
1ba87a9450 | |||
bd80078acf | |||
fea46cb719 | |||
8696cf6494 | |||
4a52aeb437 | |||
24d54d0ff9 | |||
636eff652a | |||
0f5cbb08b3 | |||
ddafc61055 | |||
a925ae6bc6 | |||
6056fd5c90 | |||
ebc9aa60bc | |||
2489a606fe | |||
3c815b1dca | |||
42891cc613 | |||
f25173d68b | |||
6a4741bbf9 | |||
30cdd769f9 | |||
d74fbed334 | |||
c63048d374 | |||
a226a9736b | |||
25960676ca | |||
9cd54aa5d4 | |||
eec11ce2ce | |||
9182f9f5c2 | |||
ecff05d72b | |||
7f1ba8038c | |||
74e9e41911 | |||
e27aac0a06 | |||
a3dd87f15e | |||
242e006bbb | |||
6baa1d486b | |||
36cf54525d | |||
2b10aaa05d | |||
9f804af29d | |||
54ff971e35 | |||
b9fac7ec00 | |||
f65e90e7ef | |||
d39462856b | |||
cb180eb23a | |||
9182c828e6 | |||
3f13ad3d79 | |||
cd4d941ed1 | |||
03344d3c19 | |||
1ec3b2cc18 | |||
f7773d498a | |||
7abc3b8cd7 | |||
46012ed31f | |||
f3fade3b03 | |||
ea260aeffd | |||
0814dfd148 | |||
3ceca9901a | |||
1df2bddccf | |||
6f0b807ffd | |||
d54e02d73d | |||
45e235a747 | |||
31cf64147b | |||
77ea479a18 | |||
72e7ca529a | |||
7ff921c538 | |||
9b8537a62f | |||
7ebc3548e1 | |||
eefc1c77ef | |||
01545f7303 | |||
349c3e806a | |||
bdaa34216a | |||
cc80e065e5 | |||
13c64f6828 | |||
21f82a5155 | |||
9cff7bc3f4 | |||
d9bc5ec151 | |||
84328e2b60 | |||
82b641fd27 | |||
01794dc16e | |||
a75cd8164f | |||
b13a82a438 | |||
59b18d974e | |||
89f53b9d7b | |||
a09d451d11 | |||
fa06f5f5f9 | |||
09d4845aa8 | |||
a0d03aded1 | |||
3bbb88fcb4 | |||
ed7b99f525 | |||
287013ef28 | |||
eb26e2467e | |||
c68ed8963f | |||
e5c8b88f90 | |||
805f3be8e1 | |||
3b429f3023 | |||
96a48e5cc4 | |||
6cf82fd7a3 | |||
cfab6e7616 | |||
11d4a3c588 | |||
9d3f1c8af5 | |||
7211009179 | |||
6fadaf2eff | |||
8a05743a21 | |||
b2e816752b | |||
618ecf5e23 | |||
267601eec1 | |||
08a15cb79e | |||
c388be93e7 | |||
d22f1d4f4e | |||
0067fe00a8 | |||
587ee3bb6f | |||
dd78422701 | |||
9215e9ce8c | |||
52ae332910 | |||
8b390ddd29 | |||
c97d639fa0 | |||
b45c710dbf | |||
9c532aef47 | |||
f7a6468238 | |||
2b93dffe64 | |||
e6ee7ba4d4 | |||
1690ab45d2 | |||
8de0ce6cba | |||
ce6d08df94 | |||
2817643db9 | |||
4d14777673 | |||
f135b7963d | |||
af955f260c | |||
8ad822a983 | |||
e198bb0816 | |||
f7d5bf5b97 | |||
c119600d6e | |||
c449f65b12 | |||
db7dbf3071 | |||
4ecedb1598 | |||
53e5380bf6 | |||
50e49ecc5f | |||
4c88c3ce06 | |||
8b8fb630df | |||
fb805b8ca2 | |||
79e3bec789 | |||
e6d412b156 | |||
26cbbf8d84 | |||
2bf413caa3 | |||
3ad4770eb6 | |||
a0460cd2b1 | |||
b81ecf712d | |||
a4d5a414e3 | |||
798e0335cd | |||
718671a0d5 | |||
c5fe4a7f89 | |||
7f354473cf | |||
33c9b66554 | |||
9fd52b3b71 | |||
e662431acf | |||
ab892274d1 | |||
b869a659ec | |||
88f7793598 | |||
2ac302a5d1 | |||
ace282e5c2 | |||
c87381fc96 | |||
c5626b8271 | |||
e6a5b82ba6 | |||
5aebe53dd2 | |||
f76bb7794a | |||
30b145150f | |||
f48c07e242 | |||
8967c46563 | |||
1e46cf8b19 | |||
bd8db2a771 | |||
318d143224 | |||
2be1a35710 | |||
26226068a4 | |||
cd6b9e317c | |||
08c049def3 | |||
d17b2cdad9 | |||
fb918a23c8 | |||
b23436bf90 | |||
be9c200cbb | |||
ea0d8d3753 | |||
308ea070ed | |||
b20acd622c | |||
5522bbc57c | |||
888c09a3db | |||
318cb82f16 | |||
c7557b65dc | |||
cd29c7ccd4 | |||
f9954b73ba | |||
eead1dcead | |||
92f81d2fcb | |||
3144150b8d | |||
b190fd8592 | |||
efe4a0c84b | |||
665da30487 | |||
356a170ae9 | |||
7ecbc6d50b | |||
8ad12a0e81 | |||
eb1b27abcd | |||
708e422456 | |||
c5092f2c29 | |||
cdc8b57b5c | |||
b0340d72ec | |||
b3484e7a5e | |||
ada5d7c096 | |||
13ae5a34c7 | |||
ab86cd37c8 | |||
a9abde5f93 | |||
75b6d4b0da | |||
66f0a4eeea | |||
4523ecfb2a | |||
f5dfe883d7 | |||
196765e995 | |||
60676780a9 | |||
d3a8d291d5 | |||
cd254074f3 | |||
e7f8e72588 | |||
1b98f84a2b | |||
cf7d7fcf2f | |||
8c0db87992 | |||
e2b4829531 | |||
5e70821dd0 | |||
a62a97340c | |||
fdfe8fd129 | |||
790037390c | |||
6f877592a7 | |||
cc856db9ce | |||
fc1fe5e45b | |||
32f567bac4 | |||
fee33b45c2 | |||
6708870e63 | |||
a00e24d752 | |||
c07e4057ab | |||
c0bdd9c7a6 | |||
9563a5fee4 | |||
ec97c98e81 | |||
bb3ee48039 | |||
0c11e055be | |||
18036c6ccb | |||
0fddec762e | |||
74b7f59261 | |||
af7f8b87d3 | |||
b219903d0f | |||
469635a3eb | |||
455c42aa72 | |||
2a8679509e | |||
143c481c20 | |||
f115895b9e | |||
90fc82211f | |||
6a966cf9e0 | |||
04a61a9c72 | |||
58605252e8 | |||
d365ef32d9 | |||
754fa1e813 | |||
184105792f | |||
a15f859ab4 | |||
e316cb6997 | |||
ce9fbc3682 | |||
db8b24ae92 | |||
74bf6994b1 | |||
cdc4c172c4 | |||
e1f9c3776d | |||
3318fe30fb | |||
2bb9c683b9 | |||
ff03fd3fb3 | |||
df5f69444e | |||
0c5eecbc0f | |||
56c9d3ee7b | |||
dd00482ea3 | |||
936f6a4840 | |||
3440cec3a0 | |||
e7fc1daa21 | |||
be5b68cd0b | |||
ea984d0421 | |||
9634583781 | |||
758366160e | |||
0a3487a776 | |||
0c09d10f32 | |||
8a99cf7dd2 | |||
bd9ab9bc04 | |||
8cc0a183ba | |||
6530932285 | |||
924ccae30c | |||
60dc72b96b | |||
20abb72fec | |||
ca5d727ba2 | |||
09e0148cce | |||
de11623752 | |||
21f1d04976 | |||
4fff5b51f5 | |||
314630638d | |||
3e3def4134 | |||
6980774a91 | |||
64d4038e4f | |||
979deaca07 | |||
b485e4b6ee | |||
2c95b7394a | |||
4fd00b8900 | |||
57267cd536 | |||
60ee5cfd4d | |||
56e44aabe3 | |||
d0aca6c3c6 | |||
15e8644149 | |||
0c49e95dfb | |||
205767f9de | |||
5e526abc8c | |||
6400e1b0a0 | |||
32544a2ad6 | |||
badf886583 | |||
918136ba46 | |||
1a6043af51 | |||
2f22afd80e | |||
8d04f70f4d | |||
eeb7e2b683 | |||
11ea7aac4d | |||
32eb56d6b3 | |||
28057781aa | |||
544018b6d0 | |||
c753f72c85 | |||
8013b50829 | |||
45d5322d62 | |||
a2cb2edead | |||
fc67d878bb | |||
3ba37443e5 | |||
1fb728772d | |||
cb86b0c82c | |||
6284ad784c | |||
678d44a7f6 | |||
41416d2376 | |||
5ebcfeaf0f | |||
7c7400fb63 | |||
058a910d0e | |||
26fe162ab5 | |||
121a71e01f | |||
2d5f2a728d | |||
68f7655895 | |||
b60064780d | |||
14010a8498 | |||
0de0795220 | |||
c1b418586c | |||
ad73e93da2 | |||
13c67226e6 | |||
d0aa197b07 | |||
274bf11633 | |||
1e26d539d9 | |||
74497e6bf7 | |||
8ab384e63d | |||
27ffd644a9 | |||
bf20cc854c | |||
42ce593ec6 | |||
67589791d2 | |||
1c8d61f051 | |||
90447bc993 | |||
40ce16001b | |||
5657e596cd | |||
0dee8ea19b | |||
9cadd4e644 | |||
020a979de2 | |||
cdc3823d8f | |||
e5eb9602d0 | |||
b75e8945bc | |||
a90fc5ca5a | |||
adfae2460a | |||
678f64dd27 | |||
b545f54a19 | |||
1ba11f22d6 | |||
982722019b | |||
a83ca2ece0 | |||
153c940a9c | |||
50be8a98ba | |||
58cc896e69 | |||
5cdd84e0f6 | |||
a510ddec4e | |||
d32abbce53 | |||
dfab45e1c8 | |||
96bc704d17 | |||
a52d407ae6 | |||
9e824ec810 | |||
beadb1b434 | |||
6d83d42efb | |||
b6afb46601 | |||
fd7c856564 | |||
73d79e6092 | |||
b1879f17f6 | |||
4f79f5df8a | |||
1cf34368b7 | |||
17e6e2d7ee | |||
80b1c689f9 | |||
db923517b3 | |||
403680f17d | |||
86a8e58897 | |||
5270224f40 | |||
7e3349d7c3 | |||
1257fc6719 | |||
ea36f3b11f | |||
79478ff5a1 | |||
86b7c01b30 | |||
bdd8107fda | |||
ecf88a6d38 | |||
e6d86b0819 | |||
88618255cb | |||
539ead927a | |||
a46864bd56 | |||
bafe95b660 | |||
a3d92ab226 | |||
e90bcdcc7c | |||
8e06bfb4fd | |||
6242276c09 | |||
e06e8d0dbe | |||
e63bb8661b | |||
41915184bb | |||
c1876b8041 | |||
85e5680277 | |||
1327419776 | |||
402349d120 | |||
9f0c99f0c1 | |||
0fc95c9f0c | |||
2480c5dbdd | |||
63944714f2 | |||
d3bdd788cf | |||
ae06cb74bb | |||
a897fda74e | |||
1f1179913a | |||
6e98cf2a92 | |||
2cc1247999 | |||
edf3fcd1c4 | |||
53e4755015 | |||
87efb5d8eb | |||
ad181f9cdc | |||
88945f2c22 | |||
12b2a337f3 | |||
fb05af4c42 | |||
ad075a5f7e | |||
3f04a79ada | |||
6ebe043273 | |||
6bf52b9fdf | |||
955e63c803 |
7
.github/dependabot.yml
vendored
Normal file
7
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "cargo"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
open-pull-requests-limit: 5
|
40
.github/workflows/book-cd.yml
vendored
40
.github/workflows/book-cd.yml
vendored
@ -1,40 +0,0 @@
|
||||
name: Deploy Rust book
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write # To push a branch
|
||||
pull-requests: write # To create a PR from that branch
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Install latest mdbook
|
||||
run: |
|
||||
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
|
||||
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
|
||||
mkdir mdbook
|
||||
curl -sSL $url | tar -xz --directory=./mdbook
|
||||
echo `pwd`/mdbook >> $GITHUB_PATH
|
||||
- name: Deploy GitHub Pages
|
||||
run: |
|
||||
# This assumes your book is in the root of your repository.
|
||||
# Just add a `cd` here if you need to change to another directory.
|
||||
cd candle-book
|
||||
mdbook build
|
||||
git worktree add gh-pages
|
||||
git config user.name "Deploy from CI"
|
||||
git config user.email ""
|
||||
cd gh-pages
|
||||
# Delete the ref to avoid keeping history.
|
||||
git update-ref -d refs/heads/gh-pages
|
||||
rm -rf *
|
||||
mv ../book/* .
|
||||
git add .
|
||||
git commit -m "Deploy $GITHUB_SHA to gh-pages"
|
||||
git push --force --set-upstream origin gh-pages
|
29
.github/workflows/book.yml
vendored
29
.github/workflows/book.yml
vendored
@ -1,29 +0,0 @@
|
||||
name: CI
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: Test candle-book
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write # To push a branch
|
||||
pull-requests: write # To create a PR from that branch
|
||||
steps:
|
||||
- uses: actions/checkout@master
|
||||
- name: Install Rust
|
||||
run: |
|
||||
rustup set profile minimal
|
||||
rustup toolchain install stable
|
||||
rustup default stable
|
||||
- name: Install latest mdbook
|
||||
run: |
|
||||
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
|
||||
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
|
||||
mkdir bin
|
||||
curl -sSL $url | tar -xz --directory=bin
|
||||
echo "$(pwd)/bin" >> $GITHUB_PATH
|
||||
- name: Run tests
|
||||
run: cd candle-book && cargo build && mdbook test -L ../target/debug/deps/
|
||||
|
||||
|
75
.github/workflows/ci_cuda.yaml
vendored
75
.github/workflows/ci_cuda.yaml
vendored
@ -5,49 +5,16 @@ on:
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
start-runner:
|
||||
name: Start self-hosted EC2 runner
|
||||
runs-on: ubuntu-latest
|
||||
# Don't run on forks, they won't have access to secrets anyway.
|
||||
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
|
||||
env:
|
||||
AWS_REGION: us-east-1
|
||||
EC2_AMI_ID: ami-03cfed9ea28f4b002
|
||||
EC2_INSTANCE_TYPE: g5.xlarge
|
||||
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
|
||||
EC2_SECURITY_GROUP: sg-030175c435ac141d6
|
||||
outputs:
|
||||
label: ${{ steps.start-ec2-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Start EC2 runner
|
||||
id: start-ec2-runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
ec2-image-id: ${{ env.EC2_AMI_ID }}
|
||||
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
|
||||
subnet-id: ${{ env.EC2_SUBNET_ID }}
|
||||
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
|
||||
aws-resource-tags: > # optional, requires additional permissions
|
||||
[
|
||||
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
|
||||
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
|
||||
]
|
||||
|
||||
test-cuda:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
needs: start-runner # required to start the main job when the runner is ready
|
||||
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
|
||||
options: --gpus 0
|
||||
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
|
||||
permissions:
|
||||
contents: write
|
||||
packages: write
|
||||
@ -58,32 +25,10 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
- name: Install dependencies
|
||||
run: apt-get update && apt install curl build-essential libssl-dev protobuf-compiler pkg-config -y
|
||||
- name: Install Rust Stable
|
||||
run: curl https://sh.rustup.rs -sSf | sh -s -- -y
|
||||
uses: actions-rust-lang/setup-rust-toolchain@v1
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- run: apt-get update -y && apt-get install libssl-dev protobuf-compiler -y
|
||||
- name: Test (cuda)
|
||||
run: PATH=$PATH:/usr/local/cuda-11.8/bin/ /root/.cargo/bin/cargo test --features cuda
|
||||
stop-runner:
|
||||
name: Stop self-hosted EC2 runner
|
||||
needs:
|
||||
- start-runner
|
||||
- test-cuda
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
AWS_REGION: us-east-1
|
||||
if: ${{ (success() || failure()) && github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }} # required to stop the runner even if the error happened in the previous jobs
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Stop EC2 runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
label: ${{ needs.start-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
|
||||
run: cargo test --features cuda
|
||||
|
BIN
.github/workflows/maturin.yml
vendored
BIN
.github/workflows/maturin.yml
vendored
Binary file not shown.
6
.github/workflows/python.yml
vendored
6
.github/workflows/python.yml
vendored
@ -18,9 +18,9 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest] # For now, only test on Linux
|
||||
steps:
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v2
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install Rust
|
||||
uses: actions-rs/toolchain@v1
|
||||
@ -65,4 +65,4 @@ jobs:
|
||||
working-directory: ./candle-pyo3
|
||||
run: |
|
||||
source .env/bin/activate
|
||||
python -m pytest -s -v tests
|
||||
python -m pytest -s -v tests
|
||||
|
21
.github/workflows/rust-ci.yml
vendored
21
.github/workflows/rust-ci.yml
vendored
@ -1,6 +1,6 @@
|
||||
on:
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
|
||||
@ -15,7 +15,10 @@ jobs:
|
||||
os: [ubuntu-latest, windows-latest, macOS-latest]
|
||||
rust: [stable]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
@ -34,7 +37,13 @@ jobs:
|
||||
os: [ubuntu-latest, windows-latest, macOS-latest]
|
||||
rust: [stable]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Delete huge unnecessary tools folder
|
||||
if: runner.os == 'Linux'
|
||||
run: rm -rf /opt/hostedtoolcache
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
@ -49,7 +58,7 @@ jobs:
|
||||
name: Rustfmt
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
@ -65,7 +74,7 @@ jobs:
|
||||
name: Clippy
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
|
15
.github/workflows/trufflehog.yml
vendored
Normal file
15
.github/workflows/trufflehog.yml
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
on:
|
||||
push:
|
||||
|
||||
name: Secret Leaks
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@main
|
10
.gitignore
vendored
10
.gitignore
vendored
@ -9,6 +9,10 @@ target/
|
||||
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
||||
Cargo.lock
|
||||
|
||||
# editor config
|
||||
.helix
|
||||
.vscode
|
||||
|
||||
# These are backup files generated by rustfmt
|
||||
**/*.rs.bk
|
||||
|
||||
@ -36,3 +40,9 @@ candle-wasm-examples/*/package-lock.json
|
||||
candle-wasm-examples/**/config*.json
|
||||
.DS_Store
|
||||
.idea/*
|
||||
__pycache__
|
||||
out.safetensors
|
||||
out.wav
|
||||
bria.mp3
|
||||
bria.safetensors
|
||||
bria.wav
|
||||
|
55
Cargo.toml
55
Cargo.toml
@ -3,14 +3,15 @@ members = [
|
||||
"candle-core",
|
||||
"candle-datasets",
|
||||
"candle-examples",
|
||||
"candle-book",
|
||||
"candle-nn",
|
||||
"candle-pyo3",
|
||||
"candle-transformers",
|
||||
"candle-wasm-examples/*",
|
||||
"candle-wasm-tests",
|
||||
"tensor-tools",
|
||||
]
|
||||
exclude = [
|
||||
"candle-book",
|
||||
"candle-flash-attn",
|
||||
"candle-kernels",
|
||||
"candle-metal-kernels",
|
||||
@ -19,7 +20,7 @@ exclude = [
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "0.3.3"
|
||||
version = "0.9.0-alpha.4"
|
||||
edition = "2021"
|
||||
description = "Minimalist ML framework."
|
||||
repository = "https://github.com/huggingface/candle"
|
||||
@ -28,48 +29,52 @@ categories = ["science"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
ab_glyph = "0.2.23"
|
||||
accelerate-src = { version = "0.3.2" }
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
byteorder = "1.4.3"
|
||||
candle = { path = "./candle-core", package = "candle-core" }
|
||||
candle-datasets = { path = "./candle-datasets" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn" }
|
||||
candle-kernels = { path = "./candle-kernels" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels" }
|
||||
candle-nn = { path = "./candle-nn" }
|
||||
candle-onnx = { path = "./candle-onnx" }
|
||||
candle-transformers = { path = "./candle-transformers" }
|
||||
candle = { path = "./candle-core", package = "candle-core", version = "0.9.0-alpha.4" }
|
||||
candle-datasets = { path = "./candle-datasets", version = "0.9.0-alpha.4" }
|
||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.9.0-alpha.4" }
|
||||
candle-kernels = { path = "./candle-kernels", version = "0.9.0-alpha.4" }
|
||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.9.0-alpha.4" }
|
||||
candle-nn = { path = "./candle-nn", version = "0.9.0-alpha.4" }
|
||||
candle-onnx = { path = "./candle-onnx", version = "0.9.0-alpha.4" }
|
||||
candle-transformers = { path = "./candle-transformers", version = "0.9.0-alpha.4" }
|
||||
clap = { version = "4.2.4", features = ["derive"] }
|
||||
criterion = { version = "0.5.1", default-features=false }
|
||||
cudarc = { version = "0.9.14", features = ["f16"] }
|
||||
gemm = { version = "0.16.6", features = ["wasm-simd128-enable"] }
|
||||
hf-hub = "0.3.0"
|
||||
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
|
||||
imageproc = { version = "0.23.0", default-features = false }
|
||||
cudarc = { version = "0.16.0", features = ["std", "cublas", "cublaslt", "curand", "driver", "nvrtc", "f16", "cuda-version-from-build-system", "dynamic-linking"], default-features=false }
|
||||
fancy-regex = "0.13.0"
|
||||
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
|
||||
hf-hub = "0.4.1"
|
||||
half = { version = "2.5.0", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||
hound = "3.5.1"
|
||||
image = { version = "0.25.2", default-features = false, features = ["jpeg", "png"] }
|
||||
imageproc = { version = "0.24.0", default-features = false }
|
||||
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
||||
libc = { version = "0.2.147" }
|
||||
log = "0.4"
|
||||
memmap2 = { version = "0.7.1", features = ["stable_deref_trait"] }
|
||||
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
|
||||
num_cpus = "1.15.0"
|
||||
num-traits = "0.2.15"
|
||||
parquet = { version = "45.0.0" }
|
||||
rand = "0.8.5"
|
||||
rand_distr = "0.4.3"
|
||||
parquet = { version = "51.0.0" }
|
||||
rand = "0.9.0"
|
||||
rand_distr = "0.5.1"
|
||||
rayon = "1.7.0"
|
||||
rusttype = { version = "0.9", default-features = false }
|
||||
safetensors = "0.3.1"
|
||||
safetensors = "0.4.1"
|
||||
serde = { version = "1.0.171", features = ["derive"] }
|
||||
serde_plain = "1.0.2"
|
||||
serde_json = "1.0.99"
|
||||
thiserror = "1"
|
||||
tokenizers = { version = "0.13.4", default-features = false }
|
||||
tokenizers = { version = "0.21.0", default-features = false }
|
||||
tracing = "0.1.37"
|
||||
tracing-chrome = "0.7.1"
|
||||
tracing-subscriber = "0.3.7"
|
||||
wav = "1.0.0"
|
||||
ug = "0.4.0"
|
||||
ug-cuda = "0.4.0"
|
||||
ug-metal = "0.4.0"
|
||||
yoke = { version = "0.7.2", features = ["derive"] }
|
||||
zip = { version = "0.6.6", default-features = false }
|
||||
zip = { version = "1.1.1", default-features = false }
|
||||
metal = { version = "0.27.0", features = ["mps"]}
|
||||
|
||||
[profile.release-with-debug]
|
||||
|
81
README.md
81
README.md
@ -2,7 +2,8 @@
|
||||
[](https://discord.gg/hugging-face-879548962464493619)
|
||||
[](https://crates.io/crates/candle-core)
|
||||
[](https://docs.rs/candle-core)
|
||||

|
||||
[](https://github.com/huggingface/candle/blob/main/LICENSE-MIT)
|
||||
[](https://github.com/huggingface/candle/blob/main/LICENSE-APACHE)
|
||||
|
||||
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support)
|
||||
and ease of use. Try our online demos:
|
||||
@ -60,20 +61,31 @@ These online demos run entirely in your browser:
|
||||
|
||||
We also provide a some command line based examples using state of the art models:
|
||||
|
||||
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
|
||||
- [LLaMA v1, v2, and v3](./candle-examples/examples/llama/): general LLM, includes
|
||||
the SOLAR-10.7B variant.
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
|
||||
- [Codegeex4](./candle-examples/examples/codegeex4-9b/): Code completion,code interpreter,web search,fuction calling,repository-level
|
||||
- [GLM4](./candle-examples/examples/glm4/): Open Multilingual Multimodal Chat LMs by THUDM
|
||||
- [Gemma v1 and v2](./candle-examples/examples/gemma/): 2b and 7b+/9b general LLMs from Google Deepmind.
|
||||
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
|
||||
Griffin based models from Google that mix attention with a RNN like state.
|
||||
- [Phi-1, Phi-1.5, Phi-2, and Phi-3](./candle-examples/examples/phi/): 1.3b,
|
||||
2.7b, and 3.8b general LLMs with performance on par with 7b models.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets.
|
||||
- [Minimal Mamba](./candle-examples/examples/minimal-mamba/): a minimal
|
||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
||||
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
|
||||
- [Mamba](./candle-examples/examples/mamba/): an inference only
|
||||
implementation of the Mamba state space model.
|
||||
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
|
||||
better performance than all publicly available 13b models as of 2023-09-28.
|
||||
- [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of
|
||||
experts 8x7b general LLM with better performance than a Llama 2 70B model with
|
||||
much faster inference.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation.
|
||||
- [StarCoder](./candle-examples/examples/bigcode/) and
|
||||
[StarCoder2](./candle-examples/examples/starcoder2/): LLM specialized to code generation.
|
||||
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
|
||||
- [RWKV v5 and v6](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
|
||||
performance.
|
||||
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
|
||||
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
|
||||
(English/Chinese) general LLMs with 6b and 34b parameters.
|
||||
@ -103,16 +115,31 @@ We also provide a some command line based examples using state of the art models
|
||||
|
||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
||||
|
||||
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmentation model.
|
||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
|
||||
model using residual vector quantization.
|
||||
- [MetaVoice](./candle-examples/examples/metavoice/): foundational model for
|
||||
text-to-speech.
|
||||
- [Parler-TTS](./candle-examples/examples/parler-tts/): large text-to-speech
|
||||
model.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
|
||||
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
|
||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||
using self-supervision (can be used for imagenet classification, depth
|
||||
evaluation, segmentation).
|
||||
- [VGG](./candle-examples/examples/vgg/),
|
||||
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
|
||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||
generate captions for an image.
|
||||
- [CLIP](./candle-examples/examples/clip/): multi-model vision and language
|
||||
model.
|
||||
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
|
||||
dedicated submodels for hand-writing and printed recognition.
|
||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
||||
model, generates the translated text from the input text.
|
||||
- [Moondream](./candle-examples/examples/moondream/): tiny computer-vision model
|
||||
that can answer real-world questions about images.
|
||||
|
||||
Run them using commands like:
|
||||
```
|
||||
@ -156,9 +183,13 @@ And then head over to
|
||||
- [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and
|
||||
serving local LLMs including an OpenAI compatible API server.
|
||||
- [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle.
|
||||
- [`candle-coursera-ml`](https://github.com/vishpat/candle-coursera-ml): Implementation of ML algorithms from Coursera's [Machine Learning Specialization](https://www.coursera.org/specializations/machine-learning-introduction) course.
|
||||
- [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more.
|
||||
- [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle.
|
||||
- [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem.
|
||||
- [`candle-einops`](https://github.com/tomsanbear/candle-einops): A pure rust implementation of the python [einops](https://github.com/arogozhnikov/einops) library.
|
||||
- [`atoma-infer`](https://github.com/atoma-network/atoma-infer): A Rust library for fast inference at scale, leveraging FlashAttention2 for efficient attention computation, PagedAttention for efficient KV-cache memory management, and multi-GPU support. It is OpenAI api compatible.
|
||||
- [`llms-from-scratch-rs`](https://github.com/nerdai/llms-from-scratch-rs): A comprehensive Rust translation of the code from Sebastian Raschka's Build an LLM from Scratch book.
|
||||
|
||||
If you have an addition to this list, please submit a pull request.
|
||||
|
||||
@ -177,17 +208,20 @@ If you have an addition to this list, please submit a pull request.
|
||||
- WASM support, run your models in a browser.
|
||||
- Included models.
|
||||
- Language Models.
|
||||
- LLaMA v1 and v2 with variants such as SOLAR-10.7B.
|
||||
- LLaMA v1, v2, and v3 with variants such as SOLAR-10.7B.
|
||||
- Falcon.
|
||||
- StarCoder.
|
||||
- Phi 1, 1.5, and 2.
|
||||
- Minimal Mamba
|
||||
- StarCoder, StarCoder2.
|
||||
- Phi 1, 1.5, 2, and 3.
|
||||
- Mamba, Minimal Mamba
|
||||
- Gemma v1 2b and 7b+, v2 2b and 9b.
|
||||
- Mistral 7b v0.1.
|
||||
- Mixtral 8x7b v0.1.
|
||||
- StableLM-3B-4E1T.
|
||||
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
|
||||
- Replit-code-v1.5-3B.
|
||||
- Bert.
|
||||
- Yi-6B and Yi-34B.
|
||||
- Qwen1.5, Qwen1.5 MoE.
|
||||
- RWKV v5 and v6.
|
||||
- Quantized LLMs.
|
||||
- Llama 7b, 13b, 70b, as well as the chat and code variants.
|
||||
- Mistral 7b, and 7b instruct.
|
||||
@ -197,16 +231,23 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Text to text.
|
||||
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
|
||||
- Marian MT (Machine Translation).
|
||||
- Whisper (multi-lingual support).
|
||||
- Text to image.
|
||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
||||
- Wurstchen v2.
|
||||
- Image to text.
|
||||
- BLIP.
|
||||
- TrOCR.
|
||||
- Audio.
|
||||
- Whisper, multi-lingual speech-to-text.
|
||||
- EnCodec, audio compression model.
|
||||
- MetaVoice-1B, text-to-speech model.
|
||||
- Parler-TTS, text-to-speech model.
|
||||
- Computer Vision Models.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
||||
ConvNeXTv2, MobileOne, EfficientVit (MSRA), MobileNetv4, Hiera, FastViT.
|
||||
- yolo-v3, yolo-v8.
|
||||
- Segment-Anything Model (SAM).
|
||||
- SegFormer.
|
||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||
- Serverless (on CPU), small and fast deployments.
|
||||
- Quantization support using the llama.cpp quantized types.
|
||||
@ -249,6 +290,8 @@ Cheatsheet:
|
||||
|
||||
### Why should I use Candle?
|
||||
|
||||
<!--- ANCHOR: goals --->
|
||||
|
||||
Candle's core goal is to *make serverless inference possible*. Full machine learning frameworks like PyTorch
|
||||
are very large, which makes creating instances on a cluster slow. Candle allows deployment of lightweight
|
||||
binaries.
|
||||
@ -258,6 +301,7 @@ and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-fut
|
||||
|
||||
Finally, Rust is cool! A lot of the HF ecosystem already has Rust crates, like [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers).
|
||||
|
||||
<!--- ANCHOR_END: goals --->
|
||||
|
||||
### Other ML frameworks
|
||||
|
||||
@ -343,9 +387,9 @@ git submodule update --init
|
||||
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’:
|
||||
```
|
||||
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
|
||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
|
||||
```
|
||||
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||
```
|
||||
|
||||
#### Linking error on windows when running rustdoc or mdbook tests
|
||||
@ -375,3 +419,10 @@ This may be caused by the models being loaded from `/mnt/c`, more details on
|
||||
|
||||
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
|
||||
error is generated.
|
||||
|
||||
#### CudaRC error
|
||||
|
||||
If you encounter an error like this one `called `Result::unwrap()` on an `Err` value: LoadLibraryExW { source: Os { code: 126, kind: Uncategorized, message: "The specified module could not be found." } }` on windows. To fix copy and rename these 3 files (make sure they are in path). The paths depend on your cuda version.
|
||||
`c:\Windows\System32\nvcuda.dll` -> `cuda.dll`
|
||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\cublas64_12.dll` -> `cublas.dll`
|
||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\curand64_10.dll` -> `curand.dll`
|
||||
|
13
candle-book/CONTRIBUTING.md
Normal file
13
candle-book/CONTRIBUTING.md
Normal file
@ -0,0 +1,13 @@
|
||||
# Candle Book
|
||||
|
||||
The book uses [mdBook](https://github.com/rust-lang/mdBook) for building.
|
||||
|
||||
## Installation
|
||||
|
||||
To install mdBook, run `cargo install mdbook`. More instructions can be found [here](https://rust-lang.github.io/mdBook/guide/installation.html).
|
||||
|
||||
## Viewing the book
|
||||
|
||||
To view the book, run `mdbook serve --open candle-book`. More instructions can be found [here](https://rust-lang.github.io/mdBook/guide/creating.html).
|
||||
|
||||
The book is built automatically in github CI.
|
@ -25,7 +25,7 @@ cudarc = { workspace = true, optional = true }
|
||||
half = { workspace = true, optional = true }
|
||||
image = { workspace = true, optional = true }
|
||||
anyhow = { workspace = true }
|
||||
tokio = "1.29.1"
|
||||
tokio = "1.43.0"
|
||||
|
||||
[dev-dependencies]
|
||||
byteorder = { workspace = true }
|
||||
@ -37,7 +37,6 @@ tokenizers = { workspace = true, features = ["onig"] }
|
||||
tracing = { workspace = true }
|
||||
tracing-chrome = { workspace = true }
|
||||
tracing-subscriber = { workspace = true }
|
||||
wav = { workspace = true }
|
||||
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
|
||||
parquet = { workspace = true }
|
||||
image = { workspace = true }
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Introduction
|
||||
|
||||
{{#include ../../README.md:goals}}
|
||||
|
||||
{{#include ../../README.md:features}}
|
||||
|
||||
|
||||
This book will introduce step by step how to use `candle`.
|
||||
This book will introduce step by step how to use `candle`.
|
@ -5,7 +5,10 @@
|
||||
# User Guide
|
||||
|
||||
- [Installation](guide/installation.md)
|
||||
- [Hello World - MNIST](guide/hello_world.md)
|
||||
- [Tutorial - MNIST](guide/mnist/intro.md)
|
||||
- [Modeling](guide/mnist/modeling.md)
|
||||
- [Training](guide/mnist/training.md)
|
||||
- [Saving And Loading](guide/mnist/saving_loading.md)
|
||||
- [PyTorch cheatsheet](guide/cheatsheet.md)
|
||||
|
||||
# Reference Guide
|
||||
|
@ -1,8 +1,23 @@
|
||||
# Installation
|
||||
|
||||
**With Cuda support**:
|
||||
## 1. Create a new rust app or library
|
||||
|
||||
1. First, make sure that Cuda is correctly installed.
|
||||
```bash
|
||||
cargo new myapp
|
||||
cd myapp
|
||||
```
|
||||
|
||||
## 2. Add the correct candle version
|
||||
|
||||
### Standard
|
||||
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core
|
||||
```
|
||||
|
||||
### CUDA
|
||||
|
||||
First, make sure that Cuda is correctly installed.
|
||||
- `nvcc --version` should print information about your Cuda compiler driver.
|
||||
- `nvidia-smi --query-gpu=compute_cap --format=csv` should print your GPUs compute capability, e.g. something
|
||||
like:
|
||||
@ -17,43 +32,36 @@ You can also compile the Cuda kernels for a specific compute cap using the
|
||||
|
||||
If any of the above commands errors out, please make sure to update your Cuda version.
|
||||
|
||||
2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support.
|
||||
|
||||
Start by creating a new cargo:
|
||||
|
||||
```bash
|
||||
cargo new myapp
|
||||
cd myapp
|
||||
```
|
||||
|
||||
Make sure to add the `candle-core` crate with the cuda feature:
|
||||
Add the `candle-core` crate with the cuda feature:
|
||||
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda"
|
||||
```
|
||||
|
||||
### MKL
|
||||
|
||||
You can also see the `mkl` feature which can get faster inference on CPU.
|
||||
|
||||
Add the `candle-core` crate with the mkl feature:
|
||||
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core --features "mkl"
|
||||
```
|
||||
|
||||
### Metal
|
||||
|
||||
Metal is exclusive to MacOS.
|
||||
|
||||
Add the `candle-core` crate with the metal feature:
|
||||
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core --features "metal"
|
||||
```
|
||||
|
||||
## 3. Building
|
||||
|
||||
Run `cargo build` to make sure everything can be correctly built.
|
||||
|
||||
```bash
|
||||
cargo build
|
||||
```
|
||||
|
||||
**Without Cuda support**:
|
||||
|
||||
Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as follows:
|
||||
|
||||
```bash
|
||||
cargo new myapp
|
||||
cd myapp
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core
|
||||
```
|
||||
|
||||
Finally, run `cargo build` to make sure everything can be correctly built.
|
||||
|
||||
```bash
|
||||
cargo build
|
||||
```
|
||||
|
||||
**With mkl support**
|
||||
|
||||
You can also see the `mkl` feature which could be interesting to get faster inference on CPU. [Using mkl](./advanced/mkl.md)
|
||||
|
17
candle-book/src/guide/mnist/intro.md
Normal file
17
candle-book/src/guide/mnist/intro.md
Normal file
@ -0,0 +1,17 @@
|
||||
# Candle MNIST Tutorial
|
||||
|
||||
## Introduction
|
||||
|
||||
This tutorial provides an introduction to Candle by implementing and training a neural network for MNIST digit classification from scratch.
|
||||
|
||||
Throughout this tutorial, you will learn the basics of:
|
||||
|
||||
- Tensor operations and model construction
|
||||
- Creating and implementing neural network layers
|
||||
- Parameter initialization
|
||||
- Training loop implementation
|
||||
- Saving and loading trained models
|
||||
|
||||
## Getting Started
|
||||
|
||||
Before proceeding, please ensure that you have properly installed Candle by following the instructions in the [Installation](../installation.md) guide.
|
172
candle-book/src/guide/mnist/modeling.md
Normal file
172
candle-book/src/guide/mnist/modeling.md
Normal file
@ -0,0 +1,172 @@
|
||||
# Candle MNIST Tutorial
|
||||
|
||||
## Modeling
|
||||
|
||||
Open `src/main.rs` in your project folder and insert the following code:
|
||||
|
||||
```rust
|
||||
use candle_core::{Device, Result, Tensor};
|
||||
|
||||
struct Model {
|
||||
first: Tensor,
|
||||
second: Tensor,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, image: &Tensor) -> Result<Tensor> {
|
||||
let x = image.matmul(&self.first)?;
|
||||
let x = x.relu()?;
|
||||
x.matmul(&self.second)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// Use Device::new_cuda(0)?; to utilize GPU acceleration.
|
||||
let device = Device::Cpu;
|
||||
|
||||
let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
|
||||
let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
|
||||
let model = Model { first, second };
|
||||
|
||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
||||
|
||||
let digit = model.forward(&dummy_image)?;
|
||||
println!("Digit {digit:?} digit");
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
Execute the program with:
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> Digit Tensor[dims 1, 10; f32] digit
|
||||
```
|
||||
|
||||
Since random inputs are provided, expect an incoherent output.
|
||||
|
||||
## Implementing a `Linear` Layer
|
||||
|
||||
To create a more sophisticated layer type, add a `bias` to the weight to construct the standard `Linear` layer.
|
||||
|
||||
Replace the entire content of `src/main.rs` with:
|
||||
|
||||
```rust
|
||||
use candle_core::{Device, Result, Tensor};
|
||||
|
||||
struct Linear {
|
||||
weight: Tensor,
|
||||
bias: Tensor,
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = x.matmul(&self.weight)?;
|
||||
x.broadcast_add(&self.bias)
|
||||
}
|
||||
}
|
||||
|
||||
struct Model {
|
||||
first: Linear,
|
||||
second: Linear,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, image: &Tensor) -> Result<Tensor> {
|
||||
let x = self.first.forward(image)?;
|
||||
let x = x.relu()?;
|
||||
self.second.forward(&x)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// Use Device::new_cuda(0)?; for GPU acceleration.
|
||||
// Use Device::Cpu; for CPU computation.
|
||||
let device = Device::cuda_if_available(0)?;
|
||||
|
||||
// Initialize model parameters
|
||||
let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
|
||||
let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
|
||||
let first = Linear { weight, bias };
|
||||
let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
|
||||
let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
|
||||
let second = Linear { weight, bias };
|
||||
let model = Model { first, second };
|
||||
|
||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
||||
|
||||
// Perform inference
|
||||
let digit = model.forward(&dummy_image)?;
|
||||
println!("Digit {digit:?} digit");
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
Execute again with:
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> Digit Tensor[dims 1, 10; f32] digit
|
||||
```
|
||||
|
||||
## Utilizing `candle_nn`
|
||||
|
||||
Many classical layers (such as [Linear](https://github.com/huggingface/candle/blob/main/candle-nn/src/linear.rs)) are already implemented in [candle-nn](https://github.com/huggingface/candle/tree/main/candle-nn).
|
||||
|
||||
This `Linear` implementation follows PyTorch conventions for improved compatibility with existing models, utilizing the transpose of weights rather than direct weights.
|
||||
|
||||
Let's simplify our implementation. First, add `candle-nn` as a dependency:
|
||||
|
||||
```bash
|
||||
$ cargo add --git https://github.com/huggingface/candle.git candle-nn
|
||||
```
|
||||
|
||||
Now, replace the entire content of `src/main.rs` with:
|
||||
|
||||
```rust
|
||||
use candle_core::{Device, Result, Tensor};
|
||||
use candle_nn::{Linear, Module};
|
||||
|
||||
struct Model {
|
||||
first: Linear,
|
||||
second: Linear,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&self, image: &Tensor) -> Result<Tensor> {
|
||||
let x = self.first.forward(image)?;
|
||||
let x = x.relu()?;
|
||||
self.second.forward(&x)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// Use Device::new_cuda(0)?; for GPU acceleration.
|
||||
let device = Device::Cpu;
|
||||
|
||||
// Note the dimension change: (784, 100) -> (100, 784)
|
||||
let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?;
|
||||
let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
|
||||
let first = Linear::new(weight, Some(bias));
|
||||
let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?;
|
||||
let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
|
||||
let second = Linear::new(weight, Some(bias));
|
||||
let model = Model { first, second };
|
||||
|
||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
||||
|
||||
let digit = model.forward(&dummy_image)?;
|
||||
println!("Digit {digit:?} digit");
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
Execute the final version:
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> Digit Tensor[dims 1, 10; f32] digit
|
||||
```
|
158
candle-book/src/guide/mnist/saving_loading.md
Normal file
158
candle-book/src/guide/mnist/saving_loading.md
Normal file
@ -0,0 +1,158 @@
|
||||
# Candle MNIST Tutorial
|
||||
|
||||
## Saving and Loading Models
|
||||
|
||||
After training a model, it is useful to save and subsequently load the model parameters. In Candle, this functionality is managed through the `VarMap` data structure, with parameters stored on disk using the [safetensors](https://huggingface.co/docs/safetensors/index) format.
|
||||
|
||||
### Saving Model Parameters
|
||||
|
||||
Let's modify our `training_loop` function to include functionality for saving weights:
|
||||
|
||||
```rust
|
||||
fn training_loop(
|
||||
m: candle_datasets::vision::Dataset,
|
||||
) -> anyhow::Result<()> {
|
||||
let dev = Device::cuda_if_available(0)?;
|
||||
|
||||
let train_labels = m.train_labels;
|
||||
let train_images = m.train_images.to_device(&dev)?;
|
||||
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
// Initialize a VarMap for trainable parameters
|
||||
let varmap = VarMap::new();
|
||||
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
|
||||
let model = Model::new(vs.clone())?;
|
||||
|
||||
let learning_rate = 0.05;
|
||||
let epochs = 10;
|
||||
|
||||
// Initialize stochastic gradient descent optimizer
|
||||
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), learning_rate)?;
|
||||
let test_images = m.test_images.to_device(&dev)?;
|
||||
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
for epoch in 1..epochs {
|
||||
// Standard MNIST forward pass
|
||||
let logits = model.forward(&train_images)?;
|
||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
||||
|
||||
// Compute Negative Log Likelihood loss
|
||||
let loss = loss::nll(&log_sm, &train_labels)?;
|
||||
|
||||
// Perform backward pass and update weights
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
// Evaluate model on test set
|
||||
let test_logits = model.forward(&test_images)?;
|
||||
let sum_ok = test_logits
|
||||
.argmax(D::Minus1)?
|
||||
.eq(&test_labels)?
|
||||
.to_dtype(DType::F32)?
|
||||
.sum_all()?
|
||||
.to_scalar::<f32>()?;
|
||||
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
|
||||
println!(
|
||||
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
||||
loss.to_scalar::<f32>()?,
|
||||
test_accuracy
|
||||
);
|
||||
}
|
||||
|
||||
// Save model weights to disk
|
||||
varmap.save("model_weights.safetensors")?;
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> 1 train loss: 2.40485 test acc: 0.11%
|
||||
> 2 train loss: 2.34161 test acc: 0.14%
|
||||
> 3 train loss: 2.28841 test acc: 0.17%
|
||||
> 4 train loss: 2.24158 test acc: 0.19%
|
||||
> 5 train loss: 2.19898 test acc: 0.23%
|
||||
> 6 train loss: 2.15927 test acc: 0.26%
|
||||
> 7 train loss: 2.12161 test acc: 0.29%
|
||||
> 8 train loss: 2.08549 test acc: 0.32%
|
||||
> 9 train loss: 2.05053 test acc: 0.35%
|
||||
```
|
||||
|
||||
### Loading Model Parameters
|
||||
|
||||
Now that we have saved our model parameters, we can modify the code to load them. The primary change required is to make the `varmap` variable mutable:
|
||||
|
||||
```rust
|
||||
fn training_loop(
|
||||
m: candle_datasets::vision::Dataset,
|
||||
) -> anyhow::Result<()> {
|
||||
let dev = Device::cuda_if_available(0)?;
|
||||
|
||||
let train_labels = m.train_labels;
|
||||
let train_images = m.train_images.to_device(&dev)?;
|
||||
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
// Create a mutable VarMap for trainable parameters
|
||||
let mut varmap = VarMap::new();
|
||||
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
|
||||
let model = Model::new(vs.clone())?;
|
||||
|
||||
// Load pre-trained weights from file
|
||||
varmap.load("model_weights.safetensors")?;
|
||||
|
||||
let learning_rate = 0.05;
|
||||
let epochs = 10;
|
||||
|
||||
// Initialize stochastic gradient descent optimizer
|
||||
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), learning_rate)?;
|
||||
let test_images = m.test_images.to_device(&dev)?;
|
||||
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
for epoch in 1..epochs {
|
||||
// Standard MNIST forward pass
|
||||
let logits = model.forward(&train_images)?;
|
||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
||||
|
||||
// Compute Negative Log Likelihood loss
|
||||
let loss = loss::nll(&log_sm, &train_labels)?;
|
||||
|
||||
// Perform backward pass and update weights
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
// Evaluate model on test set
|
||||
let test_logits = model.forward(&test_images)?;
|
||||
let sum_ok = test_logits
|
||||
.argmax(D::Minus1)?
|
||||
.eq(&test_labels)?
|
||||
.to_dtype(DType::F32)?
|
||||
.sum_all()?
|
||||
.to_scalar::<f32>()?;
|
||||
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
|
||||
println!(
|
||||
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
||||
loss.to_scalar::<f32>()?,
|
||||
test_accuracy
|
||||
);
|
||||
}
|
||||
|
||||
// Save updated weights back to disk
|
||||
varmap.save("model_weights.safetensors")?;
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> 1 train loss: 2.01645 test acc: 0.38%
|
||||
> 2 train loss: 1.98300 test acc: 0.41%
|
||||
> 3 train loss: 1.95008 test acc: 0.44%
|
||||
> 4 train loss: 1.91754 test acc: 0.47%
|
||||
> 5 train loss: 1.88534 test acc: 0.50%
|
||||
> 6 train loss: 1.85349 test acc: 0.53%
|
||||
> 7 train loss: 1.82198 test acc: 0.56%
|
||||
> 8 train loss: 1.79077 test acc: 0.59%
|
||||
> 9 train loss: 1.75989 test acc: 0.61%
|
||||
```
|
||||
|
||||
Note that loading the weights will fail if the specified file does not exist or is incompatible with the current model architecture. Implementing file existence checks and appropriate error handling is left to the user.
|
134
candle-book/src/guide/mnist/training.md
Normal file
134
candle-book/src/guide/mnist/training.md
Normal file
@ -0,0 +1,134 @@
|
||||
# Candle MNIST Tutorial
|
||||
|
||||
## Training Implementation
|
||||
|
||||
First, let's create a utility function `make_linear` that accepts a `VarBuilder` and returns an initialized linear layer. The `VarBuilder` constructs a `VarMap`, which is the data structure that stores our trainable parameters.
|
||||
|
||||
```rust
|
||||
use candle_core::{Device, Result, Tensor};
|
||||
use candle_nn::{Linear, Module, VarBuilder, VarMap};
|
||||
|
||||
fn make_linear(vs: VarBuilder, in_dim: usize, out_dim: usize) -> Result<Linear> {
|
||||
let ws = vs.get_with_hints(
|
||||
(out_dim, in_dim),
|
||||
"weight",
|
||||
candle_nn::init::DEFAULT_KAIMING_NORMAL,
|
||||
)?;
|
||||
let bound = 1. / (in_dim as f64).sqrt();
|
||||
let bs = vs.get_with_hints(
|
||||
out_dim,
|
||||
"bias",
|
||||
candle_nn::Init::Uniform {
|
||||
lo: -bound,
|
||||
up: bound,
|
||||
},
|
||||
)?;
|
||||
Ok(Linear::new(ws, Some(bs)))
|
||||
}
|
||||
```
|
||||
|
||||
Next, let's implement a `new` method for our model class to accept a `VarBuilder` and initialize the model. We use `VarBuilder::pp` to "push prefix" so that the parameter names are organized hierarchically: the first layer weights as `first.weight` and `first.bias`, and the second layer weights as `second.weight` and `second.bias`.
|
||||
|
||||
```rust
|
||||
impl Model {
|
||||
fn new(vs: VarBuilder) -> Result<Self> {
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const HIDDEN_DIM: usize = 100;
|
||||
const LABELS: usize = 10;
|
||||
|
||||
let first = make_linear(vs.pp("first"), IMAGE_DIM, HIDDEN_DIM)?;
|
||||
let second = make_linear(vs.pp("second"), HIDDEN_DIM, LABELS)?;
|
||||
|
||||
Ok(Self { first, second })
|
||||
}
|
||||
|
||||
fn forward(&self, image: &Tensor) -> Result<Tensor> {
|
||||
let x = self.first.forward(image)?;
|
||||
let x = x.relu()?;
|
||||
self.second.forward(&x)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now, let's add the `candle-datasets` package to our project to access the MNIST dataset:
|
||||
|
||||
```bash
|
||||
$ cargo add --git https://github.com/huggingface/candle.git candle-datasets
|
||||
```
|
||||
|
||||
With the dataset available, we can implement our training loop:
|
||||
|
||||
```rust
|
||||
use candle_core::{DType, Device, Result, Tensor, D};
|
||||
use candle_nn::{loss, ops, Linear, Module, Optimizer, VarBuilder, VarMap};
|
||||
|
||||
fn training_loop(
|
||||
m: candle_datasets::vision::Dataset,
|
||||
) -> anyhow::Result<()> {
|
||||
let dev = Device::cuda_if_available(0)?;
|
||||
|
||||
let train_labels = m.train_labels;
|
||||
let train_images = m.train_images.to_device(&dev)?;
|
||||
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
// Initialize a VarMap to store trainable parameters
|
||||
let varmap = VarMap::new();
|
||||
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
|
||||
let model = Model::new(vs.clone())?;
|
||||
|
||||
let learning_rate = 0.05;
|
||||
let epochs = 10;
|
||||
|
||||
// Initialize a stochastic gradient descent optimizer to update parameters
|
||||
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), learning_rate)?;
|
||||
let test_images = m.test_images.to_device(&dev)?;
|
||||
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
|
||||
|
||||
for epoch in 1..epochs {
|
||||
// Perform forward pass on MNIST data
|
||||
let logits = model.forward(&train_images)?;
|
||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
||||
|
||||
// Compute Negative Log Likelihood loss
|
||||
let loss = loss::nll(&log_sm, &train_labels)?;
|
||||
|
||||
// Perform backward pass and update weights
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
// Evaluate model on test set
|
||||
let test_logits = model.forward(&test_images)?;
|
||||
let sum_ok = test_logits
|
||||
.argmax(D::Minus1)?
|
||||
.eq(&test_labels)?
|
||||
.to_dtype(DType::F32)?
|
||||
.sum_all()?
|
||||
.to_scalar::<f32>()?;
|
||||
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
|
||||
println!(
|
||||
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
||||
loss.to_scalar::<f32>()?,
|
||||
test_accuracy
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
Finally, let's implement our main function:
|
||||
|
||||
```rust
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let m = candle_datasets::vision::mnist::load()?;
|
||||
return training_loop(m);
|
||||
}
|
||||
```
|
||||
|
||||
Let's execute the training process:
|
||||
|
||||
```bash
|
||||
$ cargo run --release
|
||||
|
||||
> 1 train loss: 2.35449 test acc: 0.12%
|
||||
> 2 train loss: 2.30760 test acc: 0.15%
|
||||
> ...
|
||||
```
|
@ -81,7 +81,7 @@ let mut tp_shape = view.shape().to_vec();
|
||||
let size = tp_shape[0];
|
||||
|
||||
if size % world_size != 0 {
|
||||
panic!("The dimension is not divisble by `world_size`");
|
||||
panic!("The dimension is not divisible by `world_size`");
|
||||
}
|
||||
let block_size = size / world_size;
|
||||
let start = rank * block_size;
|
||||
@ -106,8 +106,8 @@ let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).un
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
#[rustfmt::skip]
|
||||
#[test]
|
||||
fn book_training_1() -> Result<()>{
|
||||
// ANCHOR: book_training_1
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
|
@ -14,7 +14,7 @@ accelerate-src = { workspace = true, optional = true }
|
||||
byteorder = { workspace = true }
|
||||
candle-kernels = { workspace = true, optional = true }
|
||||
candle-metal-kernels = { workspace = true, optional = true }
|
||||
metal = { workspace = true, optional = true}
|
||||
metal = { workspace = true, optional = true }
|
||||
cudarc = { workspace = true, optional = true }
|
||||
gemm = { workspace = true }
|
||||
half = { workspace = true }
|
||||
@ -28,24 +28,35 @@ rand_distr = { workspace = true }
|
||||
rayon = { workspace = true }
|
||||
safetensors = { workspace = true }
|
||||
thiserror = { workspace = true }
|
||||
ug-cuda = { workspace = true, optional = true }
|
||||
ug-metal = { workspace = true, optional = true }
|
||||
yoke = { workspace = true }
|
||||
zip = { workspace = true }
|
||||
|
||||
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
|
||||
ug = { workspace = true }
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
clap = { workspace = true }
|
||||
criterion = { workspace = true }
|
||||
|
||||
|
||||
[features]
|
||||
default = []
|
||||
cuda = ["cudarc", "dep:candle-kernels"]
|
||||
cuda = ["cudarc", "dep:candle-kernels", "dep:ug-cuda"]
|
||||
cudnn = ["cuda", "cudarc/cudnn"]
|
||||
mkl = ["dep:libc", "dep:intel-mkl-src"]
|
||||
accelerate = ["dep:libc", "dep:accelerate-src"]
|
||||
metal = ["dep:metal", "dep:candle-metal-kernels"]
|
||||
metal = ["dep:metal", "dep:candle-metal-kernels", "dep:ug-metal"]
|
||||
|
||||
[[bench]]
|
||||
name = "matmul"
|
||||
name = "bench_main"
|
||||
harness = false
|
||||
|
||||
[[example]]
|
||||
name = "metal_basics"
|
||||
required-features = ["metal"]
|
||||
|
||||
[[example]]
|
||||
name = "cuda_basics"
|
||||
required-features = ["cuda"]
|
||||
|
14
candle-core/benches/bench_main.rs
Normal file
14
candle-core/benches/bench_main.rs
Normal file
@ -0,0 +1,14 @@
|
||||
mod benchmarks;
|
||||
|
||||
use criterion::criterion_main;
|
||||
|
||||
criterion_main!(
|
||||
benchmarks::affine::benches,
|
||||
benchmarks::matmul::benches,
|
||||
benchmarks::random::benches,
|
||||
benchmarks::reduce::benches,
|
||||
benchmarks::where_cond::benches,
|
||||
benchmarks::conv_transpose2d::benches,
|
||||
benchmarks::qmatmul::benches,
|
||||
benchmarks::unary::benches
|
||||
);
|
43
candle-core/benches/benchmarks/affine.rs
Normal file
43
candle-core/benches/benchmarks/affine.rs
Normal file
@ -0,0 +1,43 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor) {
|
||||
a.affine(12.34, 56.78).unwrap();
|
||||
}
|
||||
|
||||
fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
|
||||
|
||||
let flops = b * m * k * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_affine_benchmark(c, &device, DType::F32, "affine_f32");
|
||||
run_affine_benchmark(c, &device, DType::F16, "affine_f16");
|
||||
run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
59
candle-core/benches/benchmarks/conv_transpose2d.rs
Normal file
59
candle-core/benches/benchmarks/conv_transpose2d.rs
Normal file
@ -0,0 +1,59 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(
|
||||
x: &Tensor,
|
||||
k: &Tensor,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
) {
|
||||
x.conv_transpose2d(k, padding, output_padding, stride, dilation)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
fn run_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let t = Tensor::arange(0.0f32, 10000.0, device)
|
||||
.unwrap()
|
||||
.reshape((1, 4, 50, 50))
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap();
|
||||
|
||||
let kernel = Tensor::arange(0.0f32, 100.0, device)
|
||||
.unwrap()
|
||||
.reshape((4, 1, 5, 5))
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap();
|
||||
|
||||
let flops = t.dims().iter().product::<usize>() * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&t), black_box(&kernel), 1, 0, 1, 2);
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_benchmark(c, &device, DType::F32, "conv_transpose2d_f32");
|
||||
run_benchmark(c, &device, DType::F16, "conv_transpose2d_f16");
|
||||
run_benchmark(c, &device, DType::BF16, "conv_transpose2d_bf16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -1,25 +1,25 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion, Throughput};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor, b: &Tensor) {
|
||||
a.matmul(&b.t().unwrap()).unwrap();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
fn run_bench(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
let m = 1;
|
||||
let n = 2048;
|
||||
let k = 2048;
|
||||
|
||||
let device = Device::new_metal(0).unwrap();
|
||||
let dtype = DType::F32;
|
||||
let lhs = Tensor::zeros((b, m, k), dtype, &device).unwrap();
|
||||
let rhs = Tensor::zeros((b, n, k), dtype, &device).unwrap();
|
||||
let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap();
|
||||
let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap();
|
||||
|
||||
let flops = b * m * n * k;
|
||||
|
||||
let mut group = c.benchmark_group("matmul_metal");
|
||||
let mut group = c.benchmark_group(device.bench_name("matmul"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
@ -27,16 +27,18 @@ fn criterion_benchmark(c: &mut Criterion) {
|
||||
for _i in 0..iters {
|
||||
run(black_box(&lhs), black_box(&rhs));
|
||||
}
|
||||
if let Device::Metal(device) = &device {
|
||||
device.wait_until_completed().unwrap();
|
||||
} else {
|
||||
panic!("Expected metal device");
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_bench(c, &device);
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
||||
criterion_main!(benches);
|
72
candle-core/benches/benchmarks/mod.rs
Normal file
72
candle-core/benches/benchmarks/mod.rs
Normal file
@ -0,0 +1,72 @@
|
||||
pub(crate) mod affine;
|
||||
pub(crate) mod conv_transpose2d;
|
||||
pub(crate) mod matmul;
|
||||
pub(crate) mod qmatmul;
|
||||
pub(crate) mod random;
|
||||
pub(crate) mod reduce;
|
||||
pub(crate) mod unary;
|
||||
pub(crate) mod where_cond;
|
||||
|
||||
use candle_core::{Device, Result};
|
||||
|
||||
pub(crate) trait BenchDevice {
|
||||
fn sync(&self) -> Result<()>;
|
||||
|
||||
fn bench_name<S: Into<String>>(&self, name: S) -> String;
|
||||
}
|
||||
|
||||
impl BenchDevice for Device {
|
||||
fn sync(&self) -> Result<()> {
|
||||
match self {
|
||||
Device::Cpu => Ok(()),
|
||||
Device::Cuda(device) => {
|
||||
#[cfg(feature = "cuda")]
|
||||
return Ok(device
|
||||
.synchronize()
|
||||
.map_err(|e| candle_core::Error::Cuda(Box::new(e)))?);
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
panic!("Cuda device without cuda feature enabled: {:?}", device)
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
#[cfg(feature = "metal")]
|
||||
return Ok(device.wait_until_completed()?);
|
||||
#[cfg(not(feature = "metal"))]
|
||||
panic!("Metal device without metal feature enabled: {:?}", device)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn bench_name<S: Into<String>>(&self, name: S) -> String {
|
||||
match self {
|
||||
Device::Cpu => {
|
||||
let cpu_type = if cfg!(feature = "accelerate") {
|
||||
"accelerate"
|
||||
} else if cfg!(feature = "mkl") {
|
||||
"mkl"
|
||||
} else {
|
||||
"cpu"
|
||||
};
|
||||
format!("{}_{}", cpu_type, name.into())
|
||||
}
|
||||
Device::Cuda(_) => format!("cuda_{}", name.into()),
|
||||
Device::Metal(_) => format!("metal_{}", name.into()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct BenchDeviceHandler {
|
||||
devices: Vec<Device>,
|
||||
}
|
||||
|
||||
impl BenchDeviceHandler {
|
||||
pub fn new() -> Result<Self> {
|
||||
let mut devices = Vec::new();
|
||||
if cfg!(feature = "metal") {
|
||||
devices.push(Device::new_metal(0)?);
|
||||
} else if cfg!(feature = "cuda") {
|
||||
devices.push(Device::new_cuda(0)?);
|
||||
}
|
||||
devices.push(Device::Cpu);
|
||||
Ok(Self { devices })
|
||||
}
|
||||
}
|
72
candle-core/benches/benchmarks/qmatmul.rs
Normal file
72
candle-core/benches/benchmarks/qmatmul.rs
Normal file
@ -0,0 +1,72 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{
|
||||
quantized::{self, GgmlDType, QMatMul},
|
||||
Device, Module, Tensor,
|
||||
};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(matmul: &QMatMul, x: &Tensor) {
|
||||
matmul.forward(x).unwrap();
|
||||
}
|
||||
|
||||
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
|
||||
let b = 1;
|
||||
let m = 1;
|
||||
let n = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 / (m * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
let rhs = (0..(k * n))
|
||||
.map(|v| v as f32 / (n * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
|
||||
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
|
||||
|
||||
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
|
||||
|
||||
let flops = b * m * n * k;
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
|
||||
group.sample_size(200);
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&matmul), black_box(&lhs));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
for dtype in [
|
||||
GgmlDType::F32,
|
||||
GgmlDType::F16,
|
||||
GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0,
|
||||
GgmlDType::Q2K,
|
||||
GgmlDType::Q3K,
|
||||
GgmlDType::Q4K,
|
||||
GgmlDType::Q5K,
|
||||
GgmlDType::Q6K,
|
||||
] {
|
||||
run_bench(c, &device, dtype);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
63
candle-core/benches/benchmarks/random.rs
Normal file
63
candle-core/benches/benchmarks/random.rs
Normal file
@ -0,0 +1,63 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn rand_uniform(a: &Tensor) {
|
||||
a.rand_like(-1.0, 123.0).unwrap();
|
||||
}
|
||||
|
||||
fn rand_normal(a: &Tensor) {
|
||||
a.randn_like(100.0, 15.0).unwrap();
|
||||
}
|
||||
|
||||
fn run_random_bench(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
|
||||
let rows = 2048;
|
||||
let cols = 2048;
|
||||
|
||||
let dtype = DType::F32;
|
||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
||||
|
||||
let flops = b * rows * cols * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name("random_uniform"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |benches| {
|
||||
benches.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
rand_uniform(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
|
||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name("random_normal"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |benches| {
|
||||
benches.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
rand_normal(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
run_random_bench(c, &device);
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
158
candle-core/benches/benchmarks/reduce.rs
Normal file
158
candle-core/benches/benchmarks/reduce.rs
Normal file
@ -0,0 +1,158 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use half::{bf16, f16};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run_sum(a: &Tensor) {
|
||||
a.sum_keepdim(2).unwrap();
|
||||
}
|
||||
fn run_arg_min(a: &Tensor) {
|
||||
a.argmin_keepdim(2).unwrap();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
let (lo, up) = (-1000.0f32, 1000.0f32);
|
||||
for device in handler.devices {
|
||||
run_reduce(c, &device, (lo, up), false);
|
||||
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
|
||||
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
|
||||
|
||||
run_arg_reduce(c, &device, (lo, up), false);
|
||||
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
|
||||
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
|
||||
|
||||
run_reduce(c, &device, (lo, up), true);
|
||||
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
|
||||
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
|
||||
|
||||
run_arg_reduce(c, &device, (lo, up), true);
|
||||
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
|
||||
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
|
||||
}
|
||||
}
|
||||
|
||||
fn run_reduce<T: candle_core::FloatDType>(
|
||||
c: &mut Criterion,
|
||||
device: &Device,
|
||||
(lo, up): (T, T),
|
||||
strided: bool,
|
||||
) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let a = if strided {
|
||||
Tensor::rand(lo, up, (b, m, k), &device)
|
||||
.unwrap()
|
||||
.transpose(0, 2)
|
||||
.unwrap()
|
||||
} else {
|
||||
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
|
||||
};
|
||||
|
||||
let flops = b * m * k * T::DTYPE.size_in_bytes();
|
||||
|
||||
let name = match T::DTYPE {
|
||||
DType::F32 => {
|
||||
if strided {
|
||||
"reduce_f32_strided"
|
||||
} else {
|
||||
"reduce_f32"
|
||||
}
|
||||
}
|
||||
DType::F16 => {
|
||||
if strided {
|
||||
"reduce_f16_strided"
|
||||
} else {
|
||||
"reduce_f16"
|
||||
}
|
||||
}
|
||||
DType::BF16 => {
|
||||
if strided {
|
||||
"reduce_bf16_strided"
|
||||
} else {
|
||||
"reduce_bf16"
|
||||
}
|
||||
}
|
||||
_ => "unknown",
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run_sum(black_box(&a));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn run_arg_reduce<T: candle_core::FloatDType>(
|
||||
c: &mut Criterion,
|
||||
device: &Device,
|
||||
(lo, up): (T, T),
|
||||
strided: bool,
|
||||
) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let a = if strided {
|
||||
Tensor::rand(lo, up, (b, m, k), &device)
|
||||
.unwrap()
|
||||
.transpose(0, 2)
|
||||
.unwrap()
|
||||
} else {
|
||||
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
|
||||
};
|
||||
|
||||
let flops = b * m * k * T::DTYPE.size_in_bytes();
|
||||
|
||||
let name = match T::DTYPE {
|
||||
DType::F32 => {
|
||||
if strided {
|
||||
"arg_reduce_f32_strided"
|
||||
} else {
|
||||
"arg_reduce_f32"
|
||||
}
|
||||
}
|
||||
DType::F16 => {
|
||||
if strided {
|
||||
"arg_reduce_f16_strided"
|
||||
} else {
|
||||
"arg_reduce_f16"
|
||||
}
|
||||
}
|
||||
DType::BF16 => {
|
||||
if strided {
|
||||
"arg_reduce_bf16_strided"
|
||||
} else {
|
||||
"arg_reduce_bf16"
|
||||
}
|
||||
}
|
||||
_ => "unknown",
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run_arg_min(black_box(&a));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
49
candle-core/benches/benchmarks/unary.rs
Normal file
49
candle-core/benches/benchmarks/unary.rs
Normal file
@ -0,0 +1,49 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor) {
|
||||
a.sqrt().unwrap();
|
||||
}
|
||||
|
||||
fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let b = 1;
|
||||
let m = 1024;
|
||||
let k = 1024;
|
||||
|
||||
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
|
||||
.unwrap()
|
||||
.to_dtype(dtype)
|
||||
.unwrap()
|
||||
.reshape((b, m, k))
|
||||
.unwrap();
|
||||
|
||||
let flops = b * m * k * dtype.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&tensor));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let handler = BenchDeviceHandler::new().unwrap();
|
||||
for device in handler.devices {
|
||||
for dtype in [DType::F32, DType::BF16, DType::F16] {
|
||||
let name = format!("sqrt_{:?}", dtype);
|
||||
run_unary_benchmark(c, &device, dtype, &name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
64
candle-core/benches/benchmarks/where_cond.rs
Normal file
64
candle-core/benches/benchmarks/where_cond.rs
Normal file
@ -0,0 +1,64 @@
|
||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
|
||||
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
|
||||
a.where_cond(b, c).unwrap();
|
||||
}
|
||||
|
||||
const fn create_cond_arr<const N: usize>() -> [u8; N] {
|
||||
let mut arr = [0u8; N];
|
||||
let mut i = 0;
|
||||
while i < N {
|
||||
arr[i] = (i % 2) as u8;
|
||||
i += 1;
|
||||
}
|
||||
arr
|
||||
}
|
||||
|
||||
const B: usize = 1;
|
||||
const M: usize = 1024;
|
||||
const K: usize = 1024;
|
||||
const SIZE: usize = B * M * K;
|
||||
|
||||
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
|
||||
|
||||
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
||||
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
|
||||
let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
|
||||
let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
|
||||
|
||||
let elements = B * M * K;
|
||||
// E.g. 2 f32 tensors + 1 u8 tensor
|
||||
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
|
||||
|
||||
let mut group = c.benchmark_group(device.bench_name(name));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(
|
||||
black_box(&tensor),
|
||||
black_box(&on_true),
|
||||
black_box(&on_false),
|
||||
);
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let device = BenchDeviceHandler::new().unwrap();
|
||||
for d in device.devices {
|
||||
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
|
||||
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
|
||||
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
|
||||
}
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
@ -6,24 +6,18 @@ extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Tensor};
|
||||
|
||||
// xs: [1024, 64, 1924], c Tensor[dims 128, 64, 8; f32, cuda:0] Conv1dConfig { padding: 0, stride: 4, dilation: 1, groups: 1 }
|
||||
fn main() -> Result<()> {
|
||||
let device = Device::new_cuda(0)?;
|
||||
let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?;
|
||||
let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?;
|
||||
let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||
println!("{out_t}");
|
||||
let in_t = in_t.to_device(&Device::Cpu)?;
|
||||
let k_t = k_t.to_device(&Device::Cpu)?;
|
||||
let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||
let diff = (out_t.to_device(&Device::Cpu)? - out_t2)?
|
||||
.sqr()?
|
||||
.sum_all()?;
|
||||
println!("{diff}");
|
||||
|
||||
let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?;
|
||||
let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?;
|
||||
let res = t.conv2d(&w, 1, 1, 1, 1)?;
|
||||
println!("{res:?}");
|
||||
let x = Tensor::randn(0f32, 1.0, (1024, 64, 1924), &device)?;
|
||||
let c = Tensor::randn(0f32, 1.0, (128, 64, 8), &device)?;
|
||||
let _x1 = x.conv1d(&c, 0, 4, 1, 1)?;
|
||||
drop(_x1);
|
||||
for _ in 0..20 {
|
||||
let start_time = std::time::Instant::now();
|
||||
let _x1 = x.conv1d(&c, 0, 4, 1, 1)?;
|
||||
device.synchronize()?;
|
||||
println!("conv1d: {:?}", start_time.elapsed());
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
28
candle-core/examples/metal_basics.rs
Normal file
28
candle-core/examples/metal_basics.rs
Normal file
@ -0,0 +1,28 @@
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Tensor};
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// This requires the code to be run with MTL_CAPTURE_ENABLED=1
|
||||
let device = Device::new_metal(0)?;
|
||||
let metal_device = match &device {
|
||||
Device::Metal(m) => m,
|
||||
_ => anyhow::bail!("unexpected device"),
|
||||
};
|
||||
metal_device.capture("/tmp/candle.gputrace")?;
|
||||
// This first synchronize ensures that a new command buffer gets created after setting up the
|
||||
// capture scope.
|
||||
device.synchronize()?;
|
||||
let x = Tensor::randn(0f32, 1.0, (128, 128), &device)?;
|
||||
let x1 = x.add(&x)?;
|
||||
println!("{x1:?}");
|
||||
// This second synchronize ensures that the command buffer gets commited before the end of the
|
||||
// capture scope.
|
||||
device.synchronize()?;
|
||||
Ok(())
|
||||
}
|
@ -380,6 +380,16 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
||||
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
@ -402,6 +412,28 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vs_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vd_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! binary_op {
|
||||
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
|
||||
#[inline]
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Traits to Define Backend Behavior
|
||||
//!
|
||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||
|
||||
@ -98,6 +100,19 @@ pub trait BackendStorage: Sized {
|
||||
) -> Result<Self>;
|
||||
|
||||
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
// Similar to cudaMemcpy2D, though values are in elements and not in bytes.
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_d1: usize,
|
||||
_d2: usize,
|
||||
_src_stride1: usize,
|
||||
_dst_stride1: usize,
|
||||
_src_offset: usize,
|
||||
_dst_offset: usize,
|
||||
) -> Result<()>;
|
||||
}
|
||||
|
||||
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
@ -114,11 +129,24 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||
|
||||
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||
|
||||
/// # Safety
|
||||
/// This function is unsafe as it doesn't initialize the underlying data store.
|
||||
/// The caller should ensure that the data is properly initialized as early as possible
|
||||
/// after this call.
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||
|
||||
fn set_seed(&self, _: u64) -> Result<()>;
|
||||
|
||||
/// Synchronize should block until all the operations on the device are completed.
|
||||
fn synchronize(&self) -> Result<()>;
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
//! Methods for backpropagation of gradients.
|
||||
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
|
||||
use crate::{Error, Result, Tensor, TensorId};
|
||||
use std::collections::HashMap;
|
||||
@ -31,7 +32,7 @@ impl Tensor {
|
||||
/// elements having dependencies on the latter ones, e.g. the first element if any is the
|
||||
/// argument.
|
||||
/// This assumes that the op graph is a DAG.
|
||||
fn sorted_nodes(&self) -> Vec<&Tensor> {
|
||||
pub fn sorted_nodes(&self) -> Vec<&Tensor> {
|
||||
// The vec of sorted nodes is passed as an owned value rather than a mutable reference
|
||||
// to get around some lifetime limitations.
|
||||
fn walk<'a>(
|
||||
@ -111,9 +112,10 @@ impl Tensor {
|
||||
}
|
||||
Op::Unary(_node, UnaryOp::Ceil)
|
||||
| Op::Unary(_node, UnaryOp::Floor)
|
||||
| Op::Unary(_node, UnaryOp::Round) => nodes,
|
||||
| Op::Unary(_node, UnaryOp::Round)
|
||||
| Op::Unary(_node, UnaryOp::Sign) => nodes,
|
||||
Op::Reshape(node)
|
||||
| Op::UpsampleNearest1D(node)
|
||||
| Op::UpsampleNearest1D { arg: node, .. }
|
||||
| Op::UpsampleNearest2D { arg: node, .. }
|
||||
| Op::AvgPool2D { arg: node, .. }
|
||||
| Op::MaxPool2D { arg: node, .. }
|
||||
@ -175,7 +177,7 @@ impl Tensor {
|
||||
// the backprop graph of the backprop itself. This would be an issue for second order
|
||||
// derivatives but these are out of scope at the moment.
|
||||
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
|
||||
let grad = if do_not_detach { grad } else { grad.detach()? };
|
||||
let grad = if do_not_detach { grad } else { grad.detach() };
|
||||
if let Some(op) = node.op() {
|
||||
match op {
|
||||
Op::Binary(lhs, rhs, BinaryOp::Add) => {
|
||||
@ -250,6 +252,7 @@ impl Tensor {
|
||||
out_padding,
|
||||
*stride,
|
||||
*dilation,
|
||||
/* groups */ 1,
|
||||
)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
@ -309,9 +312,32 @@ impl Tensor {
|
||||
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "conv-transpose1d",
|
||||
})?,
|
||||
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "conv-transpose2d",
|
||||
})?,
|
||||
Op::ConvTranspose2D {
|
||||
arg,
|
||||
kernel,
|
||||
padding,
|
||||
stride,
|
||||
dilation,
|
||||
output_padding: _output_padding,
|
||||
} => {
|
||||
let grad_arg = grad.conv2d(kernel, *padding, *stride, *dilation, 1)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
|
||||
let grad_kernel = grad
|
||||
.transpose(0, 1)?
|
||||
.conv2d(&arg.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
||||
.transpose(0, 1)?;
|
||||
let sum_grad = grads.or_insert(kernel)?;
|
||||
let (_, _, k0, k1) = kernel.dims4()?;
|
||||
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
|
||||
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
|
||||
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
|
||||
} else {
|
||||
grad_kernel
|
||||
};
|
||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
||||
}
|
||||
Op::AvgPool2D {
|
||||
arg,
|
||||
kernel_size,
|
||||
@ -347,9 +373,18 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||
}
|
||||
Op::UpsampleNearest1D { .. } => Err(Error::BackwardNotSupported {
|
||||
op: "upsample-nearest1d",
|
||||
})?,
|
||||
Op::UpsampleNearest1D { arg, target_size } => {
|
||||
let (_n, c, size) = arg.dims3()?;
|
||||
if target_size % size != 0 {
|
||||
crate::bail!("backward not supported for non integer upscaling factors")
|
||||
}
|
||||
let scale = target_size / size;
|
||||
|
||||
let kernel = Tensor::ones((c, 1, scale), arg.dtype(), arg.device())?;
|
||||
let conv_sum = grad.conv1d(&kernel, 0, scale, 1, c)?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = conv_sum;
|
||||
}
|
||||
Op::UpsampleNearest2D {
|
||||
arg,
|
||||
target_h,
|
||||
@ -454,7 +489,6 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad)?;
|
||||
}
|
||||
Op::Cmp(_args, _) => {}
|
||||
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
|
||||
let node = broadcast_back(arg, node, reduced_dims)?;
|
||||
let grad = broadcast_back(arg, &grad, reduced_dims)?;
|
||||
@ -544,20 +578,18 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&arg_grad)?
|
||||
}
|
||||
Op::Reduce(_, ReduceOp::ArgMin, _) => {}
|
||||
Op::Reduce(_, ReduceOp::ArgMax, _) => {}
|
||||
Op::Unary(_, UnaryOp::Floor)
|
||||
| Op::Unary(_, UnaryOp::Round)
|
||||
| Op::Reduce(_, ReduceOp::ArgMin, _)
|
||||
| Op::Reduce(_, ReduceOp::ArgMax, _)
|
||||
| Op::Unary(_, UnaryOp::Sign)
|
||||
| Op::Cmp(_, _) => {}
|
||||
Op::Reshape(arg) => {
|
||||
let arg_grad = grad.reshape(arg.dims())?;
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&arg_grad)?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Ceil) => Err(Error::BackwardNotSupported { op: "ceil" })?,
|
||||
Op::Unary(_, UnaryOp::Floor) => {
|
||||
Err(Error::BackwardNotSupported { op: "floor" })?
|
||||
}
|
||||
Op::Unary(_, UnaryOp::Round) => {
|
||||
Err(Error::BackwardNotSupported { op: "round" })?
|
||||
}
|
||||
Op::Unary(arg, UnaryOp::Gelu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
let cube = arg.powf(3.)?;
|
||||
@ -589,13 +621,21 @@ impl Tensor {
|
||||
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
|
||||
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
|
||||
}
|
||||
Op::Unary(arg, UnaryOp::Silu) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x))) = sigmoid(x) * (1 - node) + node
|
||||
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
|
||||
let silu_grad = &sigmoid_arg * (1. - *node) + *node;
|
||||
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
|
||||
}
|
||||
Op::Elu(arg, alpha) => {
|
||||
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
let zeros = arg.zeros_like()?;
|
||||
let positive_mask = arg.gt(&zeros)?.to_dtype(arg.dtype())?;
|
||||
let negative_mask = arg.le(&zeros)?.to_dtype(arg.dtype())?;
|
||||
let negative_exp_mask = ((negative_mask * arg.exp())? * *alpha)?;
|
||||
// node == alpha * (e^x - 1) for x <= 0, reuse it
|
||||
let negative_exp_mask = (negative_mask * (*node + *alpha))?;
|
||||
let combined_mask = (positive_mask + negative_exp_mask)?;
|
||||
*sum_grad = sum_grad.add(&(grad * combined_mask)?)?
|
||||
}
|
||||
@ -673,30 +713,38 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// A store for gradients, associating a tensor id to the corresponding gradient tensor, used for back propagation.
|
||||
#[derive(Debug)]
|
||||
pub struct GradStore(HashMap<TensorId, Tensor>);
|
||||
|
||||
impl GradStore {
|
||||
/// Create a new gradient store
|
||||
fn new() -> Self {
|
||||
GradStore(HashMap::new())
|
||||
}
|
||||
|
||||
/// Get the gradient tensor corresponding to the given tensor id
|
||||
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
|
||||
self.0.get(&id)
|
||||
}
|
||||
|
||||
/// Get the gradient tensor associated with the given tensor
|
||||
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
|
||||
self.0.get(&tensor.id())
|
||||
}
|
||||
|
||||
/// Remove the gradient tensor associated with the given tensor, returning it if it exists
|
||||
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
|
||||
self.0.remove(&tensor.id())
|
||||
}
|
||||
|
||||
/// Insert a gradient tensor associated with the given tensor, returning the previous gradient tensor if it existed
|
||||
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
|
||||
self.0.insert(tensor.id(), grad)
|
||||
}
|
||||
|
||||
/// Get the gradient tensor associated with the given tensor, or, if it does not exist,
|
||||
/// insert a tensor of zeroes, with the same shape and type as the given tensors and return it
|
||||
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
|
||||
use std::collections::hash_map::Entry;
|
||||
let grad = match self.0.entry(tensor.id()) {
|
||||
@ -708,4 +756,9 @@ impl GradStore {
|
||||
};
|
||||
Ok(grad)
|
||||
}
|
||||
|
||||
/// Get the tensor ids of the stored gradient tensors
|
||||
pub fn get_ids(&self) -> impl Iterator<Item = &TensorId> {
|
||||
self.0.keys()
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! 1D and 2D Convolutions
|
||||
//!
|
||||
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
@ -12,6 +14,7 @@ pub struct ParamsConv1D {
|
||||
pub(crate) padding: usize,
|
||||
pub(crate) stride: usize,
|
||||
pub(crate) dilation: usize,
|
||||
pub(crate) cudnn_fwd_algo: Option<CudnnFwdAlgo>,
|
||||
}
|
||||
|
||||
impl ParamsConv1D {
|
||||
@ -52,7 +55,7 @@ impl ParamsConvTranspose1D {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum CudnnFwdAlgo {
|
||||
ImplicitGemm,
|
||||
ImplicitPrecompGemm,
|
||||
@ -149,6 +152,19 @@ impl Tensor {
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
) -> Result<Self> {
|
||||
self.conv1d_with_algo(kernel, padding, stride, dilation, groups, None)
|
||||
}
|
||||
|
||||
/// Applies a 1D convolution over the input tensor.
|
||||
pub fn conv1d_with_algo(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
cudnn_fwd_algo: Option<CudnnFwdAlgo>,
|
||||
) -> Result<Self> {
|
||||
let (c_out, c_in_k, k_size) = kernel.dims3()?;
|
||||
let (b_size, c_in, l_in) = self.dims3()?;
|
||||
@ -172,6 +188,7 @@ impl Tensor {
|
||||
padding,
|
||||
stride,
|
||||
dilation,
|
||||
cudnn_fwd_algo,
|
||||
};
|
||||
if groups == 1 {
|
||||
self.conv1d_single_group(kernel, ¶ms)
|
||||
@ -187,36 +204,16 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies a 1D transposed convolution over the input tensor.
|
||||
pub fn conv_transpose1d(
|
||||
fn conv_transpose1d_single_group(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
params: &ParamsConvTranspose1D,
|
||||
) -> Result<Self> {
|
||||
let (b_size, c_in, l_in) = self.dims3()?;
|
||||
let (c_in_k, c_out, k_size) = kernel.dims3()?;
|
||||
if c_in != c_in_k {
|
||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
||||
}
|
||||
let params = ParamsConvTranspose1D {
|
||||
b_size,
|
||||
l_in,
|
||||
k_size,
|
||||
c_out,
|
||||
c_in,
|
||||
padding,
|
||||
output_padding,
|
||||
stride,
|
||||
dilation,
|
||||
};
|
||||
let storage = self.storage().conv_transpose1d(
|
||||
self.layout(),
|
||||
&kernel.storage(),
|
||||
kernel.layout(),
|
||||
¶ms,
|
||||
params,
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
|
||||
arg,
|
||||
@ -230,6 +227,49 @@ impl Tensor {
|
||||
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
|
||||
}
|
||||
|
||||
/// Applies a 1D transposed convolution over the input tensor.
|
||||
pub fn conv_transpose1d(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
) -> Result<Self> {
|
||||
let (c_in_k, c_out, k_size) = kernel.dims3()?;
|
||||
let (b_size, c_in, l_in) = self.dims3()?;
|
||||
if c_in != c_in_k {
|
||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
||||
}
|
||||
if c_in % groups != 0 {
|
||||
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
|
||||
}
|
||||
let params = ParamsConvTranspose1D {
|
||||
b_size,
|
||||
l_in,
|
||||
k_size,
|
||||
c_out,
|
||||
c_in: c_in / groups,
|
||||
padding,
|
||||
output_padding,
|
||||
stride,
|
||||
dilation,
|
||||
};
|
||||
if groups == 1 {
|
||||
self.conv_transpose1d_single_group(kernel, ¶ms)
|
||||
} else {
|
||||
let blocks = self.chunk(groups, 1)?;
|
||||
let kernel = kernel.chunk(groups, 0)?;
|
||||
let blocks = blocks
|
||||
.iter()
|
||||
.zip(&kernel)
|
||||
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, ¶ms))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Tensor::cat(&blocks, 1)
|
||||
}
|
||||
}
|
||||
|
||||
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
|
||||
let storage =
|
||||
self.storage()
|
||||
@ -253,6 +293,18 @@ impl Tensor {
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
) -> Result<Self> {
|
||||
self.conv2d_with_algo(kernel, padding, stride, dilation, groups, None)
|
||||
}
|
||||
|
||||
pub fn conv2d_with_algo(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
stride: usize,
|
||||
dilation: usize,
|
||||
groups: usize,
|
||||
cudnn_fwd_algo: Option<CudnnFwdAlgo>,
|
||||
) -> Result<Self> {
|
||||
let (b_size, c_in, i_h, i_w) = self.dims4()?;
|
||||
let (c_out, c_in_k, k_h, k_w) = kernel.dims4()?;
|
||||
@ -272,7 +324,7 @@ impl Tensor {
|
||||
padding,
|
||||
stride,
|
||||
dilation,
|
||||
cudnn_fwd_algo: None,
|
||||
cudnn_fwd_algo,
|
||||
};
|
||||
if groups == 1 {
|
||||
self.conv2d_single_group(kernel, ¶ms)
|
||||
|
@ -1,6 +1,9 @@
|
||||
//! Traits and methods for CPU-backed Tensors
|
||||
|
||||
pub mod erf;
|
||||
pub mod kernels;
|
||||
|
||||
#[allow(unused)]
|
||||
trait Cpu<const ARR: usize> {
|
||||
type Unit;
|
||||
type Array;
|
||||
@ -18,6 +21,7 @@ trait Cpu<const ARR: usize> {
|
||||
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
trait CpuF16<const ARR: usize> {
|
||||
type Unit;
|
||||
type Array;
|
||||
|
File diff suppressed because it is too large
Load Diff
360
candle-core/src/cpu_backend/utils.rs
Normal file
360
candle-core/src/cpu_backend/utils.rs
Normal file
@ -0,0 +1,360 @@
|
||||
/// Helper functions to write CPU kernels.
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{Error, Layout, Result, WithDType};
|
||||
|
||||
type C = super::CpuStorage;
|
||||
pub trait Map1 {
|
||||
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
||||
match vs {
|
||||
C::U8(vs) => Ok(C::U8(self.f(vs, layout)?)),
|
||||
C::U32(vs) => Ok(C::U32(self.f(vs, layout)?)),
|
||||
C::I64(vs) => Ok(C::I64(self.f(vs, layout)?)),
|
||||
C::BF16(vs) => Ok(C::BF16(self.f(vs, layout)?)),
|
||||
C::F16(vs) => Ok(C::F16(self.f(vs, layout)?)),
|
||||
C::F32(vs) => Ok(C::F32(self.f(vs, layout)?)),
|
||||
C::F64(vs) => Ok(C::F64(self.f(vs, layout)?)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: WithDType, W: Fn(Vec<T>) -> C>(&self, vs: &[T], layout: &Layout, wrap: W) -> Result<C>;
|
||||
|
||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
||||
match vs {
|
||||
C::U8(vs) => Ok(self.f(vs, layout, C::U8)?),
|
||||
C::U32(vs) => Ok(self.f(vs, layout, C::U32)?),
|
||||
C::I64(vs) => Ok(self.f(vs, layout, C::I64)?),
|
||||
C::BF16(vs) => Ok(self.f(vs, layout, C::BF16)?),
|
||||
C::F16(vs) => Ok(self.f(vs, layout, C::F16)?),
|
||||
C::F32(vs) => Ok(self.f(vs, layout, C::F32)?),
|
||||
C::F64(vs) => Ok(self.f(vs, layout, C::F64)?),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
|
||||
|
||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2U8 {
|
||||
const OP: &'static str;
|
||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
|
||||
|
||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
||||
match (v1, v2) {
|
||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: v1.dtype(),
|
||||
rhs: v2.dtype(),
|
||||
op: Self::OP,
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.zip(rhs[o_r1..o_r2].iter())
|
||||
.map(|(&l, &r)| f(l, r))
|
||||
.collect(),
|
||||
(Some((o_l1, o_l2)), None) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match rhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
lhs[o_l1..o_l2]
|
||||
.iter()
|
||||
.map(|&l| {
|
||||
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(l, *r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
(None, Some((o_r1, o_r2))) => {
|
||||
// TODO: Maybe we want to avoid going through the layout twice.
|
||||
match lhs_l.offsets_b() {
|
||||
Some(ob) => {
|
||||
let mut i_in_block = 0;
|
||||
let mut i_right_broadcast = 0;
|
||||
rhs[o_r1..o_r2]
|
||||
.iter()
|
||||
.map(|&r| {
|
||||
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
|
||||
i_right_broadcast += 1;
|
||||
if i_right_broadcast >= ob.right_broadcast {
|
||||
i_in_block += 1;
|
||||
i_right_broadcast = 0;
|
||||
}
|
||||
if i_in_block >= ob.len {
|
||||
i_in_block = 0
|
||||
}
|
||||
f(*l, r)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to binary_map but with vectorized variants.
|
||||
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
lhs: &[T],
|
||||
rhs: &[T],
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<T> {
|
||||
let el_count = lhs_l.shape().elem_count();
|
||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe {
|
||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
||||
};
|
||||
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe {
|
||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
||||
};
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_l1..o_l2).step_by(ob.len) {
|
||||
f_vec(
|
||||
&lhs[src_i..src_i + ob.len],
|
||||
rhs,
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = lhs[o_l1..o_l2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &r) in rhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(*v, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe {
|
||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
||||
};
|
||||
let mut dst_i = 0;
|
||||
for src_i in (o_r1..o_r2).step_by(ob.len) {
|
||||
f_vec(
|
||||
lhs,
|
||||
&rhs[src_i..src_i + ob.len],
|
||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
||||
);
|
||||
dst_i += ob.len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = rhs[o_r1..o_r2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
for (i, &l) in lhs.iter().enumerate() {
|
||||
let start = start + i * ob.right_broadcast;
|
||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
||||
*v = f(l, *v)
|
||||
}
|
||||
}
|
||||
}
|
||||
ys
|
||||
}
|
||||
None => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
},
|
||||
_ => lhs_l
|
||||
.strided_index()
|
||||
.zip(rhs_l.strided_index())
|
||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
|
||||
[start_offset..start_offset + len]
|
||||
.iter()
|
||||
.map(|&v| f(v))
|
||||
.collect(),
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let mut result = Vec::with_capacity(layout.shape().elem_count());
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
} else {
|
||||
for index in block_start_index {
|
||||
for offset in 0..block_len {
|
||||
let v = unsafe { vs.get_unchecked(index + offset) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
|
||||
vs: &[T],
|
||||
layout: &Layout,
|
||||
mut f: F,
|
||||
mut f_vec: FV,
|
||||
) -> Vec<U> {
|
||||
match layout.strided_blocks() {
|
||||
crate::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(len);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe {
|
||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
|
||||
};
|
||||
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(len) };
|
||||
ys
|
||||
}
|
||||
crate::StridedBlocks::MultipleBlocks {
|
||||
block_start_index,
|
||||
block_len,
|
||||
} => {
|
||||
let el_count = layout.shape().elem_count();
|
||||
// Specialize the case where block_len is one to avoid the second loop.
|
||||
if block_len == 1 {
|
||||
let mut result = Vec::with_capacity(el_count);
|
||||
for index in block_start_index {
|
||||
let v = unsafe { vs.get_unchecked(index) };
|
||||
result.push(f(*v))
|
||||
}
|
||||
result
|
||||
} else {
|
||||
let mut ys: Vec<U> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe {
|
||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
|
||||
};
|
||||
let mut dst_index = 0;
|
||||
for src_index in block_start_index {
|
||||
let vs = &vs[src_index..src_index + block_len];
|
||||
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
|
||||
f_vec(vs, ys);
|
||||
dst_index += block_len;
|
||||
}
|
||||
// SAFETY: values are all set by f_vec.
|
||||
unsafe { ys.set_len(el_count) };
|
||||
ys
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
225
candle-core/src/cuda_backend/cudnn.rs
Normal file
225
candle-core/src/cuda_backend/cudnn.rs
Normal file
@ -0,0 +1,225 @@
|
||||
use crate::WithDType;
|
||||
use cudarc;
|
||||
use cudarc::cudnn::safe::{ConvForward, Cudnn};
|
||||
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
|
||||
use std::cell::RefCell;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
|
||||
// send nor sync.
|
||||
thread_local! {
|
||||
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
|
||||
}
|
||||
|
||||
impl From<cudarc::cudnn::CudnnError> for crate::Error {
|
||||
fn from(err: cudarc::cudnn::CudnnError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<cudarc::driver::DriverError> for crate::Error {
|
||||
fn from(err: cudarc::driver::DriverError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn launch_conv2d<
|
||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
||||
Y: cudarc::cudnn::CudnnDataType,
|
||||
>(
|
||||
src: &CudaView<T>,
|
||||
src_l: &crate::Layout,
|
||||
filter: &CudaView<T>,
|
||||
dst: &mut CudaSlice<T>,
|
||||
params: &crate::conv::ParamsConv2D,
|
||||
dev: &crate::cuda_backend::CudaDevice,
|
||||
) -> crate::Result<()> {
|
||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
||||
|
||||
let device_id = dev.id();
|
||||
let cudnn = CUDNN.with(|cudnn| {
|
||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
||||
return Ok(cudnn.clone());
|
||||
}
|
||||
let c = Cudnn::new(dev.cuda_stream());
|
||||
if let Ok(c) = &c {
|
||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
||||
}
|
||||
c
|
||||
})?;
|
||||
let conv = cudnn.create_conv2d::<Y>(
|
||||
/* pad */ [params.padding as i32, params.padding as i32],
|
||||
/* stride */ [params.stride as i32, params.stride as i32],
|
||||
/* dilation */ [params.dilation as i32, params.dilation as i32],
|
||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
||||
)?;
|
||||
let x_shape = [
|
||||
params.b_size as i32,
|
||||
params.c_in as i32,
|
||||
params.i_h as i32,
|
||||
params.i_w as i32,
|
||||
];
|
||||
// Note that `src` already starts at the proper offset.
|
||||
let x = if src_l.is_contiguous() {
|
||||
cudnn.create_4d_tensor::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
x_shape,
|
||||
)?
|
||||
} else {
|
||||
let s = src_l.stride();
|
||||
cudnn.create_4d_tensor_ex::<T>(
|
||||
x_shape,
|
||||
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
|
||||
)?
|
||||
};
|
||||
let w = cudnn.create_4d_filter::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[
|
||||
params.c_out as i32,
|
||||
params.c_in as i32,
|
||||
params.k_h as i32,
|
||||
params.k_w as i32,
|
||||
],
|
||||
)?;
|
||||
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
|
||||
let y = cudnn.create_4d_tensor::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[params.b_size as i32, params.c_out as i32, h_out, w_out],
|
||||
)?;
|
||||
let conv2d = ConvForward {
|
||||
conv: &conv,
|
||||
x: &x,
|
||||
w: &w,
|
||||
y: &y,
|
||||
};
|
||||
let alg = match params.cudnn_fwd_algo {
|
||||
None => conv2d.pick_algorithm()?,
|
||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
||||
}
|
||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
||||
};
|
||||
let workspace_size = conv2d.get_workspace_size(alg)?;
|
||||
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
|
||||
unsafe {
|
||||
conv2d.launch::<CudaSlice<u8>, _, _, _>(
|
||||
alg,
|
||||
Some(&mut workspace),
|
||||
(T::one(), T::zero()),
|
||||
src,
|
||||
filter,
|
||||
dst,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn launch_conv1d<
|
||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
||||
Y: cudarc::cudnn::CudnnDataType,
|
||||
>(
|
||||
src: &CudaView<T>,
|
||||
src_l: &crate::Layout,
|
||||
filter: &CudaView<T>,
|
||||
dst: &mut CudaSlice<T>,
|
||||
params: &crate::conv::ParamsConv1D,
|
||||
dev: &crate::cuda_backend::CudaDevice,
|
||||
) -> crate::Result<()> {
|
||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
||||
|
||||
let device_id = dev.id();
|
||||
let cudnn = CUDNN.with(|cudnn| {
|
||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
||||
return Ok(cudnn.clone());
|
||||
}
|
||||
let c = Cudnn::new(dev.cuda_stream());
|
||||
if let Ok(c) = &c {
|
||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
||||
}
|
||||
c
|
||||
})?;
|
||||
let conv = cudnn.create_conv2d::<Y>(
|
||||
/* pad */ [params.padding as i32, 0],
|
||||
/* stride */ [params.stride as i32, 1],
|
||||
/* dilation */ [params.dilation as i32, 1],
|
||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
||||
)?;
|
||||
// https://docs.nvidia.com/deeplearning/cudnn/backend/latest/api/cudnn-ops-library.html#cudnnsettensornddescriptor
|
||||
// > Tensors are restricted to having at least 4 dimensions, and at most CUDNN_DIM_MAX
|
||||
// > dimensions (defined in cudnn.h). When working with lower dimensional data, it is
|
||||
// > recommended that the user create a 4D tensor, and set the size along unused dimensions
|
||||
// > to 1.
|
||||
let x_shape = [
|
||||
params.b_size as i32,
|
||||
params.c_in as i32,
|
||||
params.l_in as i32,
|
||||
1,
|
||||
];
|
||||
// Note that `src` already starts at the proper offset.
|
||||
let x = if src_l.is_contiguous() {
|
||||
cudnn.create_4d_tensor::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
x_shape,
|
||||
)?
|
||||
} else {
|
||||
let s = src_l.stride();
|
||||
cudnn.create_4d_tensor_ex::<T>(x_shape, [s[0] as i32, s[1] as i32, s[2] as i32, 1i32])?
|
||||
};
|
||||
let w = cudnn.create_4d_filter::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[
|
||||
params.c_out as i32,
|
||||
params.c_in as i32,
|
||||
params.k_size as i32,
|
||||
1,
|
||||
],
|
||||
)?;
|
||||
let l_out = params.l_out() as i32;
|
||||
let y = cudnn.create_4d_tensor::<T>(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[params.b_size as i32, params.c_out as i32, l_out, 1],
|
||||
)?;
|
||||
let conv1d = ConvForward {
|
||||
conv: &conv,
|
||||
x: &x,
|
||||
w: &w,
|
||||
y: &y,
|
||||
};
|
||||
let alg = match params.cudnn_fwd_algo {
|
||||
None => conv1d.pick_algorithm()?,
|
||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
||||
}
|
||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
||||
};
|
||||
let workspace_size = conv1d.get_workspace_size(alg)?;
|
||||
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
|
||||
unsafe {
|
||||
conv1d.launch::<CudaSlice<u8>, _, _, _>(
|
||||
alg,
|
||||
Some(&mut workspace),
|
||||
(T::one(), T::zero()),
|
||||
src,
|
||||
filter,
|
||||
dst,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
664
candle-core/src/cuda_backend/device.rs
Normal file
664
candle-core/src/cuda_backend/device.rs
Normal file
@ -0,0 +1,664 @@
|
||||
use crate::backend::BackendDevice;
|
||||
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
|
||||
pub use candle_kernels as kernels;
|
||||
pub use cudarc;
|
||||
use cudarc::driver::{CudaFunction, LaunchConfig, PushKernelArg};
|
||||
use half::{bf16, f16};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr};
|
||||
|
||||
/// Unique identifier for cuda devices.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub struct DeviceId(usize);
|
||||
|
||||
impl DeviceId {
|
||||
fn new() -> Self {
|
||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
||||
use std::sync::atomic;
|
||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
||||
}
|
||||
}
|
||||
|
||||
struct CudaRng(cudarc::curand::CudaRng);
|
||||
unsafe impl Send for CudaRng {}
|
||||
|
||||
pub struct ModuleStore {
|
||||
mdls: [Option<Arc<cudarc::driver::CudaModule>>; kernels::ALL_IDS.len()],
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct CudaDevice {
|
||||
id: DeviceId,
|
||||
context: Arc<cudarc::driver::CudaContext>,
|
||||
modules: Arc<std::sync::RwLock<ModuleStore>>,
|
||||
custom_modules: Arc<std::sync::RwLock<HashMap<String, Arc<cudarc::driver::CudaModule>>>>,
|
||||
stream: Arc<cudarc::driver::CudaStream>,
|
||||
pub(crate) blas: Arc<cudarc::cublas::CudaBlas>,
|
||||
curand: Arc<Mutex<CudaRng>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for CudaDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "CudaDevice({:?})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
#[allow(clippy::missing_safety_doc)]
|
||||
pub unsafe fn alloc<T: cudarc::driver::DeviceRepr>(
|
||||
&self,
|
||||
len: usize,
|
||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
||||
self.stream.alloc::<T>(len).w()
|
||||
}
|
||||
|
||||
pub fn alloc_zeros<T: cudarc::driver::DeviceRepr + cudarc::driver::ValidAsZeroBits>(
|
||||
&self,
|
||||
len: usize,
|
||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
||||
self.stream.alloc_zeros::<T>(len).w()
|
||||
}
|
||||
|
||||
pub fn memcpy_htod<
|
||||
T: cudarc::driver::DeviceRepr,
|
||||
Src: cudarc::driver::HostSlice<T> + ?Sized,
|
||||
Dst: cudarc::driver::DevicePtrMut<T>,
|
||||
>(
|
||||
&self,
|
||||
src: &Src,
|
||||
dst: &mut Dst,
|
||||
) -> Result<()> {
|
||||
self.stream.memcpy_htod(src, dst).w()
|
||||
}
|
||||
|
||||
pub fn memcpy_dtov<T: cudarc::driver::DeviceRepr, Src: cudarc::driver::DevicePtr<T>>(
|
||||
&self,
|
||||
src: &Src,
|
||||
) -> Result<Vec<T>> {
|
||||
self.stream.memcpy_dtov(src).w()
|
||||
}
|
||||
|
||||
pub fn memcpy_dtod<
|
||||
T,
|
||||
Src: cudarc::driver::DevicePtr<T>,
|
||||
Dst: cudarc::driver::DevicePtrMut<T>,
|
||||
>(
|
||||
&self,
|
||||
src: &Src,
|
||||
dst: &mut Dst,
|
||||
) -> Result<()> {
|
||||
self.stream.memcpy_dtod(src, dst).w()
|
||||
}
|
||||
|
||||
pub fn memcpy_stod<
|
||||
T: cudarc::driver::DeviceRepr,
|
||||
Src: cudarc::driver::HostSlice<T> + ?Sized,
|
||||
>(
|
||||
&self,
|
||||
src: &Src,
|
||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
||||
self.stream.memcpy_stod(src).w()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CudaFunc {
|
||||
func: CudaFunction,
|
||||
stream: Arc<cudarc::driver::CudaStream>,
|
||||
}
|
||||
|
||||
impl std::ops::Deref for CudaFunc {
|
||||
type Target = CudaFunction;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.func
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaFunc {
|
||||
pub fn into_cuda_function(self) -> CudaFunction {
|
||||
self.func
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! builder_arg {
|
||||
($b:ident, $($arg:expr),*) => {
|
||||
$(
|
||||
let __arg = $arg;
|
||||
$b.arg(&__arg);
|
||||
)*
|
||||
};
|
||||
}
|
||||
|
||||
impl CudaFunc {
|
||||
pub fn builder(&self) -> cudarc::driver::LaunchArgs<'_> {
|
||||
self.stream.launch_builder(&self.func)
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
pub fn cuda_stream(&self) -> Arc<cudarc::driver::CudaStream> {
|
||||
self.stream.clone()
|
||||
}
|
||||
|
||||
/// When turned on, all cuda tensors **created after calling this function** will
|
||||
/// not track uses via cuda events.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// It is up to the user to ensure proper synchronization between multiple streams:
|
||||
/// - Ensure that no tensor is freed before a use on another stream is finished.
|
||||
/// - Ensure that a tensor is not used on another stream before allocation on the
|
||||
/// allocating stream finishes.
|
||||
/// - Ensure that a tensor is not written two concurrently by multiple streams.
|
||||
pub unsafe fn disable_event_tracking(&self) {
|
||||
self.context.disable_event_tracking()
|
||||
}
|
||||
|
||||
pub fn is_event_tracking(&self) -> bool {
|
||||
self.context.is_event_tracking()
|
||||
}
|
||||
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
pub fn compile(
|
||||
&self,
|
||||
func_name: &'static str,
|
||||
kernel: ug::lang::ssa::Kernel,
|
||||
) -> Result<CudaFunc> {
|
||||
let mut buf = vec![];
|
||||
ug_cuda::code_gen::gen(&mut buf, func_name, &kernel)?;
|
||||
let cuda_code = String::from_utf8(buf)?;
|
||||
let opts = cudarc::nvrtc::CompileOptions {
|
||||
use_fast_math: Some(true),
|
||||
..Default::default()
|
||||
};
|
||||
let ptx = cudarc::nvrtc::safe::compile_ptx_with_opts(cuda_code, opts).w()?;
|
||||
let module = self.context.load_module(ptx).w()?;
|
||||
let func = module.load_function(func_name).w()?;
|
||||
Ok(CudaFunc {
|
||||
func,
|
||||
stream: self.stream.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn id(&self) -> DeviceId {
|
||||
self.id
|
||||
}
|
||||
|
||||
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u8>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_u8", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = v as u8;
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<u32>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_u32", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = v as u32;
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<i64>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_i64", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = v as i64;
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<bf16>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_bf16", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = bf16::from_f64(v);
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f16>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_f16", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = f16::from_f64(v);
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f32>(elem_count)? };
|
||||
let func = self.get_or_load_func("fill_f32", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
let v = v as f32;
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
// SAFETY: Set later by running the fill kernel.
|
||||
let data = unsafe { self.alloc::<f64>(elem_count) }?;
|
||||
let func = self.get_or_load_func("fill_f64", &kernels::FILL)?;
|
||||
let mut builder = self.stream.launch_builder(&func);
|
||||
builder.arg(&data);
|
||||
builder.arg(&v);
|
||||
builder.arg(&elem_count);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_or_load_custom_func(
|
||||
&self,
|
||||
fn_name: &str,
|
||||
module_name: &str,
|
||||
ptx: &str,
|
||||
) -> Result<CudaFunc> {
|
||||
let ms = self.custom_modules.read().unwrap();
|
||||
if let Some(mdl) = ms.get(module_name).as_ref() {
|
||||
let func = mdl.load_function(fn_name).w()?;
|
||||
return Ok(CudaFunc {
|
||||
func,
|
||||
stream: self.stream.clone(),
|
||||
});
|
||||
}
|
||||
drop(ms);
|
||||
let mut ms = self.custom_modules.write().unwrap();
|
||||
let cuda_module = self.context.load_module(ptx.into()).w()?;
|
||||
ms.insert(module_name.to_string(), cuda_module.clone());
|
||||
let func = cuda_module.load_function(fn_name).w()?;
|
||||
Ok(CudaFunc {
|
||||
func,
|
||||
stream: self.stream.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_or_load_func(&self, fn_name: &str, mdl: &kernels::Module) -> Result<CudaFunc> {
|
||||
let ms = self.modules.read().unwrap();
|
||||
if let Some(mdl) = ms.mdls[mdl.index()].as_ref() {
|
||||
let func = mdl.load_function(fn_name).w()?;
|
||||
return Ok(CudaFunc {
|
||||
func,
|
||||
stream: self.stream.clone(),
|
||||
});
|
||||
}
|
||||
drop(ms);
|
||||
let mut ms = self.modules.write().unwrap();
|
||||
let cuda_module = self.context.load_module(mdl.ptx().into()).w()?;
|
||||
ms.mdls[mdl.index()] = Some(cuda_module.clone());
|
||||
let func = cuda_module.load_function(fn_name).w()?;
|
||||
Ok(CudaFunc {
|
||||
func,
|
||||
stream: self.stream.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
pub fn new_with_stream(ordinal: usize) -> Result<Self> {
|
||||
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
|
||||
let stream = context.new_stream().w()?;
|
||||
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
|
||||
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
|
||||
let module_store = ModuleStore {
|
||||
mdls: [const { None }; kernels::ALL_IDS.len()],
|
||||
};
|
||||
Ok(Self {
|
||||
id: DeviceId::new(),
|
||||
context,
|
||||
stream,
|
||||
blas: Arc::new(blas),
|
||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
||||
modules: Arc::new(std::sync::RwLock::new(module_store)),
|
||||
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl BackendDevice for CudaDevice {
|
||||
type Storage = CudaStorage;
|
||||
|
||||
fn new(ordinal: usize) -> Result<Self> {
|
||||
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
|
||||
let stream = context.default_stream();
|
||||
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
|
||||
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
|
||||
let module_store = ModuleStore {
|
||||
mdls: [const { None }; kernels::ALL_IDS.len()],
|
||||
};
|
||||
Ok(Self {
|
||||
id: DeviceId::new(),
|
||||
context,
|
||||
stream,
|
||||
blas: Arc::new(blas),
|
||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
||||
modules: Arc::new(std::sync::RwLock::new(module_store)),
|
||||
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
|
||||
})
|
||||
}
|
||||
|
||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
||||
// We do not call set_seed but instead create a new curand object. This ensures that the
|
||||
// state will be identical and the same random numbers will be generated.
|
||||
let mut curand = self.curand.lock().unwrap();
|
||||
curand.0 = cudarc::curand::CudaRng::new(seed, self.stream.clone()).w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn location(&self) -> crate::DeviceLocation {
|
||||
crate::DeviceLocation::Cuda {
|
||||
gpu_id: self.context.ordinal(),
|
||||
}
|
||||
}
|
||||
|
||||
fn same_device(&self, rhs: &Self) -> bool {
|
||||
self.id == rhs.id
|
||||
}
|
||||
|
||||
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
let data = self.alloc_zeros::<u8>(elem_count)?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
let data = self.alloc_zeros::<u32>(elem_count)?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
let data = self.alloc_zeros::<i64>(elem_count)?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let data = self.alloc_zeros::<bf16>(elem_count)?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
let data = self.alloc_zeros::<f16>(elem_count)?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
let data = self.alloc_zeros::<f32>(elem_count)?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let data = self.alloc_zeros::<f64>(elem_count)?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
let slice = match dtype {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_uniform",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count)? };
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count)? };
|
||||
curand.0.fill_with_uniform(&mut data).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
let slice = if lo == 0. && up == 1.0 {
|
||||
slice
|
||||
} else {
|
||||
use super::utils::Map1;
|
||||
let layout = Layout::contiguous(shape);
|
||||
super::Affine(up - lo, lo).map(&slice, self, &layout)?
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
|
||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
||||
// cudarc changes.
|
||||
let elem_count = shape.elem_count();
|
||||
let curand = self.curand.lock().unwrap();
|
||||
// curand can only generate an odd number of values.
|
||||
// https://github.com/huggingface/candle/issues/734
|
||||
let elem_count_round = if elem_count % 2 == 1 {
|
||||
elem_count + 1
|
||||
} else {
|
||||
elem_count
|
||||
};
|
||||
let slice = match dtype {
|
||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
||||
Err(CudaError::UnsupportedDtype {
|
||||
dtype,
|
||||
op: "rand_normal",
|
||||
})
|
||||
.w()?
|
||||
}
|
||||
DType::F32 => {
|
||||
let mut data = unsafe { self.alloc::<f32>(elem_count_round)? };
|
||||
curand
|
||||
.0
|
||||
.fill_with_normal(&mut data, mean as f32, std as f32)
|
||||
.w()?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let mut data = unsafe { self.alloc::<f64>(elem_count_round)? };
|
||||
curand.0.fill_with_normal(&mut data, mean, std).w()?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
||||
self.const_impl(1., shape, dtype)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
|
||||
let elem_count = shape.elem_count();
|
||||
let slice = match dtype {
|
||||
DType::U8 => {
|
||||
let data = self.alloc::<u8>(elem_count)?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
DType::U32 => {
|
||||
let data = self.alloc::<u32>(elem_count)?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
DType::I64 => {
|
||||
let data = self.alloc::<i64>(elem_count)?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
DType::BF16 => {
|
||||
let data = self.alloc::<bf16>(elem_count)?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
DType::F16 => {
|
||||
let data = self.alloc::<f16>(elem_count)?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
DType::F32 => {
|
||||
let data = self.alloc::<f32>(elem_count)?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
DType::F64 => {
|
||||
let data = self.alloc::<f64>(elem_count)?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
|
||||
let slice = match T::cpu_storage_ref(s) {
|
||||
CpuStorageRef::U8(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorageRef::U32(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorageRef::I64(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorageRef::BF16(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorageRef::F16(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorageRef::F32(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorageRef::F64(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorage::U32(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorage::I64(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorage::BF16(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorage::F16(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorage::F32(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorage::F64(storage) => {
|
||||
let data = self.memcpy_stod(storage)?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> {
|
||||
let slice = match storage {
|
||||
CpuStorage::U8(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::U8(data)
|
||||
}
|
||||
CpuStorage::U32(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::U32(data)
|
||||
}
|
||||
CpuStorage::I64(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::I64(data)
|
||||
}
|
||||
CpuStorage::BF16(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::BF16(data)
|
||||
}
|
||||
CpuStorage::F16(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::F16(data)
|
||||
}
|
||||
CpuStorage::F32(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::F32(data)
|
||||
}
|
||||
CpuStorage::F64(storage) => {
|
||||
let data = self.memcpy_stod(&storage)?;
|
||||
CudaStorageSlice::F64(data)
|
||||
}
|
||||
};
|
||||
Ok(CudaStorage {
|
||||
slice,
|
||||
device: self.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
self.stream.synchronize().map_err(crate::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
62
candle-core/src/cuda_backend/error.rs
Normal file
62
candle-core/src/cuda_backend/error.rs
Normal file
@ -0,0 +1,62 @@
|
||||
use crate::{DType, Layout};
|
||||
|
||||
/// cudarc related errors
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum CudaError {
|
||||
#[error(transparent)]
|
||||
Cuda(#[from] cudarc::driver::DriverError),
|
||||
|
||||
#[error(transparent)]
|
||||
Compiler(#[from] cudarc::nvrtc::CompileError),
|
||||
|
||||
#[error(transparent)]
|
||||
Cublas(#[from] cudarc::cublas::result::CublasError),
|
||||
|
||||
#[error(transparent)]
|
||||
Curand(#[from] cudarc::curand::result::CurandError),
|
||||
|
||||
#[error("missing kernel '{module_name}'")]
|
||||
MissingKernel { module_name: String },
|
||||
|
||||
#[error("unsupported dtype {dtype:?} for {op}")]
|
||||
UnsupportedDtype { dtype: DType, op: &'static str },
|
||||
|
||||
#[error("internal error '{0}'")]
|
||||
InternalError(&'static str),
|
||||
|
||||
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
|
||||
MatMulNonContiguous {
|
||||
lhs_stride: Layout,
|
||||
rhs_stride: Layout,
|
||||
mnk: (usize, usize, usize),
|
||||
},
|
||||
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
UnexpectedDType {
|
||||
msg: &'static str,
|
||||
expected: DType,
|
||||
got: DType,
|
||||
},
|
||||
|
||||
#[error("{cuda} when loading {module_name}")]
|
||||
Load {
|
||||
cuda: cudarc::driver::DriverError,
|
||||
module_name: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl From<CudaError> for crate::Error {
|
||||
fn from(val: CudaError) -> Self {
|
||||
crate::Error::Cuda(Box::new(val)).bt()
|
||||
}
|
||||
}
|
||||
|
||||
pub trait WrapErr<O> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error>;
|
||||
}
|
||||
|
||||
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
|
||||
fn w(self) -> std::result::Result<O, crate::Error> {
|
||||
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())).bt())
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
172
candle-core/src/cuda_backend/utils.rs
Normal file
172
candle-core/src/cuda_backend/utils.rs
Normal file
@ -0,0 +1,172 @@
|
||||
/// Helper functions to plug cuda kernels in candle.
|
||||
use crate::{Layout, Result, Shape, WithDType};
|
||||
pub use cudarc;
|
||||
use cudarc::driver::{CudaSlice, DeviceRepr, ValidAsZeroBits};
|
||||
|
||||
use super::{CudaDevice, CudaError, WrapErr};
|
||||
|
||||
pub type S = super::CudaStorageSlice;
|
||||
|
||||
pub trait Map1 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => S::U8(self.f(s, d, l)?),
|
||||
S::U32(s) => S::U32(self.f(s, d, l)?),
|
||||
S::I64(s) => S::I64(self.f(s, d, l)?),
|
||||
S::BF16(s) => S::BF16(self.f(s, d, l)?),
|
||||
S::F16(s) => S::F16(self.f(s, d, l)?),
|
||||
S::F32(s) => S::F32(self.f(s, d, l)?),
|
||||
S::F64(s) => S::F64(self.f(s, d, l)?),
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2 {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
|
||||
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map3 {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
src3: &CudaSlice<T>,
|
||||
layout3: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>>;
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn map(
|
||||
&self,
|
||||
s1: &S,
|
||||
l1: &Layout,
|
||||
s2: &S,
|
||||
l2: &Layout,
|
||||
s3: &S,
|
||||
l3: &Layout,
|
||||
d: &CudaDevice,
|
||||
) -> Result<S> {
|
||||
let out = match (s1, s2, s3) {
|
||||
(S::U8(s1), S::U8(s2), S::U8(s3)) => S::U8(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::U32(s1), S::U32(s2), S::U32(s3)) => S::U32(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::I64(s1), S::I64(s2), S::I64(s3)) => S::I64(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::BF16(s1), S::BF16(s2), S::BF16(s3)) => S::BF16(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::F16(s1), S::F16(s2), S::F16(s3)) => S::F16(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::F32(s1), S::F32(s2), S::F32(s3)) => S::F32(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
(S::F64(s1), S::F64(s2), S::F64(s3)) => S::F64(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in ternary op"))?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2InPlace {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
dst: &mut CudaSlice<T>,
|
||||
dst_shape: &Shape,
|
||||
src: &CudaSlice<T>,
|
||||
src_l: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()>;
|
||||
|
||||
fn map(
|
||||
&self,
|
||||
dst: &mut S,
|
||||
dst_s: &Shape,
|
||||
src: &S,
|
||||
src_l: &Layout,
|
||||
d: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
match (dst, src) {
|
||||
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map1Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &Layout,
|
||||
wrap: W,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
||||
let out = match s {
|
||||
S::U8(s) => self.f(s, d, l, S::U8)?,
|
||||
S::U32(s) => self.f(s, d, l, S::U32)?,
|
||||
S::I64(s) => self.f(s, d, l, S::I64)?,
|
||||
S::BF16(s) => self.f(s, d, l, S::BF16)?,
|
||||
S::F16(s) => self.f(s, d, l, S::F16)?,
|
||||
S::F32(s) => self.f(s, d, l, S::F32)?,
|
||||
S::F64(s) => self.f(s, d, l, S::F64)?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Map2Any {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
src1: &CudaSlice<T>,
|
||||
layout1: &Layout,
|
||||
src2: &CudaSlice<T>,
|
||||
layout2: &Layout,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<S>;
|
||||
|
||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
||||
let out = match (s1, s2) {
|
||||
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
|
||||
};
|
||||
Ok(out)
|
||||
}
|
||||
}
|
@ -1,123 +0,0 @@
|
||||
use crate::WithDType;
|
||||
use cudarc;
|
||||
use cudarc::cudnn::safe::{Conv2dForward, Cudnn};
|
||||
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
|
||||
use std::cell::RefCell;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
|
||||
// send nor sync.
|
||||
thread_local! {
|
||||
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
|
||||
}
|
||||
|
||||
impl From<cudarc::cudnn::CudnnError> for crate::Error {
|
||||
fn from(err: cudarc::cudnn::CudnnError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<cudarc::driver::DriverError> for crate::Error {
|
||||
fn from(err: cudarc::driver::DriverError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn launch_conv2d<
|
||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
||||
>(
|
||||
src: &CudaView<T>,
|
||||
src_l: &crate::Layout,
|
||||
filter: &CudaView<T>,
|
||||
dst: &mut CudaSlice<T>,
|
||||
params: &crate::conv::ParamsConv2D,
|
||||
dev: &crate::cuda_backend::CudaDevice,
|
||||
) -> crate::Result<()> {
|
||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
||||
|
||||
let device_id = dev.id();
|
||||
let cudnn = CUDNN.with(|cudnn| {
|
||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
||||
return Ok(cudnn.clone());
|
||||
}
|
||||
let c = Cudnn::new(dev.cuda_device());
|
||||
if let Ok(c) = &c {
|
||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
||||
}
|
||||
c
|
||||
})?;
|
||||
let conv = cudnn.create_conv2d::<T>(
|
||||
/* pad */ [params.padding as i32, params.padding as i32],
|
||||
/* stride */ [params.stride as i32, params.stride as i32],
|
||||
/* dilation */ [params.dilation as i32, params.dilation as i32],
|
||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
||||
)?;
|
||||
let x_shape = [
|
||||
params.b_size as i32,
|
||||
params.c_in as i32,
|
||||
params.i_h as i32,
|
||||
params.i_w as i32,
|
||||
];
|
||||
// Note that `src` already starts at the proper offset.
|
||||
let x = if src_l.is_contiguous() {
|
||||
cudnn.create_4d_tensor(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
x_shape,
|
||||
)?
|
||||
} else {
|
||||
let s = src_l.stride();
|
||||
cudnn.create_4d_tensor_ex(
|
||||
x_shape,
|
||||
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
|
||||
)?
|
||||
};
|
||||
let w = cudnn.create_4d_filter(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[
|
||||
params.c_out as i32,
|
||||
params.c_in as i32,
|
||||
params.k_h as i32,
|
||||
params.k_w as i32,
|
||||
],
|
||||
)?;
|
||||
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
|
||||
let y = cudnn.create_4d_tensor(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[params.b_size as i32, params.c_out as i32, h_out, w_out],
|
||||
)?;
|
||||
let conv2d = Conv2dForward {
|
||||
conv: &conv,
|
||||
x: &x,
|
||||
w: &w,
|
||||
y: &y,
|
||||
};
|
||||
let alg = match params.cudnn_fwd_algo {
|
||||
None => conv2d.pick_algorithm()?,
|
||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
||||
}
|
||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
||||
};
|
||||
let workspace_size = conv2d.get_workspace_size(alg)?;
|
||||
let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?;
|
||||
unsafe {
|
||||
conv2d.launch::<CudaSlice<u8>, _, _, _>(
|
||||
alg,
|
||||
Some(&mut workspace),
|
||||
(T::one(), T::zero()),
|
||||
src,
|
||||
filter,
|
||||
dst,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
490
candle-core/src/custom_op.rs
Normal file
490
candle-core/src/custom_op.rs
Normal file
@ -0,0 +1,490 @@
|
||||
use crate::op::{BackpropOp, Op};
|
||||
use crate::tensor::from_storage;
|
||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
||||
use std::sync::Arc;
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
pub trait CustomOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||
/// The function should return the gradient of the argument.
|
||||
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_arg3: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Applies a unary custom op without backward support
|
||||
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op without backward support
|
||||
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) =
|
||||
self.storage()
|
||||
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op without backward support
|
||||
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a unary custom op.
|
||||
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
|
||||
let (storage, shape) = self
|
||||
.storage()
|
||||
.apply_op1(self.layout(), c.as_ref().as_ref())?;
|
||||
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
|
||||
self.apply_op1_arc(Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op.
|
||||
pub fn apply_op2_arc(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op2(
|
||||
self.layout(),
|
||||
&rhs.storage(),
|
||||
rhs.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
|
||||
self.apply_op2_arc(r, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op.
|
||||
pub fn apply_op3_arc(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
|
||||
Op::CustomOp3(t1, t2, t3, c.clone())
|
||||
});
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: C,
|
||||
) -> Result<Self> {
|
||||
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
|
||||
}
|
||||
}
|
||||
|
||||
// In place ops.
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
/// These ops work in place and as such back-prop is unsupported.
|
||||
pub trait InplaceOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &mut CpuStorage, layout: &Layout) -> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &mut CudaStorage, _layout: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(&self, _storage: &mut MetalStorage, _layout: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub trait InplaceOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, s1: &mut CpuStorage, l1: &Layout, s2: &CpuStorage, l2: &Layout)
|
||||
-> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _: &mut CudaStorage, _: &Layout, _: &CudaStorage, _: &Layout) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &mut MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub trait InplaceOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &mut CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<()>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &mut CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &mut MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<()> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Applies a unary custom op in place.
|
||||
pub fn inplace_op1<C: InplaceOp1>(&self, c: &C) -> Result<()> {
|
||||
self.storage_mut().inplace_op1(self.layout(), c)
|
||||
}
|
||||
|
||||
/// Applies a unary custom op in place (for the first tensor).
|
||||
pub fn inplace_op2<C: InplaceOp2>(&self, rhs: &Self, c: &C) -> Result<()> {
|
||||
self.storage_mut()
|
||||
.inplace_op2(self.layout(), &rhs.storage(), rhs.layout(), c)
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op in place (for the first tensor).
|
||||
pub fn inplace_op3<C: InplaceOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<()> {
|
||||
self.storage_mut().inplace_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct UgIOp1 {
|
||||
name: &'static str,
|
||||
#[cfg(feature = "cuda")]
|
||||
func: cudarc::driver::CudaFunction,
|
||||
#[cfg(feature = "metal")]
|
||||
func: metal::ComputePipelineState,
|
||||
}
|
||||
|
||||
impl UgIOp1 {
|
||||
#[allow(unused)]
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
pub fn new(
|
||||
name: &'static str,
|
||||
kernel: ug::lang::ssa::Kernel,
|
||||
device: &crate::Device,
|
||||
) -> Result<Self> {
|
||||
#[cfg(feature = "cuda")]
|
||||
{
|
||||
let device = device.as_cuda_device()?;
|
||||
let func = device.compile(name, kernel)?;
|
||||
Ok(Self {
|
||||
name,
|
||||
func: func.into_cuda_function(),
|
||||
})
|
||||
}
|
||||
#[cfg(feature = "metal")]
|
||||
{
|
||||
let device = device.as_metal_device()?;
|
||||
let func = device.compile(name, kernel)?;
|
||||
Ok(Self { name, func })
|
||||
}
|
||||
#[cfg(not(any(feature = "cuda", feature = "metal")))]
|
||||
{
|
||||
Ok(Self { name })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl InplaceOp1 for UgIOp1 {
|
||||
fn name(&self) -> &'static str {
|
||||
self.name
|
||||
}
|
||||
|
||||
fn cpu_fwd(&self, _: &mut CpuStorage, _: &Layout) -> Result<()> {
|
||||
crate::bail!("ug ops are only supported on metal/cuda at the moment")
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(&self, sto: &mut MetalStorage, layout: &Layout) -> Result<()> {
|
||||
use crate::backend::BackendStorage;
|
||||
use candle_metal_kernels::utils::EncoderProvider;
|
||||
|
||||
let elem_count = layout.shape().elem_count();
|
||||
if sto.dtype() != crate::DType::F32 {
|
||||
// TODO: support more dtypes.
|
||||
crate::bail!("input is not a f32 tensor")
|
||||
}
|
||||
let device = sto.device();
|
||||
println!("here");
|
||||
let command_buffer = device.command_buffer()?;
|
||||
let command_buffer = &command_buffer;
|
||||
let encoder = command_buffer.encoder();
|
||||
let encoder = encoder.as_ref();
|
||||
encoder.set_compute_pipeline_state(&self.func);
|
||||
let (g, b) = if elem_count % 32 == 0 {
|
||||
(elem_count / 32, 32)
|
||||
} else {
|
||||
(elem_count, 1)
|
||||
};
|
||||
let grid_dims = metal::MTLSize {
|
||||
width: g as u64,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
let group_dims = candle_metal_kernels::utils::get_block_dims(b as u64, 1, 1);
|
||||
candle_metal_kernels::utils::set_param(encoder, 0, (sto.buffer(), 0usize));
|
||||
|
||||
encoder.use_resource(sto.buffer(), metal::MTLResourceUsage::Write);
|
||||
encoder.dispatch_threads(grid_dims, group_dims);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
fn cuda_fwd(&self, sto: &mut CudaStorage, layout: &Layout) -> Result<()> {
|
||||
use crate::cuda_backend::WrapErr;
|
||||
use cudarc::driver::PushKernelArg;
|
||||
|
||||
let elem_count = layout.shape().elem_count();
|
||||
let stream = sto.device.cuda_stream();
|
||||
// TODO: support more dtypes.
|
||||
let sto = sto.as_cuda_slice::<f32>()?;
|
||||
let sto = match layout.contiguous_offsets() {
|
||||
None => crate::bail!("input has to be contiguous"),
|
||||
Some((o1, o2)) => sto.slice(o1..o2),
|
||||
};
|
||||
let (g, b) = if elem_count % 32 == 0 {
|
||||
(elem_count / 32, 32)
|
||||
} else {
|
||||
(elem_count, 1)
|
||||
};
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (g as u32, 1, 1),
|
||||
block_dim: (b as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
let mut builder = stream.launch_builder(&self.func);
|
||||
builder.arg(&sto);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -11,6 +11,7 @@ pub enum DeviceLocation {
|
||||
Metal { gpu_id: usize },
|
||||
}
|
||||
|
||||
/// Cpu, Cuda, or Metal
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Device {
|
||||
Cpu,
|
||||
@ -130,6 +131,26 @@ impl Device {
|
||||
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
|
||||
}
|
||||
|
||||
pub fn as_cuda_device(&self) -> Result<&crate::CudaDevice> {
|
||||
match self {
|
||||
Self::Cuda(d) => Ok(d),
|
||||
Self::Cpu => crate::bail!("expected a cuda device, got cpu"),
|
||||
Self::Metal(_) => crate::bail!("expected a cuda device, got Metal"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn as_metal_device(&self) -> Result<&crate::MetalDevice> {
|
||||
match self {
|
||||
Self::Cuda(_) => crate::bail!("expected a metal device, got cuda"),
|
||||
Self::Cpu => crate::bail!("expected a metal device, got cpu"),
|
||||
Self::Metal(d) => Ok(d),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_cuda_with_stream(ordinal: usize) -> Result<Self> {
|
||||
Ok(Self::Cuda(crate::CudaDevice::new_with_stream(ordinal)?))
|
||||
}
|
||||
|
||||
pub fn new_metal(ordinal: usize) -> Result<Self> {
|
||||
Ok(Self::Metal(crate::MetalDevice::new(ordinal)?))
|
||||
}
|
||||
@ -171,6 +192,22 @@ impl Device {
|
||||
matches!(self, Self::Metal(_))
|
||||
}
|
||||
|
||||
pub fn supports_bf16(&self) -> bool {
|
||||
match self {
|
||||
Self::Cuda(_) | Self::Metal(_) => true,
|
||||
Self::Cpu => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return `BF16` for devices that support it, otherwise default to `F32`.
|
||||
pub fn bf16_default_to_f32(&self) -> DType {
|
||||
if self.supports_bf16() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
}
|
||||
}
|
||||
|
||||
pub fn cuda_if_available(ordinal: usize) -> Result<Self> {
|
||||
if crate::utils::cuda_is_available() {
|
||||
Self::new_cuda(ordinal)
|
||||
@ -289,17 +326,48 @@ impl Device {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => {
|
||||
let storage = CpuDevice.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Cpu(storage))
|
||||
}
|
||||
Device::Cuda(device) => {
|
||||
let storage = device.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.alloc_uninit(shape, dtype)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn storage_from_slice<D: WithDType>(&self, data: &[D]) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => Ok(Storage::Cpu(data.to_cpu_storage())),
|
||||
Device::Cuda(device) => {
|
||||
let storage = device.storage_from_slice(data)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = device.storage_from_slice(data)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
|
||||
match self {
|
||||
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
|
||||
Device::Cuda(device) => {
|
||||
let storage = array.to_cpu_storage();
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = array.to_cpu_storage();
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
@ -310,14 +378,22 @@ impl Device {
|
||||
Device::Cpu => Ok(Storage::Cpu(S::to_cpu_storage_owned(data))),
|
||||
Device::Cuda(device) => {
|
||||
let storage = S::to_cpu_storage_owned(data);
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
Ok(Storage::Cuda(storage))
|
||||
}
|
||||
Device::Metal(device) => {
|
||||
let storage = S::to_cpu_storage_owned(data);
|
||||
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
||||
Ok(Storage::Metal(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn synchronize(&self) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu => Ok(()),
|
||||
Self::Cuda(d) => d.synchronize(),
|
||||
Self::Metal(d) => d.synchronize(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
/// Pretty printing of tensors
|
||||
/// This implementation should be in line with the PyTorch version.
|
||||
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
||||
//! Pretty printing of tensors
|
||||
//!
|
||||
//! This implementation should be in line with the [PyTorch version](https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py).
|
||||
//!
|
||||
use crate::{DType, Result, Tensor, WithDType};
|
||||
use half::{bf16, f16};
|
||||
|
||||
@ -65,12 +66,13 @@ impl std::fmt::Debug for Tensor {
|
||||
}
|
||||
|
||||
/// Options for Tensor pretty printing
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct PrinterOptions {
|
||||
precision: usize,
|
||||
threshold: usize,
|
||||
edge_items: usize,
|
||||
line_width: usize,
|
||||
sci_mode: Option<bool>,
|
||||
pub precision: usize,
|
||||
pub threshold: usize,
|
||||
pub edge_items: usize,
|
||||
pub line_width: usize,
|
||||
pub sci_mode: Option<bool>,
|
||||
}
|
||||
|
||||
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
||||
@ -89,6 +91,10 @@ impl PrinterOptions {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
|
||||
&PRINT_OPTS
|
||||
}
|
||||
|
||||
pub fn set_print_options(options: PrinterOptions) {
|
||||
*PRINT_OPTS.lock().unwrap() = options
|
||||
}
|
||||
@ -117,6 +123,26 @@ pub fn set_print_options_full() {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_line_width(line_width: usize) {
|
||||
PRINT_OPTS.lock().unwrap().line_width = line_width
|
||||
}
|
||||
|
||||
pub fn set_precision(precision: usize) {
|
||||
PRINT_OPTS.lock().unwrap().precision = precision
|
||||
}
|
||||
|
||||
pub fn set_edge_items(edge_items: usize) {
|
||||
PRINT_OPTS.lock().unwrap().edge_items = edge_items
|
||||
}
|
||||
|
||||
pub fn set_threshold(threshold: usize) {
|
||||
PRINT_OPTS.lock().unwrap().threshold = threshold
|
||||
}
|
||||
|
||||
pub fn set_sci_mode(sci_mode: Option<bool>) {
|
||||
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
|
||||
}
|
||||
|
||||
struct FmtSize {
|
||||
current_size: usize,
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
//! Types for elements that can be stored and manipulated using tensors.
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{CpuStorage, Error, Result};
|
||||
use crate::{CpuStorage, CpuStorageRef, Error, Result};
|
||||
|
||||
/// The different types of elements allowed in tensors.
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
||||
@ -23,7 +23,15 @@ pub enum DType {
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct DTypeParseError;
|
||||
pub struct DTypeParseError(String);
|
||||
|
||||
impl std::fmt::Display for DTypeParseError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "cannot parse '{}' as a dtype", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::error::Error for DTypeParseError {}
|
||||
|
||||
impl std::str::FromStr for DType {
|
||||
type Err = DTypeParseError;
|
||||
@ -36,7 +44,7 @@ impl std::str::FromStr for DType {
|
||||
"f16" => Ok(Self::F16),
|
||||
"f32" => Ok(Self::F32),
|
||||
"f64" => Ok(Self::F64),
|
||||
_ => Err(DTypeParseError),
|
||||
_ => Err(DTypeParseError(s.to_string())),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -92,12 +100,14 @@ pub trait WithDType:
|
||||
+ 'static
|
||||
+ Send
|
||||
+ Sync
|
||||
+ std::any::Any
|
||||
+ crate::cpu::kernels::VecOps
|
||||
{
|
||||
const DTYPE: DType;
|
||||
|
||||
fn from_f64(v: f64) -> Self;
|
||||
fn to_f64(self) -> f64;
|
||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_>;
|
||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
|
||||
|
||||
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
|
||||
@ -121,6 +131,10 @@ macro_rules! with_dtype {
|
||||
$to_f64(self)
|
||||
}
|
||||
|
||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_> {
|
||||
CpuStorageRef::$dtype(data)
|
||||
}
|
||||
|
||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
|
||||
CpuStorage::$dtype(data)
|
||||
}
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Implementation of the Cuda backend when Cuda support has not been compiled in.
|
||||
//!
|
||||
#![allow(dead_code)]
|
||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
|
||||
@ -14,6 +16,12 @@ macro_rules! fail {
|
||||
};
|
||||
}
|
||||
|
||||
impl CudaDevice {
|
||||
pub fn new_with_stream(_: usize) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::backend::BackendStorage for CudaStorage {
|
||||
type Device = CudaDevice;
|
||||
|
||||
@ -154,6 +162,19 @@ impl crate::backend::BackendStorage for CudaStorage {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
) -> Result<()> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
@ -197,10 +218,22 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
@ -208,4 +241,38 @@ impl crate::backend::BackendDevice for CudaDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn gemm_reduced_precision_f16() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with f16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f16(_: bool) {}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn gemm_reduced_precision_bf16() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
/// allowed with bf16 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_bf16(_: bool) {}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn gemm_reduced_precision_f32() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
||||
/// allowed with f32 GEMMs.
|
||||
pub fn set_gemm_reduced_precision_f32(_b: bool) {}
|
||||
|
@ -166,6 +166,19 @@ impl crate::backend::BackendStorage for MetalStorage {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn copy2d(
|
||||
&self,
|
||||
_: &mut Self,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
_: usize,
|
||||
) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
@ -209,10 +222,22 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
@ -220,4 +245,8 @@ impl crate::backend::BackendDevice for MetalDevice {
|
||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
fn synchronize(&self) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
//! Candle-specific Error and Result
|
||||
use crate::{DType, DeviceLocation, Layout, MetalError, Shape};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@ -8,8 +9,14 @@ pub struct MatMulUnexpectedStriding {
|
||||
pub msg: &'static str,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Error {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{self}")
|
||||
}
|
||||
}
|
||||
|
||||
/// Main library error type.
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
#[derive(thiserror::Error)]
|
||||
pub enum Error {
|
||||
// === DType Errors ===
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
@ -165,6 +172,10 @@ pub enum Error {
|
||||
#[error("Metal error {0}")]
|
||||
Metal(#[from] MetalError),
|
||||
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
#[error(transparent)]
|
||||
Ug(#[from] ug::Error),
|
||||
|
||||
#[error(transparent)]
|
||||
TryFromIntError(#[from] core::num::TryFromIntError),
|
||||
|
||||
@ -179,6 +190,10 @@ pub enum Error {
|
||||
#[error(transparent)]
|
||||
ParseInt(#[from] std::num::ParseIntError),
|
||||
|
||||
/// Utf8 parse error.
|
||||
#[error(transparent)]
|
||||
FromUtf8(#[from] std::string::FromUtf8Error),
|
||||
|
||||
/// I/O error.
|
||||
#[error(transparent)]
|
||||
Io(#[from] std::io::Error),
|
||||
@ -191,8 +206,14 @@ pub enum Error {
|
||||
UnsupportedSafeTensorDtype(safetensors::Dtype),
|
||||
|
||||
/// Arbitrary errors wrapping.
|
||||
#[error(transparent)]
|
||||
Wrapped(Box<dyn std::error::Error + Send + Sync>),
|
||||
#[error("{0}")]
|
||||
Wrapped(Box<dyn std::fmt::Display + Send + Sync>),
|
||||
|
||||
#[error("{context}\n{inner}")]
|
||||
Context {
|
||||
inner: Box<Self>,
|
||||
context: Box<dyn std::fmt::Display + Send + Sync>,
|
||||
},
|
||||
|
||||
/// Adding path information to an error.
|
||||
#[error("path: {path:?} {inner}")]
|
||||
@ -210,19 +231,26 @@ pub enum Error {
|
||||
/// User generated error message, typically created via `bail!`.
|
||||
#[error("{0}")]
|
||||
Msg(String),
|
||||
|
||||
#[error("unwrap none")]
|
||||
UnwrapNone,
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
impl Error {
|
||||
pub fn wrap(err: impl std::error::Error + Send + Sync + 'static) -> Self {
|
||||
pub fn wrap(err: impl std::fmt::Display + Send + Sync + 'static) -> Self {
|
||||
Self::Wrapped(Box::new(err)).bt()
|
||||
}
|
||||
|
||||
pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self {
|
||||
pub fn msg(err: impl std::fmt::Display) -> Self {
|
||||
Self::Msg(err.to_string()).bt()
|
||||
}
|
||||
|
||||
pub fn debug(err: impl std::fmt::Debug) -> Self {
|
||||
Self::Msg(format!("{err:?}")).bt()
|
||||
}
|
||||
|
||||
pub fn bt(self) -> Self {
|
||||
let backtrace = std::backtrace::Backtrace::capture();
|
||||
match backtrace.status() {
|
||||
@ -241,6 +269,13 @@ impl Error {
|
||||
path: p.as_ref().to_path_buf(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn context(self, c: impl std::fmt::Display + Send + Sync + 'static) -> Self {
|
||||
Self::Context {
|
||||
inner: Box::new(self),
|
||||
context: Box::new(c),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
@ -263,3 +298,41 @@ pub fn zip<T, U>(r1: Result<T>, r2: Result<U>) -> Result<(T, U)> {
|
||||
(_, Err(e)) => Err(e),
|
||||
}
|
||||
}
|
||||
|
||||
// Taken from anyhow.
|
||||
pub trait Context<T> {
|
||||
/// Wrap the error value with additional context.
|
||||
fn context<C>(self, context: C) -> Result<T>
|
||||
where
|
||||
C: std::fmt::Display + Send + Sync + 'static;
|
||||
|
||||
/// Wrap the error value with additional context that is evaluated lazily
|
||||
/// only once an error does occur.
|
||||
fn with_context<C, F>(self, f: F) -> Result<T>
|
||||
where
|
||||
C: std::fmt::Display + Send + Sync + 'static,
|
||||
F: FnOnce() -> C;
|
||||
}
|
||||
|
||||
impl<T> Context<T> for Option<T> {
|
||||
fn context<C>(self, context: C) -> Result<T>
|
||||
where
|
||||
C: std::fmt::Display + Send + Sync + 'static,
|
||||
{
|
||||
match self {
|
||||
Some(v) => Ok(v),
|
||||
None => Err(Error::UnwrapNone.context(context).bt()),
|
||||
}
|
||||
}
|
||||
|
||||
fn with_context<C, F>(self, f: F) -> Result<T>
|
||||
where
|
||||
C: std::fmt::Display + Send + Sync + 'static,
|
||||
F: FnOnce() -> C,
|
||||
{
|
||||
match self {
|
||||
Some(v) => Ok(v),
|
||||
None => Err(Error::UnwrapNone.context(f()).bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -141,28 +141,117 @@ impl<T> IndexOp<T> for Tensor
|
||||
where
|
||||
T: Into<TensorIndexer>,
|
||||
{
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
||||
/// let a = Tensor::new(&[
|
||||
/// [0., 1.],
|
||||
/// [2., 3.],
|
||||
/// [4., 5.]
|
||||
/// ], &Device::Cpu)?;
|
||||
///
|
||||
/// let b = a.i(0)?;
|
||||
/// assert_eq!(b.shape().dims(), &[2]);
|
||||
/// assert_eq!(b.to_vec1::<f64>()?, &[0., 1.]);
|
||||
///
|
||||
/// let c = a.i(..2)?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 2]);
|
||||
/// assert_eq!(c.to_vec2::<f64>()?, &[
|
||||
/// [0., 1.],
|
||||
/// [2., 3.]
|
||||
/// ]);
|
||||
///
|
||||
/// let d = a.i(1..)?;
|
||||
/// assert_eq!(d.shape().dims(), &[2, 2]);
|
||||
/// assert_eq!(d.to_vec2::<f64>()?, &[
|
||||
/// [2., 3.],
|
||||
/// [4., 5.]
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
fn i(&self, index: T) -> Result<Tensor, Error> {
|
||||
self.index(&[index.into()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<A> IndexOp<(A,)> for Tensor
|
||||
where
|
||||
A: Into<TensorIndexer>,
|
||||
{
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
||||
/// let a = Tensor::new(&[
|
||||
/// [0f32, 1.],
|
||||
/// [2. , 3.],
|
||||
/// [4. , 5.]
|
||||
/// ], &Device::Cpu)?;
|
||||
///
|
||||
/// let b = a.i((0,))?;
|
||||
/// assert_eq!(b.shape().dims(), &[2]);
|
||||
/// assert_eq!(b.to_vec1::<f32>()?, &[0., 1.]);
|
||||
///
|
||||
/// let c = a.i((..2,))?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 2]);
|
||||
/// assert_eq!(c.to_vec2::<f32>()?, &[
|
||||
/// [0., 1.],
|
||||
/// [2., 3.]
|
||||
/// ]);
|
||||
///
|
||||
/// let d = a.i((1..,))?;
|
||||
/// assert_eq!(d.shape().dims(), &[2, 2]);
|
||||
/// assert_eq!(d.to_vec2::<f32>()?, &[
|
||||
/// [2., 3.],
|
||||
/// [4., 5.]
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
fn i(&self, (a,): (A,)) -> Result<Tensor, Error> {
|
||||
self.index(&[a.into()])
|
||||
}
|
||||
}
|
||||
#[allow(non_snake_case)]
|
||||
impl<A, B> IndexOp<(A, B)> for Tensor
|
||||
where
|
||||
A: Into<TensorIndexer>,
|
||||
B: Into<TensorIndexer>,
|
||||
{
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
||||
/// let a = Tensor::new(&[[0f32, 1., 2.], [3., 4., 5.], [6., 7., 8.]], &Device::Cpu)?;
|
||||
///
|
||||
/// let b = a.i((1, 0))?;
|
||||
/// assert_eq!(b.to_vec0::<f32>()?, 3.);
|
||||
///
|
||||
/// let c = a.i((..2, 1))?;
|
||||
/// assert_eq!(c.shape().dims(), &[2]);
|
||||
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
|
||||
///
|
||||
/// let d = a.i((2.., ..))?;
|
||||
/// assert_eq!(c.shape().dims(), &[2]);
|
||||
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
fn i(&self, (a, b): (A, B)) -> Result<Tensor, Error> {
|
||||
self.index(&[a.into(), b.into()])
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! index_op_tuple {
|
||||
($($t:ident),+) => {
|
||||
($doc:tt, $($t:ident),+) => {
|
||||
#[allow(non_snake_case)]
|
||||
impl<$($t),*> IndexOp<($($t,)*)> for Tensor
|
||||
where
|
||||
$($t: Into<TensorIndexer>,)*
|
||||
{
|
||||
#[doc=$doc]
|
||||
fn i(&self, ($($t,)*): ($($t,)*)) -> Result<Tensor, Error> {
|
||||
self.index(&[$($t.into(),)*])
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
index_op_tuple!(A);
|
||||
index_op_tuple!(A, B);
|
||||
index_op_tuple!(A, B, C);
|
||||
index_op_tuple!(A, B, C, D);
|
||||
index_op_tuple!(A, B, C, D, E);
|
||||
index_op_tuple!(A, B, C, D, E, F);
|
||||
index_op_tuple!(A, B, C, D, E, F, G);
|
||||
|
||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C);
|
||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D);
|
||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E);
|
||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F);
|
||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F, G);
|
||||
|
@ -1,3 +1,4 @@
|
||||
//! Tensor Layouts including contiguous or sparse strides
|
||||
use crate::{Error, Result, Shape};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||
@ -35,6 +36,12 @@ impl Layout {
|
||||
self.shape.dims()
|
||||
}
|
||||
|
||||
/// The dimension size for a specified dimension index.
|
||||
pub fn dim<D: crate::shape::Dim>(&self, dim: D) -> Result<usize> {
|
||||
let dim = dim.to_index(&self.shape, "dim")?;
|
||||
Ok(self.dims()[dim])
|
||||
}
|
||||
|
||||
pub fn shape(&self) -> &Shape {
|
||||
&self.shape
|
||||
}
|
||||
@ -70,7 +77,7 @@ impl Layout {
|
||||
self.shape.is_fortran_contiguous(&self.stride)
|
||||
}
|
||||
|
||||
pub(crate) fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||
pub fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||
let dims = self.shape().dims();
|
||||
if dim >= dims.len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
@ -99,7 +106,7 @@ impl Layout {
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
||||
pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
||||
let rank = self.shape.rank();
|
||||
if rank <= dim1 || rank <= dim2 {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
@ -120,7 +127,7 @@ impl Layout {
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
||||
pub fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
||||
let is_permutation =
|
||||
idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
|
||||
if !is_permutation {
|
||||
|
@ -7,14 +7,14 @@
|
||||
//!
|
||||
//! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
|
||||
//! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
|
||||
//!
|
||||
//! let c = a.matmul(&b)?;
|
||||
//!
|
||||
//! # Ok(())}
|
||||
//! ```
|
||||
//!
|
||||
//! ## Features
|
||||
//!
|
||||
//! - Simple syntax (looks and like PyTorch)
|
||||
//! - Simple syntax (looks and feels like PyTorch)
|
||||
//! - CPU and Cuda backends (and M1 support)
|
||||
//! - Enable serverless (CPU) small and fast deployments
|
||||
//! - Model training
|
||||
@ -32,23 +32,36 @@
|
||||
//! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
|
||||
//!
|
||||
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
|
||||
//!
|
||||
//! ## Other Crates
|
||||
//!
|
||||
//! Candle consists of a number of crates. This crate holds core the common data structures but you may wish
|
||||
//! to look at the docs for the other crates which can be found here:
|
||||
//!
|
||||
//! - [candle-core](https://docs.rs/candle-core/). Core Datastructures and DataTypes.
|
||||
//! - [candle-nn](https://docs.rs/candle-nn/). Building blocks for Neural Nets.
|
||||
//! - [candle-datasets](https://docs.rs/candle-datasets/). Rust access to commonly used Datasets like MNIST.
|
||||
//! - [candle-examples](https://docs.rs/candle-examples/). Examples of Candle in Use.
|
||||
//! - [candle-onnx](https://docs.rs/candle-onnx/). Loading and using ONNX models.
|
||||
//! - [candle-pyo3](https://docs.rs/candle-pyo3/). Access to Candle from Python.
|
||||
//! - [candle-transformers](https://docs.rs/candle-transformers/). Candle implemntation of many published transformer models.
|
||||
//!
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
mod accelerate;
|
||||
pub mod backend;
|
||||
pub mod backprop;
|
||||
mod conv;
|
||||
pub mod conv;
|
||||
mod convert;
|
||||
pub mod cpu;
|
||||
pub mod cpu_backend;
|
||||
#[cfg(feature = "cuda")]
|
||||
pub mod cuda_backend;
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub mod cudnn;
|
||||
mod custom_op;
|
||||
mod device;
|
||||
pub mod display;
|
||||
mod dtype;
|
||||
mod dummy_cuda_backend;
|
||||
pub mod dummy_cuda_backend;
|
||||
mod dummy_metal_backend;
|
||||
pub mod error;
|
||||
mod indexer;
|
||||
@ -58,37 +71,46 @@ pub mod metal_backend;
|
||||
#[cfg(feature = "mkl")]
|
||||
mod mkl;
|
||||
pub mod npy;
|
||||
mod op;
|
||||
pub mod op;
|
||||
pub mod pickle;
|
||||
pub mod quantized;
|
||||
pub mod safetensors;
|
||||
pub mod scalar;
|
||||
pub mod shape;
|
||||
mod sort;
|
||||
mod storage;
|
||||
pub mod streaming;
|
||||
mod strided_index;
|
||||
mod tensor;
|
||||
mod tensor_cat;
|
||||
pub mod test_utils;
|
||||
pub mod utils;
|
||||
mod variable;
|
||||
|
||||
pub use cpu_backend::CpuStorage;
|
||||
pub use device::{Device, DeviceLocation};
|
||||
pub use dtype::{DType, FloatDType, IntDType, WithDType};
|
||||
pub use error::{Error, Result};
|
||||
pub use indexer::IndexOp;
|
||||
#[cfg(feature = "cudnn")]
|
||||
pub use cuda_backend::cudnn;
|
||||
|
||||
pub use cpu_backend::{CpuStorage, CpuStorageRef};
|
||||
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3, UgIOp1};
|
||||
pub use device::{Device, DeviceLocation, NdArray};
|
||||
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
|
||||
pub use error::{Context, Error, Result};
|
||||
pub use indexer::{IndexOp, TensorIndexer};
|
||||
pub use layout::Layout;
|
||||
pub use op::{CustomOp1, CustomOp2, CustomOp3};
|
||||
pub use shape::{Shape, D};
|
||||
pub use storage::Storage;
|
||||
pub use streaming::{StreamTensor, StreamingBinOp, StreamingModule};
|
||||
pub use strided_index::{StridedBlocks, StridedIndex};
|
||||
pub use tensor::{Tensor, TensorId};
|
||||
pub use variable::Var;
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
pub use cuda_backend::{CudaDevice, CudaStorage};
|
||||
pub use cuda_backend as cuda;
|
||||
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
|
||||
pub use dummy_cuda_backend as cuda;
|
||||
|
||||
pub use cuda::{CudaDevice, CudaStorage};
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
|
||||
@ -118,7 +140,7 @@ impl ToUsize2 for (usize, usize) {
|
||||
}
|
||||
}
|
||||
|
||||
// A simple trait defining a module with forward method using a single argument.
|
||||
/// Defining a module with forward method using a single argument.
|
||||
pub trait Module {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
|
||||
}
|
||||
@ -129,8 +151,17 @@ impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
|
||||
}
|
||||
}
|
||||
|
||||
// A trait defining a module with forward method using a single tensor argument and a flag to
|
||||
// separate the training and evaluation behaviors.
|
||||
impl<M: Module> Module for Option<&M> {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
match self {
|
||||
None => Ok(xs.clone()),
|
||||
Some(m) => m.forward(xs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A single forward method using a single single tensor argument and a flag to
|
||||
/// separate the training and evaluation behaviors.
|
||||
pub trait ModuleT {
|
||||
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
340
candle-core/src/metal_backend/device.rs
Normal file
340
candle-core/src/metal_backend/device.rs
Normal file
@ -0,0 +1,340 @@
|
||||
use crate::{DType, Result};
|
||||
use candle_metal_kernels::Kernels;
|
||||
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
|
||||
use std::collections::HashMap;
|
||||
use std::path::Path;
|
||||
use std::sync::{Arc, Mutex, RwLock};
|
||||
|
||||
use super::MetalError;
|
||||
|
||||
/// Unique identifier for cuda devices.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub struct DeviceId(usize);
|
||||
|
||||
impl DeviceId {
|
||||
pub(crate) fn new() -> Self {
|
||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
||||
use std::sync::atomic;
|
||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
||||
}
|
||||
}
|
||||
|
||||
type BufferMap = HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>;
|
||||
pub(crate) struct Commands {
|
||||
/// Single command queue for the entire device.
|
||||
command_queue: CommandQueue,
|
||||
/// One command buffer at a time.
|
||||
/// The scheduler works by allowing multiple
|
||||
/// [ComputeCommandEncoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc)
|
||||
/// on a single command buffer. Using a single command buffer would be fastest on the GPU but
|
||||
/// prevents overlapping of CPU and GPU commands (because command buffer needs to be committed
|
||||
/// to start to work).
|
||||
/// Despite what the documentation says, command buffers are NOT ordered. They are ordered
|
||||
/// for their START time, but there's no guarantee that command buffer1 will finish before
|
||||
/// command buffer2 starts (or there are metal bugs there)
|
||||
command_buffer: CommandBuffer,
|
||||
/// Keeps track of the current amount of compute command encoders on the current
|
||||
/// command buffer
|
||||
/// Arc, RwLock because of the interior mutability.
|
||||
command_buffer_index: usize,
|
||||
/// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc)
|
||||
compute_per_buffer: usize,
|
||||
}
|
||||
|
||||
impl Commands {
|
||||
pub(crate) fn new(command_queue: CommandQueue) -> Result<Self> {
|
||||
let command_buffer = command_queue.new_command_buffer().to_owned();
|
||||
command_buffer.enqueue();
|
||||
let compute_per_buffer = match std::env::var("CANDLE_METAL_COMPUTE_PER_BUFFER") {
|
||||
Ok(val) => val.parse()?,
|
||||
_ => 50,
|
||||
};
|
||||
Ok(Self {
|
||||
command_queue,
|
||||
command_buffer,
|
||||
command_buffer_index: 0,
|
||||
compute_per_buffer,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn command_buffer(&mut self) -> Result<(bool, CommandBuffer)> {
|
||||
let mut command_buffer = self.command_buffer.to_owned();
|
||||
let mut flushed = false;
|
||||
if self.command_buffer_index > self.compute_per_buffer {
|
||||
self.command_buffer.commit();
|
||||
command_buffer = self.command_queue.new_command_buffer().to_owned();
|
||||
self.command_buffer = command_buffer.clone();
|
||||
self.command_buffer_index = 0;
|
||||
flushed = true;
|
||||
}
|
||||
self.command_buffer_index += 1;
|
||||
Ok((flushed, command_buffer))
|
||||
}
|
||||
|
||||
pub fn wait_until_completed(&mut self) -> Result<()> {
|
||||
match self.command_buffer.status() {
|
||||
metal::MTLCommandBufferStatus::Committed
|
||||
| metal::MTLCommandBufferStatus::Scheduled
|
||||
| metal::MTLCommandBufferStatus::Completed => {
|
||||
panic!("Already committed");
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
self.command_buffer.commit();
|
||||
self.command_buffer.wait_until_completed();
|
||||
self.command_buffer = self.command_queue.new_command_buffer().to_owned();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MetalDevice {
|
||||
/// Unique identifier, the registryID is not sufficient as it identifies the GPU rather than
|
||||
/// the device itself.
|
||||
pub(crate) id: DeviceId,
|
||||
|
||||
/// Raw metal device: <https://developer.apple.com/documentation/metal/mtldevice?language=objc>
|
||||
pub(crate) device: metal::Device,
|
||||
|
||||
pub(crate) commands: Arc<RwLock<Commands>>,
|
||||
|
||||
/// Simple allocator struct.
|
||||
/// The buffers are stored in size buckets since ML tends to use similar shapes over and over.
|
||||
/// We store the buffers in [`Arc`] because it's much faster than Obj-c internal ref counting
|
||||
/// (could be linked to FFI communication overhead).
|
||||
///
|
||||
/// Whenever a buffer has a strong_count==1, we can reuse it, it means it was dropped in the
|
||||
/// graph calculation, and only we the allocator kept a reference to it, therefore it's free
|
||||
/// to be reused. However, in order for this to work, we need to guarantee the order of
|
||||
/// operation, so that this buffer is not being used by another kernel at the same time.
|
||||
/// Arc is the CPU reference count, it doesn't mean anything on the GPU side of things.
|
||||
///
|
||||
/// Whenever we actually allocate a new buffer, we make a full sweep to clean up unused buffers
|
||||
/// (strong_count = 1).
|
||||
pub(crate) buffers: Arc<RwLock<BufferMap>>,
|
||||
|
||||
/// Simple keeper struct to keep track of the already compiled kernels so we can reuse them.
|
||||
/// Heavily used by [`candle_metal_kernels`]
|
||||
pub(crate) kernels: Arc<Kernels>,
|
||||
/// Seed for random number generation.
|
||||
pub(crate) seed: Arc<Mutex<Buffer>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for MetalDevice {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "MetalDevice({:?})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for MetalDevice {
|
||||
type Target = metal::DeviceRef;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.device
|
||||
}
|
||||
}
|
||||
|
||||
impl MetalDevice {
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
pub fn compile(
|
||||
&self,
|
||||
func_name: &'static str,
|
||||
kernel: ug::lang::ssa::Kernel,
|
||||
) -> Result<metal::ComputePipelineState> {
|
||||
let mut buf = vec![];
|
||||
ug_metal::code_gen::gen(&mut buf, func_name, &kernel)?;
|
||||
let metal_code = String::from_utf8(buf)?;
|
||||
let lib = self
|
||||
.device
|
||||
.new_library_with_source(&metal_code, &metal::CompileOptions::new())
|
||||
.map_err(MetalError::from)?;
|
||||
let func = lib
|
||||
.get_function(func_name, None)
|
||||
.map_err(MetalError::from)?;
|
||||
let pl = self
|
||||
.device
|
||||
.new_compute_pipeline_state_with_function(&func)
|
||||
.map_err(MetalError::from)?;
|
||||
Ok(pl)
|
||||
}
|
||||
|
||||
pub fn id(&self) -> DeviceId {
|
||||
self.id
|
||||
}
|
||||
|
||||
pub fn metal_device(&self) -> &metal::Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
fn drop_unused_buffers(&self) -> Result<()> {
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
for subbuffers in buffers.values_mut() {
|
||||
let newbuffers = subbuffers
|
||||
.iter()
|
||||
.filter(|s| Arc::strong_count(*s) > 1)
|
||||
.map(Arc::clone)
|
||||
.collect();
|
||||
*subbuffers = newbuffers;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn command_buffer(&self) -> Result<CommandBuffer> {
|
||||
let mut commands = self.commands.write().map_err(MetalError::from)?;
|
||||
let (flushed, command_buffer) = commands.command_buffer()?;
|
||||
if flushed {
|
||||
self.drop_unused_buffers()?
|
||||
}
|
||||
Ok(command_buffer)
|
||||
}
|
||||
|
||||
pub fn wait_until_completed(&self) -> Result<()> {
|
||||
let mut commands = self.commands.write().map_err(MetalError::from)?;
|
||||
commands.wait_until_completed()
|
||||
}
|
||||
|
||||
pub fn kernels(&self) -> &Kernels {
|
||||
&self.kernels
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &metal::Device {
|
||||
&self.device
|
||||
}
|
||||
|
||||
/// Creates a new buffer (not necessarily zeroed).
|
||||
/// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
/// This means the buffer data cannot be read on the CPU directly.
|
||||
///
|
||||
/// [`name`] is only used to keep track of the resource origin in case of bugs
|
||||
pub fn new_buffer(
|
||||
&self,
|
||||
element_count: usize,
|
||||
dtype: DType,
|
||||
name: &str,
|
||||
) -> Result<Arc<Buffer>> {
|
||||
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
|
||||
self.allocate_buffer(size, MTLResourceOptions::StorageModePrivate, name)
|
||||
}
|
||||
|
||||
/// Creates a new buffer (not necessarily zeroed).
|
||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
/// This means the buffer can be read on the CPU but will require manual
|
||||
/// synchronization when the CPU memory is modified
|
||||
/// Used as a bridge to gather data back from the GPU
|
||||
pub fn new_buffer_managed(&self, size: NSUInteger) -> Result<Arc<Buffer>> {
|
||||
self.allocate_buffer(size, MTLResourceOptions::StorageModeManaged, "managed")
|
||||
}
|
||||
|
||||
/// Creates a new buffer from data.
|
||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
||||
///
|
||||
/// Does not require synchronization, as [newBufferWithBytes](https://developer.apple.com/documentation/metal/mtldevice/1433429-newbufferwithbytes)
|
||||
/// allocates the buffer and copies over the existing data before returning the MTLBuffer.
|
||||
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Result<Arc<Buffer>> {
|
||||
let size = core::mem::size_of_val(data) as NSUInteger;
|
||||
let new_buffer = self.device.new_buffer_with_data(
|
||||
data.as_ptr().cast(),
|
||||
size,
|
||||
MTLResourceOptions::StorageModeManaged,
|
||||
);
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
|
||||
let subbuffers = buffers
|
||||
.entry((size, MTLResourceOptions::StorageModeManaged))
|
||||
.or_insert(vec![]);
|
||||
|
||||
let new_buffer = Arc::new(new_buffer);
|
||||
subbuffers.push(new_buffer.clone());
|
||||
Ok(new_buffer)
|
||||
}
|
||||
|
||||
pub fn allocate_zeros(&self, size_in_bytes: usize) -> Result<Arc<Buffer>> {
|
||||
let buffer = self.allocate_buffer(
|
||||
size_in_bytes as NSUInteger,
|
||||
MTLResourceOptions::StorageModePrivate,
|
||||
"allocate_zeros",
|
||||
)?;
|
||||
let command_buffer = self.command_buffer()?;
|
||||
command_buffer.set_label("zeros");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
blit.fill_buffer(
|
||||
&buffer,
|
||||
metal::NSRange {
|
||||
location: 0,
|
||||
length: buffer.length(),
|
||||
},
|
||||
0,
|
||||
);
|
||||
blit.end_encoding();
|
||||
Ok(buffer)
|
||||
}
|
||||
|
||||
/// The critical allocator algorithm
|
||||
fn allocate_buffer(
|
||||
&self,
|
||||
size: NSUInteger,
|
||||
option: MTLResourceOptions,
|
||||
_name: &str,
|
||||
) -> Result<Arc<Buffer>> {
|
||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
||||
if let Some(b) = find_available_buffer(size, option, &buffers) {
|
||||
// Cloning also ensures we increment the strong count
|
||||
return Ok(b.clone());
|
||||
}
|
||||
|
||||
let size = buf_size(size);
|
||||
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
|
||||
|
||||
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
|
||||
let new_buffer = Arc::new(new_buffer);
|
||||
subbuffers.push(new_buffer.clone());
|
||||
|
||||
Ok(new_buffer)
|
||||
}
|
||||
|
||||
/// Create a metal GPU capture trace on [`path`].
|
||||
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
|
||||
let capture = metal::CaptureManager::shared();
|
||||
let descriptor = metal::CaptureDescriptor::new();
|
||||
descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
||||
descriptor.set_capture_device(self);
|
||||
// The [set_output_url] call requires an absolute path so we convert it if needed.
|
||||
if path.as_ref().is_absolute() {
|
||||
descriptor.set_output_url(path);
|
||||
} else {
|
||||
let path = std::env::current_dir()?.join(path);
|
||||
descriptor.set_output_url(path);
|
||||
}
|
||||
|
||||
capture
|
||||
.start_capture(&descriptor)
|
||||
.map_err(MetalError::from)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn buf_size(size: NSUInteger) -> NSUInteger {
|
||||
size.saturating_sub(1).next_power_of_two() as NSUInteger
|
||||
}
|
||||
|
||||
fn find_available_buffer(
|
||||
size: NSUInteger,
|
||||
option: MTLResourceOptions,
|
||||
buffers: &BufferMap,
|
||||
) -> Option<Arc<Buffer>> {
|
||||
let mut best_buffer: Option<&Arc<Buffer>> = None;
|
||||
let mut best_buffer_size: NSUInteger = NSUInteger::MAX;
|
||||
for ((buffer_size, buffer_option), subbuffers) in buffers.iter() {
|
||||
if buffer_size >= &size && buffer_size < &best_buffer_size && buffer_option == &option {
|
||||
for sub in subbuffers {
|
||||
if Arc::strong_count(sub) == 1 {
|
||||
best_buffer = Some(sub);
|
||||
best_buffer_size = *buffer_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
best_buffer.cloned()
|
||||
}
|
2134
candle-core/src/metal_backend/mod.rs
Normal file
2134
candle-core/src/metal_backend/mod.rs
Normal file
File diff suppressed because it is too large
Load Diff
@ -333,6 +333,16 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
||||
unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
||||
unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
@ -355,6 +365,28 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vs_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = -v
|
||||
}
|
||||
vd_exp_inplace(ys);
|
||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||
*y = v / (1.0 + *y)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! binary_op {
|
||||
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
|
||||
#[inline]
|
||||
|
@ -330,7 +330,7 @@ impl Tensor {
|
||||
path: P,
|
||||
) -> Result<()> {
|
||||
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
|
||||
let options =
|
||||
let options: zip::write::FileOptions<()> =
|
||||
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
|
||||
|
||||
for (name, tensor) in ts.iter() {
|
||||
|
@ -1,5 +1,7 @@
|
||||
//! Tensor Opertion Enums and Traits
|
||||
//!
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
||||
use crate::Tensor;
|
||||
use half::{bf16, f16};
|
||||
use num_traits::float::Float;
|
||||
|
||||
@ -61,10 +63,12 @@ pub enum UnaryOp {
|
||||
GeluErf,
|
||||
Erf,
|
||||
Relu,
|
||||
Silu,
|
||||
Tanh,
|
||||
Floor,
|
||||
Ceil,
|
||||
Round,
|
||||
Sign,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
@ -131,7 +135,10 @@ pub enum Op {
|
||||
stride: (usize, usize),
|
||||
},
|
||||
|
||||
UpsampleNearest1D(Tensor),
|
||||
UpsampleNearest1D {
|
||||
arg: Tensor,
|
||||
target_size: usize,
|
||||
},
|
||||
UpsampleNearest2D {
|
||||
arg: Tensor,
|
||||
target_h: usize,
|
||||
@ -157,168 +164,23 @@ pub enum Op {
|
||||
Permute(Tensor, Vec<usize>),
|
||||
Elu(Tensor, f64),
|
||||
Powf(Tensor, f64),
|
||||
CustomOp1(Tensor, std::sync::Arc<Box<dyn CustomOp1 + Send + Sync>>),
|
||||
CustomOp1(
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp1 + Send + Sync>>,
|
||||
),
|
||||
CustomOp2(
|
||||
Tensor,
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp2 + Send + Sync>>,
|
||||
),
|
||||
CustomOp3(
|
||||
Tensor,
|
||||
Tensor,
|
||||
Tensor,
|
||||
std::sync::Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
std::sync::Arc<Box<dyn crate::CustomOp3 + Send + Sync>>,
|
||||
),
|
||||
}
|
||||
|
||||
/// Unary ops that can be defined in user-land.
|
||||
pub trait CustomOp1 {
|
||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||
/// The function should return the gradient of the argument.
|
||||
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp2 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomOp3 {
|
||||
fn name(&self) -> &'static str;
|
||||
|
||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
s1: &CpuStorage,
|
||||
l1: &Layout,
|
||||
s2: &CpuStorage,
|
||||
l2: &Layout,
|
||||
s3: &CpuStorage,
|
||||
l3: &Layout,
|
||||
) -> Result<(CpuStorage, Shape)>;
|
||||
|
||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
_: &CudaStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(CudaStorage, Shape)> {
|
||||
Err(crate::Error::Cuda(
|
||||
format!("no cuda implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
||||
/// offsets etc so the associated layout should be used to access it.
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
_: &MetalStorage,
|
||||
_: &Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
Err(crate::Error::Metal(
|
||||
format!("no metal implementation for {}", self.name()).into(),
|
||||
))
|
||||
}
|
||||
|
||||
fn bwd(
|
||||
&self,
|
||||
_arg1: &Tensor,
|
||||
_arg2: &Tensor,
|
||||
_arg3: &Tensor,
|
||||
_res: &Tensor,
|
||||
_grad_res: &Tensor,
|
||||
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||
}
|
||||
}
|
||||
|
||||
pub trait UnaryOpT {
|
||||
const NAME: &'static str;
|
||||
const KERNEL: &'static str;
|
||||
@ -390,10 +252,12 @@ pub(crate) struct Gelu;
|
||||
pub(crate) struct GeluErf;
|
||||
pub(crate) struct Erf;
|
||||
pub(crate) struct Relu;
|
||||
pub(crate) struct Silu;
|
||||
pub(crate) struct Tanh;
|
||||
pub(crate) struct Floor;
|
||||
pub(crate) struct Ceil;
|
||||
pub(crate) struct Round;
|
||||
pub(crate) struct Sign;
|
||||
|
||||
macro_rules! bin_op {
|
||||
($op:ident, $name: literal, $e: expr, $f32_vec: ident, $f64_vec: ident) => {
|
||||
@ -597,6 +461,13 @@ unary_op!(Recip, "recip", v, v.recip());
|
||||
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
|
||||
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
|
||||
|
||||
// Hardcode the value for sqrt(2/pi)
|
||||
// https://github.com/huggingface/candle/issues/1982
|
||||
#[allow(clippy::excessive_precision)]
|
||||
const SQRT_TWO_OVER_PI_F32: f32 = 0.79788456080286535587989211986876373;
|
||||
#[allow(clippy::excessive_precision)]
|
||||
const SQRT_TWO_OVER_PI_F64: f64 = 0.79788456080286535587989211986876373;
|
||||
|
||||
/// Tanh based approximation of the `gelu` operation
|
||||
/// GeluErf is the more precise one.
|
||||
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
|
||||
@ -609,7 +480,7 @@ impl UnaryOpT for Gelu {
|
||||
* v
|
||||
* (bf16::ONE
|
||||
+ bf16::tanh(
|
||||
(bf16::from_f32_const(2.0) / bf16::PI).sqrt()
|
||||
bf16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
||||
* v
|
||||
* (bf16::ONE + bf16::from_f32_const(0.044715) * v * v),
|
||||
))
|
||||
@ -620,22 +491,18 @@ impl UnaryOpT for Gelu {
|
||||
* v
|
||||
* (f16::ONE
|
||||
+ f16::tanh(
|
||||
(f16::from_f32_const(2.0) / f16::PI).sqrt()
|
||||
f16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
||||
* v
|
||||
* (f16::ONE + f16::from_f32_const(0.044715) * v * v),
|
||||
))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
0.5 * v
|
||||
* (1.0
|
||||
+ f32::tanh((2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||
0.5 * v * (1.0 + f32::tanh(SQRT_TWO_OVER_PI_F32 * v * (1.0 + 0.044715 * v * v)))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
0.5 * v
|
||||
* (1.0
|
||||
+ f64::tanh((2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||
0.5 * v * (1.0 + f64::tanh(SQRT_TWO_OVER_PI_F64 * v * (1.0 + 0.044715 * v * v)))
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(_: u8) -> u8 {
|
||||
@ -724,6 +591,77 @@ impl UnaryOpT for Erf {
|
||||
}
|
||||
}
|
||||
|
||||
/// Silu operation
|
||||
impl UnaryOpT for Silu {
|
||||
const NAME: &'static str = "silu";
|
||||
const V: Self = Silu;
|
||||
#[inline(always)]
|
||||
fn bf16(v: bf16) -> bf16 {
|
||||
v / (bf16::ONE + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f16(v: f16) -> f16 {
|
||||
v / (f16::ONE + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
v / (1.0 + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
v / (1.0 + (-v).exp())
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(_: u8) -> u8 {
|
||||
0
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u32(_: u32) -> u32 {
|
||||
0
|
||||
}
|
||||
#[inline(always)]
|
||||
fn i64(_: i64) -> i64 {
|
||||
0
|
||||
}
|
||||
const KERNEL: &'static str = "usilu";
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
const F32_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
#[inline(always)]
|
||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
||||
crate::mkl::vs_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
const F64_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
#[inline(always)]
|
||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
||||
crate::mkl::vd_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
const F32_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
#[inline(always)]
|
||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
||||
crate::accelerate::vs_silu(xs, ys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
const F64_VEC: bool = true;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
#[inline(always)]
|
||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
||||
crate::accelerate::vd_silu(xs, ys)
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Abs {
|
||||
const NAME: &'static str = "abs";
|
||||
const KERNEL: &'static str = "uabs";
|
||||
@ -991,3 +929,37 @@ impl std::ops::Deref for BackpropOp {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl UnaryOpT for Sign {
|
||||
const NAME: &'static str = "sign";
|
||||
const KERNEL: &'static str = "usign";
|
||||
const V: Self = Sign;
|
||||
#[inline(always)]
|
||||
fn bf16(v: bf16) -> bf16 {
|
||||
bf16::from((v > bf16::ZERO) as i8) - bf16::from((v < bf16::ZERO) as i8)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f16(v: f16) -> f16 {
|
||||
f16::from((v > f16::ZERO) as i8) - f16::from((v < f16::ZERO) as i8)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f32(v: f32) -> f32 {
|
||||
f32::from(v > 0.) - f32::from(v < 0.)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn f64(v: f64) -> f64 {
|
||||
f64::from(v > 0.) - f64::from(v < 0.)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u8(v: u8) -> u8 {
|
||||
u8::min(1, v)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn u32(v: u32) -> u32 {
|
||||
u32::min(1, v)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn i64(v: i64) -> i64 {
|
||||
(v > 0) as i64 - (v < 0) as i64
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
// Just enough pickle support to be able to read PyTorch checkpoints.
|
||||
//! Just enough pickle support to be able to read PyTorch checkpoints.
|
||||
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
|
||||
// composable/tensor agnostic at some point.
|
||||
use crate::{DType, Error as E, Layout, Result, Tensor};
|
||||
use crate::{Context, DType, Error as E, Layout, Result, Tensor};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use std::collections::HashMap;
|
||||
use std::io::BufRead;
|
||||
@ -42,9 +42,10 @@ pub enum OpCode {
|
||||
Stop = b'.',
|
||||
NewObj = 0x81,
|
||||
EmptyList = b']',
|
||||
BinFloat = b'g',
|
||||
BinFloat = b'G',
|
||||
Append = b'a',
|
||||
Appends = b'e',
|
||||
Long1 = 0x8a,
|
||||
}
|
||||
|
||||
// Avoid using FromPrimitive so as not to drag another dependency.
|
||||
@ -84,6 +85,7 @@ impl TryFrom<u8> for OpCode {
|
||||
b'G' => Ok(Self::BinFloat),
|
||||
b'a' => Ok(Self::Append),
|
||||
b'e' => Ok(Self::Appends),
|
||||
0x8a => Ok(Self::Long1),
|
||||
value => Err(value),
|
||||
}
|
||||
}
|
||||
@ -106,6 +108,7 @@ pub enum Object {
|
||||
class_name: String,
|
||||
},
|
||||
Int(i32),
|
||||
Long(i64),
|
||||
Float(f64),
|
||||
Unicode(String),
|
||||
Bool(bool),
|
||||
@ -170,6 +173,14 @@ impl Object {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn int_or_long(self) -> OResult<i64> {
|
||||
match self {
|
||||
Self::Int(t) => Ok(t as i64),
|
||||
Self::Long(t) => Ok(t),
|
||||
_ => Err(self),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tuple(self) -> OResult<Vec<Self>> {
|
||||
match self {
|
||||
Self::Tuple(t) => Ok(t),
|
||||
@ -217,6 +228,13 @@ impl Object {
|
||||
let args = args.remove(1);
|
||||
(callable, args)
|
||||
}
|
||||
Object::Class {
|
||||
module_name,
|
||||
class_name,
|
||||
} if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
|
||||
let mut args = args.tuple()?;
|
||||
args.remove(0).reduce()?
|
||||
}
|
||||
_ => (callable, args),
|
||||
};
|
||||
match callable {
|
||||
@ -227,13 +245,11 @@ impl Object {
|
||||
_ => return Ok(None),
|
||||
};
|
||||
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
|
||||
let mut path = dir_name.to_path_buf();
|
||||
path.push(file_path);
|
||||
Ok(Some(TensorInfo {
|
||||
name,
|
||||
dtype,
|
||||
layout,
|
||||
path: path.to_string_lossy().into_owned(),
|
||||
path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
|
||||
storage_size,
|
||||
}))
|
||||
}
|
||||
@ -345,8 +361,10 @@ impl Stack {
|
||||
module_name,
|
||||
class_name,
|
||||
} => {
|
||||
if module_name == "collections" && class_name == "OrderedDict" {
|
||||
// TODO: have a separate ordered dict.
|
||||
if module_name == "collections"
|
||||
&& (class_name == "OrderedDict" || class_name == "defaultdict")
|
||||
{
|
||||
// TODO: have a separate ordered dict and a separate default dict.
|
||||
Some(Object::Dict(vec![]))
|
||||
} else {
|
||||
None
|
||||
@ -455,7 +473,10 @@ impl Stack {
|
||||
self.push(Object::Int(arg))
|
||||
}
|
||||
OpCode::BinFloat => {
|
||||
let arg = r.read_f64::<LittleEndian>()?;
|
||||
// Somehow floats are encoded using BigEndian whereas int types use LittleEndian.
|
||||
// https://github.com/python/cpython/blob/0c80da4c14d904a367968955544dd6ae58c8101c/Lib/pickletools.py#L855
|
||||
// https://github.com/pytorch/pytorch/blob/372d078f361e726bb4ac0884ac334b04c58179ef/torch/_weights_only_unpickler.py#L243
|
||||
let arg = r.read_f64::<byteorder::BigEndian>()?;
|
||||
self.push(Object::Float(arg))
|
||||
}
|
||||
OpCode::BinUnicode => {
|
||||
@ -527,7 +548,7 @@ impl Stack {
|
||||
crate::bail!("setitems: not an even number of objects")
|
||||
}
|
||||
while let Some(value) = objs.pop() {
|
||||
let key = objs.pop().unwrap();
|
||||
let key = objs.pop().context("empty objs")?;
|
||||
d.push((key, value))
|
||||
}
|
||||
} else {
|
||||
@ -547,7 +568,7 @@ impl Stack {
|
||||
crate::bail!("setitems: not an even number of objects")
|
||||
}
|
||||
while let Some(value) = objs.pop() {
|
||||
let key = objs.pop().unwrap();
|
||||
let key = objs.pop().context("empty objs")?;
|
||||
pydict.push((key, value))
|
||||
}
|
||||
self.push(Object::Dict(pydict))
|
||||
@ -580,6 +601,15 @@ impl Stack {
|
||||
let obj = self.new_obj(class, args)?;
|
||||
self.push(obj)
|
||||
}
|
||||
OpCode::Long1 => {
|
||||
let n_bytes = r.read_u8()?;
|
||||
let mut v = 0;
|
||||
// Decode the next n bytes in little endian
|
||||
for i in 0..n_bytes {
|
||||
v |= (r.read_u8()? as i64) << (i * 8);
|
||||
}
|
||||
self.push(Object::Long(v))
|
||||
}
|
||||
}
|
||||
Ok(false)
|
||||
}
|
||||
@ -597,10 +627,10 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
|
||||
let mut args = args.tuple()?;
|
||||
let stride = Vec::<usize>::try_from(args.remove(3))?;
|
||||
let size = Vec::<usize>::try_from(args.remove(2))?;
|
||||
let offset = args.remove(1).int()? as usize;
|
||||
let offset = args.remove(1).int_or_long()? as usize;
|
||||
let storage = args.remove(0).persistent_load()?;
|
||||
let mut storage = storage.tuple()?;
|
||||
let storage_size = storage.remove(4).int()? as usize;
|
||||
let storage_size = storage.remove(4).int_or_long()? as usize;
|
||||
let path = storage.remove(2).unicode()?;
|
||||
let (_module_name, class_name) = storage.remove(1).class()?;
|
||||
let dtype = match class_name.as_str() {
|
||||
@ -614,7 +644,11 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
|
||||
crate::bail!("unsupported storage type {other}")
|
||||
}
|
||||
};
|
||||
let layout = Layout::new(crate::Shape::from(size), stride, offset);
|
||||
let layout = Layout::new(
|
||||
crate::Shape::from(size),
|
||||
stride,
|
||||
offset * dtype.size_in_bytes(),
|
||||
);
|
||||
Ok((layout, dtype, path, storage_size))
|
||||
}
|
||||
|
||||
@ -627,9 +661,16 @@ pub struct TensorInfo {
|
||||
pub storage_size: usize,
|
||||
}
|
||||
|
||||
/// Read the tensor info from a .pth file.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `file` - The path to the .pth file.
|
||||
/// * `verbose` - Whether to print debug information.
|
||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
|
||||
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
file: P,
|
||||
verbose: bool,
|
||||
key: Option<&str>,
|
||||
) -> Result<Vec<TensorInfo>> {
|
||||
let file = std::fs::File::open(file)?;
|
||||
let zip_reader = std::io::BufReader::new(file);
|
||||
@ -644,15 +685,16 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
if !file_name.ends_with("data.pkl") {
|
||||
continue;
|
||||
}
|
||||
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").unwrap());
|
||||
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").context("no .pkl")?);
|
||||
let reader = zip.by_name(file_name)?;
|
||||
let mut reader = std::io::BufReader::new(reader);
|
||||
let mut stack = Stack::empty();
|
||||
stack.read_loop(&mut reader)?;
|
||||
let obj = stack.finalize()?;
|
||||
if VERBOSE || verbose {
|
||||
println!("{obj:?}");
|
||||
println!("{obj:#?}");
|
||||
}
|
||||
|
||||
let obj = match obj {
|
||||
Object::Build { callable, args } => match *callable {
|
||||
Object::Reduce { callable, args: _ } => match *callable {
|
||||
@ -666,6 +708,24 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||
},
|
||||
obj => obj,
|
||||
};
|
||||
|
||||
// If key is provided, then we need to extract the state_dict from the object.
|
||||
let obj = if let Some(key) = key {
|
||||
if let Object::Dict(key_values) = obj {
|
||||
key_values
|
||||
.into_iter()
|
||||
.find(|(k, _)| *k == Object::Unicode(key.to_owned()))
|
||||
.map(|(_, v)| v)
|
||||
.ok_or_else(|| E::Msg(format!("key {key} not found")))?
|
||||
} else {
|
||||
obj
|
||||
}
|
||||
} else {
|
||||
obj
|
||||
};
|
||||
|
||||
// If the object is a dict, then we can extract the tensor info from it.
|
||||
// NOTE: We are assuming that the `obj` is state_dict by this stage.
|
||||
if let Object::Dict(key_values) = obj {
|
||||
for (name, value) in key_values.into_iter() {
|
||||
match value.into_tensor_info(name, &dir_name) {
|
||||
@ -688,8 +748,8 @@ pub struct PthTensors {
|
||||
}
|
||||
|
||||
impl PthTensors {
|
||||
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
|
||||
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
|
||||
pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
|
||||
let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
|
||||
let tensor_infos = tensor_infos
|
||||
.into_iter()
|
||||
.map(|ti| (ti.name.to_string(), ti))
|
||||
@ -703,6 +763,7 @@ impl PthTensors {
|
||||
}
|
||||
|
||||
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
|
||||
use std::io::Read;
|
||||
let tensor_info = match self.tensor_infos.get(name) {
|
||||
None => return Ok(None),
|
||||
Some(tensor_info) => tensor_info,
|
||||
@ -711,27 +772,56 @@ impl PthTensors {
|
||||
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
|
||||
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
||||
let mut reader = zip.by_name(&tensor_info.path)?;
|
||||
let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
|
||||
let rank = tensor_info.layout.shape().rank();
|
||||
|
||||
// Reading the data is a bit tricky as it can be strided, use an offset, etc.
|
||||
// For now only support the basic case.
|
||||
if tensor_info.layout.start_offset() != 0 || !tensor_info.layout.is_contiguous() {
|
||||
// Reading the data is a bit tricky as it can be strided, for now only support the basic
|
||||
// case and when the tensor is fortran contiguous.
|
||||
if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
|
||||
crate::bail!(
|
||||
"cannot retrieve non-contiguous tensors {:?}",
|
||||
tensor_info.layout
|
||||
)
|
||||
}
|
||||
let start_offset = tensor_info.layout.start_offset();
|
||||
if start_offset > 0 {
|
||||
std::io::copy(
|
||||
&mut reader.by_ref().take(start_offset as u64),
|
||||
&mut std::io::sink(),
|
||||
)?;
|
||||
}
|
||||
let tensor = Tensor::from_reader(
|
||||
tensor_info.layout.shape().clone(),
|
||||
tensor_info.dtype,
|
||||
&mut reader,
|
||||
)?;
|
||||
Ok(Some(tensor))
|
||||
|
||||
if rank > 1 && is_fortran_contiguous {
|
||||
// Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
|
||||
let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
|
||||
let tensor = tensor.reshape(shape_reversed)?;
|
||||
|
||||
// Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
|
||||
let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
|
||||
let tensor = tensor.permute(dim_indeces_reversed)?;
|
||||
Ok(Some(tensor))
|
||||
} else {
|
||||
Ok(Some(tensor))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Read all the tensors from a PyTorch pth file.
|
||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
||||
let pth = PthTensors::new(path)?;
|
||||
/// Read all the tensors from a PyTorch pth file with a given key.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `path` - Path to the pth file.
|
||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
|
||||
/// contains multiple objects and the state_dict is the one we are interested in.
|
||||
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
|
||||
path: P,
|
||||
key: Option<&str>,
|
||||
) -> Result<Vec<(String, Tensor)>> {
|
||||
let pth = PthTensors::new(path, key)?;
|
||||
let tensor_names = pth.tensor_infos.keys();
|
||||
let mut tensors = Vec::with_capacity(tensor_names.len());
|
||||
for name in tensor_names {
|
||||
@ -741,3 +831,11 @@ pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tenso
|
||||
}
|
||||
Ok(tensors)
|
||||
}
|
||||
|
||||
/// Read all the tensors from a PyTorch pth file.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `path` - Path to the pth file.
|
||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
||||
read_all_with_key(path, None)
|
||||
}
|
||||
|
737
candle-core/src/quantized/cuda.rs
Normal file
737
candle-core/src/quantized/cuda.rs
Normal file
@ -0,0 +1,737 @@
|
||||
use super::{GgmlDType, QStorage};
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
|
||||
use crate::{builder_arg as barg, CudaDevice, CudaStorage, Result};
|
||||
use half::f16;
|
||||
|
||||
use cudarc::driver::{CudaSlice, CudaView, PushKernelArg};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct PaddedCudaSlice {
|
||||
inner: CudaSlice<u8>,
|
||||
len: usize,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QCudaStorage {
|
||||
data: PaddedCudaSlice,
|
||||
dtype: GgmlDType,
|
||||
device: CudaDevice,
|
||||
}
|
||||
|
||||
static FORCE_DMMV: std::sync::atomic::AtomicBool = std::sync::atomic::AtomicBool::new(false);
|
||||
|
||||
pub fn set_force_dmmv(f: bool) {
|
||||
FORCE_DMMV.store(f, std::sync::atomic::Ordering::Relaxed)
|
||||
}
|
||||
|
||||
pub const WARP_SIZE: usize = 32;
|
||||
pub const MMQ_X_Q4_0_AMPERE: usize = 4;
|
||||
pub const MMQ_Y_Q4_0_AMPERE: usize = 32;
|
||||
pub const NWARPS_Q4_0_AMPERE: usize = 4;
|
||||
pub const GGML_CUDA_MMV_X: usize = 32;
|
||||
pub const GGML_CUDA_MMV_Y: usize = 1;
|
||||
pub const CUDA_QUANTIZE_BLOCK_SIZE: usize = 256;
|
||||
pub const CUDA_DEQUANTIZE_BLOCK_SIZE: usize = 256;
|
||||
pub const MATRIX_ROW_PADDING: usize = 512;
|
||||
|
||||
fn ceil_div(p: usize, q: usize) -> usize {
|
||||
p.div_ceil(q)
|
||||
}
|
||||
|
||||
fn pad(p: usize, q: usize) -> usize {
|
||||
ceil_div(p, q) * q
|
||||
}
|
||||
|
||||
fn quantize_q8_1(
|
||||
src: &CudaView<f32>,
|
||||
dst: &mut CudaSlice<u8>,
|
||||
elem_count: usize,
|
||||
ky: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<()> {
|
||||
let kx = elem_count;
|
||||
let kx_padded = pad(kx, MATRIX_ROW_PADDING);
|
||||
let num_blocks = ceil_div(kx_padded, CUDA_QUANTIZE_BLOCK_SIZE);
|
||||
let func = dev.get_or_load_func("quantize_q8_1", &candle_kernels::QUANTIZED)?;
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, ky as u32, 1),
|
||||
block_dim: (CUDA_QUANTIZE_BLOCK_SIZE as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
let mut builder = func.builder();
|
||||
builder.arg(src);
|
||||
builder.arg(dst);
|
||||
barg!(builder, kx as i32, kx_padded as i32);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn dequantize_f32(
|
||||
data: &PaddedCudaSlice,
|
||||
dtype: GgmlDType,
|
||||
elem_count: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
let nb = elem_count.div_ceil(256);
|
||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f32", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f32", false, 32, nb),
|
||||
GgmlDType::Q5_0 => (
|
||||
"dequantize_block_q5_0_f32",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q5_1 => (
|
||||
"dequantize_block_q5_1_f32",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f32", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f32", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f32", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f32", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f32", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f32", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f32", true, 32, nb),
|
||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(elem_count)? };
|
||||
// See e.g.
|
||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, 1, 1),
|
||||
block_dim: (block_dim as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
if is_k {
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(&dst);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
} else {
|
||||
let nb32 = match dtype {
|
||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
||||
_ => elem_count / 32,
|
||||
};
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(&dst);
|
||||
barg!(builder, nb32 as i32);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
}
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn dequantize_f16(
|
||||
data: &PaddedCudaSlice,
|
||||
dtype: GgmlDType,
|
||||
elem_count: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
let nb = elem_count.div_ceil(256);
|
||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f16", false, 32, nb),
|
||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f16", false, 32, nb),
|
||||
GgmlDType::Q5_0 => (
|
||||
"dequantize_block_q5_0_f16",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q5_1 => (
|
||||
"dequantize_block_q5_1_f16",
|
||||
false,
|
||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
||||
),
|
||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f16", false, 32, nb),
|
||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f16", true, 64, nb),
|
||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f16", true, 64, nb),
|
||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f16", true, 32, nb),
|
||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f16", true, 64, nb),
|
||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f16", true, 64, nb),
|
||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f16", true, 32, nb),
|
||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f16>(elem_count)? };
|
||||
// See e.g.
|
||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (num_blocks as u32, 1, 1),
|
||||
block_dim: (block_dim as u32, 1, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
if is_k {
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(&dst);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
} else {
|
||||
let nb32 = match dtype {
|
||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
||||
_ => elem_count / 32,
|
||||
};
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(&dst);
|
||||
barg!(builder, nb32 as i32);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
}
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn dequantize_mul_mat_vec(
|
||||
data: &PaddedCudaSlice,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
ncols: usize,
|
||||
nrows: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < ncols * nrows {
|
||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
||||
}
|
||||
if y.len() != ncols {
|
||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
||||
}
|
||||
let kernel_name = match dtype {
|
||||
GgmlDType::Q4_0 => "dequantize_mul_mat_vec_q4_0_cuda",
|
||||
GgmlDType::Q4_1 => "dequantize_mul_mat_vec_q4_1_cuda",
|
||||
GgmlDType::Q5_0 => "dequantize_mul_mat_vec_q5_0_cuda",
|
||||
GgmlDType::Q5_1 => "dequantize_mul_mat_vec_q5_1_cuda",
|
||||
GgmlDType::Q8_0 => "dequantize_mul_mat_vec_q8_0_cuda",
|
||||
GgmlDType::Q2K => "dequantize_mul_mat_vec_q2_k",
|
||||
GgmlDType::Q3K => "dequantize_mul_mat_vec_q3_k",
|
||||
GgmlDType::Q4K => "dequantize_mul_mat_vec_q4_k",
|
||||
GgmlDType::Q5K => "dequantize_mul_mat_vec_q5_k",
|
||||
GgmlDType::Q6K => "dequantize_mul_mat_vec_q6_k",
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows)? };
|
||||
let block_num_y = ceil_div(nrows, GGML_CUDA_MMV_Y);
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (block_num_y as u32, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, GGML_CUDA_MMV_Y as u32, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(y);
|
||||
builder.arg(&dst);
|
||||
barg!(builder, ncols as i32, nrows as i32);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
fn mul_mat_vec_via_q8_1(
|
||||
data: &PaddedCudaSlice,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
ncols: usize,
|
||||
nrows: usize,
|
||||
b_size: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < ncols * nrows {
|
||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
||||
}
|
||||
if y.len() != ncols * b_size {
|
||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
||||
}
|
||||
if b_size == 0 || b_size > 8 {
|
||||
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
|
||||
}
|
||||
// Start by quantizing y
|
||||
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
b_size * ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
||||
quantize_q8_1(y, &mut y_q8_1, ncols, b_size, dev)?;
|
||||
|
||||
let kernel_name = match dtype {
|
||||
GgmlDType::Q4_0 => "mul_mat_vec_q4_0_q8_1_cuda",
|
||||
GgmlDType::Q4_1 => "mul_mat_vec_q4_1_q8_1_cuda",
|
||||
GgmlDType::Q5_0 => "mul_mat_vec_q5_0_q8_1_cuda",
|
||||
GgmlDType::Q5_1 => "mul_mat_vec_q5_1_q8_1_cuda",
|
||||
GgmlDType::Q8_0 => "mul_mat_vec_q8_0_q8_1_cuda",
|
||||
GgmlDType::Q2K => "mul_mat_vec_q2_K_q8_1_cuda",
|
||||
GgmlDType::Q3K => "mul_mat_vec_q3_K_q8_1_cuda",
|
||||
GgmlDType::Q4K => "mul_mat_vec_q4_K_q8_1_cuda",
|
||||
GgmlDType::Q5K => "mul_mat_vec_q5_K_q8_1_cuda",
|
||||
GgmlDType::Q6K => "mul_mat_vec_q6_K_q8_1_cuda",
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let kernel_name = format!("{kernel_name}{b_size}");
|
||||
let func = dev.get_or_load_func(&kernel_name, &candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(nrows * b_size)? };
|
||||
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
|
||||
let (nblocks, nwarps) = match b_size {
|
||||
1 => (nrows as u32, 4),
|
||||
2..=4 => ((nrows as u32).div_ceil(2), 4),
|
||||
5..=8 => ((nrows as u32).div_ceil(2), 2),
|
||||
_ => crate::bail!("unexpected bsize {b_size}"),
|
||||
};
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (nblocks, 1, 1),
|
||||
block_dim: (WARP_SIZE as u32, nwarps, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let mut builder = func.builder();
|
||||
builder.arg(&data.inner);
|
||||
builder.arg(&y_q8_1);
|
||||
builder.arg(&dst);
|
||||
barg!(
|
||||
builder,
|
||||
/* ncols_x */ ncols as i32,
|
||||
/* nrows_x */ nrows as i32,
|
||||
/* nrows_y */ ncols_padded as i32,
|
||||
/* nrows_dst */ nrows as i32
|
||||
);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn mul_mat_via_q8_1(
|
||||
data: &PaddedCudaSlice,
|
||||
y: &CudaView<f32>,
|
||||
dtype: GgmlDType,
|
||||
x_rows: usize,
|
||||
x_cols: usize,
|
||||
y_rows: usize,
|
||||
y_cols: usize,
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaStorage> {
|
||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
||||
if data_elems < x_rows * x_cols {
|
||||
crate::bail!("unexpected lhs size {}, {x_rows} {x_cols}", data_elems)
|
||||
}
|
||||
if y.len() != y_rows * y_cols {
|
||||
crate::bail!("unexpected y size {}, {y_rows} {y_cols}", y.len())
|
||||
}
|
||||
if x_cols != y_rows {
|
||||
crate::bail!("unexpected x/y size {x_rows} {x_cols} {y_rows} {y_cols}")
|
||||
}
|
||||
let k = x_cols;
|
||||
// Start by quantizing y
|
||||
let k_padded = pad(k, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
k_padded * y_cols * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
||||
quantize_q8_1(y, &mut y_q8_1, k, y_cols, dev)?;
|
||||
|
||||
let (kernel_name, mmq_x, mmq_y) = match dtype {
|
||||
GgmlDType::Q4_0 => ("mul_mat_q4_0", 64, 128),
|
||||
GgmlDType::Q4_1 => ("mul_mat_q4_1", 64, 128),
|
||||
GgmlDType::Q5_0 => ("mul_mat_q5_0", 128, 64),
|
||||
GgmlDType::Q5_1 => ("mul_mat_q5_1", 128, 64),
|
||||
GgmlDType::Q8_0 => ("mul_mat_q8_0", 128, 64),
|
||||
GgmlDType::Q2K => ("mul_mat_q2_K", 64, 128),
|
||||
GgmlDType::Q3K => ("mul_mat_q3_K", 128, 128),
|
||||
GgmlDType::Q4K => ("mul_mat_q4_K", 64, 128),
|
||||
GgmlDType::Q5K => ("mul_mat_q5_K", 64, 128),
|
||||
GgmlDType::Q6K => ("mul_mat_q6_K", 64, 64),
|
||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
||||
};
|
||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
||||
let dst = unsafe { dev.alloc::<f32>(x_rows * y_cols)? };
|
||||
let cfg = cudarc::driver::LaunchConfig {
|
||||
grid_dim: (
|
||||
ceil_div(x_rows, mmq_y) as u32,
|
||||
ceil_div(y_cols, mmq_x) as u32,
|
||||
1,
|
||||
),
|
||||
block_dim: (WARP_SIZE as u32, 4, 1),
|
||||
shared_mem_bytes: 0,
|
||||
};
|
||||
|
||||
let mut builder = func.builder();
|
||||
builder.arg(/* vx */ &data.inner);
|
||||
builder.arg(/* vy */ &y_q8_1);
|
||||
builder.arg(/* dst */ &dst);
|
||||
barg!(
|
||||
builder,
|
||||
/* ncols_x */ x_cols as i32,
|
||||
/* nrows_x */ x_rows as i32,
|
||||
/* ncols_y */ y_cols as i32,
|
||||
/* nrows_y */ k_padded as i32,
|
||||
/* nrows_dst */ x_rows as i32
|
||||
);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> {
|
||||
let size_in_bytes = ceil_div(el_count, dtype.block_size()) * dtype.type_size();
|
||||
let padded_size_in_bytes =
|
||||
ceil_div(el_count + MATRIX_ROW_PADDING, dtype.block_size()) * dtype.type_size();
|
||||
let inner = device.alloc_zeros::<u8>(padded_size_in_bytes)?;
|
||||
Ok(QCudaStorage {
|
||||
data: PaddedCudaSlice {
|
||||
inner,
|
||||
len: size_in_bytes,
|
||||
},
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &CudaDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, elem_count: usize) -> Result<CudaStorage> {
|
||||
fn deq<T: GgmlType>(buffer: &[u8], n: usize, dst: &mut [f32]) -> Result<()> {
|
||||
let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const T, n) };
|
||||
let vec = slice.to_vec();
|
||||
T::to_float(&vec, dst)
|
||||
}
|
||||
|
||||
let fast_kernel = matches!(
|
||||
self.dtype,
|
||||
GgmlDType::Q4_0
|
||||
| GgmlDType::Q4_1
|
||||
| GgmlDType::Q5_0
|
||||
| GgmlDType::Q5_1
|
||||
| GgmlDType::Q8_0
|
||||
| GgmlDType::Q2K
|
||||
| GgmlDType::Q3K
|
||||
| GgmlDType::Q4K
|
||||
| GgmlDType::Q5K
|
||||
| GgmlDType::Q6K
|
||||
| GgmlDType::Q8K
|
||||
);
|
||||
if fast_kernel {
|
||||
return dequantize_f32(&self.data, self.dtype, elem_count, self.device());
|
||||
}
|
||||
// Run the dequantization on cpu.
|
||||
|
||||
let buffer = self
|
||||
.device
|
||||
.memcpy_dtov(&self.data.inner.slice(..self.data.len))?;
|
||||
let mut out = vec![0.0; elem_count];
|
||||
let block_len = elem_count / self.dtype.block_size();
|
||||
match self.dtype {
|
||||
GgmlDType::F32 => deq::<f32>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::F16 => deq::<half::f16>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4_0 => deq::<crate::quantized::BlockQ4_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4_1 => deq::<crate::quantized::BlockQ4_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5_0 => deq::<crate::quantized::BlockQ5_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5_1 => deq::<crate::quantized::BlockQ5_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8_0 => deq::<crate::quantized::BlockQ8_0>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8_1 => deq::<crate::quantized::BlockQ8_1>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q2K => deq::<crate::quantized::BlockQ2K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q3K => deq::<crate::quantized::BlockQ3K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q4K => deq::<crate::quantized::BlockQ4K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q5K => deq::<crate::quantized::BlockQ5K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q6K => deq::<crate::quantized::BlockQ6K>(&buffer, block_len, &mut out)?,
|
||||
GgmlDType::Q8K => deq::<crate::quantized::BlockQ8K>(&buffer, block_len, &mut out)?,
|
||||
}
|
||||
|
||||
self.device
|
||||
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self, elem_count: usize) -> Result<CudaStorage> {
|
||||
dequantize_f16(&self.data, self.dtype, elem_count, self.device())
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
|
||||
// Run the quantization on cpu.
|
||||
let src = match &src.slice {
|
||||
crate::cuda_backend::CudaStorageSlice::F32(data) => self.device.memcpy_dtov(data)?,
|
||||
_ => crate::bail!("only f32 can be quantized"),
|
||||
};
|
||||
let src_len = src.len();
|
||||
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
|
||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?;
|
||||
qcpu_storage.quantize(&src)?;
|
||||
let data = qcpu_storage.data()?;
|
||||
let padded_len =
|
||||
data.len() + MATRIX_ROW_PADDING * self.dtype.type_size() / self.dtype.block_size();
|
||||
let mut inner = unsafe { self.device.alloc::<u8>(padded_len)? };
|
||||
self.device
|
||||
.memcpy_htod(data.as_ref(), &mut inner.slice_mut(..data.len()))?;
|
||||
self.data = PaddedCudaSlice {
|
||||
inner,
|
||||
len: data.len(),
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
self.data.len
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
storage: &CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
1
|
||||
} else {
|
||||
8
|
||||
};
|
||||
let use_vec_kernel = match layout.shape().dims() {
|
||||
[b, m, _k] => b * m <= max_bm,
|
||||
[b, _k] => *b <= max_bm,
|
||||
_ => false,
|
||||
};
|
||||
if use_vec_kernel {
|
||||
self.dequantize_matmul_vec(self_shape, storage, layout)
|
||||
} else {
|
||||
self.dequantize_matmul(self_shape, storage, layout)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
fn dequantize_matmul_vec(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
rhs: &CudaStorage,
|
||||
rhs_l: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
let (nrows, ncols) = self_shape.dims2()?;
|
||||
let rhs = rhs.as_cuda_slice::<f32>()?;
|
||||
let rhs = match rhs_l.contiguous_offsets() {
|
||||
Some((o1, o2)) => rhs.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?,
|
||||
};
|
||||
let (b_size, k) = match rhs_l.shape().dims() {
|
||||
[b, m, k] => (b * m, *k),
|
||||
[b, k] => (*b, *k),
|
||||
_ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()),
|
||||
};
|
||||
if ncols != k {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape())
|
||||
}
|
||||
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
dequantize_mul_mat_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
|
||||
} else {
|
||||
mul_mat_vec_via_q8_1(
|
||||
&self.data,
|
||||
&rhs,
|
||||
self.dtype,
|
||||
ncols,
|
||||
nrows,
|
||||
b_size,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = rhs_l.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(nrows);
|
||||
Ok((out, out_shape.into()))
|
||||
}
|
||||
|
||||
fn dequantize_matmul(
|
||||
&self,
|
||||
self_shape: &crate::Shape,
|
||||
storage: &CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
use crate::backend::BackendStorage;
|
||||
let (n, k) = self_shape.dims2()?;
|
||||
let (b, m, k2) = match layout.shape().dims() {
|
||||
&[b, m, k2] => (b, m, k2),
|
||||
&[m, k2] => (1, m, k2),
|
||||
s => crate::bail!("unexpected shape for input {s:?}"),
|
||||
};
|
||||
if k2 != k {
|
||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape())
|
||||
}
|
||||
|
||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
||||
let data_f32 = self.dequantize(n * k)?;
|
||||
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
|
||||
storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?
|
||||
} else {
|
||||
let storage = storage.as_cuda_slice::<f32>()?;
|
||||
let storage = match layout.contiguous_offsets() {
|
||||
Some((o1, o2)) => storage.slice(o1..o2),
|
||||
None => Err(crate::Error::RequiresContiguous {
|
||||
op: "quantized-matmul",
|
||||
}
|
||||
.bt())?,
|
||||
};
|
||||
mul_mat_via_q8_1(
|
||||
&self.data,
|
||||
&storage,
|
||||
self.dtype,
|
||||
/* x_rows */ n,
|
||||
/* x_cols */ k,
|
||||
/* y_rows */ k,
|
||||
/* y_cols */ b * m,
|
||||
self.device(),
|
||||
)?
|
||||
};
|
||||
let mut out_shape = layout.shape().dims().to_vec();
|
||||
out_shape.pop();
|
||||
out_shape.push(n);
|
||||
Ok((out, out_shape.into()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
device: &CudaDevice,
|
||||
data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
let data = unsafe {
|
||||
std::slice::from_raw_parts(data.as_ptr() as *const u8, core::mem::size_of_val(data))
|
||||
};
|
||||
let dtype = T::DTYPE;
|
||||
let padded_len = data.len() + MATRIX_ROW_PADDING * dtype.type_size() / dtype.block_size();
|
||||
let mut inner = unsafe { device.alloc::<u8>(padded_len)? };
|
||||
device.memcpy_htod(data, &mut inner.slice_mut(..data.len()))?;
|
||||
Ok(QStorage::Cuda(QCudaStorage {
|
||||
data: PaddedCudaSlice {
|
||||
inner,
|
||||
len: data.len(),
|
||||
},
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn cuda_quantize_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let el = 256;
|
||||
let el_padded = pad(el, MATRIX_ROW_PADDING);
|
||||
let y_size_in_bytes =
|
||||
el_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
||||
let vs: Vec<f32> = (0..el).map(|v| v as f32).collect();
|
||||
let y = dev.memcpy_stod(&vs)?;
|
||||
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, 1, &dev)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cuda_mmv_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let ncols = 256;
|
||||
let vs: Vec<f32> = (0..ncols).map(|v| v as f32).collect();
|
||||
let y = dev.memcpy_stod(&vs)?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_vec_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* ncols */ ncols,
|
||||
/* nrows */ 1,
|
||||
/* b_size */ 1,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
||||
assert_eq!(vs.len(), 1);
|
||||
// for n = 255, n.(n+1).(2n+1) / 6 = 5559680
|
||||
// Q8 means 1/256 precision.
|
||||
assert_eq!(vs[0], 5561664.5);
|
||||
|
||||
let cuda_storage = dequantize_mul_mat_vec(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* ncols */ ncols,
|
||||
/* nrows */ 1,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
||||
assert_eq!(vs.len(), 1);
|
||||
assert_eq!(vs[0], 5561851.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cuda_mm_q8_1() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let ncols = 256;
|
||||
let vs: Vec<f32> = (0..ncols * 4).map(|v| v as f32 / 4.).collect();
|
||||
let y = dev.memcpy_stod(&vs)?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols * 4, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* x_rows */ 4,
|
||||
/* x_cols */ ncols,
|
||||
/* y_rows */ ncols,
|
||||
/* y_cols */ 4,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
||||
|
||||
/*
|
||||
x = torch.tensor([float(v) for v in range(1024)]).reshape(4, 256)
|
||||
x @ x.t() / 16
|
||||
tensor([[ 347480.0000, 869720.0000, 1391960.0000, 1914200.0000],
|
||||
[ 869720.0000, 2440536.0000, 4011352.0000, 5582166.5000],
|
||||
[ 1391960.0000, 4011352.0000, 6630742.0000, 9250132.0000],
|
||||
[ 1914200.0000, 5582166.5000, 9250132.0000, 12918099.0000]])
|
||||
*/
|
||||
assert_eq!(vs.len(), 16);
|
||||
assert_eq!(vs[0], 347604.0);
|
||||
assert_eq!(vs[1], 888153.06);
|
||||
assert_eq!(vs[4], 869780.7);
|
||||
assert_eq!(vs[5], 2483145.0);
|
||||
assert_eq!(vs[11], 9407368.0);
|
||||
assert_eq!(vs[14], 9470856.0);
|
||||
assert_eq!(vs[15], 13138824.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// The following test used to fail under compute-sanitizer until #2526.
|
||||
#[test]
|
||||
fn cuda_mm_q8_1_pad() -> Result<()> {
|
||||
let dev = CudaDevice::new(0)?;
|
||||
let (x_rows, ncols, y_cols) = (4, 16, 2048);
|
||||
let vs: Vec<f32> = (0..ncols * y_cols).map(|v| v as f32 / 256.).collect();
|
||||
let y = dev.memcpy_stod(&vs)?;
|
||||
let mut xs = QCudaStorage::zeros(&dev, ncols * x_rows, GgmlDType::Q4_0)?;
|
||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
||||
let cuda_storage = mul_mat_via_q8_1(
|
||||
&xs.data,
|
||||
&y.slice(..),
|
||||
/* dtype */ GgmlDType::Q4_0,
|
||||
/* x_rows */ x_rows,
|
||||
/* x_cols */ ncols,
|
||||
/* y_rows */ ncols,
|
||||
/* y_cols */ y_cols,
|
||||
&dev,
|
||||
)?;
|
||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
||||
let _vs = dev.memcpy_dtov(&vs.slice(..))?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
54
candle-core/src/quantized/dummy_cuda.rs
Normal file
54
candle-core/src/quantized/dummy_cuda.rs
Normal file
@ -0,0 +1,54 @@
|
||||
#![allow(unused)]
|
||||
use super::GgmlDType;
|
||||
use crate::{CudaDevice, CudaStorage, Error, Result};
|
||||
|
||||
pub struct QCudaStorage {
|
||||
dtype: GgmlDType,
|
||||
device: CudaDevice,
|
||||
}
|
||||
|
||||
impl QCudaStorage {
|
||||
pub fn zeros(_: &CudaDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &CudaDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, _elem_count: usize) -> Result<CudaStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self, _elem_count: usize) -> Result<CudaStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
_self_shape: &crate::Shape,
|
||||
_storage: &CudaStorage,
|
||||
_layout: &crate::Layout,
|
||||
) -> Result<(CudaStorage, crate::Shape)> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
_device: &CudaDevice,
|
||||
_data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
50
candle-core/src/quantized/dummy_metal.rs
Normal file
50
candle-core/src/quantized/dummy_metal.rs
Normal file
@ -0,0 +1,50 @@
|
||||
#![allow(unused)]
|
||||
use super::GgmlDType;
|
||||
use crate::{Error, MetalDevice, MetalStorage, Result};
|
||||
|
||||
pub struct QMetalStorage {
|
||||
dtype: GgmlDType,
|
||||
device: MetalDevice,
|
||||
}
|
||||
|
||||
impl QMetalStorage {
|
||||
pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &MetalDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
_self_shape: &crate::Shape,
|
||||
_storage: &MetalStorage,
|
||||
_layout: &crate::Layout,
|
||||
) -> Result<(MetalStorage, crate::Shape)> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
_device: &MetalDevice,
|
||||
_data: &[T],
|
||||
) -> Result<super::QStorage> {
|
||||
Err(Error::NotCompiledWithMetalSupport)
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
//! Support for the GGML file format.
|
||||
|
||||
use super::{k_quants, GgmlDType};
|
||||
use crate::Result;
|
||||
use super::{k_quants, GgmlDType, QStorage};
|
||||
use crate::{Device, Result};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use std::collections::HashMap;
|
||||
|
||||
@ -121,41 +121,68 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
|
||||
raw_data: &[u8],
|
||||
size_in_bytes: usize,
|
||||
dims: Vec<usize>,
|
||||
device: &Device,
|
||||
) -> Result<super::QTensor> {
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
|
||||
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
||||
super::QTensor::new(data.to_vec(), dims)
|
||||
let data: QStorage = match device {
|
||||
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
|
||||
Device::Metal(metal) => super::metal::load_quantized(metal, data)?,
|
||||
Device::Cuda(cuda) => super::cuda::load_quantized(cuda, data)?,
|
||||
};
|
||||
super::QTensor::new(data, dims)
|
||||
}
|
||||
|
||||
/// Creates a [Tensor] from a raw GGML tensor.
|
||||
/// Creates a Tensor from a raw GGML tensor.
|
||||
pub fn qtensor_from_ggml(
|
||||
ggml_dtype: GgmlDType,
|
||||
raw_data: &[u8],
|
||||
dims: Vec<usize>,
|
||||
device: &Device,
|
||||
) -> Result<super::QTensor> {
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let blck_size = ggml_dtype.blck_size();
|
||||
if tensor_elems % blck_size != 0 {
|
||||
let block_size = ggml_dtype.block_size();
|
||||
if tensor_elems % block_size != 0 {
|
||||
crate::bail!(
|
||||
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
|
||||
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
|
||||
)
|
||||
}
|
||||
let size_in_bytes = tensor_elems / blck_size * ggml_dtype.type_size();
|
||||
let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();
|
||||
|
||||
match ggml_dtype {
|
||||
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4_0 => from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4_1 => from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5_0 => from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5_1 => from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q8_0 => from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q2K => from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q3K => from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q4K => from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q5K => from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::Q6K => from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims),
|
||||
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
|
||||
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
|
||||
GgmlDType::Q4_0 => {
|
||||
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q4_1 => {
|
||||
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5_0 => {
|
||||
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5_1 => {
|
||||
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q8_0 => {
|
||||
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q2K => {
|
||||
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q3K => {
|
||||
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q4K => {
|
||||
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q5K => {
|
||||
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
GgmlDType::Q6K => {
|
||||
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
|
||||
}
|
||||
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
|
||||
}
|
||||
}
|
||||
@ -163,6 +190,7 @@ pub fn qtensor_from_ggml(
|
||||
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
magic: VersionedMagic,
|
||||
device: &Device,
|
||||
) -> Result<(String, super::QTensor)> {
|
||||
let n_dims = reader.read_u32::<LittleEndian>()?;
|
||||
let name_len = reader.read_u32::<LittleEndian>()?;
|
||||
@ -183,11 +211,11 @@ fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
}
|
||||
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
|
||||
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
|
||||
// TODO: Mmap version to avoid copying the data around?
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
match qtensor_from_ggml(ggml_dtype, &raw_data, dims) {
|
||||
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
|
||||
Ok(tensor) => Ok((name, tensor)),
|
||||
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
|
||||
}
|
||||
@ -198,10 +226,14 @@ pub struct Content {
|
||||
pub hparams: HParams,
|
||||
pub vocab: Vocab,
|
||||
pub tensors: HashMap<String, super::QTensor>,
|
||||
pub device: Device,
|
||||
}
|
||||
|
||||
impl Content {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Content> {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Content> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
||||
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
||||
reader.seek(std::io::SeekFrom::Start(0))?;
|
||||
@ -211,14 +243,16 @@ impl Content {
|
||||
let mut tensors = HashMap::new();
|
||||
|
||||
while reader.stream_position()? != last_position {
|
||||
let (name, tensor) = read_one_tensor(reader, magic)?;
|
||||
let (name, tensor) = read_one_tensor(reader, magic, device)?;
|
||||
tensors.insert(name, tensor);
|
||||
}
|
||||
let device = device.clone();
|
||||
Ok(Self {
|
||||
magic,
|
||||
hparams,
|
||||
vocab,
|
||||
tensors,
|
||||
device,
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -1,9 +1,8 @@
|
||||
//! Support for the GGUF file format.
|
||||
//! Support for the [GGUF file format](https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md).
|
||||
//!
|
||||
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
|
||||
|
||||
use super::{GgmlDType, QTensor};
|
||||
use crate::Result;
|
||||
use crate::{Context, Device, Result};
|
||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use std::collections::HashMap;
|
||||
|
||||
@ -59,19 +58,25 @@ impl TensorInfo {
|
||||
&self,
|
||||
reader: &mut R,
|
||||
tensor_data_offset: u64,
|
||||
device: &Device,
|
||||
) -> Result<QTensor> {
|
||||
let tensor_elems = self.shape.elem_count();
|
||||
let blck_size = self.ggml_dtype.blck_size();
|
||||
if tensor_elems % blck_size != 0 {
|
||||
let block_size = self.ggml_dtype.block_size();
|
||||
if tensor_elems % block_size != 0 {
|
||||
crate::bail!(
|
||||
"the number of elements {tensor_elems} is not divisible by the block size {blck_size}"
|
||||
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
|
||||
)
|
||||
}
|
||||
let size_in_bytes = tensor_elems / blck_size * self.ggml_dtype.type_size();
|
||||
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
super::ggml_file::qtensor_from_ggml(self.ggml_dtype, &raw_data, self.shape.dims().to_vec())
|
||||
super::ggml_file::qtensor_from_ggml(
|
||||
self.ggml_dtype,
|
||||
&raw_data,
|
||||
self.shape.dims().to_vec(),
|
||||
device,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@ -129,7 +134,6 @@ pub enum ValueType {
|
||||
// The value is a UTF-8 non-null-terminated string, with length prepended.
|
||||
String,
|
||||
// The value is an array of other values, with the length and type prepended.
|
||||
///
|
||||
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
|
||||
Array,
|
||||
}
|
||||
@ -212,10 +216,16 @@ impl Value {
|
||||
}
|
||||
}
|
||||
|
||||
/// This will also automatically upcast any integral types which will not truncate.
|
||||
pub fn to_u64(&self) -> Result<u64> {
|
||||
match self {
|
||||
Self::U64(v) => Ok(*v),
|
||||
v => crate::bail!("not a u64 {v:?}"),
|
||||
// Autoupcast cases here
|
||||
Self::U8(v) => Ok(*v as u64),
|
||||
Self::U16(v) => Ok(*v as u64),
|
||||
Self::U32(v) => Ok(*v as u64),
|
||||
Self::Bool(v) => Ok(*v as u64),
|
||||
v => crate::bail!("not a u64 or upcastable to u64 {v:?}"),
|
||||
}
|
||||
}
|
||||
|
||||
@ -328,7 +338,7 @@ impl Value {
|
||||
if value_type.len() != 1 {
|
||||
crate::bail!("multiple value-types in the same array {value_type:?}")
|
||||
}
|
||||
value_type.into_iter().next().unwrap()
|
||||
value_type.into_iter().next().context("empty value_type")?
|
||||
};
|
||||
w.write_u32::<LittleEndian>(value_type.to_u32())?;
|
||||
w.write_u64::<LittleEndian>(v.len() as u64)?;
|
||||
@ -447,7 +457,7 @@ impl Content {
|
||||
Some(Value::I32(v)) if *v >= 0 => *v as u64,
|
||||
_ => DEFAULT_ALIGNMENT,
|
||||
};
|
||||
let tensor_data_offset = (position + alignment - 1) / alignment * alignment;
|
||||
let tensor_data_offset = position.div_ceil(alignment) * alignment;
|
||||
Ok(Self {
|
||||
magic,
|
||||
metadata,
|
||||
@ -460,12 +470,13 @@ impl Content {
|
||||
&self,
|
||||
reader: &mut R,
|
||||
name: &str,
|
||||
device: &Device,
|
||||
) -> Result<QTensor> {
|
||||
let tensor_info = match self.tensor_infos.get(name) {
|
||||
Some(tensor_info) => tensor_info,
|
||||
None => crate::bail!("cannot find tensor info for {name}"),
|
||||
};
|
||||
tensor_info.read(reader, self.tensor_data_offset)
|
||||
tensor_info.read(reader, self.tensor_data_offset, device)
|
||||
}
|
||||
}
|
||||
|
||||
@ -517,10 +528,9 @@ pub fn write<W: std::io::Seek + std::io::Write>(
|
||||
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
|
||||
)
|
||||
}
|
||||
let data_ptr = tensor.as_ptr();
|
||||
let size_in_bytes = tensor.storage_size_in_bytes();
|
||||
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
||||
w.write_all(data)?;
|
||||
let data = tensor.data()?;
|
||||
let size_in_bytes = data.len();
|
||||
w.write_all(&data)?;
|
||||
let padding = 31 - (31 + size_in_bytes) % 32;
|
||||
w.write_all(&vec![0u8; padding])?;
|
||||
}
|
||||
|
@ -1545,13 +1545,13 @@ impl GgmlType for BlockQ5K {
|
||||
let d2 = d * sc as f32;
|
||||
let m2 = min * m as f32;
|
||||
for (ql, qh) in ql.iter().zip(qh) {
|
||||
let to_add = if qh & u1 != 0 { 16 } else { 1 };
|
||||
y[ys_index] = d1 * ((ql & 0xF) + to_add) as f32 - m1;
|
||||
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
|
||||
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
|
||||
ys_index += 1;
|
||||
}
|
||||
for (ql, qh) in ql.iter().zip(qh) {
|
||||
let to_add = if qh & u2 != 0 { 16 } else { 1 };
|
||||
y[ys_index] = d2 * ((ql >> 4) + to_add) as f32 - m2;
|
||||
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
|
||||
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
|
||||
ys_index += 1;
|
||||
}
|
||||
is += 2;
|
||||
@ -1850,8 +1850,8 @@ pub fn matmul<T: GgmlType>(
|
||||
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
|
||||
}
|
||||
|
||||
let k_in_lhs_blocks = (k + T::BLCK_SIZE - 1) / T::BLCK_SIZE;
|
||||
let k_in_rhs_blocks = (k + T::VecDotType::BLCK_SIZE - 1) / T::VecDotType::BLCK_SIZE;
|
||||
let k_in_lhs_blocks = k.div_ceil(T::BLCK_SIZE);
|
||||
let k_in_rhs_blocks = k.div_ceil(T::VecDotType::BLCK_SIZE);
|
||||
// TODO: Do not make this copy if the DotType is f32.
|
||||
// TODO: Pre-allocate this.
|
||||
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];
|
||||
|
230
candle-core/src/quantized/metal.rs
Normal file
230
candle-core/src/quantized/metal.rs
Normal file
@ -0,0 +1,230 @@
|
||||
use super::{GgmlDType, QStorage};
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::{DType, MetalDevice, MetalStorage, Result, Shape};
|
||||
use metal::Buffer;
|
||||
use std::sync::Arc;
|
||||
|
||||
pub struct QMetalStorage {
|
||||
dtype: GgmlDType,
|
||||
device: MetalDevice,
|
||||
buffer: Arc<Buffer>,
|
||||
}
|
||||
|
||||
impl QMetalStorage {
|
||||
pub fn zeros(device: &MetalDevice, elem_count: usize, dtype: GgmlDType) -> Result<Self> {
|
||||
let size = elem_count * dtype.type_size() / dtype.block_size();
|
||||
let buffer = device.allocate_zeros(size)?;
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
pub fn device(&self) -> &MetalDevice {
|
||||
&self.device
|
||||
}
|
||||
|
||||
pub fn buffer(&self) -> &Buffer {
|
||||
&self.buffer
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
|
||||
use crate::quantized::k_quants::GgmlType;
|
||||
|
||||
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
|
||||
let command_buffer = self.device.command_buffer()?;
|
||||
command_buffer.set_label("to_cpu");
|
||||
let blit = command_buffer.new_blit_command_encoder();
|
||||
blit.set_label("blit_to_cpu");
|
||||
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
|
||||
blit.end_encoding();
|
||||
self.device.wait_until_completed()?;
|
||||
let mut out = vec![0.0; elem_count];
|
||||
let block_len = elem_count / self.dtype.block_size();
|
||||
match self.dtype {
|
||||
GgmlDType::F32 => {
|
||||
let vec: Vec<f32> = read_to_vec(&buffer, block_len);
|
||||
f32::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::F16 => {
|
||||
let vec: Vec<half::f16> = read_to_vec(&buffer, block_len);
|
||||
half::f16::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8_0 => {
|
||||
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8_1 => {
|
||||
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q2K => {
|
||||
let vec: Vec<crate::quantized::BlockQ2K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q3K => {
|
||||
let vec: Vec<crate::quantized::BlockQ3K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q4K => {
|
||||
let vec: Vec<crate::quantized::BlockQ4K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q5K => {
|
||||
let vec: Vec<crate::quantized::BlockQ5K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q6K => {
|
||||
let vec: Vec<crate::quantized::BlockQ6K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
GgmlDType::Q8K => {
|
||||
let vec: Vec<crate::quantized::BlockQ8K> = read_to_vec(&buffer, block_len);
|
||||
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
|
||||
}
|
||||
}
|
||||
|
||||
let buffer = self.device.new_buffer_with_data(&out)?;
|
||||
Ok(MetalStorage::new(
|
||||
buffer,
|
||||
self.device.clone(),
|
||||
elem_count,
|
||||
DType::F32,
|
||||
))
|
||||
}
|
||||
|
||||
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
|
||||
// Quantization only happens on CPU for now.
|
||||
let src = src.to_cpu::<f32>()?;
|
||||
let elem_count = src.len();
|
||||
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
|
||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(elem_count, self.dtype)?;
|
||||
qcpu_storage.quantize(&src)?;
|
||||
let buffer = self.device.new_buffer_with_data(&qcpu_storage.data()?)?;
|
||||
self.buffer = buffer;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
self.buffer.length() as usize
|
||||
}
|
||||
|
||||
pub fn fwd(
|
||||
&self,
|
||||
self_shape: &Shape,
|
||||
storage: &MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(MetalStorage, Shape)> {
|
||||
use crate::MetalError;
|
||||
|
||||
if !layout.is_contiguous() {
|
||||
crate::bail!("input tensor is not contiguous {layout:?}")
|
||||
}
|
||||
let src_shape = layout.shape();
|
||||
// self is transposed so n is first then k.
|
||||
if src_shape.rank() < 2 {
|
||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||
}
|
||||
let (n, k) = self_shape.dims2()?;
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
|
||||
// We always use a single batch dimension and stack all the tensors in the batch on the
|
||||
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
|
||||
// properly.
|
||||
let m = match dst_shape.len() {
|
||||
3 => dst_shape[0] * dst_shape[1],
|
||||
2 => dst_shape[0],
|
||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
||||
};
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
if last_k != k {
|
||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self_shape)
|
||||
}
|
||||
dst_shape.push(n);
|
||||
let dst_shape = Shape::from(dst_shape);
|
||||
let device = storage.device().clone();
|
||||
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
|
||||
let command_buffer = device.command_buffer()?;
|
||||
// In some cases it would be better to use the mm variant, though it has its drawbacks
|
||||
// around memory alignemnt.
|
||||
for batch_id in 0..m {
|
||||
candle_metal_kernels::call_quantized_matmul_mv_t(
|
||||
device.device(),
|
||||
&command_buffer,
|
||||
device.kernels(),
|
||||
self.dtype.into(),
|
||||
(1, 1, n, k),
|
||||
storage.buffer(),
|
||||
(layout.start_offset() + batch_id * k) * storage.dtype().size_in_bytes(),
|
||||
&self.buffer,
|
||||
batch_id * n * DType::F32.size_in_bytes(),
|
||||
&dst,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
|
||||
Ok((dst_storage, dst_shape))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
||||
device: &MetalDevice,
|
||||
data: &[T],
|
||||
) -> Result<QStorage> {
|
||||
let buffer = device.new_buffer_with_data(data)?;
|
||||
let device = device.clone();
|
||||
Ok(QStorage::Metal(QMetalStorage {
|
||||
dtype: T::DTYPE,
|
||||
device,
|
||||
buffer,
|
||||
}))
|
||||
}
|
||||
|
||||
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
||||
let ptr = buffer.contents() as *const T;
|
||||
assert!(!ptr.is_null());
|
||||
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
|
||||
slice.to_vec()
|
||||
}
|
||||
|
||||
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
|
||||
fn from(value: GgmlDType) -> Self {
|
||||
match value {
|
||||
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
|
||||
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
|
||||
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
|
||||
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
|
||||
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
|
||||
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
|
||||
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
|
||||
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
|
||||
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
|
||||
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
|
||||
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
|
||||
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
|
||||
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
|
||||
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
|
||||
}
|
||||
}
|
||||
}
|
@ -1,23 +1,135 @@
|
||||
use crate::{Device, Result, Shape, Tensor};
|
||||
//! Code for GGML and GGUF files
|
||||
use crate::{Context, CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
|
||||
use k_quants::*;
|
||||
use std::borrow::Cow;
|
||||
|
||||
#[cfg(target_feature = "avx")]
|
||||
pub mod avx;
|
||||
mod dummy_cuda;
|
||||
mod dummy_metal;
|
||||
pub mod ggml_file;
|
||||
pub mod gguf_file;
|
||||
pub mod k_quants;
|
||||
#[cfg(feature = "metal")]
|
||||
pub mod metal;
|
||||
#[cfg(not(feature = "metal"))]
|
||||
mod metal {
|
||||
pub use super::dummy_metal::*;
|
||||
}
|
||||
#[cfg(feature = "cuda")]
|
||||
pub mod cuda;
|
||||
#[cfg(not(feature = "cuda"))]
|
||||
mod cuda {
|
||||
pub use super::dummy_cuda::*;
|
||||
}
|
||||
|
||||
#[cfg(target_feature = "neon")]
|
||||
pub mod neon;
|
||||
#[cfg(target_feature = "simd128")]
|
||||
pub mod simd128;
|
||||
pub mod utils;
|
||||
use half::f16;
|
||||
|
||||
pub use k_quants::GgmlType;
|
||||
|
||||
pub struct QTensor {
|
||||
data: Box<dyn QuantizedType>,
|
||||
storage: QStorage,
|
||||
shape: Shape,
|
||||
}
|
||||
|
||||
impl Device {
|
||||
fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
|
||||
match self {
|
||||
Device::Cpu => {
|
||||
let storage = dtype.cpu_zeros(elem_count);
|
||||
Ok(QStorage::Cpu(storage))
|
||||
}
|
||||
Device::Metal(metal) => {
|
||||
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
|
||||
Ok(QStorage::Metal(storage))
|
||||
}
|
||||
Device::Cuda(cuda) => {
|
||||
let storage = cuda::QCudaStorage::zeros(cuda, elem_count, dtype)?;
|
||||
Ok(QStorage::Cuda(storage))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub enum QStorage {
|
||||
Cpu(Box<dyn QuantizedType>),
|
||||
Metal(metal::QMetalStorage),
|
||||
Cuda(cuda::QCudaStorage),
|
||||
}
|
||||
|
||||
impl QStorage {
|
||||
fn block_size(&self) -> usize {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.block_size(),
|
||||
QStorage::Metal(storage) => storage.dtype().block_size(),
|
||||
QStorage::Cuda(storage) => storage.dtype().block_size(),
|
||||
}
|
||||
}
|
||||
|
||||
fn dtype(&self) -> GgmlDType {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.dtype(),
|
||||
QStorage::Metal(storage) => storage.dtype(),
|
||||
QStorage::Cuda(storage) => storage.dtype(),
|
||||
}
|
||||
}
|
||||
|
||||
fn device(&self) -> Device {
|
||||
match self {
|
||||
QStorage::Cpu(_storage) => Device::Cpu,
|
||||
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
|
||||
QStorage::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
||||
}
|
||||
}
|
||||
|
||||
fn size_in_bytes(&self) -> usize {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
|
||||
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
|
||||
QStorage::Cuda(storage) => storage.storage_size_in_bytes(),
|
||||
}
|
||||
}
|
||||
|
||||
fn quantize(&mut self, src: &Storage) -> Result<()> {
|
||||
match (self, src) {
|
||||
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
|
||||
storage.from_float(src.as_slice::<f32>()?)?;
|
||||
}
|
||||
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
|
||||
(QStorage::Cuda(storage), Storage::Cuda(src)) => storage.quantize(src)?,
|
||||
_ => crate::bail!("Invalid dequantize storage locations do not match"),
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
|
||||
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
|
||||
QStorage::Cuda(storage) => Ok(Storage::Cuda(storage.dequantize(elem_count)?)),
|
||||
}
|
||||
}
|
||||
|
||||
fn data(&self) -> Result<Cow<[u8]>> {
|
||||
match self {
|
||||
QStorage::Cpu(storage) => {
|
||||
let data_ptr = storage.as_ptr();
|
||||
let size_in_bytes = storage.storage_size_in_bytes();
|
||||
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
||||
Ok(Cow::from(data))
|
||||
}
|
||||
QStorage::Metal(_) | QStorage::Cuda(_) => {
|
||||
crate::bail!("not implemented");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum GgmlDType {
|
||||
F32,
|
||||
@ -77,6 +189,25 @@ impl GgmlDType {
|
||||
}
|
||||
}
|
||||
|
||||
/// The block dtype
|
||||
pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
|
||||
match self {
|
||||
Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
|
||||
Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
|
||||
Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
|
||||
Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
|
||||
Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
|
||||
Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
|
||||
Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
|
||||
Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
|
||||
Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
|
||||
Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
|
||||
Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
|
||||
Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
|
||||
Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
|
||||
Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
|
||||
}
|
||||
}
|
||||
/// The type size for blocks in bytes.
|
||||
pub fn type_size(&self) -> usize {
|
||||
use k_quants::*;
|
||||
@ -100,7 +231,7 @@ impl GgmlDType {
|
||||
}
|
||||
|
||||
/// The block size, i.e. the number of elements stored in each block.
|
||||
pub fn blck_size(&self) -> usize {
|
||||
pub fn block_size(&self) -> usize {
|
||||
match self {
|
||||
Self::F32 => 1,
|
||||
Self::F16 => 1,
|
||||
@ -119,9 +250,13 @@ impl GgmlDType {
|
||||
pub trait QuantizedType: Send + Sync {
|
||||
fn dtype(&self) -> GgmlDType;
|
||||
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
|
||||
fn to_float(&self, ys: &mut [f32]) -> Result<()>;
|
||||
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
|
||||
fn storage_size_in_bytes(&self) -> usize;
|
||||
fn as_ptr(&self) -> *const u8;
|
||||
fn block_size(&self) -> usize;
|
||||
#[allow(clippy::wrong_self_convention)]
|
||||
fn from_float(&mut self, xs: &[f32]) -> Result<()>;
|
||||
fn size(&self) -> usize;
|
||||
}
|
||||
|
||||
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
|
||||
@ -129,12 +264,26 @@ impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
|
||||
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
|
||||
}
|
||||
|
||||
fn size(&self) -> usize {
|
||||
self.len() * core::mem::size_of::<T>()
|
||||
}
|
||||
|
||||
fn from_float(&mut self, xs: &[f32]) -> Result<()> {
|
||||
T::from_float(xs, self)
|
||||
}
|
||||
|
||||
fn dtype(&self) -> GgmlDType {
|
||||
T::DTYPE
|
||||
}
|
||||
|
||||
fn to_float(&self, ys: &mut [f32]) -> Result<()> {
|
||||
T::to_float(self.as_slice(), ys)
|
||||
fn block_size(&self) -> usize {
|
||||
T::BLCK_SIZE
|
||||
}
|
||||
|
||||
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
|
||||
let mut ys = vec![0.0f32; elem_count];
|
||||
T::to_float(self.as_slice(), &mut ys)?;
|
||||
Ok(CpuStorage::F32(ys))
|
||||
}
|
||||
|
||||
fn storage_size_in_bytes(&self) -> usize {
|
||||
@ -152,56 +301,53 @@ impl std::fmt::Debug for QTensor {
|
||||
}
|
||||
}
|
||||
|
||||
fn check_shape<T: k_quants::GgmlType>(shape: &Shape) -> Result<()> {
|
||||
fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
|
||||
let dims = shape.dims();
|
||||
if dims.is_empty() {
|
||||
crate::bail!("scalar tensor cannot be quantized {shape:?}")
|
||||
}
|
||||
if dims[dims.len() - 1] % T::BLCK_SIZE != 0 {
|
||||
if dims[dims.len() - 1] % block_size != 0 {
|
||||
crate::bail!(
|
||||
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
|
||||
T::BLCK_SIZE
|
||||
block_size
|
||||
)
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl QTensor {
|
||||
pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
|
||||
data: Vec<T>,
|
||||
shape: S,
|
||||
) -> Result<Self> {
|
||||
pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
check_shape::<T>(&shape)?;
|
||||
Ok(Self {
|
||||
data: Box::new(data),
|
||||
shape,
|
||||
})
|
||||
check_shape(&shape, storage.block_size())?;
|
||||
Ok(Self { storage, shape })
|
||||
}
|
||||
|
||||
pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
|
||||
pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
|
||||
let shape = src.shape();
|
||||
check_shape::<T>(shape)?;
|
||||
let src = src
|
||||
.to_dtype(crate::DType::F32)?
|
||||
.flatten_all()?
|
||||
.to_vec1::<f32>()?;
|
||||
if src.len() % T::BLCK_SIZE != 0 {
|
||||
let block_size = dtype.block_size();
|
||||
check_shape(shape, block_size)?;
|
||||
let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
|
||||
let elem_count = shape.elem_count();
|
||||
if elem_count % block_size != 0 {
|
||||
crate::bail!(
|
||||
"tensor size ({shape:?}) is not divisible by block size {}",
|
||||
T::BLCK_SIZE
|
||||
block_size
|
||||
)
|
||||
}
|
||||
let mut data = vec![T::zeros(); src.len() / T::BLCK_SIZE];
|
||||
T::from_float(&src, &mut data)?;
|
||||
let mut storage = src.device().qzeros(elem_count, dtype)?;
|
||||
storage.quantize(&src.storage())?;
|
||||
Ok(Self {
|
||||
data: Box::new(data),
|
||||
storage,
|
||||
shape: shape.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> GgmlDType {
|
||||
self.data.dtype()
|
||||
self.storage.dtype()
|
||||
}
|
||||
|
||||
pub fn device(&self) -> Device {
|
||||
self.storage.device()
|
||||
}
|
||||
|
||||
pub fn rank(&self) -> usize {
|
||||
@ -213,21 +359,34 @@ impl QTensor {
|
||||
}
|
||||
|
||||
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
|
||||
let mut f32_data = vec![0f32; self.shape.elem_count()];
|
||||
self.data.to_float(&mut f32_data)?;
|
||||
Tensor::from_vec(f32_data, &self.shape, device)
|
||||
let storage = self.storage.dequantize(self.shape.elem_count())?;
|
||||
let none = crate::op::BackpropOp::none();
|
||||
crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
|
||||
}
|
||||
|
||||
pub fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
|
||||
self.data.matmul_t(mkn, lhs, dst)
|
||||
pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
|
||||
// In the CUDA case, we have a specialized kernel as this can be useful for volta
|
||||
// architectures. https://github.com/huggingface/candle/issues/2136
|
||||
match &self.storage {
|
||||
QStorage::Cuda(s) => {
|
||||
let s = s.dequantize_f16(self.shape.elem_count())?;
|
||||
let none = crate::op::BackpropOp::none();
|
||||
crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
|
||||
.to_device(device)
|
||||
}
|
||||
_ => {
|
||||
let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
|
||||
Ok(s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn storage_size_in_bytes(&self) -> usize {
|
||||
self.data.storage_size_in_bytes()
|
||||
self.storage.size_in_bytes()
|
||||
}
|
||||
|
||||
pub fn as_ptr(&self) -> *const u8 {
|
||||
self.data.as_ptr()
|
||||
pub fn data(&self) -> Result<Cow<'_, [u8]>> {
|
||||
self.storage.data()
|
||||
}
|
||||
}
|
||||
|
||||
@ -235,6 +394,7 @@ impl QTensor {
|
||||
pub enum QMatMul {
|
||||
QTensor(std::sync::Arc<QTensor>),
|
||||
Tensor(Tensor),
|
||||
TensorF16(Tensor),
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
@ -248,6 +408,17 @@ thread_local! {
|
||||
}
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
static DEQUANTIZE_ALL_F16: bool = {
|
||||
match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
|
||||
Ok(s) => {
|
||||
!s.is_empty() && s != "0"
|
||||
},
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl QMatMul {
|
||||
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
|
||||
let dequantize = match qtensor.dtype() {
|
||||
@ -255,8 +426,11 @@ impl QMatMul {
|
||||
_ => DEQUANTIZE_ALL.with(|b| *b),
|
||||
};
|
||||
let t = if dequantize {
|
||||
let tensor = qtensor.dequantize(&Device::Cpu)?;
|
||||
let tensor = qtensor.dequantize(&qtensor.device())?;
|
||||
Self::Tensor(tensor)
|
||||
} else if DEQUANTIZE_ALL_F16.with(|b| *b) {
|
||||
let tensor = qtensor.dequantize_f16(&qtensor.device())?;
|
||||
Self::TensorF16(tensor)
|
||||
} else {
|
||||
Self::QTensor(qtensor)
|
||||
};
|
||||
@ -266,6 +440,25 @@ impl QMatMul {
|
||||
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
|
||||
Self::from_arc(std::sync::Arc::new(qtensor))
|
||||
}
|
||||
|
||||
pub fn dequantize_f16(&self) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::QTensor(t) => t.dequantize_f16(&t.device()),
|
||||
Self::Tensor(t) => t.to_dtype(DType::F16),
|
||||
Self::TensorF16(t) => Ok(t.clone()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let w = self.dequantize_f16()?;
|
||||
let in_dtype = xs.dtype();
|
||||
let w = match *xs.dims() {
|
||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
||||
_ => w.t()?,
|
||||
};
|
||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::CustomOp1 for QTensor {
|
||||
@ -288,23 +481,47 @@ impl crate::CustomOp1 for QTensor {
|
||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||
}
|
||||
let mut dst_shape = src_shape.dims().to_vec();
|
||||
let last_k = dst_shape.pop().unwrap();
|
||||
let last_k = dst_shape.pop().context("empty dst_shape")?;
|
||||
if last_k != k {
|
||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
|
||||
}
|
||||
dst_shape.push(n);
|
||||
let dst_shape = Shape::from(dst_shape);
|
||||
let storage = storage.as_slice::<f32>()?;
|
||||
let storage =
|
||||
&storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||
#[allow(clippy::infallible_destructuring_match)]
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Cpu(storage) => storage,
|
||||
QStorage::Metal(_) | QStorage::Cuda(_) => crate::bail!("Invalid storage"),
|
||||
};
|
||||
let slice = storage.as_slice::<f32>()?;
|
||||
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
|
||||
self.matmul_t(
|
||||
(dst_shape.elem_count() / n, k, n),
|
||||
storage,
|
||||
&mut dst_storage,
|
||||
)?;
|
||||
self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
|
||||
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
|
||||
}
|
||||
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &crate::MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::MetalStorage, Shape)> {
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Metal(metal) => metal,
|
||||
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
|
||||
};
|
||||
self_storage.fwd(&self.shape, storage, layout)
|
||||
}
|
||||
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
storage: &crate::CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CudaStorage, Shape)> {
|
||||
let self_storage = match &self.storage {
|
||||
QStorage::Cuda(cuda) => cuda,
|
||||
_ => unreachable!("Cannot call cuda matmul on non cuda QTensor"),
|
||||
};
|
||||
self_storage.fwd(&self.shape, storage, layout)
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::Module for QMatMul {
|
||||
@ -319,6 +536,15 @@ impl crate::Module for QMatMul {
|
||||
};
|
||||
xs.matmul(&w)
|
||||
}
|
||||
Self::TensorF16(w) => {
|
||||
let in_dtype = xs.dtype();
|
||||
let w = match *xs.dims() {
|
||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
||||
_ => w.t()?,
|
||||
};
|
||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,14 @@
|
||||
//! Module to load `safetensor` files into CPU/GPU memory.
|
||||
//!
|
||||
//! There are multiple ways to load tensors from safetensor files:
|
||||
//! - `load` function for loading directly into memory and returning a HashMap of tensors
|
||||
//! - `MmapedSafetensors` for memory mapping files and avoiding full allocation
|
||||
//! - `SliceSafetensors` for working with in-memory buffers
|
||||
//! - `BufferedSafetensors` for owning a buffer of data
|
||||
//!
|
||||
//! Tensors can also be serialized to safetensor format using the `save` function or
|
||||
//! `Tensor::save_safetensors` method.
|
||||
//!
|
||||
use crate::{DType, Device, Error, Result, Tensor, WithDType};
|
||||
use safetensors::tensor as st;
|
||||
use safetensors::tensor::SafeTensors;
|
||||
@ -171,7 +182,7 @@ pub trait Load {
|
||||
fn load(&self, device: &Device) -> Result<Tensor>;
|
||||
}
|
||||
|
||||
impl<'a> Load for st::TensorView<'a> {
|
||||
impl Load for st::TensorView<'_> {
|
||||
fn load(&self, device: &Device) -> Result<Tensor> {
|
||||
convert(self, device)
|
||||
}
|
||||
@ -349,6 +360,30 @@ impl MmapedSafetensors {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SliceSafetensors<'a> {
|
||||
safetensors: SafeTensors<'a>,
|
||||
}
|
||||
|
||||
impl<'a> SliceSafetensors<'a> {
|
||||
/// Creates a wrapper around a binary buffer and deserialize the safetensors header.
|
||||
pub fn new(buffer: &'a [u8]) -> Result<Self> {
|
||||
let safetensors = safetensors::SafeTensors::deserialize(buffer)?;
|
||||
Ok(Self { safetensors })
|
||||
}
|
||||
|
||||
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
|
||||
self.safetensors.tensor(name)?.load(dev)
|
||||
}
|
||||
|
||||
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
|
||||
self.safetensors.tensors()
|
||||
}
|
||||
|
||||
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
|
||||
Ok(self.safetensors.tensor(name)?)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BufferedSafetensors {
|
||||
safetensors: yoke::Yoke<SafeTensors_<'static>, Vec<u8>>,
|
||||
}
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! TensorScalar Enum and Trait
|
||||
//!
|
||||
use crate::{Result, Tensor, WithDType};
|
||||
|
||||
pub enum TensorScalar {
|
||||
|
@ -43,43 +43,22 @@ impl From<usize> for Shape {
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize,)> for Shape {
|
||||
fn from(d1: (usize,)) -> Self {
|
||||
Self(vec![d1.0])
|
||||
macro_rules! impl_from_tuple {
|
||||
($tuple:ty, $($index:tt),+) => {
|
||||
impl From<$tuple> for Shape {
|
||||
fn from(d: $tuple) -> Self {
|
||||
Self(vec![$(d.$index,)+])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize, usize)> for Shape {
|
||||
fn from(d12: (usize, usize)) -> Self {
|
||||
Self(vec![d12.0, d12.1])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize, usize, usize)> for Shape {
|
||||
fn from(d123: (usize, usize, usize)) -> Self {
|
||||
Self(vec![d123.0, d123.1, d123.2])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize, usize, usize, usize)> for Shape {
|
||||
fn from(d1234: (usize, usize, usize, usize)) -> Self {
|
||||
Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize, usize, usize, usize, usize)> for Shape {
|
||||
fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
|
||||
Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
|
||||
fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
|
||||
Self(vec![
|
||||
d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
|
||||
])
|
||||
}
|
||||
}
|
||||
impl_from_tuple!((usize,), 0);
|
||||
impl_from_tuple!((usize, usize), 0, 1);
|
||||
impl_from_tuple!((usize, usize, usize), 0, 1, 2);
|
||||
impl_from_tuple!((usize, usize, usize, usize), 0, 1, 2, 3);
|
||||
impl_from_tuple!((usize, usize, usize, usize, usize), 0, 1, 2, 3, 4);
|
||||
impl_from_tuple!((usize, usize, usize, usize, usize, usize), 0, 1, 2, 3, 4, 5);
|
||||
|
||||
impl From<Vec<usize>> for Shape {
|
||||
fn from(dims: Vec<usize>) -> Self {
|
||||
@ -142,6 +121,12 @@ impl Shape {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// The dimension size for a specified dimension index.
|
||||
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
|
||||
let dim = dim.to_index(self, "dim")?;
|
||||
Ok(self.dims()[dim])
|
||||
}
|
||||
|
||||
/// The total number of elements, this is the product of all dimension sizes.
|
||||
pub fn elem_count(&self) -> usize {
|
||||
self.0.iter().product()
|
||||
@ -171,7 +156,7 @@ impl Shape {
|
||||
}
|
||||
let mut acc = 1;
|
||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
|
||||
if stride != acc {
|
||||
if dim > 1 && stride != acc {
|
||||
return false;
|
||||
}
|
||||
acc *= dim;
|
||||
@ -186,7 +171,7 @@ impl Shape {
|
||||
}
|
||||
let mut acc = 1;
|
||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
|
||||
if stride != acc {
|
||||
if dim > 1 && stride != acc {
|
||||
return false;
|
||||
}
|
||||
acc *= dim;
|
||||
@ -304,6 +289,7 @@ impl Dim for usize {
|
||||
pub enum D {
|
||||
Minus1,
|
||||
Minus2,
|
||||
Minus(usize),
|
||||
}
|
||||
|
||||
impl D {
|
||||
@ -311,6 +297,7 @@ impl D {
|
||||
let dim = match self {
|
||||
Self::Minus1 => -1,
|
||||
Self::Minus2 => -2,
|
||||
Self::Minus(u) => -(*u as i32),
|
||||
};
|
||||
Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
@ -327,6 +314,7 @@ impl Dim for D {
|
||||
match self {
|
||||
Self::Minus1 if rank >= 1 => Ok(rank - 1),
|
||||
Self::Minus2 if rank >= 2 => Ok(rank - 2),
|
||||
Self::Minus(u) if *u > 0 && rank >= *u => Ok(rank - *u),
|
||||
_ => Err(self.out_of_range(shape, op)),
|
||||
}
|
||||
}
|
||||
@ -336,6 +324,7 @@ impl Dim for D {
|
||||
match self {
|
||||
Self::Minus1 => Ok(rank),
|
||||
Self::Minus2 if rank >= 1 => Ok(rank - 1),
|
||||
Self::Minus(u) if *u > 0 && rank + 1 >= *u => Ok(rank + 1 - *u),
|
||||
_ => Err(self.out_of_range(shape, op)),
|
||||
}
|
||||
}
|
||||
@ -626,4 +615,20 @@ mod tests {
|
||||
let shape = Shape::from((299, 792, 458));
|
||||
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_from_tuple() {
|
||||
let shape = Shape::from((2,));
|
||||
assert_eq!(shape.dims(), &[2]);
|
||||
let shape = Shape::from((2, 3));
|
||||
assert_eq!(shape.dims(), &[2, 3]);
|
||||
let shape = Shape::from((2, 3, 4));
|
||||
assert_eq!(shape.dims(), &[2, 3, 4]);
|
||||
let shape = Shape::from((2, 3, 4, 5));
|
||||
assert_eq!(shape.dims(), &[2, 3, 4, 5]);
|
||||
let shape = Shape::from((2, 3, 4, 5, 6));
|
||||
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6]);
|
||||
let shape = Shape::from((2, 3, 4, 5, 6, 7));
|
||||
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6, 7]);
|
||||
}
|
||||
}
|
||||
|
250
candle-core/src/sort.rs
Normal file
250
candle-core/src/sort.rs
Normal file
@ -0,0 +1,250 @@
|
||||
use crate::{Result, Tensor};
|
||||
use rayon::prelude::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct ArgSort {
|
||||
asc: bool,
|
||||
last_dim: usize,
|
||||
}
|
||||
|
||||
impl ArgSort {
|
||||
fn asort<T: crate::WithDType>(&self, vs: &[T], layout: &crate::Layout) -> Vec<u32> {
|
||||
#[allow(clippy::uninit_vec)]
|
||||
// Safety: indexes are set later in the parallelized section.
|
||||
let mut sort_indexes = unsafe {
|
||||
let el_count = layout.shape().elem_count();
|
||||
let mut v = Vec::with_capacity(el_count);
|
||||
v.set_len(el_count);
|
||||
v
|
||||
};
|
||||
if self.asc {
|
||||
sort_indexes
|
||||
.par_chunks_exact_mut(self.last_dim)
|
||||
.zip(vs.par_chunks_exact(self.last_dim))
|
||||
.for_each(|(indexes, vs)| {
|
||||
indexes
|
||||
.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, v)| *v = i as u32);
|
||||
indexes.sort_by(|&i, &j| {
|
||||
vs[i as usize]
|
||||
.partial_cmp(&vs[j as usize])
|
||||
.unwrap_or(std::cmp::Ordering::Greater)
|
||||
})
|
||||
});
|
||||
} else {
|
||||
sort_indexes
|
||||
.par_chunks_exact_mut(self.last_dim)
|
||||
.zip(vs.par_chunks_exact(self.last_dim))
|
||||
.for_each(|(indexes, vs)| {
|
||||
indexes
|
||||
.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, v)| *v = i as u32);
|
||||
indexes.sort_by(|&j, &i| {
|
||||
vs[i as usize]
|
||||
.partial_cmp(&vs[j as usize])
|
||||
.unwrap_or(std::cmp::Ordering::Greater)
|
||||
})
|
||||
});
|
||||
}
|
||||
sort_indexes
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
mod cuda {
|
||||
use super::*;
|
||||
use crate::cuda_backend::cudarc::driver::{
|
||||
CudaSlice, DeviceRepr, LaunchConfig, ValidAsZeroBits,
|
||||
};
|
||||
use crate::cuda_backend::{kernel_name, kernels, CudaStorageSlice as S, WrapErr};
|
||||
use crate::{CudaDevice, WithDType};
|
||||
|
||||
impl crate::cuda_backend::Map1Any for ArgSort {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
||||
&self,
|
||||
src: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
layout: &crate::Layout,
|
||||
_wrap: W,
|
||||
) -> Result<S> {
|
||||
use cudarc::driver::PushKernelArg;
|
||||
|
||||
let slice = match layout.contiguous_offsets() {
|
||||
None => crate::bail!("input has to be contiguous"),
|
||||
Some((o1, o2)) => src.slice(o1..o2),
|
||||
};
|
||||
let elem_count = layout.shape().elem_count();
|
||||
let dst = unsafe { dev.alloc::<u32>(elem_count)? };
|
||||
let func = if self.asc {
|
||||
dev.get_or_load_func(&kernel_name::<T>("asort_asc"), &kernels::SORT)?
|
||||
} else {
|
||||
dev.get_or_load_func(&kernel_name::<T>("asort_desc"), &kernels::SORT)?
|
||||
};
|
||||
let ncols = self.last_dim;
|
||||
let nrows = elem_count / ncols;
|
||||
let ncols_pad = next_power_of_2(ncols);
|
||||
let cfg = LaunchConfig {
|
||||
grid_dim: (1, nrows as u32, 1),
|
||||
block_dim: (ncols_pad as u32, 1, 1),
|
||||
shared_mem_bytes: (ncols_pad * std::mem::size_of::<u32>()) as u32,
|
||||
};
|
||||
let stream = dev.cuda_stream();
|
||||
let mut builder = stream.launch_builder(&func);
|
||||
let ncols = ncols as i32;
|
||||
let ncols_pad = ncols_pad as i32;
|
||||
builder.arg(&slice).arg(&dst).arg(&ncols).arg(&ncols_pad);
|
||||
unsafe { builder.launch(cfg) }.w()?;
|
||||
Ok(S::U32(dst))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::CustomOp1 for ArgSort {
|
||||
fn name(&self) -> &'static str {
|
||||
"argsort"
|
||||
}
|
||||
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
storage: &crate::CpuStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CpuStorage, crate::Shape)> {
|
||||
let sort_indexes = match storage {
|
||||
crate::CpuStorage::U8(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::U32(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::I64(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::BF16(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F16(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F32(vs) => self.asort(vs, layout),
|
||||
crate::CpuStorage::F64(vs) => self.asort(vs, layout),
|
||||
};
|
||||
let sort_indexes = crate::CpuStorage::U32(sort_indexes);
|
||||
Ok((sort_indexes, layout.shape().into()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "cuda")]
|
||||
fn cuda_fwd(
|
||||
&self,
|
||||
storage: &crate::CudaStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::CudaStorage, crate::Shape)> {
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::cuda_backend::Map1Any;
|
||||
let dev = storage.device();
|
||||
let slice = self.map(&storage.slice, dev, layout)?;
|
||||
let dst = crate::cuda_backend::CudaStorage {
|
||||
slice,
|
||||
device: dev.clone(),
|
||||
};
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
fn metal_fwd(
|
||||
&self,
|
||||
storage: &crate::MetalStorage,
|
||||
layout: &crate::Layout,
|
||||
) -> Result<(crate::MetalStorage, crate::Shape)> {
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::DType;
|
||||
|
||||
let name = {
|
||||
if self.asc {
|
||||
match storage.dtype() {
|
||||
DType::BF16 => "asort_asc_bf16",
|
||||
DType::F16 => "asort_asc_f16",
|
||||
DType::F32 => "asort_asc_f32",
|
||||
DType::F64 => "asort_asc_f64",
|
||||
DType::U8 => "asort_asc_u8",
|
||||
DType::U32 => "asort_asc_u32",
|
||||
DType::I64 => "asort_asc_i64",
|
||||
}
|
||||
} else {
|
||||
match storage.dtype() {
|
||||
DType::BF16 => "asort_desc_bf16",
|
||||
DType::F16 => "asort_desc_f16",
|
||||
DType::F32 => "asort_desc_f32",
|
||||
DType::F64 => "asort_desc_f64",
|
||||
DType::U8 => "asort_desc_u8",
|
||||
DType::U32 => "asort_desc_u32",
|
||||
DType::I64 => "asort_desc_i64",
|
||||
}
|
||||
}
|
||||
};
|
||||
let device = storage.device();
|
||||
let kernels = device.kernels();
|
||||
let command_buffer = device.command_buffer()?;
|
||||
let el = layout.shape().elem_count();
|
||||
let ncols = self.last_dim;
|
||||
let nrows = el / ncols;
|
||||
let src = crate::metal_backend::buffer_o(storage.buffer(), layout, storage.dtype());
|
||||
let dst = device.new_buffer(el, DType::U32, "asort")?;
|
||||
let mut ncols_pad = 1;
|
||||
while ncols_pad < ncols {
|
||||
ncols_pad *= 2;
|
||||
}
|
||||
candle_metal_kernels::call_arg_sort(
|
||||
device.metal_device(),
|
||||
&command_buffer,
|
||||
kernels,
|
||||
name,
|
||||
nrows,
|
||||
ncols,
|
||||
ncols_pad,
|
||||
src,
|
||||
&dst,
|
||||
)
|
||||
.map_err(crate::Error::wrap)?;
|
||||
let dst = crate::MetalStorage::new(dst, device.clone(), el, DType::U32);
|
||||
Ok((dst, layout.shape().clone()))
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
fn next_power_of_2(x: usize) -> usize {
|
||||
let mut n = 1;
|
||||
while n < x {
|
||||
n *= 2
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
/// Returns the indices that sort the tensor along the last dimension.
|
||||
///
|
||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
||||
/// comes to ties.
|
||||
pub fn arg_sort_last_dim(&self, asc: bool) -> Result<Tensor> {
|
||||
if !self.is_contiguous() {
|
||||
return Err(crate::Error::RequiresContiguous {
|
||||
op: "arg_sort_last_dim",
|
||||
});
|
||||
}
|
||||
let last_dim = match self.dims().last() {
|
||||
None => crate::bail!("empty last-dim in arg-sort"),
|
||||
Some(last_dim) => *last_dim,
|
||||
};
|
||||
// No need for a backward pass for arg sort.
|
||||
self.apply_op1_no_bwd(&ArgSort { asc, last_dim })
|
||||
}
|
||||
|
||||
/// Sorts the tensor along the last dimension, returns the sorted tensor together with the
|
||||
/// sorted indexes.
|
||||
///
|
||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
||||
/// comes to ties.
|
||||
pub fn sort_last_dim(&self, asc: bool) -> Result<(Tensor, Tensor)> {
|
||||
if !self.is_contiguous() {
|
||||
return Err(crate::Error::RequiresContiguous {
|
||||
op: "sort_last_dim",
|
||||
});
|
||||
}
|
||||
let asort = self.arg_sort_last_dim(asc)?;
|
||||
let sorted = self.gather(&asort, crate::D::Minus1)?;
|
||||
Ok((sorted, asort))
|
||||
}
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
use crate::backend::BackendStorage;
|
||||
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
|
||||
use crate::op::{self, CmpOp, ReduceOp};
|
||||
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
|
||||
use crate::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
|
||||
|
||||
// We do not want to implement Clone on Storage as cloning may fail because of
|
||||
// out of memory. Instead try_clone should be used.
|
||||
@ -43,9 +44,19 @@ impl Storage {
|
||||
}
|
||||
|
||||
pub(crate) fn same_device(&self, rhs: &Self, op: &'static str) -> Result<()> {
|
||||
let lhs = self.device().location();
|
||||
let rhs = rhs.device().location();
|
||||
if lhs != rhs {
|
||||
let lhs_device = self.device();
|
||||
let rhs_device = rhs.device();
|
||||
let lhs = lhs_device.location();
|
||||
let rhs = rhs_device.location();
|
||||
let same_device = if self.device().is_metal() {
|
||||
// On metal, we require the device to be exactly the same rather than
|
||||
// having the same location. In cuda this is not necessary as all CudaDevice on the
|
||||
// same GPU will use the same cuda stream.
|
||||
lhs_device.same_device(&rhs_device)
|
||||
} else {
|
||||
lhs == rhs
|
||||
};
|
||||
if !same_device {
|
||||
Err(Error::DeviceMismatchBinaryOp { lhs, rhs, op }.bt())
|
||||
} else {
|
||||
Ok(())
|
||||
@ -252,6 +263,51 @@ impl Storage {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op1(&mut self, l: &Layout, c: &dyn InplaceOp1) -> Result<()> {
|
||||
match self {
|
||||
Self::Cpu(storage) => c.cpu_fwd(storage, l),
|
||||
Self::Cuda(storage) => c.cuda_fwd(storage, l),
|
||||
Self::Metal(storage) => c.metal_fwd(storage, l),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op2(
|
||||
&mut self,
|
||||
l1: &Layout,
|
||||
t2: &Self,
|
||||
l2: &Layout,
|
||||
c: &dyn InplaceOp2,
|
||||
) -> Result<()> {
|
||||
self.same_device(t2, c.name())?;
|
||||
match (self, t2) {
|
||||
(Self::Cpu(s1), Self::Cpu(s2)) => c.cpu_fwd(s1, l1, s2, l2),
|
||||
(Self::Cuda(s1), Self::Cuda(s2)) => c.cuda_fwd(s1, l1, s2, l2),
|
||||
(Self::Metal(s1), Self::Metal(s2)) => c.metal_fwd(s1, l1, s2, l2),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inplace_op3(
|
||||
&mut self,
|
||||
l1: &Layout,
|
||||
t2: &Self,
|
||||
l2: &Layout,
|
||||
t3: &Self,
|
||||
l3: &Layout,
|
||||
c: &dyn InplaceOp3,
|
||||
) -> Result<()> {
|
||||
self.same_device(t2, c.name())?;
|
||||
self.same_device(t3, c.name())?;
|
||||
match (self, t2, t3) {
|
||||
(Self::Cpu(s1), Self::Cpu(s2), Self::Cpu(s3)) => c.cpu_fwd(s1, l1, s2, l2, s3, l3),
|
||||
(Self::Cuda(s1), Self::Cuda(s2), Self::Cuda(s3)) => c.cuda_fwd(s1, l1, s2, l2, s3, l3),
|
||||
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
|
||||
c.metal_fwd(s1, l1, s2, l2, s3, l3)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn unary_impl<B: op::UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
|
||||
match self {
|
||||
Storage::Cpu(storage) => {
|
||||
@ -352,6 +408,10 @@ impl Storage {
|
||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Cuda(s))
|
||||
}
|
||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
||||
Ok(Self::Metal(s))
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
@ -697,4 +757,32 @@ impl Storage {
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub(crate) fn copy2d(
|
||||
&self,
|
||||
dst: &mut Self,
|
||||
d1: usize,
|
||||
d2: usize,
|
||||
src_s: usize,
|
||||
dst_s: usize,
|
||||
src_o: usize,
|
||||
dst_o: usize,
|
||||
) -> Result<()> {
|
||||
match (self, dst) {
|
||||
(Self::Cpu(src), Self::Cpu(dst)) => src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o),
|
||||
(Self::Cuda(src), Self::Cuda(dst)) => {
|
||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
||||
}
|
||||
(Self::Metal(src), Self::Metal(dst)) => {
|
||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
||||
}
|
||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: lhs.device().location(),
|
||||
rhs: rhs.device().location(),
|
||||
op: "copy2d",
|
||||
}
|
||||
.bt()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
208
candle-core/src/streaming.rs
Normal file
208
candle-core/src/streaming.rs
Normal file
@ -0,0 +1,208 @@
|
||||
//! StreamTensror useful for streaming ops.
|
||||
//!
|
||||
use crate::{Result, Shape, Tensor};
|
||||
|
||||
pub trait Dim: crate::shape::Dim + Copy {}
|
||||
impl<T: crate::shape::Dim + Copy> Dim for T {}
|
||||
|
||||
/// A stream tensor is used in streaming module. It can either contain an actual tensor or be
|
||||
/// empty.
|
||||
#[derive(Clone)]
|
||||
pub struct StreamTensor(Option<Tensor>);
|
||||
|
||||
impl std::fmt::Debug for StreamTensor {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match &self.0 {
|
||||
Some(t) => write!(f, "{:?}", t.shape()),
|
||||
None => write!(f, "Empty"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::From<Option<Tensor>> for StreamTensor {
|
||||
fn from(value: Option<Tensor>) -> Self {
|
||||
Self(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::From<Tensor> for StreamTensor {
|
||||
fn from(value: Tensor) -> Self {
|
||||
Self(Some(value))
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::From<()> for StreamTensor {
|
||||
fn from(_value: ()) -> Self {
|
||||
Self(None)
|
||||
}
|
||||
}
|
||||
|
||||
impl StreamTensor {
|
||||
pub fn empty() -> Self {
|
||||
Self(None)
|
||||
}
|
||||
|
||||
pub fn from_tensor(tensor: Tensor) -> Self {
|
||||
Self(Some(tensor))
|
||||
}
|
||||
|
||||
pub fn shape(&self) -> Option<&Shape> {
|
||||
self.0.as_ref().map(|t| t.shape())
|
||||
}
|
||||
|
||||
pub fn cat2<D: Dim>(&self, rhs: &Self, dim: D) -> Result<Self> {
|
||||
let xs = match (&self.0, &rhs.0) {
|
||||
(Some(lhs), Some(rhs)) => {
|
||||
let xs = Tensor::cat(&[lhs, rhs], dim)?;
|
||||
Some(xs)
|
||||
}
|
||||
(Some(xs), None) | (None, Some(xs)) => Some(xs.clone()),
|
||||
(None, None) => None,
|
||||
};
|
||||
Ok(Self(xs))
|
||||
}
|
||||
|
||||
pub fn seq_len<D: Dim>(&self, dim: D) -> Result<usize> {
|
||||
match &self.0 {
|
||||
None => Ok(0),
|
||||
Some(v) => v.dim(dim),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.0 = None
|
||||
}
|
||||
|
||||
pub fn narrow<D: Dim>(&self, dim: D, offset: usize, len: usize) -> Result<StreamTensor> {
|
||||
let t = match &self.0 {
|
||||
None => None,
|
||||
Some(t) => {
|
||||
let seq_len = t.dim(dim)?;
|
||||
if seq_len <= offset {
|
||||
None
|
||||
} else {
|
||||
let t = t.narrow(dim, offset, usize::min(len, seq_len - offset))?;
|
||||
Some(t)
|
||||
}
|
||||
}
|
||||
};
|
||||
Ok(Self(t))
|
||||
}
|
||||
|
||||
/// Splits the Streaming Tensor on the time axis `dim` with the first `lhs_len` elements
|
||||
/// returned in the first output and the remaining in the second output.
|
||||
pub fn split<D: Dim>(&self, dim: D, lhs_len: usize) -> Result<(Self, Self)> {
|
||||
match &self.0 {
|
||||
None => Ok((Self::empty(), Self::empty())),
|
||||
Some(t) => {
|
||||
let seq_len = t.dim(dim)?;
|
||||
let lhs_len = usize::min(seq_len, lhs_len);
|
||||
if lhs_len == 0 {
|
||||
Ok((Self::empty(), t.clone().into()))
|
||||
} else {
|
||||
let lhs = Self::from_tensor(t.narrow(dim, 0, lhs_len)?);
|
||||
let rhs_len = seq_len - lhs_len;
|
||||
let rhs = if rhs_len == 0 {
|
||||
Self::empty()
|
||||
} else {
|
||||
Self::from_tensor(t.narrow(dim, lhs_len, rhs_len)?)
|
||||
};
|
||||
Ok((lhs, rhs))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn as_option(&self) -> Option<&Tensor> {
|
||||
self.0.as_ref()
|
||||
}
|
||||
|
||||
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
|
||||
match &self.0 {
|
||||
None => Ok(Self::empty()),
|
||||
Some(t) => Ok(Self::from_tensor(t.apply(m)?)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Streaming modules take as input a stream tensor and return a stream tensor. They may perform
|
||||
/// some internal buffering so that enough data has been received for the module to be able to
|
||||
/// perform some operations.
|
||||
pub trait StreamingModule {
|
||||
// TODO: Should we also have a flush method?
|
||||
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor>;
|
||||
fn reset_state(&mut self);
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum BinOp {
|
||||
Add,
|
||||
Mul,
|
||||
Sub,
|
||||
Div,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StreamingBinOp {
|
||||
prev_lhs: StreamTensor,
|
||||
prev_rhs: StreamTensor,
|
||||
pub op: BinOp,
|
||||
pub dim: crate::D,
|
||||
}
|
||||
|
||||
impl StreamingBinOp {
|
||||
pub fn new(op: BinOp, dim: crate::D) -> Self {
|
||||
Self {
|
||||
prev_lhs: StreamTensor::empty(),
|
||||
prev_rhs: StreamTensor::empty(),
|
||||
op,
|
||||
dim,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn reset_state(&mut self) {
|
||||
self.prev_lhs.reset();
|
||||
self.prev_rhs.reset();
|
||||
}
|
||||
|
||||
pub fn forward(&self, lhs: &Tensor, rhs: &Tensor) -> Result<Tensor> {
|
||||
match self.op {
|
||||
BinOp::Add => Tensor::add(lhs, rhs),
|
||||
BinOp::Mul => Tensor::mul(lhs, rhs),
|
||||
BinOp::Sub => Tensor::sub(lhs, rhs),
|
||||
BinOp::Div => Tensor::div(lhs, rhs),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn step(&mut self, lhs: &StreamTensor, rhs: &StreamTensor) -> Result<StreamTensor> {
|
||||
let lhs = StreamTensor::cat2(&self.prev_lhs, lhs, self.dim)?;
|
||||
let rhs = StreamTensor::cat2(&self.prev_rhs, rhs, self.dim)?;
|
||||
let lhs_len = lhs.seq_len(self.dim)?;
|
||||
let rhs_len = rhs.seq_len(self.dim)?;
|
||||
let common_len = usize::min(lhs_len, rhs_len);
|
||||
let (lhs, prev_lhs) = lhs.split(self.dim, common_len)?;
|
||||
let (rhs, prev_rhs) = rhs.split(self.dim, common_len)?;
|
||||
let ys = match (lhs.0, rhs.0) {
|
||||
(Some(lhs), Some(rhs)) => {
|
||||
let ys = self.forward(&lhs, &rhs)?;
|
||||
StreamTensor::from_tensor(ys)
|
||||
}
|
||||
(None, None) => StreamTensor::empty(),
|
||||
(lhs, rhs) => crate::bail!("INTERNAL ERROR inconsistent lhs and rhs {lhs:?} {rhs:?}"),
|
||||
};
|
||||
self.prev_lhs = prev_lhs;
|
||||
self.prev_rhs = prev_rhs;
|
||||
Ok(ys)
|
||||
}
|
||||
}
|
||||
|
||||
/// Simple wrapper that doesn't do any buffering.
|
||||
pub struct Map<T: crate::Module>(T);
|
||||
|
||||
impl<T: crate::Module> StreamingModule for Map<T> {
|
||||
fn reset_state(&mut self) {}
|
||||
|
||||
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor> {
|
||||
xs.apply(&self.0)
|
||||
}
|
||||
}
|
@ -32,14 +32,11 @@ impl<'a> StridedIndex<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterator for StridedIndex<'a> {
|
||||
impl Iterator for StridedIndex<'_> {
|
||||
type Item = usize;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let storage_index = match self.next_storage_index {
|
||||
None => return None,
|
||||
Some(storage_index) => storage_index,
|
||||
};
|
||||
let storage_index = self.next_storage_index?;
|
||||
let mut updated = false;
|
||||
let mut next_storage_index = storage_index;
|
||||
for ((multi_i, max_i), stride_i) in self
|
||||
|
@ -1,9 +1,7 @@
|
||||
//! Tensors are N-dimensional matrixes of elements using a single data type.
|
||||
#![allow(clippy::redundant_closure_call)]
|
||||
use crate::backend::{BackendDevice, BackendStorage};
|
||||
use crate::op::{
|
||||
BackpropOp, BinaryOp, CmpOp, CustomOp1, CustomOp2, CustomOp3, Op, ReduceOp, UnaryOp,
|
||||
};
|
||||
use crate::op::{BackpropOp, BinaryOp, CmpOp, Op, ReduceOp, UnaryOp};
|
||||
use crate::scalar::TensorOrScalar;
|
||||
use crate::shape::{Dim, Dims};
|
||||
use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape};
|
||||
@ -81,6 +79,9 @@ macro_rules! unary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self) -> Result<Self> {
|
||||
let shape = self.shape();
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self
|
||||
.storage()
|
||||
.unary_impl::<crate::op::$op_name>(self.layout())?;
|
||||
@ -94,6 +95,9 @@ macro_rules! binary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
|
||||
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
|
||||
if shape.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -116,6 +120,9 @@ macro_rules! binary_op_scalar {
|
||||
.broadcast_as(self.shape())?,
|
||||
};
|
||||
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().binary_impl::<crate::op::$op_name>(
|
||||
&*rhs.storage(),
|
||||
self.layout(),
|
||||
@ -235,7 +242,7 @@ impl Tensor {
|
||||
Self::zeros_impl(shape, dtype, device, false)
|
||||
}
|
||||
|
||||
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other
|
||||
/// Creates a new tensor filled with zeros with same shape, dtype, and device as the other
|
||||
/// tensor.
|
||||
///
|
||||
/// ```rust
|
||||
@ -363,6 +370,15 @@ impl Tensor {
|
||||
|
||||
/// Returns a new tensor with all the elements having the same specified value. Note that
|
||||
/// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::full(3.5, (2, 4), &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec2::<f64>()?, &[
|
||||
/// [3.5, 3.5, 3.5, 3.5],
|
||||
/// [3.5, 3.5, 3.5, 3.5],
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
pub fn full<D: crate::WithDType, S: Into<Shape>>(
|
||||
value: D,
|
||||
shape: S,
|
||||
@ -372,6 +388,13 @@ impl Tensor {
|
||||
}
|
||||
|
||||
/// Creates a new 1D tensor from an iterator.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::from_iter( [1.0, 2.0, 3.0, 4.0].into_iter(), &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec1::<f64>()?, &[1.0, 2.0, 3.0, 4.0]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn from_iter<D: crate::WithDType>(
|
||||
iter: impl IntoIterator<Item = D>,
|
||||
device: &Device,
|
||||
@ -383,12 +406,26 @@ impl Tensor {
|
||||
|
||||
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
|
||||
/// difference `1` from `start`.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::arange(2., 5., &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec1::<f64>()?, &[2., 3., 4.]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn arange<D: crate::WithDType>(start: D, end: D, device: &Device) -> Result<Self> {
|
||||
Self::arange_step(start, end, D::one(), device)
|
||||
}
|
||||
|
||||
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
|
||||
/// difference `step` from `start`.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::arange_step(2.0, 4.0, 0.5, &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec1::<f64>()?, &[2.0, 2.5, 3.0, 3.5]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn arange_step<D: crate::WithDType>(
|
||||
start: D,
|
||||
end: D,
|
||||
@ -434,6 +471,16 @@ impl Tensor {
|
||||
/// Creates a new tensor initialized with values from the input vector. The number of elements
|
||||
/// in this vector must be the same as the number of elements defined by the shape.
|
||||
/// If the device is cpu, no data copy is made.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::from_vec(vec!{1., 2., 3., 4., 5., 6.}, (2, 3), &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec2::<f64>()?, &[
|
||||
/// [1., 2., 3.],
|
||||
/// [4., 5., 6.]
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn from_vec<S: Into<Shape>, D: crate::WithDType>(
|
||||
data: Vec<D>,
|
||||
shape: S,
|
||||
@ -444,12 +491,31 @@ impl Tensor {
|
||||
|
||||
/// Creates a new tensor initialized with values from the input slice. The number of elements
|
||||
/// in this vector must be the same as the number of elements defined by the shape.
|
||||
///```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let values = vec![1., 2., 3., 4., 5., 6., 7., 8.];
|
||||
/// let a = Tensor::from_slice(&values[1..7], (2, 3), &Device::Cpu)?;
|
||||
///
|
||||
/// assert_eq!(a.to_vec2::<f64>()?, &[
|
||||
/// [2., 3., 4.],
|
||||
/// [5., 6., 7.]
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn from_slice<S: Into<Shape>, D: crate::WithDType>(
|
||||
array: &[D],
|
||||
shape: S,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
Self::new_impl(array, shape.into(), device, false)
|
||||
let shape = shape.into();
|
||||
let n: usize = shape.elem_count();
|
||||
let buffer_size: usize = array.len();
|
||||
if buffer_size != n {
|
||||
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
|
||||
}
|
||||
let storage = device.storage_from_slice(array)?;
|
||||
let none = BackpropOp::none();
|
||||
Ok(from_storage(storage, shape, none, false))
|
||||
}
|
||||
|
||||
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
|
||||
@ -508,9 +574,11 @@ impl Tensor {
|
||||
unary_op!(gelu_erf, GeluErf);
|
||||
unary_op!(erf, Erf);
|
||||
unary_op!(relu, Relu);
|
||||
unary_op!(silu, Silu);
|
||||
unary_op!(ceil, Ceil);
|
||||
unary_op!(floor, Floor);
|
||||
unary_op!(round, Round);
|
||||
unary_op!(sign, Sign);
|
||||
|
||||
/// Round element of the input tensor to the nearest integer.
|
||||
///
|
||||
@ -573,9 +641,9 @@ impl Tensor {
|
||||
///
|
||||
/// * `args` - A slice of 1D tensors.
|
||||
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
|
||||
/// first dimension corresponds to the cardinality of the second input and the second
|
||||
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
|
||||
/// dimensions are in the same order as the cardinality of the inputs.
|
||||
/// first dimension corresponds to the cardinality of the second input and the second
|
||||
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
|
||||
/// dimensions are in the same order as the cardinality of the inputs.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
@ -646,6 +714,9 @@ impl Tensor {
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().affine(self.layout(), mul, add)?;
|
||||
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -653,6 +724,9 @@ impl Tensor {
|
||||
|
||||
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
|
||||
pub fn elu(&self, alpha: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().elu(self.layout(), alpha)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
@ -660,12 +734,15 @@ impl Tensor {
|
||||
|
||||
/// Raise the tensor to some float exponent `e`.
|
||||
pub fn powf(&self, e: f64) -> Result<Self> {
|
||||
if self.elem_count() == 0 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let storage = self.storage().powf(self.layout(), e)?;
|
||||
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
}
|
||||
|
||||
fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
|
||||
pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
|
||||
if dim >= self.dims().len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: self.shape().clone(),
|
||||
@ -706,6 +783,30 @@ impl Tensor {
|
||||
|
||||
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
|
||||
/// ranges from `start` to `start + len`.
|
||||
/// ```
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let a = Tensor::new(&[
|
||||
/// [0f32, 1., 2.],
|
||||
/// [3. , 4., 5.],
|
||||
/// [6. , 7., 8.]
|
||||
/// ], &Device::Cpu)?;
|
||||
///
|
||||
/// let b = a.narrow(0, 1, 2)?;
|
||||
/// assert_eq!(b.shape().dims(), &[2, 3]);
|
||||
/// assert_eq!(b.to_vec2::<f32>()?, &[
|
||||
/// [3., 4., 5.],
|
||||
/// [6., 7., 8.]
|
||||
/// ]);
|
||||
///
|
||||
/// let c = a.narrow(1, 1, 1)?;
|
||||
/// assert_eq!(c.shape().dims(), &[3, 1]);
|
||||
/// assert_eq!(c.to_vec2::<f32>()?, &[
|
||||
/// [1.],
|
||||
/// [4.],
|
||||
/// [7.]
|
||||
/// ]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> {
|
||||
let dims = self.dims();
|
||||
let dim = dim.to_index(self.shape(), "narrow")?;
|
||||
@ -804,6 +905,35 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Roll the tensor input along the given dimension.
|
||||
/// Elements that are shifted beyond the last position are re-introduced at the first position.
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, Device};
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.roll(1, 0)?;
|
||||
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]);
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.roll(-1, 0)?;
|
||||
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self>
|
||||
where
|
||||
D: Dim + Clone,
|
||||
{
|
||||
let dim = dim.to_index(self.shape(), "roll")?;
|
||||
let dim_size = self.dim(dim)?;
|
||||
let shift = shift.rem_euclid(dim_size as i32) as usize;
|
||||
if shift == 0 {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
let a = self.narrow(dim, 0, dim_size - shift)?;
|
||||
let b = self.narrow(dim, dim_size - shift, shift)?;
|
||||
Tensor::cat(&[&b, &a], dim)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
|
||||
/// input dimensions.
|
||||
///
|
||||
@ -985,7 +1115,7 @@ impl Tensor {
|
||||
/// tensor also has three dimensions, `(batch, channels, target_size)`.
|
||||
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
|
||||
let (n, c, _l) = self.dims3()?;
|
||||
let op = BackpropOp::new1(self, Op::UpsampleNearest1D);
|
||||
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest1D { arg, target_size });
|
||||
let storage = self
|
||||
.storage()
|
||||
.upsample_nearest1d(self.layout(), target_size)?;
|
||||
@ -1125,6 +1255,9 @@ impl Tensor {
|
||||
let n = b_dims[dim - 1];
|
||||
|
||||
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
|
||||
if c_shape.elem_count() == 0 || k == 0 {
|
||||
return Tensor::zeros(c_shape, self.dtype(), self.device());
|
||||
}
|
||||
let batching: usize = a_dims[..dim - 2].iter().product();
|
||||
let batching_b: usize = b_dims[..dim - 2].iter().product();
|
||||
if k != k2 || batching != batching_b {
|
||||
@ -1321,7 +1454,7 @@ impl Tensor {
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
|
||||
let mut storage = unsafe { self.device().alloc_uninit(self.shape(), self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let offset = start * src.dims()[1..].iter().product::<usize>();
|
||||
@ -1387,14 +1520,15 @@ impl Tensor {
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `self` - The input tensor.
|
||||
/// * `indexes` - The indices of elements to gather, this should have the same shape as `self`
|
||||
/// but can have a different number of elements on the target dimension.
|
||||
/// * `indexes` - The indices of elements to gather, this should have same number of dimensions as `self`
|
||||
/// and indexes.dims()[d] <= self.dims()[d] for all dimensions d != dim
|
||||
/// * `dim` - the target dimension.
|
||||
///
|
||||
/// The resulting tensor has the same shape as `indexes` and use values from `self` indexed on
|
||||
/// dimension `dim` by the values in `indexes`.
|
||||
pub fn gather<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> {
|
||||
let dim = dim.to_index(self.shape(), "gather")?;
|
||||
|
||||
let self_dims = self.dims();
|
||||
let indexes_dims = indexes.dims();
|
||||
let mismatch = if indexes_dims.len() != self_dims.len() {
|
||||
@ -1402,7 +1536,7 @@ impl Tensor {
|
||||
} else {
|
||||
let mut mismatch = false;
|
||||
for (i, (&d1, &d2)) in self_dims.iter().zip(indexes_dims.iter()).enumerate() {
|
||||
if i != dim && d1 != d2 {
|
||||
if i != dim && d1 < d2 {
|
||||
mismatch = true;
|
||||
break;
|
||||
}
|
||||
@ -1626,6 +1760,42 @@ impl Tensor {
|
||||
&self.op
|
||||
}
|
||||
|
||||
/// Computes the max of all the elements in this tensor and returns a tensor holding this
|
||||
/// scalar with zero dimensions.
|
||||
///
|
||||
/// ```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.max_all()?;
|
||||
/// assert_eq!(tensor.to_scalar::<f32>()?, 5.);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn max_all(&self) -> Result<Tensor> {
|
||||
if self.rank() == 0 {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
self.flatten_all()?.max(0)
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the min of all the elements in this tensor and returns a tensor holding this
|
||||
/// scalar with zero dimensions.
|
||||
///
|
||||
/// ```rust
|
||||
/// use candle_core::{Tensor, Device};
|
||||
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
|
||||
/// let tensor = tensor.min_all()?;
|
||||
/// assert_eq!(tensor.to_scalar::<f32>()?, 0.);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn min_all(&self) -> Result<Tensor> {
|
||||
if self.rank() == 0 {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
self.flatten_all()?.min(0)
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the sum of all the elements in this tensor and returns a tensor holding this
|
||||
/// scalar with zero dimensions.
|
||||
///
|
||||
@ -1853,9 +2023,9 @@ impl Tensor {
|
||||
/// this new node. The storage of this tensor is shared with the initial tensor.
|
||||
///
|
||||
/// If the tensor is already detached from the computation graph, the same tensor is returned.
|
||||
pub fn detach(&self) -> Result<Tensor> {
|
||||
pub fn detach(&self) -> Tensor {
|
||||
if self.op.is_none() && !self.is_variable {
|
||||
Ok(self.clone())
|
||||
self.clone()
|
||||
} else {
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
@ -1866,7 +2036,7 @@ impl Tensor {
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
Tensor(Arc::new(tensor_))
|
||||
}
|
||||
}
|
||||
|
||||
@ -1892,7 +2062,11 @@ impl Tensor {
|
||||
}
|
||||
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
|
||||
_ => {
|
||||
bail!("not implemented yet")
|
||||
bail!(
|
||||
"not implemented yet, self.device: {:?}, device: {:?}",
|
||||
self.device(),
|
||||
device
|
||||
)
|
||||
}
|
||||
};
|
||||
let op = BackpropOp::new1(self, Op::ToDevice);
|
||||
@ -1971,7 +2145,7 @@ impl Tensor {
|
||||
Ok(self.clone())
|
||||
} else {
|
||||
let shape = self.shape();
|
||||
let mut storage = self.device().zeros(shape, self.dtype())?;
|
||||
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let op = BackpropOp::new1(self, Op::Copy);
|
||||
@ -1979,11 +2153,21 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a tensor that is in row major order. This always makes a copy.
|
||||
pub fn force_contiguous(&self) -> Result<Tensor> {
|
||||
let shape = self.shape();
|
||||
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let op = BackpropOp::new1(self, Op::Copy);
|
||||
Ok(from_storage(storage, shape.clone(), op, false))
|
||||
}
|
||||
|
||||
/// Create a variable based on the values currently stored in a tensor. The storage is always
|
||||
/// copied.
|
||||
pub(crate) fn make_var(&self) -> Result<Tensor> {
|
||||
let shape = self.shape().clone();
|
||||
let mut storage = self.device().zeros(&shape, self.dtype())?;
|
||||
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), true))
|
||||
@ -2036,7 +2220,7 @@ impl Tensor {
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
} else {
|
||||
let mut storage = self.device().zeros(&shape, self.dtype())?;
|
||||
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
@ -2063,8 +2247,19 @@ impl Tensor {
|
||||
let dim = dim.to_index(self.shape(), "squeeze")?;
|
||||
if dims[dim] == 1 {
|
||||
let mut dims = dims.to_vec();
|
||||
let mut strides = self.stride().to_vec();
|
||||
dims.remove(dim);
|
||||
self.reshape(dims)
|
||||
strides.remove(dim);
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
storage: self.storage.clone(),
|
||||
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
|
||||
op: BackpropOp::new1(self, Op::Reshape),
|
||||
is_variable: false,
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
} else {
|
||||
Ok(self.clone())
|
||||
}
|
||||
@ -2085,10 +2280,24 @@ impl Tensor {
|
||||
/// ```
|
||||
pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> {
|
||||
let mut dims = self.dims().to_vec();
|
||||
let mut strides = self.stride().to_vec();
|
||||
let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?;
|
||||
// Cannot panic because to_index_plus_one already checks dimensions
|
||||
dims.insert(dim, 1);
|
||||
self.reshape(dims)
|
||||
// Any stride would work here, but we pick one so as to maximize the probability to remain
|
||||
// C contiguous.
|
||||
let stride = if dim < strides.len() { strides[dim] } else { 1 };
|
||||
strides.insert(dim, stride);
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
storage: self.storage.clone(),
|
||||
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
|
||||
op: BackpropOp::new1(self, Op::Reshape),
|
||||
is_variable: false,
|
||||
dtype: self.dtype,
|
||||
device: self.device.clone(),
|
||||
};
|
||||
Ok(Tensor(Arc::new(tensor_)))
|
||||
}
|
||||
|
||||
/// Stacks two or more tensors along a particular dimension.
|
||||
@ -2119,152 +2328,6 @@ impl Tensor {
|
||||
Self::cat(&args, dim)
|
||||
}
|
||||
|
||||
/// Concatenates two or more tensors along a particular dimension.
|
||||
///
|
||||
/// All tensors must of the same rank, and the output will have
|
||||
/// the same rank
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, DType, Device};
|
||||
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 0)?;
|
||||
/// assert_eq!(c.shape().dims(), &[4, 3]);
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 1)?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 6]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let dim = dim.to_index(arg0.shape(), "cat")?;
|
||||
for arg in args {
|
||||
arg.as_ref().check_dim(dim, "cat")?;
|
||||
}
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg0.rank() != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: arg0.rank(),
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
if dim == 0 {
|
||||
Self::cat0(args)
|
||||
} else {
|
||||
// TODO: Avoid these transpositions and have an implementation that works
|
||||
// for dim != 0...
|
||||
let args: Vec<Tensor> = args
|
||||
.iter()
|
||||
.map(|a| a.as_ref().transpose(0, dim))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let cat = Self::cat0(&args)?;
|
||||
cat.transpose(0, dim)
|
||||
}
|
||||
}
|
||||
|
||||
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[0] = 0;
|
||||
let mut offsets = vec![0usize];
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == 0 {
|
||||
cat_dims[0] += v2;
|
||||
}
|
||||
if dim_idx != 0 && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
let next_offset = offsets.last().unwrap() + arg.elem_count();
|
||||
offsets.push(next_offset);
|
||||
}
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = BackpropOp::new(args, |args| Op::Cat(args, 0));
|
||||
let mut storage = device.zeros(&shape, dtype)?;
|
||||
for (arg, &offset) in args.iter().zip(offsets.iter()) {
|
||||
let arg = arg.as_ref();
|
||||
arg.storage()
|
||||
.copy_strided_src(&mut storage, offset, arg.layout())?;
|
||||
}
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
|
||||
/// input tensor values and `right` elements after.
|
||||
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
|
||||
@ -2347,6 +2410,10 @@ impl Tensor {
|
||||
self.storage.read().unwrap()
|
||||
}
|
||||
|
||||
pub(crate) fn storage_mut(&self) -> std::sync::RwLockWriteGuard<'_, Storage> {
|
||||
self.storage.write().unwrap()
|
||||
}
|
||||
|
||||
// If we extend the visibility of this function to be usable outside of this crate, we should
|
||||
// make it unsafe.
|
||||
pub(crate) fn storage_mut_and_layout(
|
||||
@ -2368,96 +2435,6 @@ impl Tensor {
|
||||
std::ptr::eq(lhs, rhs)
|
||||
}
|
||||
|
||||
/// Applies a unary custom op without backward support
|
||||
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op without backward support
|
||||
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) =
|
||||
self.storage()
|
||||
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op without backward support
|
||||
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c,
|
||||
)?;
|
||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
||||
}
|
||||
|
||||
/// Applies a unary custom op.
|
||||
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
|
||||
let (storage, shape) = self
|
||||
.storage()
|
||||
.apply_op1(self.layout(), c.as_ref().as_ref())?;
|
||||
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
|
||||
self.apply_op1_arc(Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a binary custom op.
|
||||
pub fn apply_op2_arc(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op2(
|
||||
self.layout(),
|
||||
&rhs.storage(),
|
||||
rhs.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
|
||||
self.apply_op2_arc(r, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Applies a ternary custom op.
|
||||
pub fn apply_op3_arc(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||
) -> Result<Self> {
|
||||
let (storage, shape) = self.storage().apply_op3(
|
||||
self.layout(),
|
||||
&t2.storage(),
|
||||
t2.layout(),
|
||||
&t3.storage(),
|
||||
t3.layout(),
|
||||
c.as_ref().as_ref(),
|
||||
)?;
|
||||
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
|
||||
Op::CustomOp3(t1, t2, t3, c.clone())
|
||||
});
|
||||
Ok(from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
|
||||
&self,
|
||||
t2: &Self,
|
||||
t3: &Self,
|
||||
c: C,
|
||||
) -> Result<Self> {
|
||||
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
|
||||
}
|
||||
|
||||
/// Normalize a 'relative' axis value: positive values are kept, negative
|
||||
/// values means counting the dimensions from the back.
|
||||
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
|
||||
@ -2578,10 +2555,52 @@ impl Tensor {
|
||||
}
|
||||
|
||||
/// Returns log(sum(exp(tensor), dim)).
|
||||
pub fn logsumexp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
let exp = self.exp()?;
|
||||
let sum = exp.sum(sum_dims)?;
|
||||
sum.log()
|
||||
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
let sum_dims = sum_dims.to_indexes(self.shape(), "log-sum-exp")?;
|
||||
if sum_dims.is_empty() {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let max = sum_dims[1..]
|
||||
.iter()
|
||||
.try_fold(self.max_keepdim(sum_dims[0])?, |max, &dim| {
|
||||
max.max_keepdim(dim)
|
||||
})?;
|
||||
let exp = self.broadcast_sub(&max)?.exp()?;
|
||||
let sum = exp.sum(sum_dims.clone())?;
|
||||
|
||||
sum.log()? + max.squeeze_dims(&sum_dims)
|
||||
}
|
||||
|
||||
/// Pointwise pow operation.
|
||||
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.mul(&self.log()?)?.exp()
|
||||
}
|
||||
|
||||
/// Broadcasting version of `pow`.
|
||||
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.broadcast_mul(&self.log()?)?.exp()
|
||||
}
|
||||
|
||||
/// Returns a new tensor with the order of elements reversed along the specified dimensions.
|
||||
/// This function makes a copy of the tensor’s data.
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, Device};
|
||||
/// let t = Tensor::arange(0., 6., &Device::Cpu)?.reshape((2, 3))?;
|
||||
/// assert_eq!(t.to_vec2::<f64>()?, &[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
|
||||
/// let t_flipped = t.flip(&[0])?;
|
||||
/// assert_eq!(t_flipped.to_vec2::<f64>()?, &[[3.0, 4.0, 5.0], [0.0, 1.0, 2.0]]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn flip(&self, dims: &[usize]) -> Result<Tensor> {
|
||||
let mut result = self.clone();
|
||||
for &dim in dims.iter() {
|
||||
let size = result.dim(dim)?;
|
||||
let indices: Vec<i64> = (0..size).rev().map(|x| x as i64).collect();
|
||||
let indices_tensor = Tensor::from_vec(indices, (size,), result.device())?;
|
||||
result = result.index_select(&indices_tensor, dim)?;
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
|
||||
|
303
candle-core/src/tensor_cat.rs
Normal file
303
candle-core/src/tensor_cat.rs
Normal file
@ -0,0 +1,303 @@
|
||||
use crate::{shape::Dim, Context, Error, Result, Shape, Tensor};
|
||||
|
||||
impl Tensor {
|
||||
/// Concatenates two or more tensors along a particular dimension.
|
||||
///
|
||||
/// All tensors must of the same rank, and the output will have
|
||||
/// the same rank
|
||||
///
|
||||
/// ```rust
|
||||
/// # use candle_core::{Tensor, DType, Device};
|
||||
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 0)?;
|
||||
/// assert_eq!(c.shape().dims(), &[4, 3]);
|
||||
///
|
||||
/// let c = Tensor::cat(&[&a, &b], 1)?;
|
||||
/// assert_eq!(c.shape().dims(), &[2, 6]);
|
||||
/// # Ok::<(), candle_core::Error>(())
|
||||
/// ```
|
||||
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let dim = dim.to_index(arg0.shape(), "cat")?;
|
||||
for arg in args {
|
||||
arg.as_ref().check_dim(dim, "cat")?;
|
||||
}
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg0.rank() != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: arg0.rank(),
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
let all_contiguous = args.iter().all(|v| v.as_ref().is_contiguous());
|
||||
if all_contiguous {
|
||||
Self::cat_contiguous(args, dim)
|
||||
} else if dim == 0 {
|
||||
Self::cat0(args)
|
||||
} else {
|
||||
let args: Vec<Tensor> = args
|
||||
.iter()
|
||||
.map(|a| a.as_ref().transpose(0, dim))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let cat = Self::cat0(&args)?;
|
||||
cat.transpose(0, dim)
|
||||
}
|
||||
}
|
||||
|
||||
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[0] = 0;
|
||||
let mut offsets = vec![0usize];
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == 0 {
|
||||
cat_dims[0] += v2;
|
||||
}
|
||||
if dim_idx != 0 && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
let next_offset = offsets.last().context("empty offsets")? + arg.elem_count();
|
||||
offsets.push(next_offset);
|
||||
}
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, 0));
|
||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
||||
for (arg, &offset) in args.iter().zip(offsets.iter()) {
|
||||
let arg = arg.as_ref();
|
||||
arg.storage()
|
||||
.copy_strided_src(&mut storage, offset, arg.layout())?;
|
||||
}
|
||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
fn cat_contiguous<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
||||
}
|
||||
let arg0 = args[0].as_ref();
|
||||
if args.len() == 1 {
|
||||
return Ok(arg0.clone());
|
||||
}
|
||||
let rank = arg0.rank();
|
||||
let device = arg0.device();
|
||||
let dtype = arg0.dtype();
|
||||
let first_dims = arg0.shape().dims();
|
||||
let mut cat_dims = first_dims.to_vec();
|
||||
cat_dims[dim] = 0;
|
||||
for (arg_idx, arg) in args.iter().enumerate() {
|
||||
let arg = arg.as_ref();
|
||||
if arg.dtype() != dtype {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: dtype,
|
||||
rhs: arg.dtype(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if arg.device().location() != device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: device.location(),
|
||||
rhs: arg.device().location(),
|
||||
op: "cat",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if rank != arg.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: rank,
|
||||
got: arg.rank(),
|
||||
shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in arg0
|
||||
.shape()
|
||||
.dims()
|
||||
.iter()
|
||||
.zip(arg.shape().dims().iter())
|
||||
.enumerate()
|
||||
{
|
||||
if dim_idx == dim {
|
||||
cat_dims[dim] += v2;
|
||||
}
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
Err(Error::ShapeMismatchCat {
|
||||
dim: dim_idx,
|
||||
first_shape: arg0.shape().clone(),
|
||||
n: arg_idx + 1,
|
||||
nth_shape: arg.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
}
|
||||
}
|
||||
let cat_target_dim_len = cat_dims[dim];
|
||||
let block_size: usize = cat_dims.iter().skip(1 + dim).product();
|
||||
let shape = Shape::from(cat_dims);
|
||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, dim));
|
||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
||||
let mut dst_o = 0;
|
||||
for arg in args.iter() {
|
||||
let arg = arg.as_ref();
|
||||
let arg_dims = arg.shape().dims();
|
||||
let d1: usize = arg_dims.iter().take(dim).product();
|
||||
let d2 = block_size * arg_dims[dim];
|
||||
let dst_s = block_size * cat_target_dim_len;
|
||||
let src_o = arg.layout().start_offset();
|
||||
arg.storage().copy2d(
|
||||
&mut storage,
|
||||
d1,
|
||||
d2,
|
||||
/* src_s */ d2,
|
||||
dst_s,
|
||||
src_o,
|
||||
dst_o,
|
||||
)?;
|
||||
dst_o += d2;
|
||||
}
|
||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
||||
}
|
||||
|
||||
/// Set the values on `self` using values from `src`. The copy starts at the specified
|
||||
/// `offset` for the target dimension `dim` on `self`.
|
||||
/// `self` and `src` must have the same shape except on dimension `dim` where the `self` size
|
||||
/// has to be greater than or equal to `offset` plus the `src` size.
|
||||
///
|
||||
/// Note that this modifies `self` in place and as such is not compatibel with
|
||||
/// back-propagation.
|
||||
pub fn slice_set<D: Dim>(&self, src: &Self, dim: D, offset: usize) -> Result<()> {
|
||||
let dim = dim.to_index(self.shape(), "slice-set")?;
|
||||
if !self.is_contiguous() || !src.is_contiguous() {
|
||||
Err(Error::RequiresContiguous { op: "slice-set" }.bt())?
|
||||
}
|
||||
if self.same_storage(src) {
|
||||
crate::bail!("cannot use slice_set when self and src share their storage")
|
||||
}
|
||||
if self.dtype() != src.dtype() {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: self.dtype(),
|
||||
rhs: src.dtype(),
|
||||
op: "slice-set",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.device().location() != src.device().location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: self.device().location(),
|
||||
rhs: src.device().location(),
|
||||
op: "slice-set",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.rank() != src.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: self.rank(),
|
||||
got: src.rank(),
|
||||
shape: self.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
for (dim_idx, (v1, v2)) in self.dims().iter().zip(src.dims().iter()).enumerate() {
|
||||
if dim_idx == dim && *v2 + offset > *v1 {
|
||||
crate::bail!("shape mismatch on target dim, dst: {v1}, src: {v2} + {offset}")
|
||||
}
|
||||
if dim_idx != dim && v1 != v2 {
|
||||
crate::bail!("shape mismatch on dim {dim_idx}, {v1} <> {v2}")
|
||||
}
|
||||
}
|
||||
let block_size: usize = src.dims().iter().skip(1 + dim).product();
|
||||
let d1: usize = src.dims().iter().take(dim).product();
|
||||
let d2 = block_size * src.dims()[dim];
|
||||
let dst_o = self.layout().start_offset() + offset * block_size;
|
||||
let src_o = src.layout().start_offset();
|
||||
src.storage().copy2d(
|
||||
&mut self.storage_mut(),
|
||||
d1,
|
||||
d2,
|
||||
/* src_s */ d2,
|
||||
/* dst_s */ block_size * self.dims()[dim],
|
||||
src_o,
|
||||
dst_o,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -24,6 +24,15 @@ macro_rules! test_device {
|
||||
};
|
||||
}
|
||||
|
||||
pub fn assert_tensor_eq(t1: &Tensor, t2: &Tensor) -> Result<()> {
|
||||
assert_eq!(t1.shape(), t2.shape());
|
||||
// Default U8 may not be large enough to hold the sum (`t.sum_all` defaults to the dtype of `t`)
|
||||
let eq_tensor = t1.eq(t2)?.to_dtype(crate::DType::U32)?;
|
||||
let all_equal = eq_tensor.sum_all()?;
|
||||
assert_eq!(all_equal.to_scalar::<u32>()?, eq_tensor.elem_count() as u32);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec0::<f32>()?;
|
||||
|
@ -1,3 +1,4 @@
|
||||
//! Useful functions for checking features.
|
||||
use std::str::FromStr;
|
||||
|
||||
pub fn get_num_threads() -> usize {
|
||||
|
@ -34,9 +34,14 @@ impl Var {
|
||||
Ok(Self(inner))
|
||||
}
|
||||
|
||||
// Convert a tensor to a variable, if the tensor is already a variable then it is returned as is.
|
||||
pub fn from_tensor(t: &Tensor) -> Result<Self> {
|
||||
let inner = t.make_var()?;
|
||||
Ok(Self(inner))
|
||||
if t.is_variable() {
|
||||
Ok(Self(t.clone()))
|
||||
} else {
|
||||
let inner = t.make_var()?;
|
||||
Ok(Self(inner))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rand_f64<S: Into<Shape>>(
|
||||
@ -107,6 +112,10 @@ impl Var {
|
||||
Ok(Self(inner))
|
||||
}
|
||||
|
||||
pub fn as_detached_tensor(&self) -> Tensor {
|
||||
self.0.detach()
|
||||
}
|
||||
|
||||
pub fn as_tensor(&self) -> &Tensor {
|
||||
&self.0
|
||||
}
|
||||
|
@ -18,6 +18,9 @@ w_t = w.transpose(0, 1)
|
||||
res = torch.nn.functional.conv_transpose1d(t, w_t)
|
||||
print(res.shape)
|
||||
print(res)
|
||||
res = torch.nn.functional.conv_transpose1d(t, w_t, groups=2)
|
||||
print(res.shape)
|
||||
print(res)
|
||||
*/
|
||||
fn conv1d(dev: &Device) -> Result<()> {
|
||||
let t = Tensor::new(
|
||||
@ -50,8 +53,25 @@ fn conv1d(dev: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
||||
);
|
||||
if dev.is_cpu() {
|
||||
let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
let res = {
|
||||
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
|
||||
t.conv1d(&w, /*padding*/ 1, 1, 1, 1)?
|
||||
};
|
||||
assert_eq!(res.dims(), [3, 2, 5]);
|
||||
// Same as pytorch default padding: use zeros.
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
|
||||
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
|
||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
||||
);
|
||||
|
||||
let w = w.transpose(0, 1)?;
|
||||
// The CPU kernels applied in the contiguous and non contiguous cases are different.
|
||||
for w in [w.clone(), w.contiguous()?] {
|
||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
@ -60,6 +80,17 @@ fn conv1d(dev: &Device) -> Result<()> {
|
||||
4.7076, -5.9745, -0.8276, 1.621
|
||||
],
|
||||
);
|
||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 2)?;
|
||||
assert_eq!(res.dims(), [1, 4, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res.squeeze(0)?, 4)?,
|
||||
[
|
||||
[-1.5596, -1.8099, 2.0407, 4.8764, -0.1743, -0.735, -0.7819],
|
||||
[0.7816, 3.8152, -0.5926, 2.2515, -5.1844, -0.3157, 1.4721],
|
||||
[1.6295, 0.52, 6.2611, 0.7109, 2.6315, -1.8793, 0.7113],
|
||||
[1.0949, 1.0166, 1.7464, 2.4561, -0.79, -0.5119, 0.1488]
|
||||
]
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@ -118,7 +149,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
],
|
||||
dev,
|
||||
)?;
|
||||
@ -146,7 +177,25 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
||||
]
|
||||
);
|
||||
let res = {
|
||||
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
|
||||
t.conv2d(&w, 0, 1, 1, 1)?
|
||||
};
|
||||
assert_eq!(res.dims(), [3, 2, 3, 3]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
|
||||
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
|
||||
[
|
||||
-4.2812, 2.0923, 5.2187, 7.5184, 0.752, -14.9426, 10.0087, 4.391, 0.2918, 1.6715,
|
||||
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
||||
]
|
||||
);
|
||||
|
||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
|
||||
assert_eq!(res.dims(), [1, 2, 7, 7]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&res.i(0)?, 4)?,
|
||||
@ -171,6 +220,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
// Dilations.
|
||||
let res = t.conv2d(&w, 0, 1, 2, 1)?;
|
||||
assert_eq!(res.dims(), [1, 2, 1, 1]);
|
||||
@ -209,6 +259,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -255,13 +306,13 @@ fn conv2d_small(dev: &Device) -> Result<()> {
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||
[
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1640, -0.0111, -0.1742, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 2.6437, -2.0268, 1.1823, 0.0000, 0.0000, 0.0000, 0.0000, 3.2855,
|
||||
-1.0324, 0.2539, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1640,
|
||||
-0.0111, -0.1742, 0.0, 0.0, 0.0, 0.0, 2.6437, -2.0268, 1.1823, 0.0, 0.0, 0.0, 0.0,
|
||||
3.2855, -1.0324, 0.2539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0
|
||||
]
|
||||
);
|
||||
|
||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||
assert_eq!(res.dims(), [1, 1, 3, 3]);
|
||||
assert_eq!(
|
||||
@ -363,6 +414,7 @@ print(w.grad.shape)
|
||||
print(w.grad[0])
|
||||
*/
|
||||
fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
// conv-transposes are not implemented for metal
|
||||
use candle_core::Var;
|
||||
let t = Var::from_slice(
|
||||
&[
|
||||
@ -375,7 +427,7 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||
],
|
||||
(1, 4, 5, 5),
|
||||
dev,
|
||||
@ -560,6 +612,251 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||
]
|
||||
);
|
||||
|
||||
// Conv Transpose 2d Test
|
||||
//tested against following python
|
||||
|
||||
// import torch
|
||||
// torch.manual_seed(4242)
|
||||
// padding = 4
|
||||
// outpadding = 2
|
||||
// dilation = 3
|
||||
// stride = 3
|
||||
// input = torch.randn((1, 4, 7, 5), requires_grad=True)
|
||||
// kernel = torch.randn((4, 2, 3, 5), requires_grad=True)
|
||||
// print("input", input.flatten())
|
||||
// print("kernel", kernel.flatten())
|
||||
// res = torch.nn.functional.conv_transpose2d(
|
||||
// input,
|
||||
// kernel,
|
||||
// stride=stride,
|
||||
// padding=padding,
|
||||
// dilation=dilation,
|
||||
// output_padding=outpadding,
|
||||
// )
|
||||
// res.retain_grad()
|
||||
// print(res.shape)
|
||||
// loss = (res**2).sum()
|
||||
// print(loss)
|
||||
// loss.backward()
|
||||
// print(input.grad.shape)
|
||||
// print("input grad", torch.round(input.grad, decimals=1))
|
||||
// print(kernel.grad.shape)
|
||||
// print("kernel grad", torch.round(kernel.grad.flatten(), decimals=1))
|
||||
|
||||
let padding = 4;
|
||||
let outpadding = 2;
|
||||
let dilation = 3;
|
||||
let stride = 3;
|
||||
|
||||
let t = Var::from_slice(
|
||||
&[
|
||||
0.4056_f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997,
|
||||
3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843,
|
||||
0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013,
|
||||
-0.6836, 0.2477, 1.3127, -0.2260, 0.2622, -1.2974, -0.8140, -0.8404, -0.3490, 0.0130,
|
||||
1.3123, 1.7569, -0.3956, -1.8255, 0.1727, -0.3538, 2.6941, 1.0529, 0.4219, -0.2071,
|
||||
1.1586, 0.4717, 0.3865, -0.5690, -0.5010, -0.1310, 0.7796, 0.6630, -0.2021, 2.6090,
|
||||
0.2049, 0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323,
|
||||
-1.3712, 0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742,
|
||||
0.3790, -0.4431, -0.4720, -0.7890, 0.2620, 0.5411, -1.1715, -2.4997, 2.3249, -0.8912,
|
||||
-0.4733, -0.5701, -2.8888, -1.4112, -0.5471, -0.9234, -1.1660, 0.4189, -0.7465,
|
||||
-0.6473, 0.1402, 0.7875, 0.5377, -0.6779, -0.8088, -0.4864, -0.2312, 0.9279, 0.1264,
|
||||
1.5480, 0.8265, -0.1025, 0.5138, -0.2512, 0.1576, 1.2705, 0.3641, -0.9325, 0.6451,
|
||||
-0.8537, 0.2378, 0.1794, 0.2752, -0.3687, -1.1149, -0.1410, -0.5829, -0.0892, 1.4258,
|
||||
-2.2789, 0.5270, 0.1825, 1.7007, -0.5263, -0.2954, 0.4440, 0.5537, 0.3492, 0.6186,
|
||||
1.6475, 0.2219,
|
||||
],
|
||||
(1, 4, 7, 5),
|
||||
dev,
|
||||
)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let w = Var::from_slice(
|
||||
&[
|
||||
-1.1744_f32, 0.3266, 2.5893, 1.0142, 0.1763, 0.7752, 0.6604, 0.2029, -0.2145, 0.7234,
|
||||
-0.3441, -1.5400, -0.6333, 0.6613, 0.2083, 0.6230, -1.7002, 0.3393, 0.4049, 1.0762,
|
||||
0.2723, 1.4181, 0.0029, -0.2122, 1.7668, 1.4168, 0.3320, -0.2719, 0.7932, -0.7204,
|
||||
0.4447, 0.1211, 0.5908, 1.0089, -0.1646, 1.8033, -0.6286, 0.2016, -0.3370, 1.2555,
|
||||
0.8009, -0.6488, -0.4652, -1.5685, 1.5860, 0.5583, 0.4623, 0.6026, 0.8828, 2.4990,
|
||||
0.6811, -0.3369, 1.3320, 1.7669, -1.1067, 1.2958, -0.9415, -0.9655, -0.4462, 0.7181,
|
||||
0.5181, -1.1658, -1.8467, -0.7763, 1.2769, 0.8651, 0.9890, 1.5092, 0.7207, -0.8481,
|
||||
0.7417, 0.3375, -1.2685, 1.4572, 1.0915, 0.1093, -0.8550, -0.5831, -0.6309, -0.2509,
|
||||
0.5220, -0.0914, 0.7900, 0.1096, 0.3258, 0.2723, -1.0942, -0.3393, -0.1653, 0.5732,
|
||||
-0.8014, 1.8194, -1.9023, 0.2127, 1.8636, -0.8979, 0.1927, -0.2778, 0.3105, 0.0071,
|
||||
-1.1823, 0.2476, -0.7178, -1.3821, 1.0769, -0.4376, -0.9967, -0.1227, 1.6197, -1.0604,
|
||||
0.1372, 0.8141, -0.6163, 0.7304, -0.8285, 2.0636, -0.7176, 0.2495, -0.2581, -0.4478,
|
||||
],
|
||||
(4, 2, 3, 5),
|
||||
dev,
|
||||
)?;
|
||||
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
|
||||
let loss = res.sqr()?.sum_all()?;
|
||||
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 2904.0);
|
||||
let grads = loss.backward()?;
|
||||
|
||||
let grad_t = grads.get(&t).unwrap();
|
||||
let grad_w = grads.get(&w).unwrap();
|
||||
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
|
||||
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
|
||||
[
|
||||
// torch gets 89.1
|
||||
-89.0, -135.3, 136.7, 102.0, -53.4, 117.9, 118.6, -43.9, -218.0, -58.5, -114.3, -150.0,
|
||||
-15.6, 172.1, 66.3, -64.3, -27.9, -19.8, 31.7, 62.1, 5.5, 92.6, 28.2, -29.6, 55.9,
|
||||
52.7, -72.7, -119.8, 53.8, -25.5, 128.8, 19.3, 68.0, 190.9, -64.1, -86.2, -111.2,
|
||||
106.6, -67.7, 37.8, 115.9, 50.4, -77.7, -54.9, 22.3, -4.6, 89.8, 61.7, 122.4, 192.6,
|
||||
-27.8, -104.6, 57.0, 166.4, 27.1, 6.1, 18.7, -93.2, 31.5, 168.2, -3.7, -99.5, -55.5,
|
||||
-10.8, 17.5, 20.8, 16.9, 43.8, 42.0, -89.2, 18.8, -9.6, -84.1, 212.6, 19.7, -50.0,
|
||||
-52.0, -40.0, -166.6, -73.2, -10.8, -73.3, 31.5, -23.4, -79.3, -27.0, -84.4, -42.9,
|
||||
-20.3, 51.8, -16.7, 76.3, -120.5, -65.8, 96.5, -10.7, -45.9, -88.1, 65.4, -7.0, -1.5,
|
||||
92.8, -25.1, -114.2, -5.8, -14.8, -51.2, -20.7, 54.2, -79.8, 47.7, -29.2, -8.8, 53.5,
|
||||
-28.4, 85.0, -18.3, 107.0, 28.3, -71.8
|
||||
]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
|
||||
[
|
||||
[
|
||||
[32.3, -41.6, -24.0, 14.1, 17.6],
|
||||
[-11.8, 72.5, 87.6, 46.4, 61.5],
|
||||
[115.0, 108.5, -48.6, -63.4, -50.0],
|
||||
[51.3, 5.4, 31.3, 91.1, -30.9],
|
||||
[52.7, 92.8, -68.0, -47.0, 83.0],
|
||||
// pytorch gets -107.1
|
||||
[-10.2, -107.0, -5.4, 213.1, -31.4],
|
||||
[-2.4, 65.1, 9.2, -146.2, -24.2]
|
||||
],
|
||||
[
|
||||
[-72.6, -63.9, -61.9, 45.3, 33.0],
|
||||
[79.3, -0.5, -26.2, 78.2, 42.7],
|
||||
[90.9, 141.6, 40.1, -62.7, 37.0],
|
||||
[32.8, 198.2, -0.8, -31.1, 27.3],
|
||||
// torch gets 48.0
|
||||
[34.5, 34.9, -47.9, 127.6, -12.3],
|
||||
[-61.4, -3.2, -2.9, -10.9, -16.6],
|
||||
[74.6, 60.1, -68.9, 34.5, -50.4]
|
||||
],
|
||||
[
|
||||
[37.5, -56.9, -43.6, -13.5, -9.9],
|
||||
[40.0, 97.3, 28.6, 14.2, -30.1],
|
||||
[-22.3, -126.3, -68.8, -8.2, 26.1],
|
||||
[-32.9, 37.3, 108.5, -54.8, 29.6],
|
||||
[34.9, -176.9, -125.0, -28.3, -13.9],
|
||||
[-54.9, 142.6, 62.1, -80.4, -65.6],
|
||||
[7.4, -91.1, -67.6, 35.0, 39.7]
|
||||
],
|
||||
[
|
||||
[-57.2, -40.9, -10.1, 32.6, 29.4],
|
||||
[18.7, -18.0, 29.5, -1.2, 59.2],
|
||||
[-14.0, -74.4, 19.8, -117.0, 58.2],
|
||||
[-21.8, 163.5, -71.1, -99.0, 80.9],
|
||||
[-58.9, -10.9, 93.8, -139.6, 98.0],
|
||||
// torch gets 54.5
|
||||
[-54.4, 135.3, 6.0, -79.1, 134.6],
|
||||
[27.5, -76.0, 43.4, -2.8, -7.8]
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
// Test the same, but then with the following properties, t & w are unmodified.
|
||||
let padding = 1;
|
||||
let outpadding = 1;
|
||||
let dilation = 1;
|
||||
let stride = 2;
|
||||
|
||||
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
|
||||
let loss = res.sqr()?.sum_all()?;
|
||||
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 3627.0); // torch gives 3626.8560
|
||||
|
||||
let grads = loss.backward()?;
|
||||
|
||||
let grad_t = grads.get(&t).unwrap();
|
||||
let grad_w = grads.get(&w).unwrap();
|
||||
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
|
||||
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
|
||||
|
||||
#[rustfmt::skip]
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
|
||||
[
|
||||
[
|
||||
[ 13.2, -40.7, -9.7, -47.3, -82.7],
|
||||
[ -98.2, 9.7, 57.7, -6.2, 180.7],
|
||||
[ 100.2, 24.1, 3.7, -100.5, -48.1],
|
||||
[ -0.3, 13.5, -2.9, 80.0, -49.8],
|
||||
[ 47.2, -25.6, -74.4, 61.2, -18.4],
|
||||
[ 4.6, -69.5, 27.9, 66.5, -88.1],
|
||||
// 4th column on next row; torch is 4.2
|
||||
[ -12.0, 79.2, -40.0, 4.1, -97.1],
|
||||
],
|
||||
[
|
||||
[ -42.2, -36.5, -51.1, 7.5, 32.3],
|
||||
[ 74.1, -44.6, -68.8, 19.5, 7.7],
|
||||
[ 137.1, 54.2, 153.8, -58.0, 45.5],
|
||||
[ 24.4, -56.8, 9.7, -41.0, -14.5],
|
||||
[ -3.7, 72.6, 8.3, 134.8, 40.5],
|
||||
[ 43.2, -56.9, -47.5, -89.4, -95.4],
|
||||
[ 68.2, 108.1, -80.0, 57.0, -121.1]
|
||||
],
|
||||
[
|
||||
[ 31.1, -11.4, -34.8, 33.1, -44.2],
|
||||
[ 29.4, -31.6, -40.2, 13.7, 13.1],
|
||||
[ -0.8, -83.8, -7.8, -17.3, 78.2],
|
||||
[ 12.0, -118.7, 137.5, -76.7, 50.8],
|
||||
[ -28.7, -114.2, -3.7, -96.3, -13.8],
|
||||
[ -31.8, 28.5, -14.3, 4.6, 13.4],
|
||||
[ 28.0, -0.2, -38.9, -29.7, -59.0]
|
||||
],
|
||||
[
|
||||
[ -16.8, 38.5, 15.5, 26.6, 48.9],
|
||||
[ 14.5, 49.6, -24.8, 65.6, 61.7],
|
||||
[ 22.1, -64.7, -4.3, -51.0, 36.3],
|
||||
[ 31.0, -88.9, 47.1, -123.5, -3.8],
|
||||
[ -14.8, -39.8, 128.2, -110.3, 42.6],
|
||||
// 1st column on next row; torch is -7.2
|
||||
[ -7.1, 95.3, -21.3, -58.7, -13.9],
|
||||
[ 26.9, 21.3, 16.1, 70.3, 32.1]
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
#[rustfmt::skip]
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
|
||||
[
|
||||
// 2nd value; torch gets -3.2, 3rd value; torch gets 221.8
|
||||
-2.460e+01, -3.100e+00, 2.219e+02, 7.400e+00, 5.620e+01,
|
||||
7.420e+01, 7.830e+01, 8.900e+00, 1.050e+01, 2.810e+01,
|
||||
5.100e+00, -1.046e+02, -1.572e+02, 8.710e+01, -9.840e+01,
|
||||
-4.230e+01, -1.898e+02, 1.860e+01, -3.570e+01, 9.810e+01,
|
||||
4.680e+01, 1.182e+02, 4.020e+01, -1.900e+00, 1.508e+02,
|
||||
1.094e+02, 1.018e+02, -4.620e+01, 1.591e+02, -2.320e+01,
|
||||
// 5th value; torch gets 7.1
|
||||
-8.450e+01, -4.600e+00, 6.330e+01, 1.123e+02, -7.000e+00,
|
||||
1.101e+02, -6.620e+01, 2.090e+01, -5.120e+01, 8.990e+01,
|
||||
9.050e+01, -6.990e+01, 6.800e+01, -9.250e+01, 1.380e+02,
|
||||
4.720e+01, 4.710e+01, 6.210e+01, 8.870e+01, 2.098e+02,
|
||||
3.870e+01, -1.390e+01, 6.270e+01, 1.484e+02, -9.920e+01,
|
||||
-4.200e+01, -1.505e+02, -1.480e+01, -2.620e+01, 8.220e+01,
|
||||
-3.350e+01, -2.260e+01, -1.198e+02, -5.080e+01, 1.259e+02,
|
||||
5.600e+01, 9.270e+01, 1.209e+02, 6.590e+01, -8.330e+01,
|
||||
7.000e+00, -2.600e+01, -1.133e+02, 3.870e+01, 4.020e+01,
|
||||
-6.300e+00, -8.710e+01, -5.150e+01, -8.510e+01, 2.000e-01,
|
||||
3.640e+01, -6.100e+00, 6.590e+01, -2.700e+00, 6.550e+01,
|
||||
// 4th value; torch gets 3.8
|
||||
5.300e+00, -6.760e+01, -4.270e+01, -3.900e+00, 2.880e+01,
|
||||
5.260e+01, 6.170e+01, -1.203e+02, -1.610e+01, 7.740e+01,
|
||||
-1.008e+02, -1.070e+01, -9.900e+00, 3.300e+00, -2.620e+01,
|
||||
-4.440e+01, 2.580e+01, -6.920e+01, -4.220e+01, 1.108e+02,
|
||||
1.240e+01, -3.440e+01, -2.800e+00, 7.880e+01, -6.690e+01,
|
||||
1.480e+01, 2.310e+01, -4.260e+01, -1.500e+00, -4.760e+01,
|
||||
5.350e+01, -2.260e+01, 8.000e-01, -3.840e+01, -2.500e+00
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -112,3 +112,70 @@ fn custom_op1_with_backward() -> Result<()> {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl candle_core::InplaceOp1 for Elu {
|
||||
fn name(&self) -> &'static str {
|
||||
"elu"
|
||||
}
|
||||
|
||||
fn cpu_fwd(&self, s: &mut CpuStorage, _l: &Layout) -> Result<()> {
|
||||
let alpha = self.alpha;
|
||||
match s {
|
||||
CpuStorage::BF16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F32(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
CpuStorage::F64(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
||||
_ => candle_core::bail!("unsupported dtype for inplace elu"),
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn inplace_op1() -> Result<()> {
|
||||
let cpu = &Device::Cpu;
|
||||
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
|
||||
let t = (t - 5.)?;
|
||||
t.inplace_op1(&Elu { alpha: 1. })?;
|
||||
assert_eq!(
|
||||
to_vec1_round(&t, 4)?,
|
||||
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "cuda", feature = "metal"))]
|
||||
#[allow(clippy::approx_constant)]
|
||||
#[test]
|
||||
fn ug_op() -> Result<()> {
|
||||
let kernel = {
|
||||
use ug::lang::op;
|
||||
|
||||
let layout = ug::Layout::from_shape(&[12]);
|
||||
let ptr = op::Arg::ptr(ug::DType::F32);
|
||||
let src = op::load(ptr.id(), layout.clone(), ug::DType::F32)?;
|
||||
let src = op::unary(op::UnaryOp::Exp, src)?;
|
||||
let st = op::store(ptr.id(), layout, src)?;
|
||||
let kernel = op::Kernel::new("exp".to_string(), vec![ptr], vec![st]);
|
||||
let opts: ug::lower_op::Opts = Default::default();
|
||||
kernel.lower(&opts)?
|
||||
};
|
||||
let device = if candle_core::utils::cuda_is_available() {
|
||||
Device::new_cuda(0)?
|
||||
} else if candle_core::utils::metal_is_available() {
|
||||
Device::new_metal(0)?
|
||||
} else {
|
||||
candle_core::bail!("metal/cuda is mandatory for this test")
|
||||
};
|
||||
let op = candle_core::UgIOp1::new("test", kernel, &device)?;
|
||||
let t = Tensor::arange(0u32, 12u32, &device)?.to_dtype(DType::F32)?;
|
||||
t.inplace_op1(&op)?;
|
||||
assert_eq!(
|
||||
to_vec1_round(&t, 2)?,
|
||||
&[
|
||||
1.0, 2.72, 7.39, 20.09, 54.6, 148.41, 403.43, 1096.63, 2980.96, 8103.08, 22026.47,
|
||||
59874.13
|
||||
]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
BIN
candle-core/tests/fortran_tensor_3d.pth
Normal file
BIN
candle-core/tests/fortran_tensor_3d.pth
Normal file
Binary file not shown.
@ -1,5 +1,6 @@
|
||||
#![allow(clippy::approx_constant)]
|
||||
use anyhow::{Context, Result};
|
||||
use candle_core::{test_device, test_utils, Device, Shape, Tensor, Var};
|
||||
use candle_core::{test_device, test_utils, DType, Device, Shape, Tensor, Var};
|
||||
|
||||
fn simple_grad(device: &Device) -> Result<()> {
|
||||
let x = Var::new(&[3f32, 1., 4.], device)?;
|
||||
@ -96,24 +97,24 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
y.to_vec1::<f32>()?,
|
||||
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
||||
);
|
||||
assert_eq!(
|
||||
grad_x.to_vec1::<f32>()?,
|
||||
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||
test_utils::to_vec1_round(grad_x, 4)?,
|
||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
||||
);
|
||||
let y = x.exp()?.sqr()?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
y.to_vec1::<f32>()?,
|
||||
[403.4288, 7.3890557, 2980.9578, 1.3498588]
|
||||
test_utils::to_vec1_round(&y, 3)?,
|
||||
[403.429, 7.389, 2980.958, 1.35]
|
||||
);
|
||||
// exp(x)^2 = exp(2*x)
|
||||
assert_eq!(
|
||||
grad_x.to_vec1::<f32>()?,
|
||||
[806.8576, 14.778111, 5961.9155, 2.6997175]
|
||||
test_utils::to_vec1_round(grad_x, 2)?,
|
||||
[806.86, 14.78, 5961.92, 2.7]
|
||||
);
|
||||
let y = x.sin()?;
|
||||
let grads = y.backward()?;
|
||||
@ -261,6 +262,7 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let y = elu_x.elu(2.)?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(&elu_x).context("no grad for x")?;
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[-1.2642, 0.0000, -1.7293, 3.0000]
|
||||
@ -270,19 +272,51 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
[0.7358, 2.0000, 0.2707, 1.0000]
|
||||
);
|
||||
|
||||
// testing compared to pytorch nn.Silu()
|
||||
let y = x.silu()?;
|
||||
let grads = y.backward()?;
|
||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[2.8577, 0.7311, 3.9281, 0.0806]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(grad_x, 4)?,
|
||||
[1.0881, 0.9277, 1.0527, 0.5747],
|
||||
);
|
||||
|
||||
if device.is_cpu() {
|
||||
let x = Var::new(&[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]], device)?;
|
||||
let y = x.interpolate1d(12)?.reshape(36)?;
|
||||
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16.,
|
||||
17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
|
||||
33., 34., 35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
||||
let grads = loss.backward()?;
|
||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
||||
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(grad_x, 4)?,
|
||||
[[[10_f32, 26., 42.], [58., 74., 90.], [106., 122., 138.]]]
|
||||
);
|
||||
}
|
||||
|
||||
// manually checked: see comments
|
||||
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
|
||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06.,
|
||||
07., 08., 09., 10., 11., 12.,
|
||||
13., 14., 15., 16., 17., 18.,
|
||||
19., 20., 21., 22., 23., 24.,
|
||||
25., 26., 27., 28., 29., 30.,
|
||||
31., 32., 33., 34., 35., 36.,
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
||||
35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
@ -313,15 +347,11 @@ fn unary_grad(device: &Device) -> Result<()> {
|
||||
let x = Var::new(&[[[[1f32, 2.], [4., 5.]]]], device)?;
|
||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
||||
|
||||
#[rustfmt::skip]
|
||||
let z = Tensor::new(
|
||||
&[
|
||||
1_f32, 02., 03., 04., 05., 06.,
|
||||
07., 08., 09., 10., 11., 12.,
|
||||
13., 14., 15., 16., 17., 18.,
|
||||
19., 20., 21., 22., 23., 24.,
|
||||
25., 26., 27., 28., 29., 30.,
|
||||
31., 32., 33., 34., 35., 36.,
|
||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
||||
35., 36.,
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
@ -475,6 +505,36 @@ fn binary_grad(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flip_backprop() -> Result<()> {
|
||||
let device = &Device::Cpu;
|
||||
|
||||
// Create a tensor (leaf node) that requires gradients
|
||||
let x = Var::ones((2, 2), DType::F64, device)?;
|
||||
let weights = Tensor::arange(1.0, 5.0, device)?.reshape((2, 2))?;
|
||||
|
||||
let y = x.matmul(&weights)?;
|
||||
let expected_y = Tensor::from_vec(vec![4.0, 6.0, 4.0, 6.0], (2, 2), device)?;
|
||||
candle_core::test_utils::assert_tensor_eq(&y, &expected_y)?;
|
||||
|
||||
let z = y.flip(&[1])?;
|
||||
let expected_z = Tensor::from_vec(vec![6.0, 4.0, 6.0, 4.0], (2, 2), device)?;
|
||||
candle_core::test_utils::assert_tensor_eq(&z, &expected_z)?;
|
||||
|
||||
let loss = z.sum_all()?;
|
||||
|
||||
let grad_store = loss.backward()?;
|
||||
let grad_x = grad_store.get_id(x.id()).unwrap();
|
||||
|
||||
let flipped_weights = weights.flip(&[1])?;
|
||||
let dloss_dy = Tensor::ones((2, 2), DType::F64, device)?;
|
||||
// dloss/dx = dloss/dy @ dy/dx = ones @ weight.flip.T
|
||||
let expected_grad = dloss_dy.matmul(&flipped_weights.t()?)?;
|
||||
candle_core::test_utils::assert_tensor_eq(grad_x, &expected_grad)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(
|
||||
simple_grad,
|
||||
simple_grad_cpu,
|
||||
|
@ -88,7 +88,7 @@ fn strided_blocks() -> Result<()> {
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
let tensor = tensor.i((.., 1))?;
|
||||
let tensor = tensor.i((.., 1))?.contiguous()?;
|
||||
match tensor.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||
assert_eq!(start_offset, 0);
|
||||
@ -100,6 +100,20 @@ fn strided_blocks() -> Result<()> {
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
let tensor = tensor.i((.., 1))?;
|
||||
match tensor.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { .. } => {
|
||||
panic!("unexpected block structure")
|
||||
}
|
||||
candle::StridedBlocks::MultipleBlocks {
|
||||
block_len,
|
||||
block_start_index,
|
||||
} => {
|
||||
assert_eq!(block_len, 4);
|
||||
assert_eq!(block_start_index.collect::<Vec<_>>(), &[4, 16])
|
||||
}
|
||||
};
|
||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||
match tensor.t()?.strided_blocks() {
|
||||
candle::StridedBlocks::SingleBlock { .. } => {
|
||||
panic!("unexpected block structure")
|
||||
|
126
candle-core/tests/matmul_tests.rs
Normal file
126
candle-core/tests/matmul_tests.rs
Normal file
@ -0,0 +1,126 @@
|
||||
use candle_core::{test_device, DType, Device, IndexOp, Result, Tensor};
|
||||
|
||||
fn matmul(device: &Device) -> Result<()> {
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let a = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
|
||||
let data = vec![1.0f32, 2.0];
|
||||
let a = Tensor::from_slice(&data, (2, 1), device)?;
|
||||
let data = vec![3.0f32, 4.0];
|
||||
let b = Tensor::from_slice(&data, (1, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
|
||||
|
||||
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 3), device)?;
|
||||
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (3, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
|
||||
|
||||
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
|
||||
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
|
||||
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec3::<f32>()?, &expected);
|
||||
|
||||
// Also perform the matmul on contiguous transposed versions.
|
||||
let a_tt = a.t()?.contiguous()?.t()?;
|
||||
assert!(!a_tt.is_contiguous());
|
||||
assert_eq!(a.dims(), a_tt.dims());
|
||||
assert_eq!(a_tt.stride(), &[6, 1, 2]);
|
||||
|
||||
let b_tt = b.t()?.contiguous()?.t()?;
|
||||
assert!(!b_tt.is_contiguous());
|
||||
assert_eq!(b.dims(), b_tt.dims());
|
||||
assert_eq!(b_tt.stride(), &[6, 1, 3]);
|
||||
|
||||
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn matmul_bf16(device: &Device) -> Result<()> {
|
||||
if !device.supports_bf16() {
|
||||
return Ok(());
|
||||
}
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let a = Tensor::from_slice(&data, (2, 2), device)?.to_dtype(DType::BF16)?;
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?.to_dtype(DType::BF16)?;
|
||||
|
||||
let c = a.matmul(&b)?.to_dtype(DType::F32)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn broadcast_matmul(device: &Device) -> Result<()> {
|
||||
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
|
||||
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
|
||||
let out = lhs.broadcast_matmul(&rhs)?;
|
||||
assert_eq!(out.dims(), &[3, 6, 4, 2]);
|
||||
for idx1 in 0..3 {
|
||||
for idx2 in 0..6 {
|
||||
let out = out.i((idx1, idx2))?;
|
||||
let lhs = lhs.i((idx1, 0))?;
|
||||
let rhs = rhs.i(idx2)?;
|
||||
let out2 = lhs.matmul(&rhs);
|
||||
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
|
||||
// With cuda, we see errors of up to ~1e-12.
|
||||
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/candle/issues/1948
|
||||
fn squeeze_mm(device: &Device) -> Result<()> {
|
||||
let seq_len = 8_usize;
|
||||
let a = Tensor::zeros((1, seq_len, 16), DType::F32, device)?;
|
||||
let x = a.i((.., seq_len - 1, ..))?;
|
||||
let w = Tensor::zeros((32, 16), DType::F32, device)?.t()?;
|
||||
let x = x.matmul(&w)?;
|
||||
assert_eq!(x.dims(), &[1, 32]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/candle/issues/1992
|
||||
fn mm_layout(device: &Device) -> Result<()> {
|
||||
let a = Tensor::arange(0f32, 16f32, device)?.reshape((1, 1, 4, 4))?;
|
||||
let b = Tensor::arange(0f32, 8f32, device)?.reshape((1, 1, 4, 2))?;
|
||||
let mm1 = a.matmul(&b)?;
|
||||
// Forces the layout to be:
|
||||
// shape: [1, 1, 4, 2], stride: [8, 2, 2, 1], start_offset: 0
|
||||
// This is still a contiguous matrix but matmul checks are only the two last dimensions have
|
||||
// non 1 sizes but matmul check may be reluctant to handle it.
|
||||
let b = b.transpose(1, 2)?.force_contiguous()?.transpose(1, 2)?;
|
||||
let mm2 = a.matmul(&b)?;
|
||||
let diff = (mm1 - mm2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
|
||||
test_device!(
|
||||
matmul_bf16,
|
||||
matmul_bf16_cpu,
|
||||
matmul_bf16_gpu,
|
||||
matmul_bf16_metal
|
||||
);
|
||||
test_device!(
|
||||
broadcast_matmul,
|
||||
broadcast_matmul_cpu,
|
||||
broadcast_matmul_gpu,
|
||||
broadcast_matmul_metal
|
||||
);
|
||||
test_device!(squeeze_mm, squeeze_mm_cpu, squeeze_mm_gpu, squeeze_mm_metal);
|
||||
test_device!(mm_layout, mm_layout_cpu, mm_layout_gpu, mm_layout_metal);
|
@ -43,6 +43,9 @@ res = torch.nn.functional.avg_pool2d(t, 2)
|
||||
print(res)
|
||||
*/
|
||||
fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
|
||||
if dev.is_metal() {
|
||||
return Ok(());
|
||||
}
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616,
|
||||
|
37
candle-core/tests/pth.py
Normal file
37
candle-core/tests/pth.py
Normal file
@ -0,0 +1,37 @@
|
||||
import torch
|
||||
from collections import OrderedDict
|
||||
|
||||
# Write a trivial tensor to a pt file
|
||||
a= torch.tensor([[1,2,3,4], [5,6,7,8]])
|
||||
o = OrderedDict()
|
||||
o["test"] = a
|
||||
|
||||
# Write a trivial tensor to a pt file
|
||||
torch.save(o, "test.pt")
|
||||
|
||||
############################################################################################################
|
||||
# Write a trivial tensor to a pt file with a key
|
||||
torch.save({"model_state_dict": o}, "test_with_key.pt")
|
||||
|
||||
############################################################################################################
|
||||
# Create a tensor with fortran contiguous memory layout
|
||||
import numpy as np
|
||||
|
||||
# Step 1: Create a 3D NumPy array with Fortran order using a range of numbers
|
||||
# For example, creating a 2x3x4 array
|
||||
array_fortran = np.asfortranarray(np.arange(1, 2*3*4 + 1).reshape(2, 3, 4))
|
||||
|
||||
# Verify the memory order
|
||||
print("Is Fortran contiguous (F order):", array_fortran.flags['F_CONTIGUOUS']) # Should be True
|
||||
print("Is C contiguous (C order):", array_fortran.flags['C_CONTIGUOUS']) # Should be False
|
||||
|
||||
# Step 2: Convert the NumPy array to a PyTorch tensor
|
||||
tensor_fortran = torch.from_numpy(array_fortran)
|
||||
|
||||
# Verify the tensor layout
|
||||
print("Tensor stride:", tensor_fortran.stride()) # Stride will reflect the Fortran memory layout
|
||||
|
||||
# Step 3: Save the PyTorch tensor to a .pth file
|
||||
torch.save({"tensor_fortran": tensor_fortran}, 'fortran_tensor_3d.pth')
|
||||
|
||||
print("3D Tensor saved with Fortran layout.")
|
31
candle-core/tests/pth_tests.rs
Normal file
31
candle-core/tests/pth_tests.rs
Normal file
@ -0,0 +1,31 @@
|
||||
/// Regression test for pth files not loading on Windows.
|
||||
#[test]
|
||||
fn test_pth() {
|
||||
let tensors = candle_core::pickle::PthTensors::new("tests/test.pt", None).unwrap();
|
||||
tensors.get("test").unwrap().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pth_with_key() {
|
||||
let tensors =
|
||||
candle_core::pickle::PthTensors::new("tests/test_with_key.pt", Some("model_state_dict"))
|
||||
.unwrap();
|
||||
tensors.get("test").unwrap().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pth_fortran_congiguous() {
|
||||
let tensors =
|
||||
candle_core::pickle::PthTensors::new("tests/fortran_tensor_3d.pth", None).unwrap();
|
||||
let tensor = tensors.get("tensor_fortran").unwrap().unwrap();
|
||||
|
||||
assert_eq!(tensor.dims3().unwrap(), (2, 3, 4));
|
||||
|
||||
assert_eq!(
|
||||
tensor.to_vec3::<i64>().unwrap(),
|
||||
[
|
||||
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
|
||||
[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]
|
||||
]
|
||||
);
|
||||
}
|
@ -1,8 +1,9 @@
|
||||
use candle_core::{
|
||||
bail,
|
||||
quantized::{self, GgmlDType},
|
||||
test_device,
|
||||
test_utils::to_vec2_round,
|
||||
Device, Module, Result, Tensor,
|
||||
DType, Device, IndexOp, Module, Result, Tensor,
|
||||
};
|
||||
use quantized::{k_quants, GgmlType};
|
||||
use rand::prelude::*;
|
||||
@ -14,18 +15,46 @@ const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075;
|
||||
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040;
|
||||
const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02;
|
||||
|
||||
#[test]
|
||||
fn quantized_matmul() -> Result<()> {
|
||||
let cpu = &Device::Cpu;
|
||||
fn test_matmul(
|
||||
device: &Device,
|
||||
(b, m, n, k): (usize, usize, usize, usize),
|
||||
dtype: GgmlDType,
|
||||
) -> Result<()> {
|
||||
let lhs = (0..(m * k))
|
||||
.map(|v| v as f32 / (m * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
let rhs = (0..(k * n))
|
||||
.map(|v| v as f32 / (n * k) as f32)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let lhs = Tensor::from_slice(&lhs, (m, k), device)?;
|
||||
let rhs = Tensor::from_slice(&rhs, (k, n), device)?;
|
||||
let mm = lhs.matmul(&rhs)?;
|
||||
let qtensor = quantized::QTensor::quantize(&rhs.t()?, dtype)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&lhs)?;
|
||||
|
||||
let error: f32 = ((&mm - &res)?.abs()? / &mm.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
let error = error / (b * m * n) as f32;
|
||||
assert!(
|
||||
error <= 0.02,
|
||||
"Error {error} is too big. \nExpected:\n {mm} \nFound:\n {res}\n for {dtype:?}"
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn quantized_matmul(device: &Device) -> Result<()> {
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
|
||||
let lhs_s = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -33,7 +62,8 @@ fn quantized_matmul() -> Result<()> {
|
||||
341876.0, 994283.0, 1655709.0, 2301518.0
|
||||
]
|
||||
);
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
mm.to_vec2::<f32>()?,
|
||||
&[
|
||||
@ -43,37 +73,53 @@ fn quantized_matmul() -> Result<()> {
|
||||
]
|
||||
);
|
||||
|
||||
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[85120.0, 214562.0, 345455.0, 474748.0],
|
||||
[213475.0, 604465.0, 1000686.0, 1388317.0],
|
||||
[341876.0, 994283.0, 1655709.0, 2301518.0]
|
||||
]
|
||||
);
|
||||
|
||||
let res = matmul.forward(&lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[84946.0, 214126.0, 344757.0, 473798.0],
|
||||
[213458.0, 604350.0, 1000469.0, 1387990.0],
|
||||
[341970.0, 994574.0, 1656181.0, 2302182.0]
|
||||
]
|
||||
),
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[84866.0, 214045.0, 344676.0, 473707.0],
|
||||
[213425.0, 604313.0, 1000431.0, 1387960.0],
|
||||
[342030.0, 994630.0, 1656248.0, 2302250.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[85120.0, 214562.0, 345455.0, 474748.0],
|
||||
[213475.0, 604465.0, 1000686.0, 1388317.0],
|
||||
[341876.0, 994283.0, 1655709.0, 2301518.0]
|
||||
]
|
||||
),
|
||||
}
|
||||
test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantized_matmul_neg() -> Result<()> {
|
||||
let cpu = &Device::Cpu;
|
||||
fn quantized_matmul_neg(device: &Device) -> Result<()> {
|
||||
let (m, k, n) = (3, 64, 4);
|
||||
let lhs = (0..(m * k))
|
||||
let lhs_s = (0..(m * k))
|
||||
.map(|v| v as f32 - (m * k) as f32 / 2.0)
|
||||
.collect::<Vec<_>>();
|
||||
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
|
||||
let lhs = Tensor::from_slice(&lhs_s, (m, k), device)?;
|
||||
let mut dst = vec![42.; 3 * 4];
|
||||
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
||||
let rhs = (0..k * n)
|
||||
.map(|v| v as f32 - (k * n) as f32 / 3.0)
|
||||
.collect::<Vec<_>>();
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
|
||||
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?;
|
||||
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
||||
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
||||
k_quants::matmul((m, k, n), &lhs_s, &rhs_t, &mut dst)?;
|
||||
assert_eq!(
|
||||
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
||||
&[
|
||||
@ -81,7 +127,7 @@ fn quantized_matmul_neg() -> Result<()> {
|
||||
-196472.0, 63012.0, 324585.0, 587902.0
|
||||
]
|
||||
);
|
||||
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
||||
let mm = lhs.matmul(&tensor_rhs)?;
|
||||
assert_eq!(
|
||||
to_vec2_round(&mm, 0)?,
|
||||
&[
|
||||
@ -91,32 +137,103 @@ fn quantized_matmul_neg() -> Result<()> {
|
||||
]
|
||||
);
|
||||
|
||||
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
|
||||
let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?;
|
||||
let matmul = quantized::QMatMul::from_qtensor(qtensor)?;
|
||||
let res = matmul.forward(&tensor_lhs)?;
|
||||
assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243524.0, -19596.0, -285051.0, -549815.0],
|
||||
[23777.0, 21651.0, 19398.0, 18367.0],
|
||||
[-196472.0, 63012.0, 324585.0, 587902.0]
|
||||
]
|
||||
);
|
||||
|
||||
let res = matmul.forward(&lhs)?;
|
||||
match device {
|
||||
Device::Metal(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243666.0, -19714.0, -285433.0, -550453.0],
|
||||
[23782.0, 21654.0, 19400.0, 18369.0],
|
||||
[-196102.0, 63022.0, 324233.0, 587191.0]
|
||||
]
|
||||
),
|
||||
Device::Cuda(_) => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243740.0, -19762.0, -285476.0, -550498.0],
|
||||
[23774.0, 21645.0, 19395.0, 18364.0],
|
||||
[-196045.0, 63030.0, 324120.0, 587079.0]
|
||||
]
|
||||
),
|
||||
Device::Cpu => assert_eq!(
|
||||
to_vec2_round(&res, 0)?,
|
||||
&[
|
||||
[243524.0, -19596.0, -285051.0, -549815.0],
|
||||
[23777.0, 21651.0, 19398.0, 18367.0],
|
||||
[-196472.0, 63012.0, 324585.0, 587902.0]
|
||||
]
|
||||
),
|
||||
}
|
||||
let lhs2 = Tensor::stack(&[&lhs, &lhs], 0)?;
|
||||
let res2 = matmul.forward(&lhs2)?;
|
||||
let res2 = res2.i(1)?;
|
||||
let diff = (res - res2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if device.is_cuda() {
|
||||
assert!(diff < 0.1);
|
||||
} else {
|
||||
assert_eq!(diff, 0.);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q4_0() -> Result<()> {
|
||||
use k_quants::BlockQ4_0;
|
||||
fn qmm_batch(dev: &Device) -> Result<()> {
|
||||
let (lhs, rhs, _mm) = get_random_tensors(2, 256, 6, dev)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
assert_eq!(mm.shape().dims(), [2, 6]);
|
||||
let lhs2 = Tensor::cat(&[&lhs, &lhs], 0)?;
|
||||
let mm2 = rhs.forward(&lhs2)?;
|
||||
assert_eq!(mm2.shape().dims(), [4, 6]);
|
||||
let diff2 = (mm2.i(2..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff2, 0.0);
|
||||
let lhs3 = Tensor::cat(&[&lhs2, &lhs], 0)?;
|
||||
let mm3 = rhs.forward(&lhs3)?;
|
||||
assert_eq!(mm3.shape().dims(), [6, 6]);
|
||||
let diff3 = (mm3.i(2..4)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let diff3 = (mm3.i(4..)? - &mm)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff3, 0.0);
|
||||
let lhs4 = Tensor::cat(&[&lhs3, &lhs3], 0)?;
|
||||
let mm4 = rhs.forward(&lhs4)?;
|
||||
assert_eq!(mm4.shape().dims(), [12, 6]);
|
||||
let diff4 = (mm4.i(..6)? - &mm3)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
if dev.is_cuda() {
|
||||
// We use a different kernel for sizes from 1 to 8 on cuda which explains
|
||||
// the difference here.
|
||||
assert!(0. < diff4 && diff4 < 1e-4)
|
||||
} else {
|
||||
assert_eq!(diff4, 0.0)
|
||||
};
|
||||
let diff4 = (mm4.i(6..)? - &mm4.i(..6)?)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff4, 0.0);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(quantized_matmul, qmm_cpu, qmm_cuda, qmm_metal);
|
||||
test_device!(quantized_matmul_neg, qmm_n_cpu, qmm_n_cuda, qmm_n_metal);
|
||||
test_device!(qmm_batch, qmm_b_cpu, qmm_b_cuda, qmm_b_metal);
|
||||
|
||||
fn quantize_q4_0(device: &Device) -> Result<()> {
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let mut dst = vec![0f32; 32 * 4];
|
||||
let mut quant = vec![BlockQ4_0::zeros(); 4];
|
||||
BlockQ4_0::from_float(&src, &mut quant)?;
|
||||
BlockQ4_0::to_float(&quant, dst.as_mut_slice())?;
|
||||
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
dst,
|
||||
dst.to_vec1::<f32>()?,
|
||||
&[
|
||||
-0.0, -0.0, 3.875, 3.875, 3.875, 3.875, 7.75, 7.75, 7.75, 7.75, 11.625, 11.625, 11.625,
|
||||
11.625, 15.5, 15.5, 15.5, 15.5, 19.375, 19.375, 19.375, 19.375, 23.25, 23.25, 23.25,
|
||||
@ -132,21 +249,24 @@ fn quantize_q4_0() -> Result<()> {
|
||||
127.0, 127.0
|
||||
]
|
||||
);
|
||||
ggml_quantization_error_test::<BlockQ4_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
ggml_quantization_error_test(GgmlDType::Q4_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q4_1() -> Result<()> {
|
||||
use k_quants::BlockQ4_1;
|
||||
|
||||
fn quantize_q4_1(device: &Device) -> Result<()> {
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let mut dst = vec![0f32; 32 * 4];
|
||||
let mut quant = vec![BlockQ4_1::zeros(); 4];
|
||||
BlockQ4_1::from_float(&src, &mut quant)?;
|
||||
BlockQ4_1::to_float(&quant, dst.as_mut_slice())?;
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
round_vector(&dst),
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
0.0, 0.0, 2.066, 2.066, 4.133, 4.133, 6.199, 6.199, 8.266, 8.266, 10.332, 10.332,
|
||||
12.398, 12.398, 14.465, 14.465, 16.531, 16.531, 18.598, 18.598, 20.664, 20.664, 22.73,
|
||||
@ -162,21 +282,24 @@ fn quantize_q4_1() -> Result<()> {
|
||||
118.73, 118.73, 120.797, 120.797, 122.863, 122.863, 124.93, 124.93, 126.996, 126.996
|
||||
]
|
||||
);
|
||||
ggml_quantization_error_test::<BlockQ4_1>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
ggml_quantization_error_test(GgmlDType::Q4_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q5_0() -> Result<()> {
|
||||
use k_quants::BlockQ5_0;
|
||||
|
||||
fn quantize_q5_0(device: &Device) -> Result<()> {
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let mut dst = vec![0f32; 32 * 4];
|
||||
let mut quant = vec![BlockQ5_0::zeros(); 4];
|
||||
BlockQ5_0::from_float(&src, &mut quant)?;
|
||||
BlockQ5_0::to_float(&quant, dst.as_mut_slice())?;
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
round_vector(&dst),
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
-0.0, 1.938, 1.938, 3.875, 3.875, 5.813, 5.813, 7.75, 7.75, 9.688, 9.688, 11.625,
|
||||
11.625, 13.563, 13.563, 15.5, 15.5, 17.438, 17.438, 19.375, 19.375, 21.313, 21.313,
|
||||
@ -192,21 +315,24 @@ fn quantize_q5_0() -> Result<()> {
|
||||
119.063, 119.063, 119.063, 119.063, 127.0, 127.0, 127.0, 127.0
|
||||
]
|
||||
);
|
||||
ggml_quantization_error_test::<BlockQ5_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
ggml_quantization_error_test(GgmlDType::Q5_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q5_1() -> Result<()> {
|
||||
use k_quants::BlockQ5_1;
|
||||
|
||||
fn quantize_q5_1(device: &Device) -> Result<()> {
|
||||
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
||||
let mut dst = vec![0f32; 32 * 4];
|
||||
let mut quant = vec![BlockQ5_1::zeros(); 4];
|
||||
BlockQ5_1::from_float(&src, &mut quant)?;
|
||||
BlockQ5_1::to_float(&quant, dst.as_mut_slice())?;
|
||||
let src = Tensor::from_slice(&src, (32 * 4,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
assert_eq!(
|
||||
dst,
|
||||
round_vector(&dst.to_vec1::<f32>()?),
|
||||
&[
|
||||
0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
|
||||
16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
|
||||
@ -220,13 +346,11 @@ fn quantize_q5_1() -> Result<()> {
|
||||
124.0, 125.0, 126.0, 127.0
|
||||
]
|
||||
);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ5_1>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
ggml_quantization_error_test(GgmlDType::Q5_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Generates a small test vector ranging from -`bound` to `bound` with `size` steps
|
||||
fn get_test_vector(bound: f32, size: usize) -> (Vec<f32>, Vec<f32>) {
|
||||
fn get_test_vector2(bound: f32, size: usize, device: &Device) -> Result<Tensor> {
|
||||
assert!(
|
||||
size % crate::quantized::k_quants::QK_K == 0,
|
||||
"size must be a multiple of {}",
|
||||
@ -236,10 +360,8 @@ fn get_test_vector(bound: f32, size: usize) -> (Vec<f32>, Vec<f32>) {
|
||||
let src = (0..size)
|
||||
.map(|v| (v as f32 - size as f32 / 2.) * bound / (size as f32 / 2.))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let dst = vec![0f32; size];
|
||||
assert_eq!([src[0], src[size / 2]], [-bound, 0.0]);
|
||||
(src, dst)
|
||||
Tensor::from_vec(src, (size,), device)
|
||||
}
|
||||
|
||||
/// Round a vector
|
||||
@ -288,11 +410,19 @@ fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 {
|
||||
|
||||
/// Similar to the GGML quantization unit test:
|
||||
/// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
|
||||
fn ggml_quantization_error_test<T: GgmlType>(max_error: f32) -> Result<()> {
|
||||
fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f32) -> Result<()> {
|
||||
let src = create_ggml_like_vector(0.0);
|
||||
let mut dst = vec![0.0; GGML_TEST_SIZE];
|
||||
let _quant = quantize_roundtrip::<T>(src.as_slice(), dst.as_mut_slice())?;
|
||||
let error = calculate_rmse(src.as_slice(), dst.as_slice());
|
||||
let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?);
|
||||
if error > max_error {
|
||||
bail!(
|
||||
"Quantization error {} exceeds max error {}",
|
||||
@ -303,19 +433,22 @@ fn ggml_quantization_error_test<T: GgmlType>(max_error: f32) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn quantize_roundtrip<T: GgmlType>(src: &[f32], dst: &mut [f32]) -> Result<Vec<T>> {
|
||||
let mut quant = vec![T::zeros(); src.len() / T::BLCK_SIZE];
|
||||
T::from_float(src, &mut quant)?;
|
||||
T::to_float(&quant, dst)?;
|
||||
Ok(quant)
|
||||
}
|
||||
fn quantize_q2k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q2K;
|
||||
|
||||
#[test]
|
||||
fn quantize_q2k() -> Result<()> {
|
||||
use k_quants::BlockQ2K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ2K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.1);
|
||||
|
||||
// Test some specific values
|
||||
@ -329,20 +462,40 @@ fn quantize_q2k() -> Result<()> {
|
||||
[-0.499, -0.366, -0.249, 0.0, 0.295, 0.492]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ2K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ2K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q3k() -> Result<()> {
|
||||
use k_quants::BlockQ3K;
|
||||
fn quantize_q3k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q3K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ3K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.03);
|
||||
|
||||
// Test some specific values
|
||||
@ -356,20 +509,40 @@ fn quantize_q3k() -> Result<()> {
|
||||
[-0.493, -0.37, -0.243, -0.0, 0.292, 0.492]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ3K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ3K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q4k() -> Result<()> {
|
||||
use k_quants::BlockQ4K;
|
||||
fn quantize_q4k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q4K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ4K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.017);
|
||||
|
||||
// Test some specific values
|
||||
@ -383,21 +556,41 @@ fn quantize_q4k() -> Result<()> {
|
||||
[-0.5, -0.373, -0.25, 0.0, 0.288, 0.498]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ4K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ4K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q5k() -> Result<()> {
|
||||
use k_quants::BlockQ5K;
|
||||
fn quantize_q5k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q5K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ5K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.009);
|
||||
|
||||
// Test some specific values
|
||||
assert_eq!(
|
||||
@ -407,24 +600,43 @@ fn quantize_q5k() -> Result<()> {
|
||||
let dst = round_vector(&dst);
|
||||
assert_eq!(
|
||||
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
||||
[-0.499, -0.372, -0.249, 0.001, 0.279, 0.499]
|
||||
[-0.5, -0.373, -0.25, 0.0, 0.279, 0.499]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ5K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ5K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q6k() -> Result<()> {
|
||||
use k_quants::BlockQ6K;
|
||||
fn quantize_q6k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q6K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ6K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
|
||||
|
||||
// Test some specific values
|
||||
@ -438,22 +650,41 @@ fn quantize_q6k() -> Result<()> {
|
||||
[-0.497, -0.372, -0.25, -0.0, 0.284, 0.5]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ6K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ6K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn quantize_q8k() -> Result<()> {
|
||||
use k_quants::BlockQ8K;
|
||||
fn quantize_q8k(device: &Device) -> Result<()> {
|
||||
let dtype = GgmlDType::Q8K;
|
||||
let src = get_test_vector2(0.5, 1024, device)?;
|
||||
let quant = quantized::QTensor::quantize(&src, dtype)?;
|
||||
let dst = quant.dequantize(device)?;
|
||||
let dst_f16 = quant.dequantize_f16(device)?;
|
||||
let diff = (dst.to_dtype(DType::F16)? - dst_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let (src, mut dst) = get_test_vector(0.5, 1024);
|
||||
let _quant = quantize_roundtrip::<BlockQ8K>(src.as_slice(), dst.as_mut_slice())?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.003);
|
||||
let src = src.to_vec1::<f32>()?;
|
||||
let dst = dst.to_vec1::<f32>()?;
|
||||
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
|
||||
|
||||
// Test some specific values
|
||||
assert_eq!(
|
||||
@ -466,15 +697,86 @@ fn quantize_q8k() -> Result<()> {
|
||||
[-0.5, -0.375, -0.25, -0.0, 0.281, 0.499]
|
||||
);
|
||||
|
||||
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
||||
let _quant_big = quantize_roundtrip::<BlockQ8K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
||||
let src_big = get_test_vector2(128.0, 1024, device)?;
|
||||
let quant_big = quantized::QTensor::quantize(&src_big, dtype)?;
|
||||
let dst_big = quant_big.dequantize(device)?;
|
||||
let dst_big_f16 = quant_big.dequantize_f16(device)?;
|
||||
let diff = (dst_big.to_dtype(DType::F16)? - dst_big_f16)?
|
||||
.to_dtype(DType::F32)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
|
||||
let src_big = src_big.to_vec1::<f32>()?;
|
||||
let dst_big = dst_big.to_vec1::<f32>()?;
|
||||
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6);
|
||||
|
||||
ggml_quantization_error_test::<BlockQ8K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
|
||||
ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(
|
||||
quantize_q4_0,
|
||||
quantize_q4_0_cpu,
|
||||
quantize_q4_0_cuda,
|
||||
quantize_q4_0_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q4_1,
|
||||
quantize_q4_1_cpu,
|
||||
quantize_q4_1_cuda,
|
||||
quantize_q4_1_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q5_0,
|
||||
quantize_q5_0_cpu,
|
||||
quantize_q5_0_cuda,
|
||||
quantize_q5_0_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q5_1,
|
||||
quantize_q5_1_cpu,
|
||||
quantize_q5_1_cuda,
|
||||
quantize_q5_1_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q2k,
|
||||
quantize_q2k_cpu,
|
||||
quantize_q2k_cuda,
|
||||
quantize_q2k_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q3k,
|
||||
quantize_q3k_cpu,
|
||||
quantize_q3k_cuda,
|
||||
quantize_q3k_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q4k,
|
||||
quantize_q4k_cpu,
|
||||
quantize_q4k_cuda,
|
||||
quantize_q4k_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q5k,
|
||||
quantize_q5k_cpu,
|
||||
quantize_q5k_cuda,
|
||||
quantize_q5k_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q6k,
|
||||
quantize_q6k_cpu,
|
||||
quantize_q6k_cuda,
|
||||
quantize_q6k_metal
|
||||
);
|
||||
test_device!(
|
||||
quantize_q8k,
|
||||
quantize_q8k_cpu,
|
||||
quantize_q8k_cuda,
|
||||
quantize_q8k_metal
|
||||
);
|
||||
|
||||
/// Very simple dot product implementation
|
||||
fn vec_dot_reference(a: &[f32], b: &[f32]) -> f32 {
|
||||
a.iter().zip(b).map(|(a, b)| a * b).sum()
|
||||
@ -578,10 +880,10 @@ fn get_random_tensors(
|
||||
let mut rng = StdRng::seed_from_u64(314159265358979);
|
||||
|
||||
let lhs = (0..m * k)
|
||||
.map(|_| rng.gen::<f32>() - 0.5)
|
||||
.map(|_| rng.random::<f32>() - 0.5)
|
||||
.collect::<Vec<_>>();
|
||||
let rhs = (0..n * k)
|
||||
.map(|_| rng.gen::<f32>() - 0.5)
|
||||
.map(|_| rng.random::<f32>() - 0.5)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let lhs = Tensor::from_vec(lhs, (m, k), device)?;
|
||||
@ -591,6 +893,108 @@ fn get_random_tensors(
|
||||
Ok((lhs, rhs, mm))
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! quantized_matmul {
|
||||
// TODO: Switch to generating the two last arguments automatically once concat_idents is
|
||||
// stable. https://github.com/rust-lang/rust/issues/29599
|
||||
($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => {
|
||||
fn $fn_name(device: &Device) -> Result<()> {
|
||||
test_matmul(device, (1, 3, 4, 256), $dtype)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!($fn_name, $fn_name_cpu, $fn_name_cuda, $fn_name_metal);
|
||||
};
|
||||
}
|
||||
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q4_0_bis,
|
||||
quantized_matmul_q4_0_cpu,
|
||||
quantized_matmul_q4_0_cuda,
|
||||
quantized_matmul_q4_0_metal,
|
||||
GgmlDType::Q4_0
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q4_1_bis,
|
||||
quantized_matmul_q4_1_cpu,
|
||||
quantized_matmul_q4_1_cuda,
|
||||
quantized_matmul_q4_1_metal,
|
||||
GgmlDType::Q4_1
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q5_0_bis,
|
||||
quantized_matmul_q5_0_cpu,
|
||||
quantized_matmul_q5_0_cuda,
|
||||
quantized_matmul_q5_0_metal,
|
||||
GgmlDType::Q5_0
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q5_1_bis,
|
||||
quantized_matmul_q5_1_cpu,
|
||||
quantized_matmul_q5_1_cuda,
|
||||
quantized_matmul_q5_1_metal,
|
||||
GgmlDType::Q5_1
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q8_0_bis,
|
||||
quantized_matmul_q8_0_cpu,
|
||||
quantized_matmul_q8_0_cuda,
|
||||
quantized_matmul_q8_0_metal,
|
||||
GgmlDType::Q8_0
|
||||
);
|
||||
// Not implemented in Ggml
|
||||
// quantized_matmul!(
|
||||
// quantized_matmul_q8_1_bis,
|
||||
// quantized_matmul_q8_1_cpu,
|
||||
// quantized_matmul_q8_1_cuda,
|
||||
// quantized_matmul_q8_1_metal,
|
||||
// GgmlDType::Q8_1
|
||||
// );
|
||||
// TODO This is bugged (also bugged in GGML
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q2k_bis,
|
||||
quantized_matmul_q2k_cpu,
|
||||
quantized_matmul_q2k_cuda,
|
||||
quantized_matmul_q2k_metal,
|
||||
GgmlDType::Q2K
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q3k_bis,
|
||||
quantized_matmul_q3k_cpu,
|
||||
quantized_matmul_q3k_cuda,
|
||||
quantized_matmul_q3k_metal,
|
||||
GgmlDType::Q3K
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q4k_bis,
|
||||
quantized_matmul_q4k_cpu,
|
||||
quantized_matmul_q4k_cuda,
|
||||
quantized_matmul_q4k_metal,
|
||||
GgmlDType::Q4K
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q5k_bis,
|
||||
quantized_matmul_q5k_cpu,
|
||||
quantized_matmul_q5k_cuda,
|
||||
quantized_matmul_q5k_metal,
|
||||
GgmlDType::Q5K
|
||||
);
|
||||
quantized_matmul!(
|
||||
quantized_matmul_q6k_bis,
|
||||
quantized_matmul_q6k_cpu,
|
||||
quantized_matmul_q6k_cuda,
|
||||
quantized_matmul_q6k_metal,
|
||||
GgmlDType::Q6K
|
||||
);
|
||||
// Not implemented on metal
|
||||
// quantized_matmul!(
|
||||
// quantized_matmul_q8k_bis,
|
||||
// quantized_matmul_q8k_cpu,
|
||||
// quantized_matmul_q8k_cuda,
|
||||
// quantized_matmul_q8k_metal,
|
||||
// GgmlDType::Q8K
|
||||
// );
|
||||
|
||||
#[test]
|
||||
fn quantized_matmul_q2k() -> Result<()> {
|
||||
use k_quants::BlockQ2K;
|
||||
@ -603,7 +1007,7 @@ fn quantized_matmul_q2k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ2K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
@ -629,7 +1033,7 @@ fn quantized_matmul_q3k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ3K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q3K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
@ -655,7 +1059,7 @@ fn quantized_matmul_q4k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ4K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q4K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
@ -681,7 +1085,7 @@ fn quantized_matmul_q5k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ5K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q5K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
@ -708,7 +1112,7 @@ fn quantized_matmul_q6k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ6K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q6K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
@ -733,7 +1137,7 @@ fn quantized_matmul_q8k() -> Result<()> {
|
||||
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
||||
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
||||
|
||||
let rhs = quantized::QTensor::quantize::<BlockQ8K>(&rhs)?;
|
||||
let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q8K)?;
|
||||
let rhs = quantized::QMatMul::from_qtensor(rhs)?;
|
||||
let mm = rhs.forward(&lhs)?;
|
||||
|
||||
|
@ -1,5 +1,31 @@
|
||||
use candle_core::{DType, Result, Tensor};
|
||||
|
||||
struct TmpFile(std::path::PathBuf);
|
||||
|
||||
impl TmpFile {
|
||||
fn create(base: &str) -> TmpFile {
|
||||
let filename = std::env::temp_dir().join(format!(
|
||||
"candle-{}-{}-{:?}",
|
||||
base,
|
||||
std::process::id(),
|
||||
std::thread::current().id(),
|
||||
));
|
||||
TmpFile(filename)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::AsRef<std::path::Path> for TmpFile {
|
||||
fn as_ref(&self) -> &std::path::Path {
|
||||
self.0.as_path()
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for TmpFile {
|
||||
fn drop(&mut self) {
|
||||
std::fs::remove_file(&self.0).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn npy() -> Result<()> {
|
||||
let npy = Tensor::read_npy("tests/test.npy")?;
|
||||
@ -22,3 +48,24 @@ fn npz() -> Result<()> {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn safetensors() -> Result<()> {
|
||||
use candle_core::safetensors::Load;
|
||||
|
||||
let tmp_file = TmpFile::create("st");
|
||||
let t = Tensor::arange(0f32, 24f32, &candle_core::Device::Cpu)?;
|
||||
t.save_safetensors("t", &tmp_file)?;
|
||||
// Load from file.
|
||||
let st = candle_core::safetensors::load(&tmp_file, &candle_core::Device::Cpu)?;
|
||||
let t2 = st.get("t").unwrap();
|
||||
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0f32);
|
||||
// Load from bytes.
|
||||
let bytes = std::fs::read(tmp_file)?;
|
||||
let st = candle_core::safetensors::SliceSafetensors::new(&bytes)?;
|
||||
let t2 = st.get("t").unwrap().load(&candle_core::Device::Cpu);
|
||||
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0f32);
|
||||
Ok(())
|
||||
}
|
||||
|
@ -29,6 +29,36 @@ fn ones(device: &Device) -> Result<()> {
|
||||
Tensor::ones((2, 3), DType::F64, device)?.to_vec2::<f64>()?,
|
||||
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
|
||||
);
|
||||
assert_eq!(
|
||||
Tensor::ones((2, 3), DType::F16, device)?.to_vec2::<half::f16>()?,
|
||||
[
|
||||
[
|
||||
half::f16::from_f32(1.0),
|
||||
half::f16::from_f32(1.0),
|
||||
half::f16::from_f32(1.0)
|
||||
],
|
||||
[
|
||||
half::f16::from_f32(1.0),
|
||||
half::f16::from_f32(1.0),
|
||||
half::f16::from_f32(1.0)
|
||||
]
|
||||
],
|
||||
);
|
||||
assert_eq!(
|
||||
Tensor::ones((2, 3), DType::BF16, device)?.to_vec2::<half::bf16>()?,
|
||||
[
|
||||
[
|
||||
half::bf16::from_f32(1.0),
|
||||
half::bf16::from_f32(1.0),
|
||||
half::bf16::from_f32(1.0)
|
||||
],
|
||||
[
|
||||
half::bf16::from_f32(1.0),
|
||||
half::bf16::from_f32(1.0),
|
||||
half::bf16::from_f32(1.0)
|
||||
]
|
||||
],
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -96,6 +126,40 @@ fn clamp(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn asort(device: &Device) -> Result<()> {
|
||||
let data = &[[3f32, 1., 4., 1.1, 5.], [2.1, 1., 7., 8., 2.]];
|
||||
let tensor = Tensor::new(data, device)?;
|
||||
let indexes = tensor.arg_sort_last_dim(true)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
|
||||
);
|
||||
let indexes = tensor.arg_sort_last_dim(false)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
|
||||
);
|
||||
let (sorted, indexes) = tensor.sort_last_dim(true)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]],
|
||||
);
|
||||
assert_eq!(
|
||||
sorted.to_vec2::<f32>()?,
|
||||
[[1.0, 1.1, 3.0, 4.0, 5.0], [1.0, 2.0, 2.1, 7.0, 8.0]]
|
||||
);
|
||||
let (sorted, indexes) = tensor.sort_last_dim(false)?;
|
||||
assert_eq!(
|
||||
indexes.to_vec2::<u32>()?,
|
||||
[[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]],
|
||||
);
|
||||
assert_eq!(
|
||||
sorted.to_vec2::<f32>()?,
|
||||
[[5.0, 4.0, 3.0, 1.1, 1.0], [8.0, 7.0, 2.1, 2.0, 1.0]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn unary_op(device: &Device) -> Result<()> {
|
||||
let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]];
|
||||
let tensor = Tensor::new(data, device)?;
|
||||
@ -106,6 +170,9 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
[2.6911, -0.0647, -0.1091, 1.7353, 2.7933]
|
||||
]
|
||||
);
|
||||
let t_f16 = tensor.to_dtype(DType::F16)?.gelu()?.to_dtype(DType::F32)?;
|
||||
let max_diff = (tensor.gelu()? - t_f16)?.flatten_all()?.max(0)?;
|
||||
assert!(max_diff.to_vec0::<f32>()? < 5e-3);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.gelu_erf()?, 4)?,
|
||||
[
|
||||
@ -120,6 +187,13 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
[0.9999, -0.9891, -0.3079, 0.9891, 0.9999]
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.silu()?, 4)?,
|
||||
[
|
||||
[-0.1423, 0.7311, 3.9281, -0.0475, 0.3112],
|
||||
[2.53, -0.2553, -0.1205, 1.5447, 2.6395]
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&tensor.ceil()?, 4)?,
|
||||
[[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]]
|
||||
@ -141,6 +215,27 @@ fn unary_op(device: &Device) -> Result<()> {
|
||||
test_utils::to_vec1_round(&tensor.round_to(-2)?, 4)?,
|
||||
[3000.0, 300.]
|
||||
);
|
||||
let tensor = Tensor::new(
|
||||
&[-1.01f32, -0.9, -0.1, 0.0, -0.0, 0.1, 0.9, 1.0, 1.1],
|
||||
device,
|
||||
)?;
|
||||
assert_eq!(
|
||||
tensor.sign()?.to_vec1::<f32>()?,
|
||||
[-1., -1., -1., 0., 0., 1., 1., 1., 1.]
|
||||
);
|
||||
let tensor = Tensor::new(&[-1.0f32, 0., -2., 3.], device)?;
|
||||
let y = tensor.elu(2.)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[-1.2642, 0.0000, -1.7293, 3.0000]
|
||||
);
|
||||
// This test failed on metal prior to the following PR:
|
||||
// https://github.com/huggingface/candle/pull/2490
|
||||
let y = tensor.reshape((2, 2))?.t()?.elu(2.)?.flatten_all()?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec1_round(&y, 4)?,
|
||||
[-1.2642, -1.7293, 0.0000, 3.0000]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -613,6 +708,32 @@ fn broadcast(device: &Device) -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn slice_set(device: &Device) -> Result<()> {
|
||||
let (b, h, max_t, d) = (2, 4, 7, 3);
|
||||
let cache = Tensor::zeros((b, h, max_t, d), DType::F32, device)?;
|
||||
let tensor = Tensor::randn(0f32, 1f32, (b, h, 4, d), device)?;
|
||||
cache.slice_set(&tensor, 2, 0)?;
|
||||
let cache_t = cache.narrow(2, 0, 4)?;
|
||||
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
cache.slice_set(&tensor, 2, 1)?;
|
||||
let cache_t = cache.narrow(2, 1, 4)?;
|
||||
let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let ones = Tensor::ones((b, h, 1, d), DType::F32, device)?;
|
||||
cache.slice_set(&ones, 2, 6)?;
|
||||
let diff = cache.narrow(2, 5, 1)?.abs()?.sum_all()?.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
let diff = (cache.narrow(2, 6, 1)? - 1.)?
|
||||
.abs()?
|
||||
.sum_all()?
|
||||
.to_vec0::<f32>()?;
|
||||
assert_eq!(diff, 0.);
|
||||
// This used to create a deadlock rather than returning an actual error.
|
||||
assert!(cache.slice_set(&cache, 0, 0).is_err());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn cat(device: &Device) -> Result<()> {
|
||||
// 1D
|
||||
let t1 = Tensor::new(&[3f32, 1., 4.], device)?;
|
||||
@ -665,6 +786,31 @@ fn cat(device: &Device) -> Result<()> {
|
||||
[2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0]
|
||||
]
|
||||
);
|
||||
|
||||
// 3D
|
||||
let t1 = Tensor::arange(0, 48i64, device)?.reshape((2, 6, 4))?;
|
||||
let t2 = Tensor::arange(100, 124i64, device)?.reshape((2, 3, 4))?;
|
||||
let t3 = Tensor::arange(10000, 10032i64, device)?.reshape((2, 4, 4))?;
|
||||
|
||||
let t_cat = Tensor::cat(&[&t1, &t2, &t3], 1)?;
|
||||
|
||||
let t1 = t1.t()?.contiguous()?.t()?;
|
||||
let t2 = t2.t()?.contiguous()?.t()?;
|
||||
let t3 = t3.t()?.contiguous()?.t()?;
|
||||
let t_cat2 = Tensor::cat(&[&t1, &t2, &t3], 1)?;
|
||||
|
||||
let diff = t_cat.eq(&t_cat2)?.to_dtype(DType::F32)?.sum_all()?;
|
||||
assert_eq!(diff.to_vec0::<f32>()?, 104.0);
|
||||
assert_eq!(t_cat.i((0, 0, 0))?.to_vec0::<i64>()?, 0);
|
||||
assert_eq!(t_cat.i((0, 4, 0))?.to_vec0::<i64>()?, 16);
|
||||
assert_eq!(t_cat.i((0, 5, 0))?.to_vec0::<i64>()?, 20);
|
||||
assert_eq!(t_cat.i((1, 5, 0))?.to_vec0::<i64>()?, 44);
|
||||
assert_eq!(t_cat.i((0, 6, 0))?.to_vec0::<i64>()?, 100);
|
||||
assert_eq!(t_cat.i((1, 6, 0))?.to_vec0::<i64>()?, 112);
|
||||
assert_eq!(t_cat.i((0, 6, 1))?.to_vec0::<i64>()?, 101);
|
||||
assert_eq!(t_cat.i((0, 7, 1))?.to_vec0::<i64>()?, 105);
|
||||
assert_eq!(t_cat.i((0, 12, 1))?.to_vec0::<i64>()?, 10013);
|
||||
assert_eq!(t_cat.i((1, 12, 3))?.to_vec0::<i64>()?, 10031);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -675,6 +821,8 @@ fn embeddings(device: &Device) -> Result<()> {
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
let hs = t.index_select(&ids.to_dtype(DType::I64)?, 0)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -702,44 +850,47 @@ fn index_select(device: &Device) -> Result<()> {
|
||||
[9.0, 10.0, 11.0]
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 2.0, 1.0],
|
||||
[3.0, 5.0, 4.0],
|
||||
[6.0, 8.0, 7.0],
|
||||
[9.0, 11.0, 10.0]
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
|
||||
);
|
||||
// Prior to https://github.com/huggingface/candle/pull/1022
|
||||
// There would be a bug where the last values in the result tensor would be set to 0.
|
||||
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
]
|
||||
);
|
||||
for dtype in [DType::U8, DType::U32, DType::I64] {
|
||||
let ids = ids.to_dtype(dtype)?;
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 2.0, 1.0],
|
||||
[3.0, 5.0, 4.0],
|
||||
[6.0, 8.0, 7.0],
|
||||
[9.0, 11.0, 10.0]
|
||||
]
|
||||
);
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]]
|
||||
);
|
||||
// Prior to https://github.com/huggingface/candle/pull/1022
|
||||
// There would be a bug where the last values in the result tensor would be set to 0.
|
||||
let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?;
|
||||
let hs = t.index_select(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec2::<f32>()?,
|
||||
&[
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
[0.0, 1.0, 2.0],
|
||||
[6.0, 7.0, 8.0],
|
||||
[3.0, 4.0, 5.0],
|
||||
]
|
||||
);
|
||||
|
||||
// Test when selecting dim > 0 with ids size different from elem count of
|
||||
// target dim in source/input.
|
||||
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
|
||||
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
|
||||
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
|
||||
// Test when selecting dim > 0 with ids size different from elem count of
|
||||
// target dim in source/input.
|
||||
let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?;
|
||||
let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?;
|
||||
assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]);
|
||||
let hs = t.index_select(&ids, 1)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -898,74 +1049,280 @@ fn gather(device: &Device) -> Result<()> {
|
||||
let ids = Tensor::new(&[[0u32, 2u32, 0u32], [0u32, 1u32, 1u32]], device)?;
|
||||
let hs = t.gather(&ids, 0)?;
|
||||
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 7.0, 2.0], [0.0, 4.0, 5.0]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn matmul(device: &Device) -> Result<()> {
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let a = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
let data = vec![1.0f32, 2.0, 3.0, 4.0];
|
||||
let b = Tensor::from_slice(&data, (2, 2), device)?;
|
||||
// Random data
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
|
||||
// Dim: 0
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
[
|
||||
[108_f32, -47., 16., -56., -83., -130., 210.],
|
||||
[253., 95., 151., 228., -210., -123., -127.],
|
||||
[-9., -217., 2., -78., 163., 245., -204.],
|
||||
[-246., 79., -238., 88., -226., -184., 171.],
|
||||
[8., -48., -153., 234., -34., 166., -153.],
|
||||
[124., 0., -10., -61., -242., -15., -238.],
|
||||
],
|
||||
[
|
||||
[12., -64., -199., 244., -240., 156., -128.],
|
||||
[173., -57., 4., -198., 233., -110., 238.],
|
||||
[95., 82., 0., 240., 53., -211., 209.],
|
||||
[-122., 167., -212., 227., -144., 61., 118.],
|
||||
[-63., -146., 200., 244., 168., -167., 116.],
|
||||
[-125., -147., 110., -253., -178., -250., -18.],
|
||||
],
|
||||
[
|
||||
[57., 86., -50., 56., 92., 205., -78.],
|
||||
[-137., -156., -18., 248., -61., -239., 14.],
|
||||
[-248., -30., -50., -70., -251., 250., -83.],
|
||||
[-221., 67., 72., 59., -24., -154., 232.],
|
||||
[-144., -23., -74., 5., 93., 171., 205.],
|
||||
[46., -77., -38., -226., 246., 161., -17.],
|
||||
],
|
||||
[
|
||||
[-153., -231., -236., 161., 126., 2., -22.],
|
||||
[-229., -41., 209., 164., 234., 160., 57.],
|
||||
[223., 254., -186., -162., -46., -160., -102.],
|
||||
[65., 30., 213., -253., 59., 224., -154.],
|
||||
[-82., -203., -177., 17., 31., -256., -246.],
|
||||
[176., -135., -65., 54., -56., 210., 76.],
|
||||
],
|
||||
[
|
||||
[-10., -245., 168., 124., -14., -33., -178.],
|
||||
[25., -43., -39., 132., -89., 169., 179.],
|
||||
[187., -215., 32., -133., 87., -7., -168.],
|
||||
[-224., -215., -5., -230., -58., -162., 128.],
|
||||
[158., -137., -122., -100., -202., -83., 136.],
|
||||
[30., -185., -144., 250., 209., -40., 127.],
|
||||
],
|
||||
[
|
||||
[-196., 108., -245., 122., 146., -228., 62.],
|
||||
[-1., -66., 160., 137., 13., -172., -21.],
|
||||
[244., 199., -164., 28., 119., -175., 198.],
|
||||
[-62., 253., -162., 195., -95., -230., -211.],
|
||||
[123., -72., -26., -107., -139., 64., 245.],
|
||||
[11., -126., -182., 108., -12., 184., -127.],
|
||||
],
|
||||
[
|
||||
[-159., 126., 176., 161., 73., -111., -138.],
|
||||
[-187., 214., -217., -33., -223., -201., -212.],
|
||||
[-61., -120., -166., -172., -95., 53., 196.],
|
||||
[-33., 86., 134., -152., 154., -53., 74.],
|
||||
[186., -28., -154., -174., 141., -109., 217.],
|
||||
[82., 35., 252., 145., 181., 74., -87.],
|
||||
],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let data = vec![1.0f32, 2.0];
|
||||
let a = Tensor::from_slice(&data, (2, 1), device)?;
|
||||
let data = vec![3.0f32, 4.0];
|
||||
let b = Tensor::from_slice(&data, (1, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
|
||||
let ids = Tensor::new(
|
||||
&[
|
||||
[
|
||||
[6_u32, 6, 4, 3, 4, 4, 6],
|
||||
[3, 3, 2, 4, 4, 4, 6],
|
||||
[3, 3, 0, 2, 4, 6, 4],
|
||||
[2, 5, 1, 2, 6, 6, 1],
|
||||
[2, 1, 6, 5, 3, 2, 3],
|
||||
[6, 1, 0, 1, 0, 2, 6],
|
||||
],
|
||||
[
|
||||
[4, 6, 4, 3, 3, 3, 2],
|
||||
[4, 3, 2, 4, 4, 4, 6],
|
||||
[2, 3, 0, 2, 4, 6, 4],
|
||||
[6, 5, 1, 2, 6, 6, 1],
|
||||
[4, 1, 6, 5, 3, 2, 3],
|
||||
[1, 1, 0, 1, 0, 2, 6],
|
||||
],
|
||||
[
|
||||
[3, 6, 4, 3, 3, 3, 2],
|
||||
[2, 3, 2, 4, 4, 4, 6],
|
||||
[4, 3, 0, 2, 4, 6, 4],
|
||||
[0, 5, 1, 2, 6, 6, 1],
|
||||
[6, 1, 6, 5, 3, 2, 3],
|
||||
[4, 1, 0, 1, 0, 2, 6],
|
||||
],
|
||||
[
|
||||
[0, 6, 4, 3, 3, 3, 2],
|
||||
[5, 3, 2, 4, 4, 4, 6],
|
||||
[0, 3, 0, 2, 4, 6, 4],
|
||||
[3, 5, 1, 2, 6, 6, 1],
|
||||
[0, 1, 6, 5, 3, 2, 3],
|
||||
[3, 1, 0, 1, 0, 2, 6],
|
||||
],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 3), device)?;
|
||||
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (3, 2), device)?;
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
|
||||
let hs = t.gather(&ids, 0)?;
|
||||
assert_eq!(
|
||||
hs.to_vec3::<f32>()?,
|
||||
&[
|
||||
[
|
||||
[-159_f32, 126., 168., 161., -14., -33., -138.],
|
||||
[-229., -41., -18., 132., -89., 169., -212.],
|
||||
[223., 254., 2., -70., 87., 53., -168.],
|
||||
[-221., 253., -212., 59., 154., -53., 118.],
|
||||
[-144., -146., -154., -107., 31., 171., -246.],
|
||||
[82., -147., -10., -253., -242., 161., -87.]
|
||||
],
|
||||
[
|
||||
[-10., 126., 168., 161., 126., 2., -78.],
|
||||
[25., -41., -18., 132., -89., 169., -212.],
|
||||
[-248., 254., 2., -70., 87., 53., -168.],
|
||||
[-33., 253., -212., 59., 154., -53., 118.],
|
||||
[158., -146., -154., -107., 31., 171., -246.],
|
||||
[-125., -147., -10., -253., -242., 161., -87.]
|
||||
],
|
||||
[
|
||||
[-153., 126., 168., 161., 126., 2., -78.],
|
||||
[-137., -41., -18., 132., -89., 169., -212.],
|
||||
[187., 254., 2., -70., 87., 53., -168.],
|
||||
[-246., 253., -212., 59., 154., -53., 118.],
|
||||
[186., -146., -154., -107., 31., 171., -246.],
|
||||
[30., -147., -10., -253., -242., 161., -87.]
|
||||
],
|
||||
[
|
||||
[108., 126., 168., 161., 126., 2., -78.],
|
||||
[-1., -41., -18., 132., -89., 169., -212.],
|
||||
[-9., 254., 2., -70., 87., 53., -168.],
|
||||
[65., 253., -212., 59., 154., -53., 118.],
|
||||
[8., -146., -154., -107., 31., 171., -246.],
|
||||
[176., -147., -10., -253., -242., 161., -87.]
|
||||
]
|
||||
]
|
||||
);
|
||||
|
||||
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
||||
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
|
||||
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
|
||||
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
|
||||
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
|
||||
// Dim: 1
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
[
|
||||
[-117_f32, -175., 69., -163.],
|
||||
[200., 242., -21., -67.],
|
||||
[179., 150., -126., -75.],
|
||||
[-118., 38., -138., -13.],
|
||||
[-221., 136., -185., 180.],
|
||||
[58., 182., -204., -149.],
|
||||
],
|
||||
[
|
||||
[3., -148., -58., -154.],
|
||||
[-43., 45., -108., 4.],
|
||||
[-69., -249., -71., -21.],
|
||||
[80., 110., -152., -235.],
|
||||
[-88., 7., 92., -250.],
|
||||
[-186., 207., -242., 98.],
|
||||
],
|
||||
[
|
||||
[238., 19., 64., -242.],
|
||||
[-150., -97., 218., 58.],
|
||||
[111., -233., 204., -212.],
|
||||
[-242., -232., 83., 42.],
|
||||
[153., 62., -251., 219.],
|
||||
[-117., 36., -119., 10.],
|
||||
],
|
||||
[
|
||||
[215., 159., -169., -27.],
|
||||
[-83., 101., -88., 169.],
|
||||
[-205., 93., 225., -64.],
|
||||
[-162., 240., 214., 23.],
|
||||
[-112., 6., 21., 245.],
|
||||
[-38., 113., 93., 215.],
|
||||
],
|
||||
[
|
||||
[91., -188., -148., 101.],
|
||||
[74., 203., -35., 55.],
|
||||
[-116., -130., -153., -96.],
|
||||
[58., 22., -45., -194.],
|
||||
[-221., -134., 73., 159.],
|
||||
[-203., -254., 31., 235.],
|
||||
],
|
||||
[
|
||||
[105., -53., 61., 186.],
|
||||
[-195., 234., 75., -1.],
|
||||
[51., 139., 160., -108.],
|
||||
[-173., -167., 161., 19.],
|
||||
[83., -246., 156., -222.],
|
||||
[109., 39., -149., 137.],
|
||||
],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
assert_eq!(c.to_vec3::<f32>()?, &expected);
|
||||
let ids = Tensor::new(
|
||||
&[
|
||||
[[4_u32, 4, 4, 2]],
|
||||
[[0, 4, 4, 3]],
|
||||
[[1, 5, 3, 4]],
|
||||
[[0, 3, 3, 2]],
|
||||
[[1, 1, 5, 2]],
|
||||
[[1, 4, 5, 4]],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
// Also perform the matmul on contiguous transposed versions.
|
||||
let a_tt = a.t()?.contiguous()?.t()?;
|
||||
assert!(!a_tt.is_contiguous());
|
||||
assert_eq!(a.dims(), a_tt.dims());
|
||||
assert_eq!(a_tt.stride(), &[6, 1, 2]);
|
||||
let hs = t.gather(&ids, 1)?;
|
||||
assert_eq!(
|
||||
hs.to_vec3::<f32>()?,
|
||||
&[
|
||||
[[-221., 136., -185., -75.]],
|
||||
[[3., 7., 92., -235.]],
|
||||
[[-150., 36., 83., 219.]],
|
||||
[[215., 240., 214., -64.]],
|
||||
[[74., 203., 31., -96.]],
|
||||
[[-195., -246., -149., -222.]]
|
||||
]
|
||||
);
|
||||
|
||||
let b_tt = b.t()?.contiguous()?.t()?;
|
||||
assert!(!b_tt.is_contiguous());
|
||||
assert_eq!(b.dims(), b_tt.dims());
|
||||
assert_eq!(b_tt.stride(), &[6, 1, 3]);
|
||||
// Dim: 2
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
[[-162_f32, 202.], [-126., -39.], [35., -65.], [1., 80.]],
|
||||
[[37., 248.], [-191., 89.], [117., -40.], [-217., 220.]],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
|
||||
Ok(())
|
||||
}
|
||||
let ids = Tensor::new(&[[[1_u32], [0], [1], [1]], [[0], [1], [0], [1]]], device)?;
|
||||
|
||||
let hs = t.gather(&ids, 2)?;
|
||||
assert_eq!(
|
||||
hs.to_vec3::<f32>()?,
|
||||
&[
|
||||
[[202.], [-126.], [-65.], [80.]],
|
||||
[[37.], [89.], [117.], [220.]]
|
||||
]
|
||||
);
|
||||
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
[[-21_f32, -197.], [194., 122.]],
|
||||
[[255., -106.], [-191., 250.]],
|
||||
[[33., -117.], [43., 10.]],
|
||||
[[-130., 238.], [-217., -92.]],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let ids = Tensor::new(
|
||||
&[
|
||||
[[0_u32, 1], [1, 0]],
|
||||
[[1, 0], [0, 1]],
|
||||
[[0, 1], [0, 1]],
|
||||
[[1, 0], [1, 0]],
|
||||
],
|
||||
device,
|
||||
)?;
|
||||
|
||||
let hs = t.gather(&ids, 2)?;
|
||||
assert_eq!(
|
||||
hs.to_vec3::<f32>()?,
|
||||
&[
|
||||
[[-21., -197.], [122., 194.]],
|
||||
[[-106., 255.], [-191., 250.]],
|
||||
[[33., -117.], [43., 10.]],
|
||||
[[238., -130.], [-92., -217.]]
|
||||
]
|
||||
);
|
||||
|
||||
fn broadcast_matmul(device: &Device) -> Result<()> {
|
||||
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
|
||||
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
|
||||
let out = lhs.broadcast_matmul(&rhs)?;
|
||||
assert_eq!(out.dims(), &[3, 6, 4, 2]);
|
||||
for idx1 in 0..3 {
|
||||
for idx2 in 0..6 {
|
||||
let out = out.i((idx1, idx2))?;
|
||||
let lhs = lhs.i((idx1, 0))?;
|
||||
let rhs = rhs.i(idx2)?;
|
||||
let out2 = lhs.matmul(&rhs);
|
||||
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
|
||||
// With cuda, we see errors of up to ~1e-12.
|
||||
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1073,8 +1430,54 @@ fn broadcasting(device: &Device) -> Result<()> {
|
||||
fn randn(device: &Device) -> Result<()> {
|
||||
let tensor = Tensor::randn(0f32, 1f32, (5, 3), device)?;
|
||||
assert_eq!(tensor.dims(), [5, 3]);
|
||||
// Check that the seed gets updated by checking that
|
||||
// a new series of numbers is generated each time
|
||||
let tensor2 = Tensor::randn(0f32, 1f32, (5, 3), device)?;
|
||||
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
|
||||
let tensor = Tensor::rand(0f32, 1f32, (5, 3), device)?;
|
||||
assert_eq!(tensor.dims(), [5, 3]);
|
||||
// Check that the seed gets updated by checking that
|
||||
// a new series of numbers is generated each time
|
||||
let tensor2 = Tensor::rand(0f32, 1f32, (5, 3), device)?;
|
||||
assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?);
|
||||
// We do not expect deterministic elements at any index.
|
||||
// There once was a bug that had a deterministic zero element in evenly sized tensors.
|
||||
const N: usize = 2;
|
||||
let v = (0..100)
|
||||
.map(|_| Tensor::randn(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
assert!(
|
||||
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
|
||||
"There are deterministic values in the randn tensors"
|
||||
);
|
||||
let v = (0..100)
|
||||
.map(|_| Tensor::rand(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>()))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
assert!(
|
||||
(0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])),
|
||||
"There are deterministic values in the rand tensors"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn zero_dim(device: &Device) -> Result<()> {
|
||||
let t = Tensor::zeros((4, 0, 1), DType::F32, device)?;
|
||||
assert_eq!(t.dims3()?, (4, 0, 1));
|
||||
let t2 = Tensor::zeros((4, 3, 1), DType::F32, device)?;
|
||||
let t_cat = Tensor::cat(&[&t, &t2], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 3, 1));
|
||||
let t_cat = Tensor::cat(&[&t, &t], 1)?;
|
||||
assert_eq!(t_cat.dims3()?, (4, 0, 1));
|
||||
let t_unary = t.sqrt()?;
|
||||
assert_eq!(t_unary.dims3()?, (4, 0, 1));
|
||||
let t_plus = (&t + 1.)?;
|
||||
assert_eq!(t_plus.dims3()?, (4, 0, 1));
|
||||
let t_mm = t2.matmul(&t.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 3, 0));
|
||||
let t_mm = t.matmul(&t2.t()?)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 0, 3));
|
||||
let t_mm = t.t()?.matmul(&t)?;
|
||||
assert_eq!(t_mm.dims3()?, (4, 1, 1));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1086,6 +1489,7 @@ test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal);
|
||||
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal);
|
||||
test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal);
|
||||
test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal);
|
||||
test_device!(slice_set, ss_cpu, ss_gpu, ss_metal);
|
||||
test_device!(cat, cat_cpu, cat_gpu, cat_metal);
|
||||
test_device!(sum, sum_cpu, sum_gpu, sum_metal);
|
||||
test_device!(min, min_cpu, min_gpu, min_metal);
|
||||
@ -1097,13 +1501,6 @@ test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
|
||||
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
|
||||
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
|
||||
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
|
||||
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
|
||||
test_device!(
|
||||
broadcast_matmul,
|
||||
broadcast_matmul_cpu,
|
||||
broadcast_matmul_gpu,
|
||||
broadcast_matmul_metal
|
||||
);
|
||||
test_device!(
|
||||
broadcasting,
|
||||
broadcasting_cpu,
|
||||
@ -1132,7 +1529,9 @@ test_device!(
|
||||
);
|
||||
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
|
||||
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
|
||||
test_device!(asort, asort_cpu, asort_gpu, asort_metal);
|
||||
test_device!(var, var_cpu, var_gpu, var_metal);
|
||||
test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal);
|
||||
|
||||
// There was originally a bug on the CPU implementation for randn
|
||||
// https://github.com/huggingface/candle/issues/381
|
||||
@ -1245,11 +1644,92 @@ fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn logsumexp() -> Result<()> {
|
||||
let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let output = input.logsumexp(D::Minus1)?;
|
||||
fn log_sum_exp() -> Result<()> {
|
||||
let input = Tensor::new(
|
||||
&[
|
||||
[[1f64, 2., 3.], [4., 5., 6.]],
|
||||
[[-1000.0, -999.0, -1001.0], [1000.0, 999.0, 1001.0]],
|
||||
],
|
||||
&Device::Cpu,
|
||||
)?;
|
||||
|
||||
let output = input.log_sum_exp(D::Minus1)?;
|
||||
// The expectations obtained from pytorch.
|
||||
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
|
||||
assert_close(&output, &expected, 0.00001)?;
|
||||
let expected = Tensor::new(&[[3.4076, 6.4076], [-998.5924, 1001.4076]], &Device::Cpu)?;
|
||||
assert_eq!(output.dims(), expected.dims());
|
||||
assert_close(&output.flatten_all()?, &expected.flatten_all()?, 0.00001)?;
|
||||
|
||||
assert_eq!(
|
||||
input.log_sum_exp((0, 1))?.to_vec1::<f64>()?,
|
||||
[1000.0, 999.0, 1001.0]
|
||||
);
|
||||
assert_eq!(
|
||||
input.log_sum_exp(())?.to_vec3::<f64>()?,
|
||||
input.to_vec3::<f64>()?
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pow() -> Result<()> {
|
||||
let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let rhs = (&lhs - 2.)?;
|
||||
let res = lhs.pow(&rhs)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res, 3)?,
|
||||
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flip_1d() -> Result<()> {
|
||||
// 1D: [0, 1, 2, 3, 4]
|
||||
let t = Tensor::arange(0.0, 5.0, &Device::Cpu)?.reshape((5,))?;
|
||||
let flipped = t.flip(&[0])?;
|
||||
// Expected: [4, 3, 2, 1, 0]
|
||||
let expected = Tensor::from_vec(vec![4.0, 3.0, 2.0, 1.0, 0.0], (5,), &Device::Cpu)?;
|
||||
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flip_2d() -> Result<()> {
|
||||
// 2D:
|
||||
// [[0, 1, 2],
|
||||
// [3, 4, 5]]
|
||||
let t = Tensor::arange(0.0, 6.0, &Device::Cpu)?.reshape((2, 3))?;
|
||||
let flipped = t.flip(&[0, 1])?;
|
||||
// Expected:
|
||||
// [[5, 4, 3],
|
||||
// [2, 1, 0]]
|
||||
let expected = Tensor::from_vec(vec![5.0, 4.0, 3.0, 2.0, 1.0, 0.0], (2, 3), &Device::Cpu)?;
|
||||
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flip_3d_channels() -> Result<()> {
|
||||
// 3D:
|
||||
// [[[0,1,2],
|
||||
// [3,4,5]],
|
||||
//
|
||||
// [[6,7,8],
|
||||
// [9,10,11]]]
|
||||
let t = Tensor::arange(0.0, 12.0, &Device::Cpu)?.reshape((2, 2, 3))?;
|
||||
let flipped = t.flip(&[2])?;
|
||||
// Expected:
|
||||
// [[[2,1,0],
|
||||
// [5,4,3]],
|
||||
//
|
||||
// [[8,7,6],
|
||||
// [11,10,9]]]
|
||||
let expected = Tensor::from_vec(
|
||||
vec![2.0, 1.0, 0.0, 5.0, 4.0, 3.0, 8.0, 7.0, 6.0, 11.0, 10.0, 9.0],
|
||||
(2, 2, 3),
|
||||
&Device::Cpu,
|
||||
)?;
|
||||
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
|
||||
Ok(())
|
||||
}
|
||||
|
BIN
candle-core/tests/test.pt
Normal file
BIN
candle-core/tests/test.pt
Normal file
Binary file not shown.
BIN
candle-core/tests/test_with_key.pt
Normal file
BIN
candle-core/tests/test_with_key.pt
Normal file
Binary file not shown.
@ -78,7 +78,7 @@ impl<I: Iterator<Item = Tensor>> Iterator for Batcher<Iter1<I>> {
|
||||
match self.inner.inner.next() {
|
||||
Some(item) => items.push(item),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
if self.return_last_incomplete_batch && !items.is_empty() {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
@ -102,7 +102,7 @@ impl<I: Iterator<Item = (Tensor, Tensor)>> Iterator for Batcher<Iter2<I>> {
|
||||
ys.push(y)
|
||||
}
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
if self.return_last_incomplete_batch && !xs.is_empty() && !ys.is_empty() {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
@ -127,7 +127,7 @@ impl<I: Iterator<Item = Result<Tensor>>> Iterator for Batcher<IterResult1<I>> {
|
||||
match self.inner.inner.next() {
|
||||
Some(item) => items.push(item),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
if self.return_last_incomplete_batch && !items.is_empty() {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
@ -154,7 +154,7 @@ impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Iterator for Batcher<IterResu
|
||||
}
|
||||
Some(Err(err)) => errs.push(err),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
if self.return_last_incomplete_batch && !xs.is_empty() && !ys.is_empty() {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
|
@ -60,8 +60,8 @@ pub struct DatasetRandomIter<'a> {
|
||||
|
||||
impl<'a> DatasetRandomIter<'a> {
|
||||
pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self {
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
let all_tokens = if valid {
|
||||
&ds.valid_tokens
|
||||
@ -69,13 +69,13 @@ impl<'a> DatasetRandomIter<'a> {
|
||||
&ds.train_tokens
|
||||
};
|
||||
let mut tokens = all_tokens.iter().collect::<Vec<_>>();
|
||||
tokens.shuffle(&mut thread_rng());
|
||||
tokens.shuffle(&mut rng());
|
||||
let current_tokens = tokens.pop().unwrap();
|
||||
let seq_len_in_bytes = seq_len * 2;
|
||||
let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes)
|
||||
.step_by(seq_len_in_bytes)
|
||||
.collect::<Vec<_>>();
|
||||
indexes_in_bytes.shuffle(&mut thread_rng());
|
||||
indexes_in_bytes.shuffle(&mut rng());
|
||||
Self {
|
||||
all_tokens,
|
||||
tokens,
|
||||
@ -87,26 +87,26 @@ impl<'a> DatasetRandomIter<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterator for DatasetRandomIter<'a> {
|
||||
impl Iterator for DatasetRandomIter<'_> {
|
||||
type Item = Result<(Tensor, Tensor)>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
let seq_len = self.seq_len;
|
||||
if self.indexes_in_bytes.is_empty() {
|
||||
if self.tokens.is_empty() {
|
||||
self.tokens = self.all_tokens.iter().collect();
|
||||
self.tokens.shuffle(&mut thread_rng());
|
||||
self.tokens.shuffle(&mut rng());
|
||||
}
|
||||
self.current_tokens = self.tokens.pop().unwrap();
|
||||
let seq_len_in_bytes = self.seq_len * 2;
|
||||
self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes)
|
||||
.step_by(seq_len_in_bytes)
|
||||
.collect::<Vec<_>>();
|
||||
self.indexes_in_bytes.shuffle(&mut thread_rng());
|
||||
self.indexes_in_bytes.shuffle(&mut rng());
|
||||
}
|
||||
let start_idx = self.indexes_in_bytes.pop().unwrap();
|
||||
let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)];
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user